1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_JIFFIES_H 3 #define _LINUX_JIFFIES_H 4 5 #include <linux/cache.h> 6 #include <linux/limits.h> 7 #include <linux/math64.h> 8 #include <linux/minmax.h> 9 #include <linux/types.h> 10 #include <linux/time.h> 11 #include <linux/timex.h> 12 #include <vdso/jiffies.h> 13 #include <asm/param.h> /* for HZ */ 14 #include <generated/timeconst.h> 15 16 /* 17 * The following defines establish the engineering parameters of the PLL 18 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz 19 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the 20 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the 21 * nearest power of two in order to avoid hardware multiply operations. 22 */ 23 #if HZ >= 12 && HZ < 24 24 # define SHIFT_HZ 4 25 #elif HZ >= 24 && HZ < 48 26 # define SHIFT_HZ 5 27 #elif HZ >= 48 && HZ < 96 28 # define SHIFT_HZ 6 29 #elif HZ >= 96 && HZ < 192 30 # define SHIFT_HZ 7 31 #elif HZ >= 192 && HZ < 384 32 # define SHIFT_HZ 8 33 #elif HZ >= 384 && HZ < 768 34 # define SHIFT_HZ 9 35 #elif HZ >= 768 && HZ < 1536 36 # define SHIFT_HZ 10 37 #elif HZ >= 1536 && HZ < 3072 38 # define SHIFT_HZ 11 39 #elif HZ >= 3072 && HZ < 6144 40 # define SHIFT_HZ 12 41 #elif HZ >= 6144 && HZ < 12288 42 # define SHIFT_HZ 13 43 #else 44 # error Invalid value of HZ. 45 #endif 46 47 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can 48 * improve accuracy by shifting LSH bits, hence calculating: 49 * (NOM << LSH) / DEN 50 * This however means trouble for large NOM, because (NOM << LSH) may no 51 * longer fit in 32 bits. The following way of calculating this gives us 52 * some slack, under the following conditions: 53 * - (NOM / DEN) fits in (32 - LSH) bits. 54 * - (NOM % DEN) fits in (32 - LSH) bits. 55 */ 56 #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ 57 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) 58 59 /* LATCH is used in the interval timer and ftape setup. */ 60 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ 61 62 extern int register_refined_jiffies(long clock_tick_rate); 63 64 /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */ 65 #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ) 66 67 /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ 68 #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) 69 70 #ifndef __jiffy_arch_data 71 #define __jiffy_arch_data 72 #endif 73 74 /* 75 * The 64-bit value is not atomic on 32-bit systems - you MUST NOT read it 76 * without sampling the sequence number in jiffies_lock. 77 * get_jiffies_64() will do this for you as appropriate. 78 * 79 * jiffies and jiffies_64 are at the same address for little-endian systems 80 * and for 64-bit big-endian systems. 81 * On 32-bit big-endian systems, jiffies is the lower 32 bits of jiffies_64 82 * (i.e., at address @jiffies_64 + 4). 83 * See arch/ARCH/kernel/vmlinux.lds.S 84 */ 85 extern u64 __cacheline_aligned_in_smp jiffies_64; 86 extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies; 87 88 #if (BITS_PER_LONG < 64) 89 u64 get_jiffies_64(void); 90 #else 91 /** 92 * get_jiffies_64 - read the 64-bit non-atomic jiffies_64 value 93 * 94 * When BITS_PER_LONG < 64, this uses sequence number sampling using 95 * jiffies_lock to protect the 64-bit read. 96 * 97 * Return: current 64-bit jiffies value 98 */ get_jiffies_64(void)99 static inline u64 get_jiffies_64(void) 100 { 101 return (u64)jiffies; 102 } 103 #endif 104 105 /* 106 * These inlines deal with timer wrapping correctly. You are 107 * strongly encouraged to use them: 108 * 1. Because people otherwise forget 109 * 2. Because if the timer wrap changes in future you won't have to 110 * alter your driver code. 111 */ 112 113 /** 114 * time_after - returns true if the time a is after time b. 115 * @a: first comparable as unsigned long 116 * @b: second comparable as unsigned long 117 * 118 * Do this with "<0" and ">=0" to only test the sign of the result. A 119 * good compiler would generate better code (and a really good compiler 120 * wouldn't care). Gcc is currently neither. 121 * 122 * Return: %true is time a is after time b, otherwise %false. 123 */ 124 #define time_after(a,b) \ 125 (typecheck(unsigned long, a) && \ 126 typecheck(unsigned long, b) && \ 127 ((long)((b) - (a)) < 0)) 128 /** 129 * time_before - returns true if the time a is before time b. 130 * @a: first comparable as unsigned long 131 * @b: second comparable as unsigned long 132 * 133 * Return: %true is time a is before time b, otherwise %false. 