1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_JIFFIES_H
3  #define _LINUX_JIFFIES_H
4  
5  #include <linux/cache.h>
6  #include <linux/limits.h>
7  #include <linux/math64.h>
8  #include <linux/minmax.h>
9  #include <linux/types.h>
10  #include <linux/time.h>
11  #include <linux/timex.h>
12  #include <vdso/jiffies.h>
13  #include <asm/param.h>			/* for HZ */
14  #include <generated/timeconst.h>
15  
16  /*
17   * The following defines establish the engineering parameters of the PLL
18   * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
19   * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
20   * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
21   * nearest power of two in order to avoid hardware multiply operations.
22   */
23  #if HZ >= 12 && HZ < 24
24  # define SHIFT_HZ	4
25  #elif HZ >= 24 && HZ < 48
26  # define SHIFT_HZ	5
27  #elif HZ >= 48 && HZ < 96
28  # define SHIFT_HZ	6
29  #elif HZ >= 96 && HZ < 192
30  # define SHIFT_HZ	7
31  #elif HZ >= 192 && HZ < 384
32  # define SHIFT_HZ	8
33  #elif HZ >= 384 && HZ < 768
34  # define SHIFT_HZ	9
35  #elif HZ >= 768 && HZ < 1536
36  # define SHIFT_HZ	10
37  #elif HZ >= 1536 && HZ < 3072
38  # define SHIFT_HZ	11
39  #elif HZ >= 3072 && HZ < 6144
40  # define SHIFT_HZ	12
41  #elif HZ >= 6144 && HZ < 12288
42  # define SHIFT_HZ	13
43  #else
44  # error Invalid value of HZ.
45  #endif
46  
47  /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
48   * improve accuracy by shifting LSH bits, hence calculating:
49   *     (NOM << LSH) / DEN
50   * This however means trouble for large NOM, because (NOM << LSH) may no
51   * longer fit in 32 bits. The following way of calculating this gives us
52   * some slack, under the following conditions:
53   *   - (NOM / DEN) fits in (32 - LSH) bits.
54   *   - (NOM % DEN) fits in (32 - LSH) bits.
55   */
56  #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
57                               + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
58  
59  /* LATCH is used in the interval timer and ftape setup. */
60  #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)	/* For divider */
61  
62  extern int register_refined_jiffies(long clock_tick_rate);
63  
64  /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */
65  #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ)
66  
67  /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
68  #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
69  
70  #ifndef __jiffy_arch_data
71  #define __jiffy_arch_data
72  #endif
73  
74  /*
75   * The 64-bit value is not atomic on 32-bit systems - you MUST NOT read it
76   * without sampling the sequence number in jiffies_lock.
77   * get_jiffies_64() will do this for you as appropriate.
78   *
79   * jiffies and jiffies_64 are at the same address for little-endian systems
80   * and for 64-bit big-endian systems.
81   * On 32-bit big-endian systems, jiffies is the lower 32 bits of jiffies_64
82   * (i.e., at address @jiffies_64 + 4).
83   * See arch/ARCH/kernel/vmlinux.lds.S
84   */
85  extern u64 __cacheline_aligned_in_smp jiffies_64;
86  extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
87  
88  #if (BITS_PER_LONG < 64)
89  u64 get_jiffies_64(void);
90  #else
91  /**
92   * get_jiffies_64 - read the 64-bit non-atomic jiffies_64 value
93   *
94   * When BITS_PER_LONG < 64, this uses sequence number sampling using
95   * jiffies_lock to protect the 64-bit read.
96   *
97   * Return: current 64-bit jiffies value
98   */
get_jiffies_64(void)99  static inline u64 get_jiffies_64(void)
100  {
101  	return (u64)jiffies;
102  }
103  #endif
104  
105  /*
106   *	These inlines deal with timer wrapping correctly. You are
107   *	strongly encouraged to use them:
108   *	1. Because people otherwise forget
109   *	2. Because if the timer wrap changes in future you won't have to
110   *	   alter your driver code.
111   */
112  
113  /**
114   * time_after - returns true if the time a is after time b.
115   * @a: first comparable as unsigned long
116   * @b: second comparable as unsigned long
117   *
118   * Do this with "<0" and ">=0" to only test the sign of the result. A
119   * good compiler would generate better code (and a really good compiler
120   * wouldn't care). Gcc is currently neither.
