1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/gfp.h>
16 #include <linux/overflow.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19 #include <linux/percpu-refcount.h>
20 
21 
22 /*
23  * Flags to pass to kmem_cache_create().
24  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
25  */
26 /* DEBUG: Perform (expensive) checks on alloc/free */
27 #define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
28 /* DEBUG: Red zone objs in a cache */
29 #define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
30 /* DEBUG: Poison objects */
31 #define SLAB_POISON		((slab_flags_t __force)0x00000800U)
32 /* Align objs on cache lines */
33 #define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
34 /* Use GFP_DMA memory */
35 #define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
36 /* Use GFP_DMA32 memory */
37 #define SLAB_CACHE_DMA32	((slab_flags_t __force)0x00008000U)
38 /* DEBUG: Store the last owner for bug hunting */
39 #define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
40 /* Panic if kmem_cache_create() fails */
41 #define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
42 /*
43  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
44  *
45  * This delays freeing the SLAB page by a grace period, it does _NOT_
46  * delay object freeing. This means that if you do kmem_cache_free()
47  * that memory location is free to be reused at any time. Thus it may
48  * be possible to see another object there in the same RCU grace period.
49  *
50  * This feature only ensures the memory location backing the object
51  * stays valid, the trick to using this is relying on an independent
52  * object validation pass. Something like:
53  *
54  *  rcu_read_lock()
55  * again:
56  *  obj = lockless_lookup(key);
57  *  if (obj) {
58  *    if (!try_get_ref(obj)) // might fail for free objects
59  *      goto again;
60  *
61  *    if (obj->key != key) { // not the object we expected
62  *      put_ref(obj);
63  *      goto again;
64  *    }
65  *  }
66  *  rcu_read_unlock();
67  *
68  * This is useful if we need to approach a kernel structure obliquely,
69  * from its address obtained without the usual locking. We can lock
70  * the structure to stabilize it and check it's still at the given address,
71  * only if we can be sure that the memory has not been meanwhile reused
72  * for some other kind of object (which our subsystem's lock might corrupt).
73  *
74  * rcu_read_lock before reading the address, then rcu_read_unlock after
75  * taking the spinlock within the structure expected at that address.
76  *
77  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
78  */
79 /* Defer freeing slabs to RCU */
80 #define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
81 /* Spread some memory over cpuset */
82 #define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
83 /* Trace allocations and frees */
84 #define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
85 
86 /* Flag to prevent checks on free */
87 #ifdef CONFIG_DEBUG_OBJECTS
88 # define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
89 #else
90 # define SLAB_DEBUG_OBJECTS	0
91 #endif
92 
93 /* Avoid kmemleak tracing */
94 #define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
95 
96 /* Fault injection mark */
97 #ifdef CONFIG_FAILSLAB
98 # define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
99 #else
100 # define SLAB_FAILSLAB		0
101 #endif
102 /* Account to memcg */
103 #ifdef CONFIG_MEMCG_KMEM
104 # define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
105 #else
106 # define SLAB_ACCOUNT		0
107 #endif
108 
109 #ifdef CONFIG_KASAN
110 #define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
111 #else
112 #define SLAB_KASAN		0
113 #endif
114 
115 /* The following flags affect the page allocator grouping pages by mobility */
116 /* Objects are reclaimable */
117 #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
118 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
119 
120 /* Slab deactivation flag */
121 #define SLAB_DEACTIVATED	((slab_flags_t __force)0x10000000U)
122 
123 /*
124  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
125  *
126  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
127  *
128  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
129  * Both make kfree a no-op.
130  */
131 #define ZERO_SIZE_PTR ((void *)16)
132 
133 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
134 				(unsigned long)ZERO_SIZE_PTR)
135 
136 #include <linux/kasan.h>
137 
138 struct mem_cgroup;
139 /*
140  * struct kmem_cache related prototypes
141  */
142 void __init kmem_cache_init(void);
143 bool slab_is_available(void);
144 
145 extern bool usercopy_fallback;
146 
147 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
148 			unsigned int align, slab_flags_t flags,
149 			void (*ctor)(void *));
150 struct kmem_cache *kmem_cache_create_usercopy(const char *name,
151 			unsigned int size, unsigned int align,
152 			slab_flags_t flags,
153 			unsigned int useroffset, unsigned int usersize,
154 			void (*ctor)(void *));
155 void kmem_cache_destroy(struct kmem_cache *);
156 int kmem_cache_shrink(struct kmem_cache *);
157 
158 /*
159  * Please use this macro to create slab caches. Simply specify the
160  * name of the structure and maybe some flags that are listed above.