134 */ 135 #define time_before(a,b) time_after(b,a) 136 137 /** 138 * time_after_eq - returns true if the time a is after or the same as time b. 139 * @a: first comparable as unsigned long 140 * @b: second comparable as unsigned long 141 * 142 * Return: %true is time a is after or the same as time b, otherwise %false. 143 */ 144 #define time_after_eq(a,b) \ 145 (typecheck(unsigned long, a) && \ 146 typecheck(unsigned long, b) && \ 147 ((long)((a) - (b)) >= 0)) 148 /** 149 * time_before_eq - returns true if the time a is before or the same as time b. 150 * @a: first comparable as unsigned long 151 * @b: second comparable as unsigned long 152 * 153 * Return: %true is time a is before or the same as time b, otherwise %false. 154 */ 155 #define time_before_eq(a,b) time_after_eq(b,a) 156 157 /** 158 * time_in_range - Calculate whether a is in the range of [b, c]. 159 * @a: time to test 160 * @b: beginning of the range 161 * @c: end of the range 162 * 163 * Return: %true is time a is in the range [b, c], otherwise %false. 164 */ 165 #define time_in_range(a,b,c) \ 166 (time_after_eq(a,b) && \ 167 time_before_eq(a,c)) 168 169 /** 170 * time_in_range_open - Calculate whether a is in the range of [b, c). 171 * @a: time to test 172 * @b: beginning of the range 173 * @c: end of the range 174 * 175 * Return: %true is time a is in the range [b, c), otherwise %false. 176 */ 177 #define time_in_range_open(a,b,c) \ 178 (time_after_eq(a,b) && \ 179 time_before(a,c)) 180 181 /* Same as above, but does so with platform independent 64bit types. 182 * These must be used when utilizing jiffies_64 (i.e. return value of 183 * get_jiffies_64()). */ 184 185 /** 186 * time_after64 - returns true if the time a is after time b. 187 * @a: first comparable as __u64 188 * @b: second comparable as __u64 189 * 190 * This must be used when utilizing jiffies_64 (i.e. return value of 191 * get_jiffies_64()). 192 * 193 * Return: %true is time a is after time b, otherwise %false. 194 */ 195 #define time_after64(a,b) \ 196 (typecheck(__u64, a) && \ 197 typecheck(__u64, b) && \ 198 ((__s64)((b) - (a)) < 0)) 199 /** 200 * time_before64 - returns true if the time a is before time b. 201 * @a: first comparable as __u64 202 * @b: second comparable as __u64 203 * 204 * This must be used when utilizing jiffies_64 (i.e. return value of 205 * get_jiffies_64()). 206 * 207 * Return: %true is time a is before time b, otherwise %false. 208 */ 209 #define time_before64(a,b) time_after64(b,a) 210 211 /** 212 * time_after_eq64 - returns true if the time a is after or the same as time b. 213 * @a: first comparable as __u64 214 * @b: second comparable as __u64 215 * 216 * This must be used when utilizing jiffies_64 (i.e. return value of 217 * get_jiffies_64()). 218 * 219 * Return: %true is time a is after or the same as time b, otherwise %false. 220 */ 221 #define time_after_eq64(a,b) \ 222 (typecheck(__u64, a) && \ 223 typecheck(__u64, b) && \ 224 ((__s64)((a) - (b)) >= 0)) 225 /** 226 * time_before_eq64 - returns true if the time a is before or the same as time b. 227 * @a: first comparable as __u64 228 * @b: second comparable as __u64 229 * 230 * This must be used when utilizing jiffies_64 (i.e. return value of 231 * get_jiffies_64()). 232 * 233 * Return: %true is time a is before or the same as time b, otherwise %false. 234 */ 235 #define time_before_eq64(a,b) time_after_eq64(b,a) 236 237 /** 238 * time_in_range64 - Calculate whether a is in the range of [b, c]. 239 * @a: time to test 240 * @b: beginning of the range 241 * @c: end of the range 242 * 243 * Return: %true is time a is in the range [b, c], otherwise %false. 244 */ 245 #define time_in_range64(a, b, c) \ 246 (time_after_eq64(a, b) && \ 247 time_before_eq64(a, c)) 248 249 /* 250 * These eight macros compare jiffies[_64] and 'a' for convenience. 251 */ 252 253 /** 254 * time_is_before_jiffies - return true if a is before jiffies 255 * @a: time (unsigned long) to compare to jiffies 256 * 257 * Return: %true is time a is before jiffies, otherwise %false. 258 */ 259 #define time_is_before_jiffies(a) time_after(jiffies, a) 260 /** 261 * time_is_before_jiffies64 - return true if a is before jiffies_64 262 * @a: time (__u64) to compare to jiffies_64 263 * 264 * Return: %true is time a is before jiffies_64, otherwise %false. 