1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_H
3 #define __KVM_X86_MMU_H
4 
5 #include <linux/kvm_host.h>
6 #include "kvm_cache_regs.h"
7 #include "cpuid.h"
8 
9 extern bool __read_mostly enable_mmio_caching;
10 
11 #define PT_WRITABLE_SHIFT 1
12 #define PT_USER_SHIFT 2
13 
14 #define PT_PRESENT_MASK (1ULL << 0)
15 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
16 #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
17 #define PT_PWT_MASK (1ULL << 3)
18 #define PT_PCD_MASK (1ULL << 4)
19 #define PT_ACCESSED_SHIFT 5
20 #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
21 #define PT_DIRTY_SHIFT 6
22 #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
23 #define PT_PAGE_SIZE_SHIFT 7
24 #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
25 #define PT_PAT_MASK (1ULL << 7)
26 #define PT_GLOBAL_MASK (1ULL << 8)
27 #define PT64_NX_SHIFT 63
28 #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
29 
30 #define PT_PAT_SHIFT 7
31 #define PT_DIR_PAT_SHIFT 12
32 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
33 
34 #define PT64_ROOT_5LEVEL 5
35 #define PT64_ROOT_4LEVEL 4
36 #define PT32_ROOT_LEVEL 2
37 #define PT32E_ROOT_LEVEL 3
38 
39 #define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
40 			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
41 
42 #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
43 #define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
44 
rsvd_bits(int s,int e)45 static __always_inline u64 rsvd_bits(int s, int e)
46 {
47 	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
48 
49 	if (__builtin_constant_p(e))
50 		BUILD_BUG_ON(e > 63);
51 	else
52 		e &= 63;
53 
54 	if (e < s)
55 		return 0;
56 
57 	return ((2ULL << (e - s)) - 1) << s;
58 }
59 
60 /*
61  * The number of non-reserved physical address bits irrespective of features
62  * that repurpose legal bits, e.g. MKTME.
63  */
64 extern u8 __read_mostly shadow_phys_bits;
65 
kvm_mmu_max_gfn(void)66 static inline gfn_t kvm_mmu_max_gfn(void)
67 {
68 	/*
69 	 * Note that this uses the host MAXPHYADDR, not the guest's.
70 	 * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
71 	 * assuming KVM is running on bare metal, guest accesses beyond
72 	 * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
73 	 * (either EPT Violation/Misconfig or #NPF), and so KVM will never
74 	 * install a SPTE for such addresses.  If KVM is running as a VM
75 	 * itself, on the other hand, it might see a MAXPHYADDR that is less
76 	 * than hardware's real MAXPHYADDR.  Using the host MAXPHYADDR
77 	 * disallows such SPTEs entirely and simplifies the TDP MMU.
78 	 */
79 	int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52;
80 
81 	return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
82 }
83 
kvm_get_shadow_phys_bits(void)84 static inline u8 kvm_get_shadow_phys_bits(void)
85 {
86 	/*
87 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
88 	 * in CPU detection code, but the processor treats those reduced bits as
89 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
90 	 * the physical address bits reported by CPUID.
91 	 */
92 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
93 		return cpuid_eax(0x80000008) & 0xff;
94 
95 	/*
96 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
97 	 * custom CPUID.  Proceed with whatever the kernel found since these features
98 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
99 	 */
100 	return boot_cpu_data.x86_phys_bits;
101 }
102 
103 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
104 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
105 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
106 
107 void kvm_init_mmu(struct kvm_vcpu *vcpu);
108 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
109 			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
110 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
111 			     int huge_page_level, bool accessed_dirty,
112 			     gpa_t new_eptp);
113 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
114 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
115 				u64 fault_address, char *insn, int insn_len);
116 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
117 					struct kvm_mmu *mmu);
118 
119 int kvm_mmu_load(struct kvm_vcpu *vcpu);
120 void kvm_mmu_unload(struct kvm_vcpu *vcpu);
121 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
122 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
123 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
124 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
125 			 int bytes);
126 
kvm_mmu_reload(struct kvm_vcpu * vcpu)127 static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
128 {
129 	if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
130 		return 0;
131 
132 	return kvm_mmu_load(vcpu);
133 }
134 
kvm_get_pcid(struct kvm_vcpu * vcpu,gpa_t cr3)135 static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
136 {
137 	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
138 
139 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)
140 	       ? cr3 & X86_CR3_PCID_MASK
141 	       : 0;
142 }
143 
kvm_get_active_pcid(struct kvm_vcpu * vcpu)144 static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
145 {
146 	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
147 }
148 
kvm_mmu_load_pgd(struct kvm_vcpu * vcpu)149 static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
150 {
151 	u64 root_hpa = vcpu->arch.mmu->root.hpa;
152 
153 	if (!VALID_PAGE(root_hpa))
154 		return;
155 
156 	static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
157 					  vcpu->arch.mmu->root_role.level);
158 }
159 
kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)160 static inline void kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
161 						    struct kvm_mmu *mmu)
162 {
163 	/*
164 	 * When EPT is enabled, KVM may passthrough CR0.WP to the guest, i.e.