161  *
162  * The alignment of the struct determines object alignment. If you
163  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
164  * then the objects will be properly aligned in SMP configurations.
165  */
166 #define KMEM_CACHE(__struct, __flags)					\
167 		kmem_cache_create(#__struct, sizeof(struct __struct),	\
168 			__alignof__(struct __struct), (__flags), NULL)
169 
170 /*
171  * To whitelist a single field for copying to/from usercopy, use this
172  * macro instead for KMEM_CACHE() above.
173  */
174 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
175 		kmem_cache_create_usercopy(#__struct,			\
176 			sizeof(struct __struct),			\
177 			__alignof__(struct __struct), (__flags),	\
178 			offsetof(struct __struct, __field),		\
179 			sizeof_field(struct __struct, __field), NULL)
180 
181 /*
182  * Common kmalloc functions provided by all allocators
183  */
184 void * __must_check krealloc(const void *, size_t, gfp_t);
185 void kfree(const void *);
186 void kfree_sensitive(const void *);
187 size_t __ksize(const void *);
188 size_t ksize(const void *);
189 #ifdef CONFIG_PRINTK
190 bool kmem_valid_obj(void *object);
191 void kmem_dump_obj(void *object);
192 #endif
193 
194 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
195 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
196 			bool to_user);
197 #else
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)198 static inline void __check_heap_object(const void *ptr, unsigned long n,
199 				       struct page *page, bool to_user) { }
200 #endif
201 
202 /*
203  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
204  * alignment larger than the alignment of a 64-bit integer.
205  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
206  */
207 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
208 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
209 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
210 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
211 #else
212 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
213 #endif
214 
215 /*
216  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
217  * Intended for arches that get misalignment faults even for 64 bit integer
218  * aligned buffers.
219  */
220 #ifndef ARCH_SLAB_MINALIGN
221 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
222 #endif
223 
224 /*
225  * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
226  * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
227  * aligned pointers.
228  */
229 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
230 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
231 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
232 
233 /*
234  * Kmalloc array related definitions
235  */
236 
237 #ifdef CONFIG_SLAB
238 /*
239  * The largest kmalloc size supported by the SLAB allocators is
240  * 32 megabyte (2^25) or the maximum allocatable page order if that is
241  * less than 32 MB.
242  *
243  * WARNING: Its not easy to increase this value since the allocators have
244  * to do various tricks to work around compiler limitations in order to
245  * ensure proper constant folding.
246  */
247 #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
248 				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
249 #define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
250 #ifndef KMALLOC_SHIFT_LOW
251 #define KMALLOC_SHIFT_LOW	5
252 #endif
253 #endif
254 
255 #ifdef CONFIG_SLUB
256 /*
257  * SLUB directly allocates requests fitting in to an order-1 page
258  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
259  */
260 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
261 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
262 #ifndef KMALLOC_SHIFT_LOW
263 #define KMALLOC_SHIFT_LOW	3
264 #endif
265 #endif
266 
267 #ifdef CONFIG_SLOB
268 /*
269  * SLOB passes all requests larger than one page to the page allocator.
270  * No kmalloc array is necessary since objects of different sizes can
271  * be allocated from the same page.
272  */
273 #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
274 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
275 #ifndef KMALLOC_SHIFT_LOW
276 #define KMALLOC_SHIFT_LOW	3
277 #endif
278 #endif
279 
280 /* Maximum allocatable size */
281 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
282 /* Maximum size for which we actually use a slab cache */
283 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
284 /* Maximum order allocatable via the slab allocator */
285 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
286 
287 /*
288  * Kmalloc subsystem.
289  */
290 #ifndef KMALLOC_MIN_SIZE
291 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
292 #endif
293 
294 /*
295  * This restriction comes from byte sized index implementation.
296  * Page size is normally 2^12 bytes and, in this case, if we want to use
297  * byte sized index which can represent 2^8 entries, the size of the object
298  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
299  * If minimum size of kmalloc is less than 16, we use it as minimum object
300  * size and give up to use byte sized index.
301  */
302 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
303                                (KMALLOC_MIN_SIZE) : 16)
304 
305 /*
306  * Whenever changing this, take care of that kmalloc_type() and
307  * create_kmalloc_caches() still work as intended.
