1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2
3 #![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
4
5 use core::alloc::LayoutError;
6 use core::cmp;
7 use core::intrinsics;
8 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
9 use core::ptr::{self, NonNull, Unique};
10 use core::slice;
11
12 #[cfg(not(no_global_oom_handling))]
13 use crate::alloc::handle_alloc_error;
14 use crate::alloc::{Allocator, Global, Layout};
15 use crate::boxed::Box;
16 use crate::collections::TryReserveError;
17 use crate::collections::TryReserveErrorKind::*;
18
19 #[cfg(test)]
20 mod tests;
21
22 enum AllocInit {
23 /// The contents of the new memory are uninitialized.
24 Uninitialized,
25 /// The new memory is guaranteed to be zeroed.
26 #[allow(dead_code)]
27 Zeroed,
28 }
29
30 /// A low-level utility for more ergonomically allocating, reallocating, and deallocating
31 /// a buffer of memory on the heap without having to worry about all the corner cases
32 /// involved. This type is excellent for building your own data structures like Vec and VecDeque.
33 /// In particular:
34 ///
35 /// * Produces `Unique::dangling()` on zero-sized types.
36 /// * Produces `Unique::dangling()` on zero-length allocations.
37 /// * Avoids freeing `Unique::dangling()`.
38 /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
39 /// * Guards against 32-bit systems allocating more than isize::MAX bytes.
40 /// * Guards against overflowing your length.
41 /// * Calls `handle_alloc_error` for fallible allocations.
42 /// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
43 /// * Uses the excess returned from the allocator to use the largest available capacity.
44 ///
45 /// This type does not in anyway inspect the memory that it manages. When dropped it *will*
46 /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
47 /// to handle the actual things *stored* inside of a `RawVec`.
48 ///
49 /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
50 /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
51 /// `Box<[T]>`, since `capacity()` won't yield the length.
52 #[allow(missing_debug_implementations)]
53 pub(crate) struct RawVec<T, A: Allocator = Global> {
54 ptr: Unique<T>,
55 cap: usize,
56 alloc: A,
57 }
58
59 impl<T> RawVec<T, Global> {
60 /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so
61 /// they cannot call `Self::new()`.
62 ///
63 /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything
64 /// that would truly const-call something unstable.
65 pub const NEW: Self = Self::new();
66
67 /// Creates the biggest possible `RawVec` (on the system heap)
68 /// without allocating. If `T` has positive size, then this makes a
69 /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
70 /// `RawVec` with capacity `usize::MAX`. Useful for implementing
71 /// delayed allocation.
72 #[must_use]
new() -> Self73 pub const fn new() -> Self {
74 Self::new_in(Global)
75 }
76
77 /// Creates a `RawVec` (on the system heap) with exactly the
78 /// capacity and alignment requirements for a `[T; capacity]`. This is
79 /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
80 /// zero-sized. Note that if `T` is zero-sized this means you will
81 /// *not* get a `RawVec` with the requested capacity.
82 ///
83 /// # Panics
84 ///
85 /// Panics if the requested capacity exceeds `isize::MAX` bytes.
86 ///
87 /// # Aborts
88 ///
89 /// Aborts on OOM.
90 #[cfg(not(any(no_global_oom_handling, test)))]
91 #[must_use]
92 #[inline]
with_capacity(capacity: usize) -> Self93 pub fn with_capacity(capacity: usize) -> Self {
94 Self::with_capacity_in(capacity, Global)
95 }
96
97 /// Like `with_capacity`, but guarantees the buffer is zeroed.
98 #[cfg(not(any(no_global_oom_handling, test)))]
99 #[must_use]
100 #[inline]
with_capacity_zeroed(capacity: usize) -> Self101 pub fn with_capacity_zeroed(capacity: usize) -> Self {
102 Self::with_capacity_zeroed_in(capacity, Global)
103 }
104 }
105
106 impl<T, A: Allocator> RawVec<T, A> {
107 // Tiny Vecs are dumb. Skip to:
108 // - 8 if the element size is 1, because any heap allocators is likely
109 // to round up a request of less than 8 bytes to at least 8 bytes.
110 // - 4 if elements are moderate-sized (<= 1 KiB).
