1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 
19 #include <linux/kvm.h>
20 #include <linux/kvm_para.h>
21 #include <linux/kvm_types.h>
22 #include <linux/perf_event.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/clocksource.h>
25 #include <linux/irqbypass.h>
26 #include <linux/hyperv.h>
27 
28 #include <asm/apic.h>
29 #include <asm/pvclock-abi.h>
30 #include <asm/desc.h>
31 #include <asm/mtrr.h>
32 #include <asm/msr-index.h>
33 #include <asm/asm.h>
34 #include <asm/kvm_page_track.h>
35 #include <asm/kvm_vcpu_regs.h>
36 #include <asm/hyperv-tlfs.h>
37 
38 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
39 
40 #define KVM_MAX_VCPUS 1024
41 #define KVM_SOFT_MAX_VCPUS 710
42 
43 /*
44  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
45  * might be larger than the actual number of VCPUs because the
46  * APIC ID encodes CPU topology information.
47  *
48  * In the worst case, we'll need less than one extra bit for the
49  * Core ID, and less than one extra bit for the Package (Die) ID,
50  * so ratio of 4 should be enough.
51  */
52 #define KVM_VCPU_ID_RATIO 4
53 #define KVM_MAX_VCPU_ID (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
54 
55 /* memory slots that are not exposed to userspace */
56 #define KVM_PRIVATE_MEM_SLOTS 3
57 
58 #define KVM_HALT_POLL_NS_DEFAULT 200000
59 
60 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
61 
62 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
63 					KVM_DIRTY_LOG_INITIALLY_SET)
64 
65 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
66 						 KVM_BUS_LOCK_DETECTION_EXIT)
67 
68 /* x86-specific vcpu->requests bit members */
69 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
70 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
71 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
72 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
73 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
74 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
75 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
76 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
77 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
78 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
79 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
80 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
81 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
82 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
83 #define KVM_REQ_MCLOCK_INPROGRESS \
84 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
85 #define KVM_REQ_SCAN_IOAPIC \
86 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
87 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
88 #define KVM_REQ_APIC_PAGE_RELOAD \
89 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
90 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
91 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
92 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
93 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
94 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
95 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
96 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
97 #define KVM_REQ_APICV_UPDATE \
98 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
99 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
100 #define KVM_REQ_TLB_FLUSH_GUEST \
101 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_NO_WAKEUP)
102 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
103 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
104 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
105 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
106 
107 #define CR0_RESERVED_BITS                                               \
108 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
109 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
110 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
111 
112 #define CR4_RESERVED_BITS                                               \
113 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
114 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
115 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
116 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
117 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
118 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
119 
120 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
121 
122 
123 
124 #define INVALID_PAGE (~(hpa_t)0)
125 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
126 
127 #define UNMAPPED_GVA (~(gpa_t)0)
128 #define INVALID_GPA (~(gpa_t)0)
129 
130 /* KVM Hugepage definitions for x86 */
131 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
132 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
133 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
134 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
135 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
136 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
137 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
138 
139 #define KVM_PERMILLE_MMU_PAGES 20
140 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
141 #define KVM_MMU_HASH_SHIFT 12
142 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
143 #define KVM_MIN_FREE_MMU_PAGES 5
144 #define KVM_REFILL_PAGES 25
145 #define KVM_MAX_CPUID_ENTRIES 256
146 #define KVM_NR_FIXED_MTRR_REGION 88
147 #define KVM_NR_VAR_MTRR 8
148 
149 #define ASYNC_PF_PER_VCPU 64
150 
151 enum kvm_reg {
152 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
153 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
154 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
155 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
156 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
157 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
158 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
159 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
160 #ifdef CONFIG_X86_64
161 	VCPU_REGS_R8  = __VCPU_REGS_R8,
162 	VCPU_REGS_R9  = __VCPU_REGS_R9,
163 	VCPU_REGS_R10 = __VCPU_REGS_R10,
164 	VCPU_REGS_R11 = __VCPU_REGS_R11,
165 	VCPU_REGS_R12 = __VCPU_REGS_R12,
166 	VCPU_REGS_R13 = __VCPU_REGS_R13,
167 	VCPU_REGS_R14 = __VCPU_REGS_R14,
168 	VCPU_REGS_R15 = __VCPU_REGS_R15,
169 #endif
170 	VCPU_REGS_RIP,
171 	NR_VCPU_REGS,
172 
173 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
174 	VCPU_EXREG_CR0,
175 	VCPU_EXREG_CR3,
176 	VCPU_EXREG_CR4,
177 	VCPU_EXREG_RFLAGS,
178 	VCPU_EXREG_SEGMENTS,
179 	VCPU_EXREG_EXIT_INFO_1,
180 	VCPU_EXREG_EXIT_INFO_2,
181 };
182 
183 enum {
184 	VCPU_SREG_ES,
185 	VCPU_SREG_CS,
186 	VCPU_SREG_SS,
187 	VCPU_SREG_DS,
188 	VCPU_SREG_FS,
189 	VCPU_SREG_GS,
190 	VCPU_SREG_TR,
191 	VCPU_SREG_LDTR,
192 };
193 
194 enum exit_fastpath_completion {
195 	EXIT_FASTPATH_NONE,
196 	EXIT_FASTPATH_REENTER_GUEST,
197 	EXIT_FASTPATH_EXIT_HANDLED,
198 };
199 typedef enum exit_fastpath_completion fastpath_t;
200 
201 struct x86_emulate_ctxt;
202 struct x86_exception;
203 enum x86_intercept;
204 enum x86_intercept_stage;
205 
206 #define KVM_NR_DB_REGS	4
207 
208 #define DR6_BUS_LOCK   (1 << 11)
209 #define DR6_BD		(1 << 13)
210 #define DR6_BS		(1 << 14)
211 #define DR6_BT		(1 << 15)
212 #define DR6_RTM		(1 << 16)
213 /*
214  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
215  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
216  * they will never be 0 for now, but when they are defined
217  * in the future it will require no code change.
218  *
219  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
220  */
221 #define DR6_ACTIVE_LOW	0xffff0ff0
222 #define DR6_VOLATILE	0x0001e80f
223 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
224 
225 #define DR7_BP_EN_MASK	0x000000ff
226 #define DR7_GE		(1 << 9)
227 #define DR7_GD		(1 << 13)
228 #define DR7_FIXED_1	0x00000400
229 #define DR7_VOLATILE	0xffff2bff
230 
231 #define KVM_GUESTDBG_VALID_MASK \
232 	(KVM_GUESTDBG_ENABLE | \
233 	KVM_GUESTDBG_SINGLESTEP | \
234 	KVM_GUESTDBG_USE_HW_BP | \
235 	KVM_GUESTDBG_USE_SW_BP | \
236 	KVM_GUESTDBG_INJECT_BP | \
237 	KVM_GUESTDBG_INJECT_DB | \
238 	KVM_GUESTDBG_BLOCKIRQ)
239 
240 
241 #define PFERR_PRESENT_BIT 0
242 #define PFERR_WRITE_BIT 1
243 #define PFERR_USER_BIT 2
244 #define PFERR_RSVD_BIT 3
245 #define PFERR_FETCH_BIT 4
246 #define PFERR_PK_BIT 5
247 #define PFERR_SGX_BIT 15
248 #define PFERR_GUEST_FINAL_BIT 32
249 #define PFERR_GUEST_PAGE_BIT 33
250 
251 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
252 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
253 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
254 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
255 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
256 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
257 #define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
258 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
259 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
260 
261 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
262 				 PFERR_WRITE_MASK |		\
263 				 PFERR_PRESENT_MASK)
264 
265 /* apic attention bits */
266 #define KVM_APIC_CHECK_VAPIC	0
267 /*
268  * The following bit is set with PV-EOI, unset on EOI.