308  *
309  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
310  * is for accounted but unreclaimable and non-dma objects. All the other
311  * kmem caches can have both accounted and unaccounted objects.
312  */
313 enum kmalloc_cache_type {
314 	KMALLOC_NORMAL = 0,
315 #ifndef CONFIG_ZONE_DMA
316 	KMALLOC_DMA = KMALLOC_NORMAL,
317 #endif
318 #ifndef CONFIG_MEMCG_KMEM
319 	KMALLOC_CGROUP = KMALLOC_NORMAL,
320 #else
321 	KMALLOC_CGROUP,
322 #endif
323 	KMALLOC_RECLAIM,
324 #ifdef CONFIG_ZONE_DMA
325 	KMALLOC_DMA,
326 #endif
327 	NR_KMALLOC_TYPES
328 };
329 
330 #ifndef CONFIG_SLOB
331 extern struct kmem_cache *
332 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
333 
334 /*
335  * Define gfp bits that should not be set for KMALLOC_NORMAL.
336  */
337 #define KMALLOC_NOT_NORMAL_BITS					\
338 	(__GFP_RECLAIMABLE |					\
339 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
340 	(IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
341 
kmalloc_type(gfp_t flags)342 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
343 {
344 	/*
345 	 * The most common case is KMALLOC_NORMAL, so test for it
346 	 * with a single branch for all the relevant flags.
347 	 */
348 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
349 		return KMALLOC_NORMAL;
350 
351 	/*
352 	 * At least one of the flags has to be set. Their priorities in
353 	 * decreasing order are:
354 	 *  1) __GFP_DMA
355 	 *  2) __GFP_RECLAIMABLE
356 	 *  3) __GFP_ACCOUNT
357 	 */
358 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
359 		return KMALLOC_DMA;
360 	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
361 		return KMALLOC_RECLAIM;
362 	else
363 		return KMALLOC_CGROUP;
364 }
365 
366 /*
367  * Figure out which kmalloc slab an allocation of a certain size
368  * belongs to.
369  * 0 = zero alloc
370  * 1 =  65 .. 96 bytes
371  * 2 = 129 .. 192 bytes
372  * n = 2^(n-1)+1 .. 2^n
373  *
374  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
375  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
376  * Callers where !size_is_constant should only be test modules, where runtime
377  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
378  */
__kmalloc_index(size_t size,bool size_is_constant)379 static __always_inline unsigned int __kmalloc_index(size_t size,
380 						    bool size_is_constant)
381 {
382 	if (!size)
383 		return 0;
384 
385 	if (size <= KMALLOC_MIN_SIZE)
386 		return KMALLOC_SHIFT_LOW;
387 
388 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
389 		return 1;
390 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
391 		return 2;
392 	if (size <=          8) return 3;
393 	if (size <=         16) return 4;
394 	if (size <=         32) return 5;
395 	if (size <=         64) return 6;
396 	if (size <=        128) return 7;
397 	if (size <=        256) return 8;
398 	if (size <=        512) return 9;
399 	if (size <=       1024) return 10;
400 	if (size <=   2 * 1024) return 11;
401 	if (size <=   4 * 1024) return 12;
402 	if (size <=   8 * 1024) return 13;
403 	if (size <=  16 * 1024) return 14;
404 	if (size <=  32 * 1024) return 15;
405 	if (size <=  64 * 1024) return 16;
406 	if (size <= 128 * 1024) return 17;
407 	if (size <= 256 * 1024) return 18;
408 	if (size <= 512 * 1024) return 19;
409 	if (size <= 1024 * 1024) return 20;
410 	if (size <=  2 * 1024 * 1024) return 21;
411 	if (size <=  4 * 1024 * 1024) return 22;
412 	if (size <=  8 * 1024 * 1024) return 23;
413 	if (size <=  16 * 1024 * 1024) return 24;
414 	if (size <=  32 * 1024 * 1024) return 25;
415 
416 	if ((IS_ENABLED(CONFIG_CC_IS_GCC) || CONFIG_CLANG_VERSION >= 110000)
417 	    && !IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
418 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
419 	else
420 		BUG();
421 
422 	/* Will never be reached. Needed because the compiler may complain */
423 	return -1;
424 }
425 #define kmalloc_index(s) __kmalloc_index(s, true)
426 #endif /* !CONFIG_SLOB */
427 
428 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
429 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
430 void kmem_cache_free(struct kmem_cache *, void *);
431 
432 /*
433  * Bulk allocation and freeing operations. These are accelerated in an
434  * allocator specific way to avoid taking locks repeatedly or building
435  * metadata structures unnecessarily.