111 // - 1 otherwise, to avoid wasting too much space for very short Vecs.
112 pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
113 8
114 } else if mem::size_of::<T>() <= 1024 {
115 4
116 } else {
117 1
118 };
119
120 /// Like `new`, but parameterized over the choice of allocator for
121 /// the returned `RawVec`.
new_in(alloc: A) -> Self122 pub const fn new_in(alloc: A) -> Self {
123 // `cap: 0` means "unallocated". zero-sized types are ignored.
124 Self { ptr: Unique::dangling(), cap: 0, alloc }
125 }
126
127 /// Like `with_capacity`, but parameterized over the choice of
128 /// allocator for the returned `RawVec`.
129 #[cfg(not(no_global_oom_handling))]
130 #[inline]
with_capacity_in(capacity: usize, alloc: A) -> Self131 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
132 Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
133 }
134
135 /// Like `try_with_capacity`, but parameterized over the choice of
136 /// allocator for the returned `RawVec`.
137 #[inline]
try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError>138 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
139 Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc)
140 }
141
142 /// Like `with_capacity_zeroed`, but parameterized over the choice
143 /// of allocator for the returned `RawVec`.
144 #[cfg(not(no_global_oom_handling))]
145 #[inline]
with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self146 pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
147 Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
148 }
149
150 /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
151 ///
152 /// Note that this will correctly reconstitute any `cap` changes
153 /// that may have been performed. (See description of type for details.)
154 ///
155 /// # Safety
156 ///
157 /// * `len` must be greater than or equal to the most recently requested capacity, and
158 /// * `len` must be less than or equal to `self.capacity()`.
159 ///
160 /// Note, that the requested capacity and `self.capacity()` could differ, as
161 /// an allocator could overallocate and return a greater memory block than requested.
into_box(self, len: usize) -> Box<[MaybeUninit<T>], A>162 pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
163 // Sanity-check one half of the safety requirement (we cannot check the other half).
164 debug_assert!(
165 len <= self.capacity(),
166 "`len` must be smaller than or equal to `self.capacity()`"
167 );
168
169 let me = ManuallyDrop::new(self);
170 unsafe {
171 let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
172 Box::from_raw_in(slice, ptr::read(&me.alloc))
173 }
174 }
175
176 #[cfg(not(no_global_oom_handling))]
allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self177 fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
178 // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
179 if T::IS_ZST || capacity == 0 {
180 Self::new_in(alloc)
181 } else {
182 // We avoid `unwrap_or_else` here because it bloats the amount of
183 // LLVM IR generated.
184 let layout = match Layout::array::<T>(capacity) {
185 Ok(layout) => layout,
186 Err(_) => capacity_overflow(),
187 };
188 match alloc_guard(layout.size()) {
189 Ok(_) => {}
190 Err(_) => capacity_overflow(),
191 }
192 let result = match init {
193 AllocInit::Uninitialized => alloc.allocate(layout),
194 AllocInit::Zeroed => alloc.allocate_zeroed(layout),
195 };
196 let ptr = match result {
197 Ok(ptr) => ptr,
198 Err(_) => handle_alloc_error(layout),
199 };
200
201 // Allocators currently return a `NonNull<[u8]>` whose length
202 // matches the size requested. If that ever changes, the capacity
203 // here should change to `ptr.len() / mem::size_of::<T>()`.
204 Self {
205 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
206 cap: capacity,
207 alloc,
208 }
209 }
210 }
211
try_allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Result<Self, TryReserveError>212 fn try_allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Result<Self, TryReserveError> {
213 // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
214 if T::IS_ZST || capacity == 0 {
215 return Ok(Self::new_in(alloc));
216 }
217
218 let layout = Layout::array::<T>(capacity).map_err(|_| CapacityOverflow)?;
219 alloc_guard(layout.size())?;
220 let result = match init {
221 AllocInit::Uninitialized => alloc.allocate(layout),
222 AllocInit::Zeroed => alloc.allocate_zeroed(layout),
223 };
224 let ptr = result.map_err(|_| AllocError { layout, non_exhaustive: () })?;
225
226 // Allocators currently return a `NonNull<[u8]>` whose length
227 // matches the size requested. If that ever changes, the capacity
228 // here should change to `ptr.len() / mem::size_of::<T>()`.