269  * We detect PV-EOI changes by guest by comparing
270  * this bit with PV-EOI in guest memory.
271  * See the implementation in apic_update_pv_eoi.
272  */
273 #define KVM_APIC_PV_EOI_PENDING	1
274 
275 struct kvm_kernel_irq_routing_entry;
276 
277 /*
278  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
279  * also includes TDP pages) to determine whether or not a page can be used in
280  * the given MMU context.  This is a subset of the overall kvm_mmu_role to
281  * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
282  * 2 bytes per gfn instead of 4 bytes per gfn.
283  *
284  * Indirect upper-level shadow pages are tracked for write-protection via
285  * gfn_track.  As above, gfn_track is a 16 bit counter, so KVM must not create
286  * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
287  * gfn_track will overflow and explosions will ensure.
288  *
289  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
290  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
291  * incorporates various mode bits and properties of the SP.  Roughly speaking,
292  * the number of unique SPs that can theoretically be created is 2^n, where n
293  * is the number of bits that are used to compute the role.
294  *
295  * But, even though there are 18 bits in the mask below, not all combinations
296  * of modes and flags are possible.  The maximum number of possible upper-level
297  * shadow pages for a single gfn is in the neighborhood of 2^13.
298  *
299  *   - invalid shadow pages are not accounted.
300  *   - level is effectively limited to four combinations, not 16 as the number
301  *     bits would imply, as 4k SPs are not tracked (allowed to go unsync).
302  *   - level is effectively unused for non-PAE paging because there is exactly
303  *     one upper level (see 4k SP exception above).
304  *   - quadrant is used only for non-PAE paging and is exclusive with
305  *     gpte_is_8_bytes.
306  *   - execonly and ad_disabled are used only for nested EPT, which makes it
307  *     exclusive with quadrant.
308  */
309 union kvm_mmu_page_role {
310 	u32 word;
311 	struct {
312 		unsigned level:4;
313 		unsigned gpte_is_8_bytes:1;
314 		unsigned quadrant:2;
315 		unsigned direct:1;
316 		unsigned access:3;
317 		unsigned invalid:1;
318 		unsigned efer_nx:1;
319 		unsigned cr0_wp:1;
320 		unsigned smep_andnot_wp:1;
321 		unsigned smap_andnot_wp:1;
322 		unsigned ad_disabled:1;
323 		unsigned guest_mode:1;
324 		unsigned :6;
325 
326 		/*
327 		 * This is left at the top of the word so that
328 		 * kvm_memslots_for_spte_role can extract it with a
329 		 * simple shift.  While there is room, give it a whole
330 		 * byte so it is also faster to load it from memory.
331 		 */
332 		unsigned smm:8;
333 	};
334 };
335 
336 /*
337  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
338  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
339  * including on nested transitions, if nothing in the full role changes then
340  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
341  * don't treat all-zero structure as valid data.
342  *
343  * The properties that are tracked in the extended role but not the page role
344  * are for things that either (a) do not affect the validity of the shadow page
345  * or (b) are indirectly reflected in the shadow page's role.  For example,
346  * CR4.PKE only affects permission checks for software walks of the guest page
347  * tables (because KVM doesn't support Protection Keys with shadow paging), and
348  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
349  *
350  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
351  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
352  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
353  * SMAP aware regardless of CR0.WP.
354  */
355 union kvm_mmu_extended_role {
356 	u32 word;
357 	struct {
358 		unsigned int valid:1;
359 		unsigned int execonly:1;
360 		unsigned int cr0_pg:1;
361 		unsigned int cr4_pae:1;
362 		unsigned int cr4_pse:1;
363 		unsigned int cr4_pke:1;
364 		unsigned int cr4_smap:1;
365 		unsigned int cr4_smep:1;
366 		unsigned int cr4_la57:1;
367 	};
368 };
369 
370 union kvm_mmu_role {
371 	u64 as_u64;
372 	struct {
373 		union kvm_mmu_page_role base;
374 		union kvm_mmu_extended_role ext;
375 	};
376 };
377 
378 struct kvm_rmap_head {
379 	unsigned long val;
380 };
381 
382 struct kvm_pio_request {
383 	unsigned long linear_rip;
384 	unsigned long count;
385 	int in;
386 	int port;
387 	int size;
388 };
389 
390 #define PT64_ROOT_MAX_LEVEL 5
391 
392 struct rsvd_bits_validate {
393 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
394 	u64 bad_mt_xwr;
395 };
396 
397 struct kvm_mmu_root_info {
398 	gpa_t pgd;
399 	hpa_t hpa;
400 };
401 
402 #define KVM_MMU_ROOT_INFO_INVALID \
403 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
404 
405 #define KVM_MMU_NUM_PREV_ROOTS 3
406 
407 #define KVM_HAVE_MMU_RWLOCK
408 
409 struct kvm_mmu_page;
410 
411 /*
412  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
413  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
414  * current mmu mode.
415  */
416 struct kvm_mmu {
417 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
418 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
419 	int (*page_fault)(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 err,
420 			  bool prefault);
421 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
422 				  struct x86_exception *fault);
423 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t gva_or_gpa,
424 			    u32 access, struct x86_exception *exception);
425 	gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
426 			       struct x86_exception *exception);
427 	int (*sync_page)(struct kvm_vcpu *vcpu,
428 			 struct kvm_mmu_page *sp);
429 	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
430 	hpa_t root_hpa;
431 	gpa_t root_pgd;
432 	union kvm_mmu_role mmu_role;
433 	u8 root_level;
434 	u8 shadow_root_level;
435 	u8 ept_ad;
436 	bool direct_map;
437 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
438 
439 	/*
440 	 * Bitmap; bit set = permission fault
441 	 * Byte index: page fault error code [4:1]
442 	 * Bit index: pte permissions in ACC_* format
443 	 */
444 	u8 permissions[16];
445 
446 	/*
447 	* The pkru_mask indicates if protection key checks are needed.  It
448 	* consists of 16 domains indexed by page fault error code bits [4:1],
449 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
450 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
451 	*/
452 	u32 pkru_mask;
453 
454 	u64 *pae_root;
455 	u64 *pml4_root;
456 	u64 *pml5_root;
457 
458 	/*
459 	 * check zero bits on shadow page table entries, these
460 	 * bits include not only hardware reserved bits but also
461 	 * the bits spte never used.
462 	 */
463 	struct rsvd_bits_validate shadow_zero_check;
464 
465 	struct rsvd_bits_validate guest_rsvd_check;
466 
467 	u64 pdptrs[4]; /* pae */
468 };
469 
470 struct kvm_tlb_range {
471 	u64 start_gfn;
472 	u64 pages;
473 };
474 
475 enum pmc_type {
476 	KVM_PMC_GP = 0,
477 	KVM_PMC_FIXED,
478 };
479 
480 struct kvm_pmc {
481 	enum pmc_type type;
482 	u8 idx;
483 	u64 counter;
484 	u64 eventsel;
485 	struct perf_event *perf_event;
486 	struct kvm_vcpu *vcpu;
487 	/*
488 	 * eventsel value for general purpose counters,
489 	 * ctrl value for fixed counters.