265 */ 266 #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a) 267 268 /** 269 * time_is_after_jiffies - return true if a is after jiffies 270 * @a: time (unsigned long) to compare to jiffies 271 * 272 * Return: %true is time a is after jiffies, otherwise %false. 273 */ 274 #define time_is_after_jiffies(a) time_before(jiffies, a) 275 /** 276 * time_is_after_jiffies64 - return true if a is after jiffies_64 277 * @a: time (__u64) to compare to jiffies_64 278 * 279 * Return: %true is time a is after jiffies_64, otherwise %false. 280 */ 281 #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a) 282 283 /** 284 * time_is_before_eq_jiffies - return true if a is before or equal to jiffies 285 * @a: time (unsigned long) to compare to jiffies 286 * 287 * Return: %true is time a is before or the same as jiffies, otherwise %false. 288 */ 289 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) 290 /** 291 * time_is_before_eq_jiffies64 - return true if a is before or equal to jiffies_64 292 * @a: time (__u64) to compare to jiffies_64 293 * 294 * Return: %true is time a is before or the same jiffies_64, otherwise %false. 295 */ 296 #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a) 297 298 /** 299 * time_is_after_eq_jiffies - return true if a is after or equal to jiffies 300 * @a: time (unsigned long) to compare to jiffies 301 * 302 * Return: %true is time a is after or the same as jiffies, otherwise %false. 303 */ 304 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) 305 /** 306 * time_is_after_eq_jiffies64 - return true if a is after or equal to jiffies_64 307 * @a: time (__u64) to compare to jiffies_64 308 * 309 * Return: %true is time a is after or the same as jiffies_64, otherwise %false. 310 */ 311 #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a) 312 313 /* 314 * Have the 32-bit jiffies value wrap 5 minutes after boot 315 * so jiffies wrap bugs show up earlier. 316 */ 317 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) 318 319 /* 320 * Change timeval to jiffies, trying to avoid the 321 * most obvious overflows.. 322 * 323 * And some not so obvious. 324 * 325 * Note that we don't want to return LONG_MAX, because 326 * for various timeout reasons we often end up having 327 * to wait "jiffies+1" in order to guarantee that we wait 328 * at _least_ "jiffies" - so "jiffies+1" had better still 329 * be positive. 330 */ 331 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) 332 333 extern unsigned long preset_lpj; 334 335 /* 336 * We want to do realistic conversions of time so we need to use the same 337 * values the update wall clock code uses as the jiffies size. This value 338 * is: TICK_NSEC (which is defined in timex.h). This 339 * is a constant and is in nanoseconds. We will use scaled math 340 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and 341 * NSEC_JIFFIE_SC. Note that these defines contain nothing but 342 * constants and so are computed at compile time. SHIFT_HZ (computed in 343 * timex.h) adjusts the scaling for different HZ values. 344 345 * Scaled math??? What is that? 346 * 347 * Scaled math is a way to do integer math on values that would, 348 * otherwise, either overflow, underflow, or cause undesired div 349 * instructions to appear in the execution path. In short, we "scale" 350 * up the operands so they take more bits (more precision, less 351 * underflow), do the desired operation and then "scale" the result back 352 * by the same amount. If we do the scaling by shifting we avoid the 353 * costly mpy and the dastardly div instructions. 354 355 * Suppose, for example, we want to convert from seconds to jiffies 356 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The 357 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We 358 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we 359 * might calculate at compile time, however, the result will only have 360 * about 3-4 bits of precision (less for smaller values of HZ). 