229 Ok(Self {
230 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
231 cap: capacity,
232 alloc,
233 })
234 }
235
236 /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
237 ///
238 /// # Safety
239 ///
240 /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
241 /// `capacity`.
242 /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
243 /// systems). ZST vectors may have a capacity up to `usize::MAX`.
244 /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
245 /// guaranteed.
246 #[inline]
from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self247 pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
248 Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
249 }
250
251 /// Gets a raw pointer to the start of the allocation. Note that this is
252 /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
253 /// be careful.
254 #[inline]
ptr(&self) -> *mut T255 pub fn ptr(&self) -> *mut T {
256 self.ptr.as_ptr()
257 }
258
259 /// Gets the capacity of the allocation.
260 ///
261 /// This will always be `usize::MAX` if `T` is zero-sized.
262 #[inline(always)]
capacity(&self) -> usize263 pub fn capacity(&self) -> usize {
264 if T::IS_ZST { usize::MAX } else { self.cap }
265 }
266
267 /// Returns a shared reference to the allocator backing this `RawVec`.
allocator(&self) -> &A268 pub fn allocator(&self) -> &A {
269 &self.alloc
270 }
271
current_memory(&self) -> Option<(NonNull<u8>, Layout)>272 fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
273 if T::IS_ZST || self.cap == 0 {
274 None
275 } else {
276 // We could use Layout::array here which ensures the absence of isize and usize overflows
277 // and could hypothetically handle differences between stride and size, but this memory
278 // has already been allocated so we know it can't overflow and currently rust does not
279 // support such types. So we can do better by skipping some checks and avoid an unwrap.
280 let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) };
281 unsafe {
282 let align = mem::align_of::<T>();
283 let size = mem::size_of::<T>().unchecked_mul(self.cap);
284 let layout = Layout::from_size_align_unchecked(size, align);
285 Some((self.ptr.cast().into(), layout))
286 }
287 }
288 }
289
290 /// Ensures that the buffer contains at least enough space to hold `len +
291 /// additional` elements. If it doesn't already have enough capacity, will
292 /// reallocate enough space plus comfortable slack space to get amortized
293 /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
294 /// itself to panic.
295 ///
296 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
297 /// the requested space. This is not really unsafe, but the unsafe
298 /// code *you* write that relies on the behavior of this function may break.
299 ///
300 /// This is ideal for implementing a bulk-push operation like `extend`.
301 ///
302 /// # Panics
303 ///
304 /// Panics if the new capacity exceeds `isize::MAX` bytes.
305 ///
306 /// # Aborts
307 ///
308 /// Aborts on OOM.
309 #[cfg(not(no_global_oom_handling))]
310 #[inline]
reserve(&mut self, len: usize, additional: usize)311 pub fn reserve(&mut self, len: usize, additional: usize) {
312 // Callers expect this function to be very cheap when there is already sufficient capacity.
313 // Therefore, we move all the resizing and error-handling logic from grow_amortized and
314 // handle_reserve behind a call, while making sure that this function is likely to be
315 // inlined as just a comparison and a call if the comparison fails.
316 #[cold]
317 fn do_reserve_and_handle<T, A: Allocator>(
318 slf: &mut RawVec<T, A>,
319 len: usize,
320 additional: usize,
321 ) {
322 handle_reserve(slf.grow_amortized(len, additional));
323 }
324
325 if self.needs_to_grow(len, additional) {
326 do_reserve_and_handle(self, len, additional);
327 }
328 }
329
330 /// A specialized version of `reserve()` used only by the hot and
331 /// oft-instantiated `Vec::push()`, which does its own capacity check.
332 #[cfg(not(no_global_oom_handling))]
333 #[inline(never)]
reserve_for_push(&mut self, len: usize)334 pub fn reserve_for_push(&mut self, len: usize) {
335 handle_reserve(self.grow_amortized(len, 1));
336 }
337
338 /// The same as `reserve`, but returns on errors instead of panicking or aborting.
try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>339 pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
340 if self.needs_to_grow(len, additional) {
341 self.grow_amortized(len, additional)
342 } else {
343 Ok(())
344 }
345 }
346
347 /// The same as `reserve_for_push`, but returns on errors instead of panicking or aborting.