490 	 */
491 	u64 current_config;
492 	bool is_paused;
493 };
494 
495 struct kvm_pmu {
496 	unsigned nr_arch_gp_counters;
497 	unsigned nr_arch_fixed_counters;
498 	unsigned available_event_types;
499 	u64 fixed_ctr_ctrl;
500 	u64 global_ctrl;
501 	u64 global_status;
502 	u64 global_ovf_ctrl;
503 	u64 counter_bitmask[2];
504 	u64 global_ctrl_mask;
505 	u64 global_ovf_ctrl_mask;
506 	u64 reserved_bits;
507 	u8 version;
508 	struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
509 	struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
510 	struct irq_work irq_work;
511 	DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
512 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
513 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
514 
515 	/*
516 	 * The gate to release perf_events not marked in
517 	 * pmc_in_use only once in a vcpu time slice.
518 	 */
519 	bool need_cleanup;
520 
521 	/*
522 	 * The total number of programmed perf_events and it helps to avoid
523 	 * redundant check before cleanup if guest don't use vPMU at all.
524 	 */
525 	u8 event_count;
526 };
527 
528 struct kvm_pmu_ops;
529 
530 enum {
531 	KVM_DEBUGREG_BP_ENABLED = 1,
532 	KVM_DEBUGREG_WONT_EXIT = 2,
533 };
534 
535 struct kvm_mtrr_range {
536 	u64 base;
537 	u64 mask;
538 	struct list_head node;
539 };
540 
541 struct kvm_mtrr {
542 	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
543 	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
544 	u64 deftype;
545 
546 	struct list_head head;
547 };
548 
549 /* Hyper-V SynIC timer */
550 struct kvm_vcpu_hv_stimer {
551 	struct hrtimer timer;
552 	int index;
553 	union hv_stimer_config config;
554 	u64 count;
555 	u64 exp_time;
556 	struct hv_message msg;
557 	bool msg_pending;
558 };
559 
560 /* Hyper-V synthetic interrupt controller (SynIC)*/
561 struct kvm_vcpu_hv_synic {
562 	u64 version;
563 	u64 control;
564 	u64 msg_page;
565 	u64 evt_page;
566 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
567 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
568 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
569 	DECLARE_BITMAP(vec_bitmap, 256);
570 	bool active;
571 	bool dont_zero_synic_pages;
572 };
573 
574 /* Hyper-V per vcpu emulation context */
575 struct kvm_vcpu_hv {
576 	struct kvm_vcpu *vcpu;
577 	u32 vp_index;
578 	u64 hv_vapic;
579 	s64 runtime_offset;
580 	struct kvm_vcpu_hv_synic synic;
581 	struct kvm_hyperv_exit exit;
582 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
583 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
584 	cpumask_t tlb_flush;
585 	bool enforce_cpuid;
586 	struct {
587 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
588 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
589 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
590 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
591 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
592 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
593 	} cpuid_cache;
594 };
595 
596 /* Xen HVM per vcpu emulation context */
597 struct kvm_vcpu_xen {
598 	u64 hypercall_rip;
599 	u32 current_runstate;
600 	bool vcpu_info_set;
601 	bool vcpu_time_info_set;
602 	bool runstate_set;
603 	struct gfn_to_hva_cache vcpu_info_cache;
604 	struct gfn_to_hva_cache vcpu_time_info_cache;
605 	struct gfn_to_hva_cache runstate_cache;
606 	u64 last_steal;
607 	u64 runstate_entry_time;
608 	u64 runstate_times[4];
609 };
610 
611 struct kvm_vcpu_arch {
612 	/*
613 	 * rip and regs accesses must go through
614 	 * kvm_{register,rip}_{read,write} functions.
615 	 */
616 	unsigned long regs[NR_VCPU_REGS];
617 	u32 regs_avail;
618 	u32 regs_dirty;
619 
620 	unsigned long cr0;
621 	unsigned long cr0_guest_owned_bits;
622 	unsigned long cr2;
623 	unsigned long cr3;
624 	unsigned long cr4;
625 	unsigned long cr4_guest_owned_bits;
626 	unsigned long cr4_guest_rsvd_bits;
627 	unsigned long cr8;
628 	u32 host_pkru;
629 	u32 pkru;
630 	u32 hflags;
631 	u64 efer;
632 	u64 apic_base;
633 	struct kvm_lapic *apic;    /* kernel irqchip context */
634 	bool apicv_active;
635 	bool load_eoi_exitmap_pending;
636 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
637 	unsigned long apic_attention;
638 	int32_t apic_arb_prio;
639 	int mp_state;
640 	u64 ia32_misc_enable_msr;
641 	u64 smbase;
642 	u64 smi_count;
643 	bool tpr_access_reporting;
644 	bool xsaves_enabled;
645 	u64 ia32_xss;
646 	u64 microcode_version;
647 	u64 arch_capabilities;
648 	u64 perf_capabilities;
649 
650 	/*
651 	 * Paging state of the vcpu
652 	 *
653 	 * If the vcpu runs in guest mode with two level paging this still saves
654 	 * the paging mode of the l1 guest. This context is always used to
655 	 * handle faults.
656 	 */
657 	struct kvm_mmu *mmu;
658 
659 	/* Non-nested MMU for L1 */
660 	struct kvm_mmu root_mmu;
661 
662 	/* L1 MMU when running nested */
663 	struct kvm_mmu guest_mmu;
664 
665 	/*
666 	 * Paging state of an L2 guest (used for nested npt)
667 	 *
668 	 * This context will save all necessary information to walk page tables
669 	 * of an L2 guest. This context is only initialized for page table
670 	 * walking and not for faulting since we never handle l2 page faults on
671 	 * the host.
672 	 */
673 	struct kvm_mmu nested_mmu;
674 
675 	/*
676 	 * Pointer to the mmu context currently used for
677 	 * gva_to_gpa translations.
678 	 */
679 	struct kvm_mmu *walk_mmu;
680 
681 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
682 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
683 	struct kvm_mmu_memory_cache mmu_gfn_array_cache;
684 	struct kvm_mmu_memory_cache mmu_page_header_cache;
685 
686 	/*
687 	 * QEMU userspace and the guest each have their own FPU state.
688 	 * In vcpu_run, we switch between the user and guest FPU contexts.
689 	 * While running a VCPU, the VCPU thread will have the guest FPU
690 	 * context.
691 	 *
692 	 * Note that while the PKRU state lives inside the fpu registers,
693 	 * it is switched out separately at VMENTER and VMEXIT time. The
694 	 * "guest_fpu" state here contains the guest FPU context, with the
695 	 * host PRKU bits.