361 * 362 * So, we scale as follows: 363 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); 364 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; 365 * Then we make SCALE a power of two so: 366 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; 367 * Now we define: 368 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) 369 * jiff = (sec * SEC_CONV) >> SCALE; 370 * 371 * Often the math we use will expand beyond 32-bits so we tell C how to 372 * do this and pass the 64-bit result of the mpy through the ">> SCALE" 373 * which should take the result back to 32-bits. We want this expansion 374 * to capture as much precision as possible. At the same time we don't 375 * want to overflow so we pick the SCALE to avoid this. In this file, 376 * that means using a different scale for each range of HZ values (as 377 * defined in timex.h). 378 * 379 * For those who want to know, gcc will give a 64-bit result from a "*" 380 * operator if the result is a long long AND at least one of the 381 * operands is cast to long long (usually just prior to the "*" so as 382 * not to confuse it into thinking it really has a 64-bit operand, 383 * which, buy the way, it can do, but it takes more code and at least 2 384 * mpys). 385 386 * We also need to be aware that one second in nanoseconds is only a 387 * couple of bits away from overflowing a 32-bit word, so we MUST use 388 * 64-bits to get the full range time in nanoseconds. 389 390 */ 391 392 /* 393 * Here are the scales we will use. One for seconds, nanoseconds and 394 * microseconds. 395 * 396 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and 397 * check if the sign bit is set. If not, we bump the shift count by 1. 398 * (Gets an extra bit of precision where we can use it.) 399 * We know it is set for HZ = 1024 and HZ = 100 not for 1000. 400 * Haven't tested others. 401 402 * Limits of cpp (for #if expressions) only long (no long long), but 403 * then we only need the most signicant bit. 404 */ 405 406 #define SEC_JIFFIE_SC (31 - SHIFT_HZ) 407 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) 408 #undef SEC_JIFFIE_SC 409 #define SEC_JIFFIE_SC (32 - SHIFT_HZ) 410 #endif 411 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) 412 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ 413 TICK_NSEC -1) / (u64)TICK_NSEC)) 414 415 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ 416 TICK_NSEC -1) / (u64)TICK_NSEC)) 417 /* 418 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that 419 * into seconds. The 64-bit case will overflow if we are not careful, 420 * so use the messy SH_DIV macro to do it. Still all constants. 421 */ 422 #if BITS_PER_LONG < 64 423 # define MAX_SEC_IN_JIFFIES \ 424 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) 425 #else /* take care of overflow on 64-bit machines */ 426 # define MAX_SEC_IN_JIFFIES \ 427 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) 428 429 #endif 430 431 /* 432 * Convert various time units to each other: 433 */ 434 extern unsigned int jiffies_to_msecs(const unsigned long j); 435 extern unsigned int jiffies_to_usecs(const unsigned long j); 436 437 /** 438 * jiffies_to_nsecs - Convert jiffies to nanoseconds 439 * @j: jiffies value 440 * 441 * Return: nanoseconds value 442 */ jiffies_to_nsecs(const unsigned long j)443 static inline u64 jiffies_to_nsecs(const unsigned long j) 444 { 445 return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC; 446 } 447 448 extern u64 jiffies64_to_nsecs(u64 j); 449 extern u64 jiffies64_to_msecs(u64 j); 450 451 extern unsigned long __msecs_to_jiffies(const unsigned int m); 452 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 453 /* 454 * HZ is equal to or smaller than 1000, and 1000 is a nice round 455 * multiple of HZ, divide with the factor between them, but round 456 * upwards: 457 */ _msecs_to_jiffies(const unsigned int m)458 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 459 { 460 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); 461 } 462 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 463 /* 464 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 - 465 * simply multiply with the factor between them. 466 * 467 * But first make sure the multiplication result cannot overflow: 468 */ _msecs_to_jiffies(const unsigned int m)469 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 470 { 471 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 472 return MAX_JIFFY_OFFSET; 473 return m * (HZ / MSEC_PER_SEC); 474 } 475 #else 476 /* 477 * Generic case - multiply, round and divide. But first check that if 478 * we are doing a net multiplication, that we wouldn't overflow: 479 */ _msecs_to_jiffies(const