1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * arch/arm/include/asm/pgtable-3level.h
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8 #ifndef _ASM_PGTABLE_3LEVEL_H
9 #define _ASM_PGTABLE_3LEVEL_H
10
11 /*
12 * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
13 * 8 bytes each, occupying a 4K page. The first level table covers a range of
14 * 512GB, each entry representing 1GB. Since we are limited to 4GB input
15 * address range, only 4 entries in the PGD are used.
16 *
17 * There are enough spare bits in a page table entry for the kernel specific
18 * state.
19 */
20 #define PTRS_PER_PTE 512
21 #define PTRS_PER_PMD 512
22 #define PTRS_PER_PGD 4
23
24 #define PTE_HWTABLE_PTRS (0)
25 #define PTE_HWTABLE_OFF (0)
26 #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u64))
27
28 /*
29 * PGDIR_SHIFT determines the size a top-level page table entry can map.
30 */
31 #define PGDIR_SHIFT 30
32
33 /*
34 * PMD_SHIFT determines the size a middle-level page table entry can map.
35 */
36 #define PMD_SHIFT 21
37
38 #define PMD_SIZE (1UL << PMD_SHIFT)
39 #define PMD_MASK (~((1 << PMD_SHIFT) - 1))
40 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
41 #define PGDIR_MASK (~((1 << PGDIR_SHIFT) - 1))
42
43 /*
44 * section address mask and size definitions.
45 */
46 #define SECTION_SHIFT 21
47 #define SECTION_SIZE (1UL << SECTION_SHIFT)
48 #define SECTION_MASK (~((1 << SECTION_SHIFT) - 1))
49
50 #define USER_PTRS_PER_PGD (PAGE_OFFSET / PGDIR_SIZE)
51
52 /*
53 * Hugetlb definitions.
54 */
55 #define HPAGE_SHIFT PMD_SHIFT
56 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
57 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
58 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
59
60 /*
61 * "Linux" PTE definitions for LPAE.
62 *
63 * These bits overlap with the hardware bits but the naming is preserved for
64 * consistency with the classic page table format.
65 */
66 #define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
67 #define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Present */
68 #define L_PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */
69 #define L_PTE_SHARED (_AT(pteval_t, 3) << 8) /* SH[1:0], inner shareable */
70 #define L_PTE_YOUNG (_AT(pteval_t, 1) << 10) /* AF */
71 #define L_PTE_XN (_AT(pteval_t, 1) << 54) /* XN */
72 #define L_PTE_DIRTY (_AT(pteval_t, 1) << 55)
73 #define L_PTE_SPECIAL (_AT(pteval_t, 1) << 56)
74 #define L_PTE_NONE (_AT(pteval_t, 1) << 57) /* PROT_NONE */
75 #define L_PTE_RDONLY (_AT(pteval_t, 1) << 58) /* READ ONLY */
76
77 #define L_PMD_SECT_VALID (_AT(pmdval_t, 1) << 0)
78 #define L_PMD_SECT_DIRTY (_AT(pmdval_t, 1) << 55)
79 #define L_PMD_SECT_NONE (_AT(pmdval_t, 1) << 57)
80 #define L_PMD_SECT_RDONLY (_AT(pteval_t, 1) << 58)
81
82 /*
83 * To be used in assembly code with the upper page attributes.
84 */
85 #define L_PTE_XN_HIGH (1 << (54 - 32))
86 #define L_PTE_DIRTY_HIGH (1 << (55 - 32))
87
88 /*
89 * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
90 */
91 #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0) << 2) /* strongly ordered */
92 #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
93 #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 2) << 2) /* normal inner write-through */
94 #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 3) << 2) /* normal inner write-back */
95 #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 7) << 2) /* normal inner write-alloc */
96 #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 4) << 2) /* device */
97 #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 4) << 2) /* device */
98 #define L_PTE_MT_DEV_WC (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
99 #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 3) << 2) /* normal inner write-back */
100 #define L_PTE_MT_MASK (_AT(pteval_t, 7) << 2)
101
102 /*
103 * Software PGD flags.
104 */
105 #define L_PGD_SWAPPER (_AT(pgdval_t, 1) << 55) /* swapper_pg_dir entry */
106
107 /*
108 * 2nd stage PTE definitions for LPAE.
109 */
110 #define L_PTE_S2_MT_UNCACHED (_AT(pteval_t, 0x0) << 2) /* strongly ordered */
111 #define L_PTE_S2_MT_WRITETHROUGH (_AT(pteval_t, 0xa) << 2) /* normal inner write-through */
112 #define L_PTE_S2_MT_WRITEBACK (_AT(pteval_t, 0xf) << 2) /* normal inner write-back */
113 #define L_PTE_S2_MT_DEV_SHARED (_AT(pteval_t, 0x1) << 2) /* device */
114 #define L_PTE_S2_MT_MASK (_AT(pteval_t, 0xf) << 2)
115
116 #define L_PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[1] */
117 #define L_PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */
118
119 #define L_PMD_S2_RDONLY (_AT(pmdval_t, 1) << 6) /* HAP[1] */
120 #define L_PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */
121
122 /*
123 * Hyp-mode PL2 PTE definitions for LPAE.