348 #[inline(never)]
try_reserve_for_push(&mut self, len: usize) -> Result<(), TryReserveError>349 pub fn try_reserve_for_push(&mut self, len: usize) -> Result<(), TryReserveError> {
350 self.grow_amortized(len, 1)
351 }
352
353 /// Ensures that the buffer contains at least enough space to hold `len +
354 /// additional` elements. If it doesn't already, will reallocate the
355 /// minimum possible amount of memory necessary. Generally this will be
356 /// exactly the amount of memory necessary, but in principle the allocator
357 /// is free to give back more than we asked for.
358 ///
359 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
360 /// the requested space. This is not really unsafe, but the unsafe code
361 /// *you* write that relies on the behavior of this function may break.
362 ///
363 /// # Panics
364 ///
365 /// Panics if the new capacity exceeds `isize::MAX` bytes.
366 ///
367 /// # Aborts
368 ///
369 /// Aborts on OOM.
370 #[cfg(not(no_global_oom_handling))]
reserve_exact(&mut self, len: usize, additional: usize)371 pub fn reserve_exact(&mut self, len: usize, additional: usize) {
372 handle_reserve(self.try_reserve_exact(len, additional));
373 }
374
375 /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
try_reserve_exact( &mut self, len: usize, additional: usize, ) -> Result<(), TryReserveError>376 pub fn try_reserve_exact(
377 &mut self,
378 len: usize,
379 additional: usize,
380 ) -> Result<(), TryReserveError> {
381 if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
382 }
383
384 /// Shrinks the buffer down to the specified capacity. If the given amount
385 /// is 0, actually completely deallocates.
386 ///
387 /// # Panics
388 ///
389 /// Panics if the given amount is *larger* than the current capacity.
390 ///
391 /// # Aborts
392 ///
393 /// Aborts on OOM.
394 #[cfg(not(no_global_oom_handling))]
shrink_to_fit(&mut self, cap: usize)395 pub fn shrink_to_fit(&mut self, cap: usize) {
396 handle_reserve(self.shrink(cap));
397 }
398 }
399
400 impl<T, A: Allocator> RawVec<T, A> {
401 /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
402 /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
needs_to_grow(&self, len: usize, additional: usize) -> bool403 fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
404 additional > self.capacity().wrapping_sub(len)
405 }
406
set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize)407 fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
408 // Allocators currently return a `NonNull<[u8]>` whose length matches
409 // the size requested. If that ever changes, the capacity here should
410 // change to `ptr.len() / mem::size_of::<T>()`.
411 self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
412 self.cap = cap;
413 }
414
415 // This method is usually instantiated many times. So we want it to be as
416 // small as possible, to improve compile times. But we also want as much of
417 // its contents to be statically computable as possible, to make the
418 // generated code run faster. Therefore, this method is carefully written
419 // so that all of the code that depends on `T` is within it, while as much
420 // of the code that doesn't depend on `T` as possible is in functions that
421 // are non-generic over `T`.
grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>422 fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
423 // This is ensured by the calling contexts.
424 debug_assert!(additional > 0);
425
426 if T::IS_ZST {
427 // Since we return a capacity of `usize::MAX` when `elem_size` is
428 // 0, getting to here necessarily means the `RawVec` is overfull.
429 return Err(CapacityOverflow.into());
430 }
431
432 // Nothing we can really do about these checks, sadly.
433 let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
434
435 // This guarantees exponential growth. The doubling cannot overflow
436 // because `cap <= isize::MAX` and the type of `cap` is `usize`.
437 let cap = cmp::max(self.cap * 2, required_cap);
438 let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
439
440 let new_layout = Layout::array::<T>(cap);
441
442 // `finish_grow` is non-generic over `T`.
443 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
444 self.set_ptr_and_cap(ptr, cap);
445 Ok(())
446 }
447
448 // The constraints on this method are much the same as those on
449 // `grow_amortized`, but this method is usually instantiated less often so
450 // it's less critical.
grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>451 fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
452 if T::IS_ZST {
453 // Since we return a capacity of `usize::MAX` when the type size is
454 // 0, getting to here necessarily means the `RawVec` is overfull.