unsigned int m)480 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 481 { 482 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 483 return MAX_JIFFY_OFFSET; 484 485 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32; 486 } 487 #endif 488 /** 489 * msecs_to_jiffies: - convert milliseconds to jiffies 490 * @m: time in milliseconds 491 * 492 * conversion is done as follows: 493 * 494 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 495 * 496 * - 'too large' values [that would result in larger than 497 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 498 * 499 * - all other values are converted to jiffies by either multiplying 500 * the input value by a factor or dividing it with a factor and 501 * handling any 32-bit overflows. 502 * for the details see __msecs_to_jiffies() 503 * 504 * msecs_to_jiffies() checks for the passed in value being a constant 505 * via __builtin_constant_p() allowing gcc to eliminate most of the 506 * code. __msecs_to_jiffies() is called if the value passed does not 507 * allow constant folding and the actual conversion must be done at 508 * runtime. 509 * The HZ range specific helpers _msecs_to_jiffies() are called both 510 * directly here and from __msecs_to_jiffies() in the case where 511 * constant folding is not possible. 512 * 513 * Return: jiffies value 514 */ msecs_to_jiffies(const unsigned int m)515 static __always_inline unsigned long msecs_to_jiffies(const unsigned int m) 516 { 517 if (__builtin_constant_p(m)) { 518 if ((int)m < 0) 519 return MAX_JIFFY_OFFSET; 520 return _msecs_to_jiffies(m); 521 } else { 522 return __msecs_to_jiffies(m); 523 } 524 } 525 526 extern unsigned long __usecs_to_jiffies(const unsigned int u); 527 #if !(USEC_PER_SEC % HZ) _usecs_to_jiffies(const unsigned int u)528 static inline unsigned long _usecs_to_jiffies(const unsigned int u) 529 { 530 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); 531 } 532 #else _usecs_to_jiffies(const unsigned int u)533 static inline unsigned long _usecs_to_jiffies(const unsigned int u) 534 { 535 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) 536 >> USEC_TO_HZ_SHR32; 537 } 538 #endif 539 540 /** 541 * usecs_to_jiffies: - convert microseconds to jiffies 542 * @u: time in microseconds 543 * 544 * conversion is done as follows: 545 * 546 * - 'too large' values [that would result in larger than 547 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 548 * 549 * - all other values are converted to jiffies by either multiplying 550 * the input value by a factor or dividing it with a factor and 551 * handling any 32-bit overflows as for msecs_to_jiffies. 552 * 553 * usecs_to_jiffies() checks for the passed in value being a constant 554 * via __builtin_constant_p() allowing gcc to eliminate most of the 555 * code. __usecs_to_jiffies() is called if the value passed does not 556 * allow constant folding and the actual conversion must be done at 557 * runtime. 558 * The HZ range specific helpers _usecs_to_jiffies() are called both 559 * directly here and from __msecs_to_jiffies() in the case where 560 * constant folding is not possible. 561 * 562 * Return: jiffies value 563 */ usecs_to_jiffies(const unsigned int u)564 static __always_inline unsigned long usecs_to_jiffies(const unsigned int u) 565 { 566 if (__builtin_constant_p(u)) { 567 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 568 return MAX_JIFFY_OFFSET; 569 return _usecs_to_jiffies(u); 570 } else { 571 return __usecs_to_jiffies(u); 572 } 573 } 574 575 extern unsigned long timespec64_to_jiffies(const struct timespec64 *value); 576 extern void jiffies_to_timespec64(const unsigned long jiffies, 577 struct timespec64 *value); 578 extern clock_t jiffies_to_clock_t(unsigned long x); 579 jiffies_delta_to_clock_t(long delta)580 static inline clock_t jiffies_delta_to_clock_t(long delta) 581 { 582 return jiffies_to_clock_t(max(0L, delta)); 583 } 584 jiffies_delta_to_msecs(long delta)585 static inline unsigned int jiffies_delta_to_msecs(long delta) 586 { 587 return jiffies_to_msecs(max(0L, delta)); 588 } 589 590 extern unsigned long clock_t_to_jiffies(unsigned long x); 591 extern u64 jiffies_64_to_clock_t(u64 x); 592 extern u64 nsec_to_clock_t(u64 x); 593 extern u64 nsecs_to_jiffies64(u64 n); 594 extern unsigned long nsecs_to_jiffies(u64 n); 595 596 #define TIMESTAMP_SIZE 30 597 598 #endif 599