124 */
125 #define L_PTE_HYP L_PTE_USER
126
127 #ifndef __ASSEMBLY__
128
129 #define pud_none(pud) (!pud_val(pud))
130 #define pud_bad(pud) (!(pud_val(pud) & 2))
131 #define pud_present(pud) (pud_val(pud))
132 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
133 PMD_TYPE_TABLE)
134 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
135 PMD_TYPE_SECT)
136 #define pmd_large(pmd) pmd_sect(pmd)
137
138 #define pud_clear(pudp) \
139 do { \
140 *pudp = __pud(0); \
141 clean_pmd_entry(pudp); \
142 } while (0)
143
144 #define set_pud(pudp, pud) \
145 do { \
146 *pudp = pud; \
147 flush_pmd_entry(pudp); \
148 } while (0)
149
pud_page_vaddr(pud_t pud)150 static inline pmd_t *pud_page_vaddr(pud_t pud)
151 {
152 return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
153 }
154
155 /* Find an entry in the second-level page table.. */
156 #define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
pmd_offset(pud_t * pud,unsigned long addr)157 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
158 {
159 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr);
160 }
161
162 #define pmd_bad(pmd) (!(pmd_val(pmd) & 2))
163
164 #define copy_pmd(pmdpd,pmdps) \
165 do { \
166 *pmdpd = *pmdps; \
167 flush_pmd_entry(pmdpd); \
168 } while (0)
169
170 #define pmd_clear(pmdp) \
171 do { \
172 *pmdp = __pmd(0); \
173 clean_pmd_entry(pmdp); \
174 } while (0)
175
176 /*
177 * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
178 * that are written to a page table but not for ptes created with mk_pte.
179 *
180 * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
181 * hugetlb_cow, where it is compared with an entry in a page table.
182 * This comparison test fails erroneously leading ultimately to a memory leak.
183 *
184 * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
185 * present before running the comparison.
186 */
187 #define __HAVE_ARCH_PTE_SAME
188 #define pte_same(pte_a,pte_b) ((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG \
189 : pte_val(pte_a)) \
190 == (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG \
191 : pte_val(pte_b)))
192
193 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
194
195 #define pte_huge(pte) (pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
196 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
197
198 #define pmd_isset(pmd, val) ((u32)(val) == (val) ? pmd_val(pmd) & (val) \
199 : !!(pmd_val(pmd) & (val)))
200 #define pmd_isclear(pmd, val) (!(pmd_val(pmd) & (val)))
201
202 #define pmd_present(pmd) (pmd_isset((pmd), L_PMD_SECT_VALID))
203 #define pmd_young(pmd) (pmd_isset((pmd), PMD_SECT_AF))
204 #define pte_special(pte) (pte_isset((pte), L_PTE_SPECIAL))
pte_mkspecial(pte_t pte)205 static inline pte_t pte_mkspecial(pte_t pte)
206 {
207 pte_val(pte) |= L_PTE_SPECIAL;
208 return pte;
209 }
210
211 #define pmd_write(pmd) (pmd_isclear((pmd), L_PMD_SECT_RDONLY))
212 #define pmd_dirty(pmd) (pmd_isset((pmd), L_PMD_SECT_DIRTY))
213 #define pud_page(pud) pmd_page(__pmd(pud_val(pud)))
214 #define pud_write(pud) pmd_write(__pmd(pud_val(pud)))
215
216 #define pmd_hugewillfault(pmd) (!pmd_young(pmd) || !pmd_write(pmd))
217 #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
218
219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
220 #define pmd_trans_huge(pmd) (pmd_val(pmd) && !pmd_table(pmd))
221 #endif
222
223 #define PMD_BIT_FUNC(fn,op) \
224 static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
225
226 PMD_BIT_FUNC(wrprotect, |= L_PMD_SECT_RDONLY);
227 PMD_BIT_FUNC(mkold, &= ~PMD_SECT_AF);
228 PMD_BIT_FUNC(mkwrite, &= ~L_PMD_SECT_RDONLY);
229 PMD_BIT_FUNC(mkdirty, |= L_PMD_SECT_DIRTY);
230 PMD_BIT_FUNC(mkclean, &= ~L_PMD_SECT_DIRTY);
231 PMD_BIT_FUNC(mkyoung, |= PMD_SECT_AF);
232
233 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
234
235 #define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
236 #define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
237 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
238
239 /* No hardware dirty/accessed bits -- generic_pmdp_establish() fits */
240 #define pmdp_establish generic_pmdp_establish
241
242 /* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
pmd_mknotpresent(pmd_t pmd)243 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
244 {
245 return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
246 }
247
pmd_modify(pmd_t pmd,pgprot_t newprot)248 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
249 {
250 const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
251 L_PMD_SECT_VALID | L_PMD_SECT_NONE;
252 pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
253 return pmd;
254 }
255
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)256 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
257 pmd_t *pmdp, pmd_t pmd)
258 {
259 BUG_ON(addr >= TASK_SIZE);
260
261 /* create a faulting entry if PROT_NONE protected */
262 if (pmd_val(pmd) & L_PMD_SECT_NONE)
263 pmd_val(pmd) &= ~L_PMD_SECT_VALID;
264
265 if (pmd_write(pmd) && pmd_dirty(pmd))
266 pmd_val(pmd) &= ~PMD_SECT_AP2;
267 else
268 pmd_val(pmd) |= PMD_SECT_AP2;
269
270 *pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
271 flush_pmd_entry(pmdp);
272 }
273
274 #endif /* __ASSEMBLY__ */
275
276 #endif /* _ASM_PGTABLE_3LEVEL_H */
277