121   *
122   * Return: %true is time a is after time b, otherwise %false.
123   */
124  #define time_after(a,b)		\
125  	(typecheck(unsigned long, a) && \
126  	 typecheck(unsigned long, b) && \
127  	 ((long)((b) - (a)) < 0))
128  /**
129   * time_before - returns true if the time a is before time b.
130   * @a: first comparable as unsigned long
131   * @b: second comparable as unsigned long
132   *
133   * Return: %true is time a is before time b, otherwise %false.
134   */
135  #define time_before(a,b)	time_after(b,a)
136  
137  /**
138   * time_after_eq - returns true if the time a is after or the same as time b.
139   * @a: first comparable as unsigned long
140   * @b: second comparable as unsigned long
141   *
142   * Return: %true is time a is after or the same as time b, otherwise %false.
143   */
144  #define time_after_eq(a,b)	\
145  	(typecheck(unsigned long, a) && \
146  	 typecheck(unsigned long, b) && \
147  	 ((long)((a) - (b)) >= 0))
148  /**
149   * time_before_eq - returns true if the time a is before or the same as time b.
150   * @a: first comparable as unsigned long
151   * @b: second comparable as unsigned long
152   *
153   * Return: %true is time a is before or the same as time b, otherwise %false.
154   */
155  #define time_before_eq(a,b)	time_after_eq(b,a)
156  
157  /**
158   * time_in_range - Calculate whether a is in the range of [b, c].
159   * @a: time to test
160   * @b: beginning of the range
161   * @c: end of the range
162   *
163   * Return: %true is time a is in the range [b, c], otherwise %false.
164   */
165  #define time_in_range(a,b,c) \
166  	(time_after_eq(a,b) && \
167  	 time_before_eq(a,c))
168  
169  /**
170   * time_in_range_open - Calculate whether a is in the range of [b, c).
171   * @a: time to test
172   * @b: beginning of the range
173   * @c: end of the range
174   *
175   * Return: %true is time a is in the range [b, c), otherwise %false.
176   */
177  #define time_in_range_open(a,b,c) \
178  	(time_after_eq(a,b) && \
179  	 time_before(a,c))
180  
181  /* Same as above, but does so with platform independent 64bit types.
182   * These must be used when utilizing jiffies_64 (i.e. return value of
183   * get_jiffies_64()). */
184  
185  /**
186   * time_after64 - returns true if the time a is after time b.
187   * @a: first comparable as __u64
188   * @b: second comparable as __u64
189   *
190   * This must be used when utilizing jiffies_64 (i.e. return value of
191   * get_jiffies_64()).
192   *
193   * Return: %true is time a is after time b, otherwise %false.
194   */
195  #define time_after64(a,b)	\
196  	(typecheck(__u64, a) &&	\
197  	 typecheck(__u64, b) && \
198  	 ((__s64)((b) - (a)) < 0))
199  /**
200   * time_before64 - returns true if the time a is before time b.
201   * @a: first comparable as __u64
202   * @b: second comparable as __u64
203   *
204   * This must be used when utilizing jiffies_64 (i.e. return value of
205   * get_jiffies_64()).
206   *
207   * Return: %true is time a is before time b, otherwise %false.
208   */
209  #define time_before64(a,b)	time_after64(b,a)
210  
211  /**
212   * time_after_eq64 - returns true if the time a is after or the same as time b.
213   * @a: first comparable as __u64
214   * @b: second comparable as __u64
215   *
216   * This must be used when utilizing jiffies_64 (i.e. return value of
217   * get_jiffies_64()).
218   *
219   * Return: %true is time a is after or the same as time b, otherwise %false.
220   */
221  #define time_after_eq64(a,b)	\
222  	(typecheck(__u64, a) && \
223  	 typecheck(__u64, b) && \
224  	 ((__s64)((a) - (b)) >= 0))
225  /**
226   * time_before_eq64 - returns true if the time a is before or the same as time b.
227   * @a: first comparable as __u64
228   * @b: second comparable as __u64
229   *
230   * This must be used when utilizing jiffies_64 (i.e. return value of
231   * get_jiffies_64()).
232   *
233   * Return: %true is time a is before or the same as time b, otherwise %false.
234   */
235  #define time_before_eq64(a,b)	time_after_eq64(b,a)
236  
237  /**
238   * time_in_range64 - Calculate whether a is in the range of [b, c].