165 	 * @mmu's snapshot of CR0.WP and thus all related paging metadata may
166 	 * be stale.  Refresh CR0.WP and the metadata on-demand when checking
167 	 * for permission faults.  Exempt nested MMUs, i.e. MMUs for shadowing
168 	 * nEPT and nNPT, as CR0.WP is ignored in both cases.  Note, KVM does
169 	 * need to refresh nested_mmu, a.k.a. the walker used to translate L2
170 	 * GVAs to GPAs, as that "MMU" needs to honor L2's CR0.WP.
171 	 */
172 	if (!tdp_enabled || mmu == &vcpu->arch.guest_mmu)
173 		return;
174 
175 	__kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
176 }
177 
178 /*
179  * Check if a given access (described through the I/D, W/R and U/S bits of a
180  * page fault error code pfec) causes a permission fault with the given PTE
181  * access rights (in ACC_* format).
182  *
183  * Return zero if the access does not fault; return the page fault error code
184  * if the access faults.
185  */
permission_fault(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned pte_access,unsigned pte_pkey,u64 access)186 static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
187 				  unsigned pte_access, unsigned pte_pkey,
188 				  u64 access)
189 {
190 	/* strip nested paging fault error codes */
191 	unsigned int pfec = access;
192 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
193 
194 	/*
195 	 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
196 	 * For implicit supervisor accesses, SMAP cannot be overridden.
197 	 *
198 	 * SMAP works on supervisor accesses only, and not_smap can
199 	 * be set or not set when user access with neither has any bearing
200 	 * on the result.
201 	 *
202 	 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
203 	 * this bit will always be zero in pfec, but it will be one in index
204 	 * if SMAP checks are being disabled.
205 	 */
206 	u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
207 	bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
208 	int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
209 	u32 errcode = PFERR_PRESENT_MASK;
210 	bool fault;
211 
212 	kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
213 
214 	fault = (mmu->permissions[index] >> pte_access) & 1;
215 
216 	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
217 	if (unlikely(mmu->pkru_mask)) {
218 		u32 pkru_bits, offset;
219 
220 		/*
221 		* PKRU defines 32 bits, there are 16 domains and 2
222 		* attribute bits per domain in pkru.  pte_pkey is the
223 		* index of the protection domain, so pte_pkey * 2 is
224 		* is the index of the first bit for the domain.
225 		*/
226 		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
227 
228 		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
229 		offset = (pfec & ~1) +
230 			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
231 
232 		pkru_bits &= mmu->pkru_mask >> offset;
233 		errcode |= -pkru_bits & PFERR_PK_MASK;
234 		fault |= (pkru_bits != 0);
235 	}
236 
237 	return -(u32)fault & errcode;
238 }
239 
240 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
241 
242 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
243 
244 int kvm_mmu_post_init_vm(struct kvm *kvm);
245 void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
246 
kvm_shadow_root_allocated(struct kvm * kvm)247 static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
248 {
249 	/*
250 	 * Read shadow_root_allocated before related pointers. Hence, threads
251 	 * reading shadow_root_allocated in any lock context are guaranteed to
252 	 * see the pointers. Pairs with smp_store_release in
253 	 * mmu_first_shadow_root_alloc.
254 	 */
255 	return smp_load_acquire(&kvm->arch.shadow_root_allocated);
256 }
257 
258 #ifdef CONFIG_X86_64
259 extern bool tdp_mmu_enabled;
260 #else
261 #define tdp_mmu_enabled false
262 #endif
263 
kvm_memslots_have_rmaps(struct kvm * kvm)264 static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
265 {
266 	return !tdp_mmu_enabled || kvm_shadow_root_allocated(kvm);
267 }
268 
gfn_to_index(gfn_t gfn,gfn_t base_gfn,int level)269 static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
270 {
271 	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
272 	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
273 		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
274 }
275 
276 static inline unsigned long
__kvm_mmu_slot_lpages(struct kvm_memory_slot * slot,unsigned long npages,int level)277 __kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
278 		      int level)
279 {
280 	return gfn_to_index(slot->base_gfn + npages - 1,
281 			    slot->base_gfn, level) + 1;
282 }
283 
284 static inline unsigned long
kvm_mmu_slot_lpages(struct kvm_memory_slot * slot,int level)285 kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
286 {
287 	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
288 }
289 
kvm_update_page_stats(struct kvm * kvm,int level,int count)290 static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
291 {
292 	atomic64_add(count, &kvm->stat.pages[level - 1]);
293 }
294 
295 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
296 			   struct x86_exception *exception);
297 
kvm_translate_gpa(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gpa_t gpa,u64 access,struct x86_exception * exception)298 static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
299 				      struct kvm_mmu *mmu,
300 				      gpa_t gpa, u64 access,
301 				      struct x86_exception *exception)
302 {
303 	if (mmu != &vcpu->arch.nested_mmu)
304 		return gpa;
305 	return translate_nested_gpa(vcpu, gpa, access, exception);
306 }
307 #endif
308