696 	 */
697 	struct fpu *user_fpu;
698 	struct fpu *guest_fpu;
699 
700 	u64 xcr0;
701 	u64 guest_supported_xcr0;
702 
703 	struct kvm_pio_request pio;
704 	void *pio_data;
705 	void *sev_pio_data;
706 	unsigned sev_pio_count;
707 
708 	u8 event_exit_inst_len;
709 
710 	struct kvm_queued_exception {
711 		bool pending;
712 		bool injected;
713 		bool has_error_code;
714 		u8 nr;
715 		u32 error_code;
716 		unsigned long payload;
717 		bool has_payload;
718 		u8 nested_apf;
719 	} exception;
720 
721 	struct kvm_queued_interrupt {
722 		bool injected;
723 		bool soft;
724 		u8 nr;
725 	} interrupt;
726 
727 	int halt_request; /* real mode on Intel only */
728 
729 	int cpuid_nent;
730 	struct kvm_cpuid_entry2 *cpuid_entries;
731 
732 	u64 reserved_gpa_bits;
733 	int maxphyaddr;
734 
735 	/* emulate context */
736 
737 	struct x86_emulate_ctxt *emulate_ctxt;
738 	bool emulate_regs_need_sync_to_vcpu;
739 	bool emulate_regs_need_sync_from_vcpu;
740 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
741 
742 	gpa_t time;
743 	struct pvclock_vcpu_time_info hv_clock;
744 	unsigned int hw_tsc_khz;
745 	struct gfn_to_hva_cache pv_time;
746 	bool pv_time_enabled;
747 	/* set guest stopped flag in pvclock flags field */
748 	bool pvclock_set_guest_stopped_request;
749 
750 	struct {
751 		u8 preempted;
752 		u64 msr_val;
753 		u64 last_steal;
754 		struct gfn_to_pfn_cache cache;
755 	} st;
756 
757 	u64 l1_tsc_offset;
758 	u64 tsc_offset; /* current tsc offset */
759 	u64 last_guest_tsc;
760 	u64 last_host_tsc;
761 	u64 tsc_offset_adjustment;
762 	u64 this_tsc_nsec;
763 	u64 this_tsc_write;
764 	u64 this_tsc_generation;
765 	bool tsc_catchup;
766 	bool tsc_always_catchup;
767 	s8 virtual_tsc_shift;
768 	u32 virtual_tsc_mult;
769 	u32 virtual_tsc_khz;
770 	s64 ia32_tsc_adjust_msr;
771 	u64 msr_ia32_power_ctl;
772 	u64 l1_tsc_scaling_ratio;
773 	u64 tsc_scaling_ratio; /* current scaling ratio */
774 
775 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
776 	unsigned nmi_pending; /* NMI queued after currently running handler */
777 	bool nmi_injected;    /* Trying to inject an NMI this entry */
778 	bool smi_pending;    /* SMI queued after currently running handler */
779 
780 	struct kvm_mtrr mtrr_state;
781 	u64 pat;
782 
783 	unsigned switch_db_regs;
784 	unsigned long db[KVM_NR_DB_REGS];
785 	unsigned long dr6;
786 	unsigned long dr7;
787 	unsigned long eff_db[KVM_NR_DB_REGS];
788 	unsigned long guest_debug_dr7;
789 	u64 msr_platform_info;
790 	u64 msr_misc_features_enables;
791 
792 	u64 mcg_cap;
793 	u64 mcg_status;
794 	u64 mcg_ctl;
795 	u64 mcg_ext_ctl;
796 	u64 *mce_banks;
797 
798 	/* Cache MMIO info */
799 	u64 mmio_gva;
800 	unsigned mmio_access;
801 	gfn_t mmio_gfn;
802 	u64 mmio_gen;
803 
804 	struct kvm_pmu pmu;
805 
806 	/* used for guest single stepping over the given code position */
807 	unsigned long singlestep_rip;
808 
809 	bool hyperv_enabled;
810 	struct kvm_vcpu_hv *hyperv;
811 	struct kvm_vcpu_xen xen;
812 
813 	cpumask_var_t wbinvd_dirty_mask;
814 
815 	unsigned long last_retry_eip;
816 	unsigned long last_retry_addr;
817 
818 	struct {
819 		bool halted;
820 		gfn_t gfns[ASYNC_PF_PER_VCPU];
821 		struct gfn_to_hva_cache data;
822 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
823 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
824 		u16 vec;
825 		u32 id;
826 		bool send_user_only;
827 		u32 host_apf_flags;
828 		unsigned long nested_apf_token;
829 		bool delivery_as_pf_vmexit;
830 		bool pageready_pending;
831 	} apf;
832 
833 	/* OSVW MSRs (AMD only) */
834 	struct {
835 		u64 length;
836 		u64 status;
837 	} osvw;
838 
839 	struct {
840 		u64 msr_val;
841 		struct gfn_to_hva_cache data;
842 	} pv_eoi;
843 
844 	u64 msr_kvm_poll_control;
845 
846 	/*
847 	 * Indicates the guest is trying to write a gfn that contains one or
848 	 * more of the PTEs used to translate the write itself, i.e. the access
849 	 * is changing its own translation in the guest page tables.  KVM exits
850 	 * to userspace if emulation of the faulting instruction fails and this
851 	 * flag is set, as KVM cannot make forward progress.
852 	 *
853 	 * If emulation fails for a write to guest page tables, KVM unprotects
854 	 * (zaps) the shadow page for the target gfn and resumes the guest to
855 	 * retry the non-emulatable instruction (on hardware).  Unprotecting the
856 	 * gfn doesn't allow forward progress for a self-changing access because
857 	 * doing so also zaps the translation for the gfn, i.e. retrying the
858 	 * instruction will hit a !PRESENT fault, which results in a new shadow
859 	 * page and sends KVM back to square one.
860 	 */
861 	bool write_fault_to_shadow_pgtable;
862 
863 	/* set at EPT violation at this point */
864 	unsigned long exit_qualification;
865 
866 	/* pv related host specific info */
867 	struct {
868 		bool pv_unhalted;
869 	} pv;
870 
871 	int pending_ioapic_eoi;
872 	int pending_external_vector;
873 
874 	/* be preempted when it's in kernel-mode(cpl=0) */
875 	bool preempted_in_kernel;
876 
877 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
878 	bool l1tf_flush_l1d;
879 
880 	/* Host CPU on which VM-entry was most recently attempted */
881 	int last_vmentry_cpu;
882 
883 	/* AMD MSRC001_0015 Hardware Configuration */
884 	u64 msr_hwcr;
885 
886 	/* pv related cpuid info */
887 	struct {
888 		/*
889 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
890 		 * leaf.
891 		 */
892 		u32 features;
893 
894 		/*
895 		 * indicates whether pv emulation should be disabled if features
896 		 * are not present in the guest's cpuid
897 		 */
898 		bool enforce;
899 	} pv_cpuid;
900 
901 	/* Protected Guests */
902 	bool guest_state_protected;
903 
904 	/*
905 	 * Set when PDPTS were loaded directly by the userspace without
906 	 * reading the guest memory
907 	 */
908 	bool pdptrs_from_userspace;
909 
910 #if IS_ENABLED(CONFIG_HYPERV)
911 	hpa_t hv_root_tdp;
912 #endif
913 };
914 
915 struct kvm_lpage_info {
916 	int disallow_lpage;
917 };
918 
919 struct kvm_arch_memory_slot {
920 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
921 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
922 	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
923 };
924 
925 /*
926  * We use as the mode the number of bits allocated in the LDR for the
927  * logical processor ID.  It happens that these are all powers of two.
928  * This makes it is very easy to detect cases where the APICs are
929  * configured for multiple modes; in that case, we cannot use the map and
930  * hence cannot use kvm_irq_delivery_to_apic_fast either.