239   * @a: time to test
240   * @b: beginning of the range
241   * @c: end of the range
242   *
243   * Return: %true is time a is in the range [b, c], otherwise %false.
244   */
245  #define time_in_range64(a, b, c) \
246  	(time_after_eq64(a, b) && \
247  	 time_before_eq64(a, c))
248  
249  /*
250   * These eight macros compare jiffies[_64] and 'a' for convenience.
251   */
252  
253  /**
254   * time_is_before_jiffies - return true if a is before jiffies
255   * @a: time (unsigned long) to compare to jiffies
256   *
257   * Return: %true is time a is before jiffies, otherwise %false.
258   */
259  #define time_is_before_jiffies(a) time_after(jiffies, a)
260  /**
261   * time_is_before_jiffies64 - return true if a is before jiffies_64
262   * @a: time (__u64) to compare to jiffies_64
263   *
264   * Return: %true is time a is before jiffies_64, otherwise %false.
265   */
266  #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
267  
268  /**
269   * time_is_after_jiffies - return true if a is after jiffies
270   * @a: time (unsigned long) to compare to jiffies
271   *
272   * Return: %true is time a is after jiffies, otherwise %false.
273   */
274  #define time_is_after_jiffies(a) time_before(jiffies, a)
275  /**
276   * time_is_after_jiffies64 - return true if a is after jiffies_64
277   * @a: time (__u64) to compare to jiffies_64
278   *
279   * Return: %true is time a is after jiffies_64, otherwise %false.
280   */
281  #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
282  
283  /**
284   * time_is_before_eq_jiffies - return true if a is before or equal to jiffies
285   * @a: time (unsigned long) to compare to jiffies
286   *
287   * Return: %true is time a is before or the same as jiffies, otherwise %false.
288   */
289  #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
290  /**
291   * time_is_before_eq_jiffies64 - return true if a is before or equal to jiffies_64
292   * @a: time (__u64) to compare to jiffies_64
293   *
294   * Return: %true is time a is before or the same jiffies_64, otherwise %false.
295   */
296  #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
297  
298  /**
299   * time_is_after_eq_jiffies - return true if a is after or equal to jiffies
300   * @a: time (unsigned long) to compare to jiffies
301   *
302   * Return: %true is time a is after or the same as jiffies, otherwise %false.
303   */
304  #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
305  /**
306   * time_is_after_eq_jiffies64 - return true if a is after or equal to jiffies_64
307   * @a: time (__u64) to compare to jiffies_64
308   *
309   * Return: %true is time a is after or the same as jiffies_64, otherwise %false.
310   */
311  #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
312  
313  /*
314   * Have the 32-bit jiffies value wrap 5 minutes after boot
315   * so jiffies wrap bugs show up earlier.
316   */
317  #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
318  
319  /*
320   * Change timeval to jiffies, trying to avoid the
321   * most obvious overflows..
322   *
323   * And some not so obvious.
324   *
325   * Note that we don't want to return LONG_MAX, because
326   * for various timeout reasons we often end up having
327   * to wait "jiffies+1" in order to guarantee that we wait
328   * at _least_ "jiffies" - so "jiffies+1" had better still
329   * be positive.
330   */
331  #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
332  
333  extern unsigned long preset_lpj;
334  
335  /*
336   * We want to do realistic conversions of time so we need to use the same
337   * values the update wall clock code uses as the jiffies size.  This value
338   * is: TICK_NSEC (which is defined in timex.h).  This
339   * is a constant and is in nanoseconds.  We will use scaled math
340   * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
341   * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
342   * constants and so are computed at compile time.  SHIFT_HZ (computed in
343   * timex.h) adjusts the scaling for different HZ values.
344  
345   * Scaled math???  What is that?
346   *
347   * Scaled math is a way to do integer math on values that would,
348   * otherwise, either overflow, underflow, or cause undesired div
349   * instructions to appear in the execution path.  In short, we "scale"
350   * up the operands so they take more bits (more precision, less
351   * underflow), do the desired operation and then "scale" the result back
352   * by the same amount.  If we do the scaling by shifting we avoid the
353   * costly mpy and the dastardly div instructions.
354  
355   * Suppose, for example, we want to convert from seconds to jiffies
356   * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
357   * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
358   * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
359   * might calculate at compile time, however, the result will only have
360   * about 3-4 bits of precision (less for smaller values of HZ).