436  *
437  * Note that interrupts must be enabled when calling these functions.
438  */
439 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
440 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
441 
442 /*
443  * Caller must not use kfree_bulk() on memory not originally allocated
444  * by kmalloc(), because the SLOB allocator cannot handle this.
445  */
kfree_bulk(size_t size,void ** p)446 static __always_inline void kfree_bulk(size_t size, void **p)
447 {
448 	kmem_cache_free_bulk(NULL, size, p);
449 }
450 
451 #ifdef CONFIG_NUMA
452 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
453 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
454 #else
__kmalloc_node(size_t size,gfp_t flags,int node)455 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
456 {
457 	return __kmalloc(size, flags);
458 }
459 
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t flags,int node)460 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
461 {
462 	return kmem_cache_alloc(s, flags);
463 }
464 #endif
465 
466 #ifdef CONFIG_TRACING
467 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
468 
469 #ifdef CONFIG_NUMA
470 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
471 					   gfp_t gfpflags,
472 					   int node, size_t size) __assume_slab_alignment __malloc;
473 #else
474 static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)475 kmem_cache_alloc_node_trace(struct kmem_cache *s,
476 			      gfp_t gfpflags,
477 			      int node, size_t size)
478 {
479 	return kmem_cache_alloc_trace(s, gfpflags, size);
480 }
481 #endif /* CONFIG_NUMA */
482 
483 #else /* CONFIG_TRACING */
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t flags,size_t size)484 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
485 		gfp_t flags, size_t size)
486 {
487 	void *ret = kmem_cache_alloc(s, flags);
488 
489 	ret = kasan_kmalloc(s, ret, size, flags);
490 	return ret;
491 }
492 
493 static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)494 kmem_cache_alloc_node_trace(struct kmem_cache *s,
495 			      gfp_t gfpflags,
496 			      int node, size_t size)
497 {
498 	void *ret = kmem_cache_alloc_node(s, gfpflags, node);
499 
500 	ret = kasan_kmalloc(s, ret, size, gfpflags);
501 	return ret;
502 }
503 #endif /* CONFIG_TRACING */
504 
505 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
506 
507 #ifdef CONFIG_TRACING
508 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
509 #else
510 static __always_inline void *
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)511 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
512 {
513 	return kmalloc_order(size, flags, order);
514 }
515 #endif
516 
kmalloc_large(size_t size,gfp_t flags)517 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
518 {
519 	unsigned int order = get_order(size);
520 	return kmalloc_order_trace(size, flags, order);
521 }
522 
523 /**
524  * kmalloc - allocate memory
525  * @size: how many bytes of memory are required.
526  * @flags: the type of memory to allocate.
527  *
528  * kmalloc is the normal method of allocating memory
529  * for objects smaller than page size in the kernel.
530  *
531  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
532  * bytes. For @size of power of two bytes, the alignment is also guaranteed
533  * to be at least to the size.
534  *
535  * The @flags argument may be one of the GFP flags defined at
536  * include/linux/gfp.h and described at
537  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
538  *
539  * The recommended usage of the @flags is described at
540  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
541  *
542  * Below is a brief outline of the most useful GFP flags
543  *
544  * %GFP_KERNEL
545  *	Allocate normal kernel ram. May sleep.
546  *
547  * %GFP_NOWAIT
548  *	Allocation will not sleep.
549  *
550  * %GFP_ATOMIC
551  *	Allocation will not sleep.  May use emergency pools.
552  *
553  * %GFP_HIGHUSER
554  *	Allocate memory from high memory on behalf of user.
555  *
556  * Also it is possible to set different flags by OR'ing
557  * in one or more of the following additional @flags:
558  *
559  * %__GFP_HIGH
560  *	This allocation has high priority and may use emergency pools.
561  *
562  * %__GFP_NOFAIL
563  *	Indicate that this allocation is in no way allowed to fail
564  *	(think twice before using).
565  *
566  * %__GFP_NORETRY
567  *	If memory is not immediately available,
568  *	then give up at once.
569  *
570  * %__GFP_NOWARN
571  *	If allocation fails, don't issue any warnings.
572  *
573  * %__GFP_RETRY_MAYFAIL
574  *	Try really hard to succeed the allocation but fail
575  *	eventually.