931  */
932 #define KVM_APIC_MODE_XAPIC_CLUSTER          4
933 #define KVM_APIC_MODE_XAPIC_FLAT             8
934 #define KVM_APIC_MODE_X2APIC                16
935 
936 struct kvm_apic_map {
937 	struct rcu_head rcu;
938 	u8 mode;
939 	u32 max_apic_id;
940 	union {
941 		struct kvm_lapic *xapic_flat_map[8];
942 		struct kvm_lapic *xapic_cluster_map[16][4];
943 	};
944 	struct kvm_lapic *phys_map[];
945 };
946 
947 /* Hyper-V synthetic debugger (SynDbg)*/
948 struct kvm_hv_syndbg {
949 	struct {
950 		u64 control;
951 		u64 status;
952 		u64 send_page;
953 		u64 recv_page;
954 		u64 pending_page;
955 	} control;
956 	u64 options;
957 };
958 
959 /* Current state of Hyper-V TSC page clocksource */
960 enum hv_tsc_page_status {
961 	/* TSC page was not set up or disabled */
962 	HV_TSC_PAGE_UNSET = 0,
963 	/* TSC page MSR was written by the guest, update pending */
964 	HV_TSC_PAGE_GUEST_CHANGED,
965 	/* TSC page MSR was written by KVM userspace, update pending */
966 	HV_TSC_PAGE_HOST_CHANGED,
967 	/* TSC page was properly set up and is currently active  */
968 	HV_TSC_PAGE_SET,
969 	/* TSC page is currently being updated and therefore is inactive */
970 	HV_TSC_PAGE_UPDATING,
971 	/* TSC page was set up with an inaccessible GPA */
972 	HV_TSC_PAGE_BROKEN,
973 };
974 
975 /* Hyper-V emulation context */
976 struct kvm_hv {
977 	struct mutex hv_lock;
978 	u64 hv_guest_os_id;
979 	u64 hv_hypercall;
980 	u64 hv_tsc_page;
981 	enum hv_tsc_page_status hv_tsc_page_status;
982 
983 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
984 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
985 	u64 hv_crash_ctl;
986 
987 	struct ms_hyperv_tsc_page tsc_ref;
988 
989 	struct idr conn_to_evt;
990 
991 	u64 hv_reenlightenment_control;
992 	u64 hv_tsc_emulation_control;
993 	u64 hv_tsc_emulation_status;
994 
995 	/* How many vCPUs have VP index != vCPU index */
996 	atomic_t num_mismatched_vp_indexes;
997 
998 	/*
999 	 * How many SynICs use 'AutoEOI' feature
1000 	 * (protected by arch.apicv_update_lock)
1001 	 */
1002 	unsigned int synic_auto_eoi_used;
1003 
1004 	struct hv_partition_assist_pg *hv_pa_pg;
1005 	struct kvm_hv_syndbg hv_syndbg;
1006 };
1007 
1008 struct msr_bitmap_range {
1009 	u32 flags;
1010 	u32 nmsrs;
1011 	u32 base;
1012 	unsigned long *bitmap;
1013 };
1014 
1015 /* Xen emulation context */
1016 struct kvm_xen {
1017 	bool long_mode;
1018 	u8 upcall_vector;
1019 	gfn_t shinfo_gfn;
1020 };
1021 
1022 enum kvm_irqchip_mode {
1023 	KVM_IRQCHIP_NONE,
1024 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1025 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1026 };
1027 
1028 struct kvm_x86_msr_filter {
1029 	u8 count;
1030 	bool default_allow:1;
1031 	struct msr_bitmap_range ranges[16];
1032 };
1033 
1034 #define APICV_INHIBIT_REASON_DISABLE    0
1035 #define APICV_INHIBIT_REASON_HYPERV     1
1036 #define APICV_INHIBIT_REASON_NESTED     2
1037 #define APICV_INHIBIT_REASON_IRQWIN     3
1038 #define APICV_INHIBIT_REASON_PIT_REINJ  4
1039 #define APICV_INHIBIT_REASON_X2APIC	5
1040 
1041 struct kvm_arch {
1042 	unsigned long n_used_mmu_pages;
1043 	unsigned long n_requested_mmu_pages;
1044 	unsigned long n_max_mmu_pages;
1045 	unsigned int indirect_shadow_pages;
1046 	u8 mmu_valid_gen;
1047 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1048 	struct list_head active_mmu_pages;
1049 	struct list_head zapped_obsolete_pages;
1050 	struct list_head lpage_disallowed_mmu_pages;
1051 	struct kvm_page_track_notifier_node mmu_sp_tracker;
1052 	struct kvm_page_track_notifier_head track_notifier_head;
1053 	/*
1054 	 * Protects marking pages unsync during page faults, as TDP MMU page
1055 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1056 	 * pages lock is always taken when marking pages unsync regardless of
1057 	 * whether mmu_lock is held for read or write.
1058 	 */
1059 	spinlock_t mmu_unsync_pages_lock;
1060 
1061 	struct list_head assigned_dev_head;
1062 	struct iommu_domain *iommu_domain;
1063 	bool iommu_noncoherent;
1064 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1065 	atomic_t noncoherent_dma_count;
1066 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1067 	atomic_t assigned_device_count;
1068 	struct kvm_pic *vpic;
1069 	struct kvm_ioapic *vioapic;
1070 	struct kvm_pit *vpit;
1071 	atomic_t vapics_in_nmi_mode;
1072 	struct mutex apic_map_lock;
1073 	struct kvm_apic_map __rcu *apic_map;
1074 	atomic_t apic_map_dirty;
1075 
1076 	/* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1077 	struct mutex apicv_update_lock;
1078 
1079 	bool apic_access_memslot_enabled;
1080 	unsigned long apicv_inhibit_reasons;
1081 
1082 	gpa_t wall_clock;
1083 
1084 	bool mwait_in_guest;
1085 	bool hlt_in_guest;
1086 	bool pause_in_guest;
1087 	bool cstate_in_guest;
1088 
1089 	unsigned long irq_sources_bitmap;
1090 	s64 kvmclock_offset;
1091 	raw_spinlock_t tsc_write_lock;
1092 	u64 last_tsc_nsec;
1093 	u64 last_tsc_write;
1094 	u32 last_tsc_khz;
1095 	u64 cur_tsc_nsec;
1096 	u64 cur_tsc_write;
1097 	u64 cur_tsc_offset;
1098 	u64 cur_tsc_generation;
1099 	int nr_vcpus_matched_tsc;
1100 
1101 	raw_spinlock_t pvclock_gtod_sync_lock;
1102 	bool use_master_clock;
1103 	u64 master_kernel_ns;
1104 	u64 master_cycle_now;
1105 	struct delayed_work kvmclock_update_work;
1106 	struct delayed_work kvmclock_sync_work;
1107 
1108 	struct kvm_xen_hvm_config xen_hvm_config;
1109 
1110 	/* reads protected by irq_srcu, writes by irq_lock */
1111 	struct hlist_head mask_notifier_list;
1112 
1113 	struct kvm_hv hyperv;
1114 	struct kvm_xen xen;
1115 
1116 	#ifdef CONFIG_KVM_MMU_AUDIT
1117 	int audit_point;
1118 	#endif
1119 
1120 	bool backwards_tsc_observed;
1121 	bool boot_vcpu_runs_old_kvmclock;
1122 	u32 bsp_vcpu_id;
1123 
1124 	u64 disabled_quirks;
1125 	int cpu_dirty_logging_count;
1126 
1127 	enum kvm_irqchip_mode irqchip_mode;
1128 	u8 nr_reserved_ioapic_pins;
1129 
1130 	bool disabled_lapic_found;
1131 
1132 	bool x2apic_format;
1133 	bool x2apic_broadcast_quirk_disabled;
1134 
1135 	bool guest_can_read_msr_platform_info;
1136 	bool exception_payload_enabled;
1137 
1138 	bool bus_lock_detection_enabled;
1139 	/*
1140 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1141 	 * emulator fails to emulate an instruction, allow userspace
1142 	 * the opportunity to look at it.
1143 	 */
1144 	bool exit_on_emulation_error;
1145 
1146 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1147 	u32 user_space_msr_mask;
1148 	struct kvm_x86_msr_filter __rcu *msr_filter;
1149 
1150 	u32 hypercall_exit_enabled;
1151 
1152 	/* Guest can access the SGX PROVISIONKEY. */
1153 	bool sgx_provisioning_allowed;
1154 
1155 	struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1156 	struct task_struct *nx_lpage_recovery_thread;
1157 
1158 #ifdef CONFIG_X86_64
1159 	/*
1160 	 * Whether the TDP MMU is enabled for this VM. This contains a
1161 	 * snapshot of the TDP MMU module parameter from when the VM was
1162 	 * created and remains unchanged for the life of the VM. If this is
1163 	 * true, TDP MMU handler functions will run for various MMU
1164 	 * operations.