361   *
362   * So, we scale as follows:
363   * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
364   * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
365   * Then we make SCALE a power of two so:
366   * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
367   * Now we define:
368   * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
369   * jiff = (sec * SEC_CONV) >> SCALE;
370   *
371   * Often the math we use will expand beyond 32-bits so we tell C how to
372   * do this and pass the 64-bit result of the mpy through the ">> SCALE"
373   * which should take the result back to 32-bits.  We want this expansion
374   * to capture as much precision as possible.  At the same time we don't
375   * want to overflow so we pick the SCALE to avoid this.  In this file,
376   * that means using a different scale for each range of HZ values (as
377   * defined in timex.h).
378   *
379   * For those who want to know, gcc will give a 64-bit result from a "*"
380   * operator if the result is a long long AND at least one of the
381   * operands is cast to long long (usually just prior to the "*" so as
382   * not to confuse it into thinking it really has a 64-bit operand,
383   * which, buy the way, it can do, but it takes more code and at least 2
384   * mpys).
385  
386   * We also need to be aware that one second in nanoseconds is only a
387   * couple of bits away from overflowing a 32-bit word, so we MUST use
388   * 64-bits to get the full range time in nanoseconds.
389  
390   */
391  
392  /*
393   * Here are the scales we will use.  One for seconds, nanoseconds and
394   * microseconds.
395   *
396   * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
397   * check if the sign bit is set.  If not, we bump the shift count by 1.
398   * (Gets an extra bit of precision where we can use it.)
399   * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
400   * Haven't tested others.
401  
402   * Limits of cpp (for #if expressions) only long (no long long), but
403   * then we only need the most signicant bit.
404   */
405  
406  #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
407  #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
408  #undef SEC_JIFFIE_SC
409  #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
410  #endif
411  #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
412  #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
413                                  TICK_NSEC -1) / (u64)TICK_NSEC))
414  
415  #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
416                                          TICK_NSEC -1) / (u64)TICK_NSEC))
417  /*
418   * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
419   * into seconds.  The 64-bit case will overflow if we are not careful,
420   * so use the messy SH_DIV macro to do it.  Still all constants.
421   */
422  #if BITS_PER_LONG < 64
423  # define MAX_SEC_IN_JIFFIES \
424  	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
425  #else	/* take care of overflow on 64-bit machines */
426  # define MAX_SEC_IN_JIFFIES \
427  	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
428  
429  #endif
430  
431  /*
432   * Convert various time units to each other:
433   */
434  extern unsigned int jiffies_to_msecs(const unsigned long j);
435  extern unsigned int jiffies_to_usecs(const unsigned long j);
436  
437  /**
438   * jiffies_to_nsecs - Convert jiffies to nanoseconds
439   * @j: jiffies value
440   *
441   * Return: nanoseconds value
442   */
jiffies_to_nsecs(const unsigned long j)443  static inline u64 jiffies_to_nsecs(const unsigned long j)
444  {
445  	return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
446  }
447  
448  extern u64 jiffies64_to_nsecs(u64 j);
449  extern u64 jiffies64_to_msecs(u64 j);
450  
451  extern unsigned long __msecs_to_jiffies(const unsigned int m);
452  #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
453  /*
454   * HZ is equal to or smaller than 1000, and 1000 is a nice round
455   * multiple of HZ, divide with the factor between them, but round
456   * upwards:
457   */
_msecs_to_jiffies(const unsigned int m)458  static inline unsigned long _msecs_to_jiffies(const unsigned int m)
459  {
460  	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
461  }
462  #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
463  /*
464   * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
465   * simply multiply with the factor between them.
466   *
467   * But first make sure the multiplication result cannot overflow:
468   */
_msecs_to_jiffies(const unsigned int m)469  static inline unsigned long _msecs_to_jiffies(const unsigned int m)
470  {
471  	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
472  		return MAX_JIFFY_OFFSET;
473  	return m * (HZ / MSEC_PER_SEC);
474  }
475  #else
476  /*
477   * Generic case - multiply, round and divide. But first check that if
478   * we are doing a net multiplication, that we wouldn't overflow:
479   */
_msecs_to_jiffies(const unsigned int m)480  static inline unsigned long _msecs_to_jiffies(const unsigned int m)
481  {
482  	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
483  		return MAX_JIFFY_OFFSET;
484  
485  	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
486  }
487  #endif
488  /**
489   * msecs_to_jiffies: - convert milliseconds to jiffies
490   * @m:	time in milliseconds
491   *
492   * conversion is done as follows:
493   *
494   * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
495   *
496   * - 'too large' values [that would result in larger than
497   *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
498   *
499   * - all other values are converted to jiffies by either multiplying
500   *   the input value by a factor or dividing it with a factor and
501   *   handling any 32-bit overflows.