455 return Err(CapacityOverflow.into());
456 }
457
458 let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
459 let new_layout = Layout::array::<T>(cap);
460
461 // `finish_grow` is non-generic over `T`.
462 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
463 self.set_ptr_and_cap(ptr, cap);
464 Ok(())
465 }
466
467 #[cfg(not(no_global_oom_handling))]
shrink(&mut self, cap: usize) -> Result<(), TryReserveError>468 fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> {
469 assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity");
470
471 let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
472 // See current_memory() why this assert is here
473 let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) };
474 let ptr = unsafe {
475 // `Layout::array` cannot overflow here because it would have
476 // overflowed earlier when capacity was larger.
477 let new_size = mem::size_of::<T>().unchecked_mul(cap);
478 let new_layout = Layout::from_size_align_unchecked(new_size, layout.align());
479 self.alloc
480 .shrink(ptr, layout, new_layout)
481 .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
482 };
483 self.set_ptr_and_cap(ptr, cap);
484 Ok(())
485 }
486 }
487
488 // This function is outside `RawVec` to minimize compile times. See the comment
489 // above `RawVec::grow_amortized` for details. (The `A` parameter isn't
490 // significant, because the number of different `A` types seen in practice is
491 // much smaller than the number of `T` types.)
492 #[inline(never)]
finish_grow<A>( new_layout: Result<Layout, LayoutError>, current_memory: Option<(NonNull<u8>, Layout)>, alloc: &mut A, ) -> Result<NonNull<[u8]>, TryReserveError> where A: Allocator,493 fn finish_grow<A>(
494 new_layout: Result<Layout, LayoutError>,
495 current_memory: Option<(NonNull<u8>, Layout)>,
496 alloc: &mut A,
497 ) -> Result<NonNull<[u8]>, TryReserveError>
498 where
499 A: Allocator,
500 {
501 // Check for the error here to minimize the size of `RawVec::grow_*`.
502 let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
503
504 alloc_guard(new_layout.size())?;
505
506 let memory = if let Some((ptr, old_layout)) = current_memory {
507 debug_assert_eq!(old_layout.align(), new_layout.align());
508 unsafe {
509 // The allocator checks for alignment equality
510 intrinsics::assume(old_layout.align() == new_layout.align());
511 alloc.grow(ptr, old_layout, new_layout)
512 }
513 } else {
514 alloc.allocate(new_layout)
515 };
516
517 memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
518 }
519
520 unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
521 /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
drop(&mut self)522 fn drop(&mut self) {
523 if let Some((ptr, layout)) = self.current_memory() {
524 unsafe { self.alloc.deallocate(ptr, layout) }
525 }
526 }
527 }
528
529 // Central function for reserve error handling.
530 #[cfg(not(no_global_oom_handling))]
531 #[inline]
handle_reserve(result: Result<(), TryReserveError>)532 fn handle_reserve(result: Result<(), TryReserveError>) {
533 match result.map_err(|e| e.kind()) {
534 Err(CapacityOverflow) => capacity_overflow(),
535 Err(AllocError { layout, .. }) => handle_alloc_error(layout),
536 Ok(()) => { /* yay */ }
537 }
538 }
539
540 // We need to guarantee the following:
541 // * We don't ever allocate `> isize::MAX` byte-size objects.
542 // * We don't overflow `usize::MAX` and actually allocate too little.
543 //
544 // On 64-bit we just need to check for overflow since trying to allocate
545 // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
546 // an extra guard for this in case we're running on a platform which can use
547 // all 4GB in user-space, e.g., PAE or x32.
548
549 #[inline]
alloc_guard(alloc_size: usize) -> Result<(), TryReserveError>550 fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
551 if usize::BITS < 64 && alloc_size > isize::MAX as usize {
552 Err(CapacityOverflow.into())
553 } else {
554 Ok(())
555 }
556 }
557
558 // One central function responsible for reporting capacity overflows. This'll
559 // ensure that the code generation related to these panics is minimal as there's
560 // only one location which panics rather than a bunch throughout the module.
561 #[cfg(not(no_global_oom_handling))]
capacity_overflow() -> !562 fn capacity_overflow() -> ! {
563 panic!("capacity overflow");
564 }
565