1165 	 */
1166 	bool tdp_mmu_enabled;
1167 
1168 	/*
1169 	 * List of struct kvm_mmu_pages being used as roots.
1170 	 * All struct kvm_mmu_pages in the list should have
1171 	 * tdp_mmu_page set.
1172 	 *
1173 	 * For reads, this list is protected by:
1174 	 *	the MMU lock in read mode + RCU or
1175 	 *	the MMU lock in write mode
1176 	 *
1177 	 * For writes, this list is protected by:
1178 	 *	the MMU lock in read mode + the tdp_mmu_pages_lock or
1179 	 *	the MMU lock in write mode
1180 	 *
1181 	 * Roots will remain in the list until their tdp_mmu_root_count
1182 	 * drops to zero, at which point the thread that decremented the
1183 	 * count to zero should removed the root from the list and clean
1184 	 * it up, freeing the root after an RCU grace period.
1185 	 */
1186 	struct list_head tdp_mmu_roots;
1187 
1188 	/*
1189 	 * List of struct kvmp_mmu_pages not being used as roots.
1190 	 * All struct kvm_mmu_pages in the list should have
1191 	 * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1192 	 */
1193 	struct list_head tdp_mmu_pages;
1194 
1195 	/*
1196 	 * Protects accesses to the following fields when the MMU lock
1197 	 * is held in read mode:
1198 	 *  - tdp_mmu_roots (above)
1199 	 *  - tdp_mmu_pages (above)
1200 	 *  - the link field of struct kvm_mmu_pages used by the TDP MMU
1201 	 *  - lpage_disallowed_mmu_pages
1202 	 *  - the lpage_disallowed_link field of struct kvm_mmu_pages used
1203 	 *    by the TDP MMU
1204 	 * It is acceptable, but not necessary, to acquire this lock when
1205 	 * the thread holds the MMU lock in write mode.
1206 	 */
1207 	spinlock_t tdp_mmu_pages_lock;
1208 #endif /* CONFIG_X86_64 */
1209 
1210 	/*
1211 	 * If set, rmaps have been allocated for all memslots and should be
1212 	 * allocated for any newly created or modified memslots.
1213 	 */
1214 	bool memslots_have_rmaps;
1215 
1216 #if IS_ENABLED(CONFIG_HYPERV)
1217 	hpa_t	hv_root_tdp;
1218 	spinlock_t hv_root_tdp_lock;
1219 #endif
1220 };
1221 
1222 struct kvm_vm_stat {
1223 	struct kvm_vm_stat_generic generic;
1224 	u64 mmu_shadow_zapped;
1225 	u64 mmu_pte_write;
1226 	u64 mmu_pde_zapped;
1227 	u64 mmu_flooded;
1228 	u64 mmu_recycled;
1229 	u64 mmu_cache_miss;
1230 	u64 mmu_unsync;
1231 	union {
1232 		struct {
1233 			atomic64_t pages_4k;
1234 			atomic64_t pages_2m;
1235 			atomic64_t pages_1g;
1236 		};
1237 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1238 	};
1239 	u64 nx_lpage_splits;
1240 	u64 max_mmu_page_hash_collisions;
1241 	u64 max_mmu_rmap_size;
1242 };
1243 
1244 struct kvm_vcpu_stat {
1245 	struct kvm_vcpu_stat_generic generic;
1246 	u64 pf_fixed;
1247 	u64 pf_guest;
1248 	u64 tlb_flush;
1249 	u64 invlpg;
1250 
1251 	u64 exits;
1252 	u64 io_exits;
1253 	u64 mmio_exits;
1254 	u64 signal_exits;
1255 	u64 irq_window_exits;
1256 	u64 nmi_window_exits;
1257 	u64 l1d_flush;
1258 	u64 halt_exits;
1259 	u64 request_irq_exits;
1260 	u64 irq_exits;
1261 	u64 host_state_reload;
1262 	u64 fpu_reload;
1263 	u64 insn_emulation;
1264 	u64 insn_emulation_fail;
1265 	u64 hypercalls;
1266 	u64 irq_injections;
1267 	u64 nmi_injections;
1268 	u64 req_event;
1269 	u64 nested_run;
1270 	u64 directed_yield_attempted;
1271 	u64 directed_yield_successful;
1272 	u64 guest_mode;
1273 };
1274 
1275 struct x86_instruction_info;
1276 
1277 struct msr_data {
1278 	bool host_initiated;
1279 	u32 index;
1280 	u64 data;
1281 };
1282 
1283 struct kvm_lapic_irq {
1284 	u32 vector;
1285 	u16 delivery_mode;
1286 	u16 dest_mode;
1287 	bool level;
1288 	u16 trig_mode;
1289 	u32 shorthand;
1290 	u32 dest_id;
1291 	bool msi_redir_hint;
1292 };
1293 
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1294 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1295 {
1296 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1297 }
1298 
1299 struct kvm_x86_ops {
1300 	int (*hardware_enable)(void);
1301 	void (*hardware_disable)(void);
1302 	void (*hardware_unsetup)(void);
1303 	bool (*cpu_has_accelerated_tpr)(void);
1304 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1305 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1306 
1307 	unsigned int vm_size;
1308 	int (*vm_init)(struct kvm *kvm);
1309 	void (*vm_destroy)(struct kvm *kvm);
1310 
1311 	/* Create, but do not attach this VCPU */
1312 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1313 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1314 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1315 
1316 	void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
1317 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1318 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1319 
1320 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1321 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1322 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1323 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1324 	void (*get_segment)(struct kvm_vcpu *vcpu,
1325 			    struct kvm_segment *var, int seg);
1326 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1327 	void (*set_segment)(struct kvm_vcpu *vcpu,
1328 			    struct kvm_segment *var, int seg);
1329 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1330 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1331 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1332 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1333 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1334 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1335 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1336 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1337 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1338 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1339 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1340 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1341 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1342 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1343 
1344 	void (*tlb_flush_all)(struct kvm_vcpu *vcpu);
1345 	void (*tlb_flush_current)(struct kvm_vcpu *vcpu);
1346 	int  (*tlb_remote_flush)(struct kvm *kvm);
1347 	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
1348 			struct kvm_tlb_range *range);
1349 
1350 	/*
1351 	 * Flush any TLB entries associated with the given GVA.
1352 	 * Does not need to flush GPA->HPA mappings.
1353 	 * Can potentially get non-canonical addresses through INVLPGs, which
1354 	 * the implementation may choose to ignore if appropriate.
1355 	 */
1356 	void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1357 
1358 	/*
1359 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1360 	 * does not need to flush GPA->HPA mappings.
1361 	 */
1362 	void (*tlb_flush_guest)(struct kvm_vcpu *vcpu);
1363 
1364 	enum exit_fastpath_completion (*run)(struct kvm_vcpu *vcpu);
1365 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1366 		enum exit_fastpath_completion exit_fastpath);
1367 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1368 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1369 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1370 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1371 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1372 				unsigned char *hypercall_addr);
1373 	void (*set_irq)(struct kvm_vcpu *vcpu);
1374 	void (*set_nmi)(struct kvm_vcpu *vcpu);
1375 	void (*queue_exception)(struct kvm_vcpu *vcpu);
1376 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1377 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1378 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1379 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1380 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1381 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1382 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1383 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1384 	bool (*check_apicv_inhibit_reasons)(ulong bit);
1385 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1386 	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1387 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1388 	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1389 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1390 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1391 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1392 	int (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1393 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1394 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1395 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1396 	u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1397 
1398 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1399 			     int root_level);
1400 
1401 	bool (*has_wbinvd_exit)(void);
1402 
1403 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1404 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1405 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1406 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1407 
1408 	/*
1409 	 * Retrieve somewhat arbitrary exit information.  Intended to be used
1410 	 * only from within tracepoints to avoid VMREADs when tracing is off.