502   *   for the details see __msecs_to_jiffies()
503   *
504   * msecs_to_jiffies() checks for the passed in value being a constant
505   * via __builtin_constant_p() allowing gcc to eliminate most of the
506   * code. __msecs_to_jiffies() is called if the value passed does not
507   * allow constant folding and the actual conversion must be done at
508   * runtime.
509   * The HZ range specific helpers _msecs_to_jiffies() are called both
510   * directly here and from __msecs_to_jiffies() in the case where
511   * constant folding is not possible.
512   *
513   * Return: jiffies value
514   */
msecs_to_jiffies(const unsigned int m)515  static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
516  {
517  	if (__builtin_constant_p(m)) {
518  		if ((int)m < 0)
519  			return MAX_JIFFY_OFFSET;
520  		return _msecs_to_jiffies(m);
521  	} else {
522  		return __msecs_to_jiffies(m);
523  	}
524  }
525  
526  extern unsigned long __usecs_to_jiffies(const unsigned int u);
527  #if !(USEC_PER_SEC % HZ)
_usecs_to_jiffies(const unsigned int u)528  static inline unsigned long _usecs_to_jiffies(const unsigned int u)
529  {
530  	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
531  }
532  #else
_usecs_to_jiffies(const unsigned int u)533  static inline unsigned long _usecs_to_jiffies(const unsigned int u)
534  {
535  	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
536  		>> USEC_TO_HZ_SHR32;
537  }
538  #endif
539  
540  /**
541   * usecs_to_jiffies: - convert microseconds to jiffies
542   * @u:	time in microseconds
543   *
544   * conversion is done as follows:
545   *
546   * - 'too large' values [that would result in larger than
547   *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
548   *
549   * - all other values are converted to jiffies by either multiplying
550   *   the input value by a factor or dividing it with a factor and
551   *   handling any 32-bit overflows as for msecs_to_jiffies.
552   *
553   * usecs_to_jiffies() checks for the passed in value being a constant
554   * via __builtin_constant_p() allowing gcc to eliminate most of the
555   * code. __usecs_to_jiffies() is called if the value passed does not
556   * allow constant folding and the actual conversion must be done at
557   * runtime.
558   * The HZ range specific helpers _usecs_to_jiffies() are called both
559   * directly here and from __msecs_to_jiffies() in the case where
560   * constant folding is not possible.
561   *
562   * Return: jiffies value
563   */
usecs_to_jiffies(const unsigned int u)564  static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
565  {
566  	if (__builtin_constant_p(u)) {
567  		if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
568  			return MAX_JIFFY_OFFSET;
569  		return _usecs_to_jiffies(u);
570  	} else {
571  		return __usecs_to_jiffies(u);
572  	}
573  }
574  
575  extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
576  extern void jiffies_to_timespec64(const unsigned long jiffies,
577  				  struct timespec64 *value);
578  extern clock_t jiffies_to_clock_t(unsigned long x);
579  
jiffies_delta_to_clock_t(long delta)580  static inline clock_t jiffies_delta_to_clock_t(long delta)
581  {
582  	return jiffies_to_clock_t(max(0L, delta));
583  }
584  
jiffies_delta_to_msecs(long delta)585  static inline unsigned int jiffies_delta_to_msecs(long delta)
586  {
587  	return jiffies_to_msecs(max(0L, delta));
588  }
589  
590  extern unsigned long clock_t_to_jiffies(unsigned long x);
591  extern u64 jiffies_64_to_clock_t(u64 x);
592  extern u64 nsec_to_clock_t(u64 x);
593  extern u64 nsecs_to_jiffies64(u64 n);
594  extern unsigned long nsecs_to_jiffies(u64 n);
595  
596  #define TIMESTAMP_SIZE	30
597  
598  #endif
599