1411 	 */
1412 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
1413 			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1414 
1415 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1416 			       struct x86_instruction_info *info,
1417 			       enum x86_intercept_stage stage,
1418 			       struct x86_exception *exception);
1419 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1420 
1421 	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1422 
1423 	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1424 
1425 	/*
1426 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1427 	 * value indicates CPU dirty logging is unsupported or disabled.
1428 	 */
1429 	int cpu_dirty_log_size;
1430 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1431 
1432 	/* pmu operations of sub-arch */
1433 	const struct kvm_pmu_ops *pmu_ops;
1434 	const struct kvm_x86_nested_ops *nested_ops;
1435 
1436 	/*
1437 	 * Architecture specific hooks for vCPU blocking due to
1438 	 * HLT instruction.
1439 	 * Returns for .pre_block():
1440 	 *    - 0 means continue to block the vCPU.
1441 	 *    - 1 means we cannot block the vCPU since some event
1442 	 *        happens during this period, such as, 'ON' bit in
1443 	 *        posted-interrupts descriptor is set.
1444 	 */
1445 	int (*pre_block)(struct kvm_vcpu *vcpu);
1446 	void (*post_block)(struct kvm_vcpu *vcpu);
1447 
1448 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1449 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1450 
1451 	int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1452 			      uint32_t guest_irq, bool set);
1453 	void (*start_assignment)(struct kvm *kvm);
1454 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1455 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1456 
1457 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1458 			    bool *expired);
1459 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1460 
1461 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1462 
1463 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1464 	int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1465 	int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1466 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1467 
1468 	int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1469 	int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1470 	int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1471 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1472 
1473 	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1474 
1475 	bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, void *insn, int insn_len);
1476 
1477 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1478 	int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1479 
1480 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1481 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1482 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1483 
1484 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1485 };
1486 
1487 struct kvm_x86_nested_ops {
1488 	int (*check_events)(struct kvm_vcpu *vcpu);
1489 	bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
1490 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1491 	int (*get_state)(struct kvm_vcpu *vcpu,
1492 			 struct kvm_nested_state __user *user_kvm_nested_state,
1493 			 unsigned user_data_size);
1494 	int (*set_state)(struct kvm_vcpu *vcpu,
1495 			 struct kvm_nested_state __user *user_kvm_nested_state,
1496 			 struct kvm_nested_state *kvm_state);
1497 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1498 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1499 
1500 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1501 			    uint16_t *vmcs_version);
1502 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1503 };
1504 
1505 struct kvm_x86_init_ops {
1506 	int (*cpu_has_kvm_support)(void);
1507 	int (*disabled_by_bios)(void);
1508 	int (*check_processor_compatibility)(void);
1509 	int (*hardware_setup)(void);
1510 
1511 	struct kvm_x86_ops *runtime_ops;
1512 };
1513 
1514 struct kvm_arch_async_pf {
1515 	u32 token;
1516 	gfn_t gfn;
1517 	unsigned long cr3;
1518 	bool direct_map;
1519 };
1520 
1521 extern u32 __read_mostly kvm_nr_uret_msrs;
1522 extern u64 __read_mostly host_efer;
1523 extern bool __read_mostly allow_smaller_maxphyaddr;
1524 extern bool __read_mostly enable_apicv;
1525 extern struct kvm_x86_ops kvm_x86_ops;
1526 
1527 #define KVM_X86_OP(func) \
1528 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1529 #define KVM_X86_OP_NULL KVM_X86_OP
1530 #include <asm/kvm-x86-ops.h>
1531 
kvm_ops_static_call_update(void)1532 static inline void kvm_ops_static_call_update(void)
1533 {
1534 #define KVM_X86_OP(func) \
1535 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
1536 #define KVM_X86_OP_NULL KVM_X86_OP
1537 #include <asm/kvm-x86-ops.h>
1538 }
1539 
1540 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1541 static inline struct kvm *kvm_arch_alloc_vm(void)
1542 {
1543 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1544 }
1545 void kvm_arch_free_vm(struct kvm *kvm);
1546 
1547 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1548 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1549 {
1550 	if (kvm_x86_ops.tlb_remote_flush &&
1551 	    !static_call(kvm_x86_tlb_remote_flush)(kvm))
1552 		return 0;
1553 	else
1554 		return -ENOTSUPP;
1555 }
1556 
1557 int kvm_mmu_module_init(void);
1558 void kvm_mmu_module_exit(void);
1559 
1560 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1561 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1562 void kvm_mmu_init_vm(struct kvm *kvm);
1563 void kvm_mmu_uninit_vm(struct kvm *kvm);
1564 
1565 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1566 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1567 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1568 				      const struct kvm_memory_slot *memslot,
1569 				      int start_level);
1570 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1571 				   const struct kvm_memory_slot *memslot);
1572 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1573 				   const struct kvm_memory_slot *memslot);
1574 void kvm_mmu_zap_all(struct kvm *kvm);
1575 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1576 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm);
1577 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1578 
1579 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1580 
1581 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1582 			  const void *val, int bytes);
1583 
1584 struct kvm_irq_mask_notifier {
1585 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1586 	int irq;
1587 	struct hlist_node link;
1588 };
1589 
1590 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1591 				    struct kvm_irq_mask_notifier *kimn);
1592 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1593 				      struct kvm_irq_mask_notifier *kimn);
1594 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1595 			     bool mask);
1596 
1597 extern bool tdp_enabled;
1598 
1599 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1600 
1601 /* control of guest tsc rate supported? */
1602 extern bool kvm_has_tsc_control;
1603 /* maximum supported tsc_khz for guests */
1604 extern u32  kvm_max_guest_tsc_khz;
1605 /* number of bits of the fractional part of the TSC scaling ratio */
1606 extern u8   kvm_tsc_scaling_ratio_frac_bits;
1607 /* maximum allowed value of TSC scaling ratio */
1608 extern u64  kvm_max_tsc_scaling_ratio;
1609 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1610 extern u64  kvm_default_tsc_scaling_ratio;
1611 /* bus lock detection supported? */
1612 extern bool kvm_has_bus_lock_exit;
1613 
1614 extern u64 kvm_mce_cap_supported;
1615 
1616 /*
1617  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1618  *			userspace I/O) to indicate that the emulation context
1619  *			should be reused as is, i.e. skip initialization of
1620  *			emulation context, instruction fetch and decode.
1621  *
1622  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1623  *		      Indicates that only select instructions (tagged with
1624  *		      EmulateOnUD) should be emulated (to minimize the emulator
1625  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1626  *
1627  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1628  *		   decode the instruction length.  For use *only* by
1629  *		   kvm_x86_ops.skip_emulated_instruction() implementations.
1630  *
1631  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1632  *			     retry native execution under certain conditions,
1633  *			     Can only be set in conjunction with EMULTYPE_PF.
1634  *
1635  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1636  *			     triggered by KVM's magic "force emulation" prefix,
1637  *			     which is opt in via module param (off by default).
1638  *			     Bypasses EmulateOnUD restriction despite emulating
1639  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1640  *			     Used to test the full emulator from userspace.
1641  *
1642  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1643  *			backdoor emulation, which is opt in via module param.
1644  *			VMware backdoor emulation handles select instructions
1645  *			and reinjects the #GP for all other cases.
1646  *
1647  * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1648  *		 case the CR2/GPA value pass on the stack is valid.
1649  */
1650 #define EMULTYPE_NO_DECODE	    (1 << 0)
1651 #define EMULTYPE_TRAP_UD	    (1 << 1)
1652 #define EMULTYPE_SKIP		    (1 << 2)
1653 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
1654 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
1655 #define EMULTYPE_VMWARE_GP	    (1 << 5)
1656 #define EMULTYPE_PF		    (1 << 6)
1657 
1658 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1659 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1660 					void *insn, int insn_len);
1661 
1662 void kvm_enable_efer_bits(u64);
1663 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1664 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1665 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1666 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1667 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1668 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1669 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1670 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1671 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1672 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1673 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1674 
1675 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1676 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1677 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1678 int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1679 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1680 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1681 
1682 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1683 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1684 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1685 
1686 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1687 		    int reason, bool has_error_code, u32 error_code);
1688 
1689 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu);
1690 
1691 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1692 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1693 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1694 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1695 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1696 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1697 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1698 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1699 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1700 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1701 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1702 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1703 
1704 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1705 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1706 
1707 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1708 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1709 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1710 
1711 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1712 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1713 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1714 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1715 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1716 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1717 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1718 				    struct x86_exception *fault);
1719 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1720 			    gfn_t gfn, void *data, int offset, int len,
1721 			    u32 access);
1722 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1723 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1724 
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)1725 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1726 				       int irq_source_id, int level)
1727 {
1728 	/* Logical OR for level trig interrupt */
1729 	if (level)
1730 		__set_bit(irq_source_id, irq_state);
1731 	else
1732 		__clear_bit(irq_source_id, irq_state);
1733 
1734 	return !!(*irq_state);
1735 }
1736 
1737 #define KVM_MMU_ROOT_CURRENT		BIT(0)
1738 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
1739 #define KVM_MMU_ROOTS_ALL		(~0UL)
1740 
1741 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1742 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1743 
1744 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1745 
1746 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1747 
1748 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1749 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1750 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1751 			ulong roots_to_free);
1752 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu);
1753 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1754 			   struct x86_exception *exception);
1755 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1756 			      struct x86_exception *exception);
1757 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1758 			       struct x86_exception *exception);
1759 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1760 			       struct x86_exception *exception);
1761 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1762 				struct x86_exception *exception);
1763 
1764 bool kvm_apicv_activated(struct kvm *kvm);
1765 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1766 void kvm_request_apicv_update(struct kvm *kvm, bool activate,
1767 			      unsigned long bit);
1768 
1769 void __kvm_request_apicv_update(struct kvm *kvm, bool activate,
1770 				unsigned long bit);
1771 
1772 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1773 
1774 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1775 		       void *insn, int insn_len);
1776 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1777 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1778 			    gva_t gva, hpa_t root_hpa);
1779 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1780 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1781 
1782 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
1783 		       int tdp_max_root_level, int tdp_huge_page_level);
1784 
kvm_read_ldt(void)1785 static inline u16 kvm_read_ldt(void)
1786 {
1787 	u16 ldt;
1788 	asm("sldt %0" : "=g"(ldt));
1789 	return ldt;
1790 }
1791 
kvm_load_ldt(u16 sel)1792 static inline void kvm_load_ldt(u16 sel)
1793 {
1794 	asm("lldt %0" : : "rm"(sel));
1795 }
1796 
1797 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)1798 static inline unsigned long read_msr(unsigned long msr)
1799 {
1800 	u64 value;
1801 
1802 	rdmsrl(msr, value);
1803 	return value;
1804 }
1805 #endif
1806 
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)1807 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1808 {
1809 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1810 }
1811 
1812 #define TSS_IOPB_BASE_OFFSET 0x66
1813 #define TSS_BASE_SIZE 0x68
1814 #define TSS_IOPB_SIZE (65536 / 8)
1815 #define TSS_REDIRECTION_SIZE (256 / 8)
1816 #define RMODE_TSS_SIZE							\
1817 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1818 
1819 enum {
1820 	TASK_SWITCH_CALL = 0,
1821 	TASK_SWITCH_IRET = 1,
1822 	TASK_SWITCH_JMP = 2,
1823 	TASK_SWITCH_GATE = 3,
1824 };
1825 
1826 #define HF_GIF_MASK		(1 << 0)
1827 #define HF_NMI_MASK		(1 << 3)
1828 #define HF_IRET_MASK		(1 << 4)
1829 #define HF_GUEST_MASK		(1 << 5) /* VCPU is in guest-mode */
1830 #define HF_SMM_MASK		(1 << 6)
1831 #define HF_SMM_INSIDE_NMI_MASK	(1 << 7)
1832 
1833 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1834 #define KVM_ADDRESS_SPACE_NUM 2
1835 
1836 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1837 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1838 
1839 #define KVM_ARCH_WANT_MMU_NOTIFIER
1840 
1841 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1842 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1843 int kvm_cpu_has_extint(struct kvm_vcpu *v);
1844 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1845 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1846 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1847 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1848 
1849 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1850 		    unsigned long ipi_bitmap_high, u32 min,
1851 		    unsigned long icr, int op_64_bit);
1852 
1853 int kvm_add_user_return_msr(u32 msr);
1854 int kvm_find_user_return_msr(u32 msr);
1855 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
1856 
kvm_is_supported_user_return_msr(u32 msr)1857 static inline bool kvm_is_supported_user_return_msr(u32 msr)
1858 {
1859 	return kvm_find_user_return_msr(msr) >= 0;
1860 }
1861 
1862 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio);
1863 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1864 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
1865 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
1866 
1867 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1868 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1869 
1870 void kvm_make_mclock_inprogress_request(struct kvm *kvm);
1871 void kvm_make_scan_ioapic_request(struct kvm *kvm);
1872 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
1873 				       unsigned long *vcpu_bitmap);
1874 
1875 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1876 				     struct kvm_async_pf *work);
1877 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1878 				 struct kvm_async_pf *work);
1879 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1880 			       struct kvm_async_pf *work);
1881 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
1882 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
1883 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1884 
1885 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1886 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1887 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1888 
1889 int kvm_is_in_guest(void);
1890 
1891 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
1892 				     u32 size);
1893 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1894 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1895 
1896 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1897 			     struct kvm_vcpu **dest_vcpu);
1898 
1899 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1900 		     struct kvm_lapic_irq *irq);
1901 
kvm_irq_is_postable(struct kvm_lapic_irq * irq)1902 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
1903 {
1904 	/* We can only post Fixed and LowPrio IRQs */
1905 	return (irq->delivery_mode == APIC_DM_FIXED ||
1906 		irq->delivery_mode == APIC_DM_LOWEST);
1907 }
1908 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)1909 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1910 {
1911 	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
1912 }
1913 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)1914 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1915 {
1916 	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
1917 }
1918 
kvm_arch_vcpu_block_finish(struct kvm_vcpu * vcpu)1919 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1920 
kvm_cpu_get_apicid(int mps_cpu)1921 static inline int kvm_cpu_get_apicid(int mps_cpu)
1922 {
1923 #ifdef CONFIG_X86_LOCAL_APIC
1924 	return default_cpu_present_to_apicid(mps_cpu);
1925 #else
1926 	WARN_ON_ONCE(1);
1927 	return BAD_APICID;
1928 #endif
1929 }
1930 
1931 #define put_smstate(type, buf, offset, val)                      \
1932 	*(type *)((buf) + (offset) - 0x7e00) = val
1933 
1934 #define GET_SMSTATE(type, buf, offset)		\
1935 	(*(type *)((buf) + (offset) - 0x7e00))
1936 
1937 int kvm_cpu_dirty_log_size(void);
1938 
1939 int alloc_all_memslots_rmaps(struct kvm *kvm);
1940 
1941 #endif /* _ASM_X86_KVM_HOST_H */
1942