576  */
kmalloc(size_t size,gfp_t flags)577 static __always_inline void *kmalloc(size_t size, gfp_t flags)
578 {
579 	if (__builtin_constant_p(size)) {
580 #ifndef CONFIG_SLOB
581 		unsigned int index;
582 #endif
583 		if (size > KMALLOC_MAX_CACHE_SIZE)
584 			return kmalloc_large(size, flags);
585 #ifndef CONFIG_SLOB
586 		index = kmalloc_index(size);
587 
588 		if (!index)
589 			return ZERO_SIZE_PTR;
590 
591 		return kmem_cache_alloc_trace(
592 				kmalloc_caches[kmalloc_type(flags)][index],
593 				flags, size);
594 #endif
595 	}
596 	return __kmalloc(size, flags);
597 }
598 
kmalloc_node(size_t size,gfp_t flags,int node)599 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
600 {
601 #ifndef CONFIG_SLOB
602 	if (__builtin_constant_p(size) &&
603 		size <= KMALLOC_MAX_CACHE_SIZE) {
604 		unsigned int i = kmalloc_index(size);
605 
606 		if (!i)
607 			return ZERO_SIZE_PTR;
608 
609 		return kmem_cache_alloc_node_trace(
610 				kmalloc_caches[kmalloc_type(flags)][i],
611 						flags, node, size);
612 	}
613 #endif
614 	return __kmalloc_node(size, flags, node);
615 }
616 
617 /**
618  * kmalloc_array - allocate memory for an array.
619  * @n: number of elements.
620  * @size: element size.
621  * @flags: the type of memory to allocate (see kmalloc).
622  */
kmalloc_array(size_t n,size_t size,gfp_t flags)623 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
624 {
625 	size_t bytes;
626 
627 	if (unlikely(check_mul_overflow(n, size, &bytes)))
628 		return NULL;
629 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
630 		return kmalloc(bytes, flags);
631 	return __kmalloc(bytes, flags);
632 }
633 
634 /**
635  * krealloc_array - reallocate memory for an array.
636  * @p: pointer to the memory chunk to reallocate
637  * @new_n: new number of elements to alloc
638  * @new_size: new size of a single member of the array
639  * @flags: the type of memory to allocate (see kmalloc)
640  */
641 static __must_check inline void *
krealloc_array(void * p,size_t new_n,size_t new_size,gfp_t flags)642 krealloc_array(void *p, size_t new_n, size_t new_size, gfp_t flags)
643 {
644 	size_t bytes;
645 
646 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
647 		return NULL;
648 
649 	return krealloc(p, bytes, flags);
650 }
651 
652 /**
653  * kcalloc - allocate memory for an array. The memory is set to zero.
654  * @n: number of elements.
655  * @size: element size.
656  * @flags: the type of memory to allocate (see kmalloc).
657  */
kcalloc(size_t n,size_t size,gfp_t flags)658 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
659 {
660 	return kmalloc_array(n, size, flags | __GFP_ZERO);
661 }
662 
663 /*
664  * kmalloc_track_caller is a special version of kmalloc that records the
665  * calling function of the routine calling it for slab leak tracking instead
666  * of just the calling function (confusing, eh?).
667  * It's useful when the call to kmalloc comes from a widely-used standard
668  * allocator where we care about the real place the memory allocation
669  * request comes from.
670  */
671 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
672 #define kmalloc_track_caller(size, flags) \
673 	__kmalloc_track_caller(size, flags, _RET_IP_)
674 
kmalloc_array_node(size_t n,size_t size,gfp_t flags,int node)675 static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
676 				       int node)
677 {
678 	size_t bytes;
679 
680 	if (unlikely(check_mul_overflow(n, size, &bytes)))
681 		return NULL;
682 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
683 		return kmalloc_node(bytes, flags, node);
684 	return __kmalloc_node(bytes, flags, node);
685 }
686 
kcalloc_node(size_t n,size_t size,gfp_t flags,int node)687 static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
688 {
689 	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
690 }
691 
692 
693 #ifdef CONFIG_NUMA
694 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
695 #define kmalloc_node_track_caller(size, flags, node) \
696 	__kmalloc_node_track_caller(size, flags, node, \
697 			_RET_IP_)
698 
699 #else /* CONFIG_NUMA */
700 
701 #define kmalloc_node_track_caller(size, flags, node) \
702 	kmalloc_track_caller(size, flags)
703 
704 #endif /* CONFIG_NUMA */
705 
706 /*
707  * Shortcuts
708  */
kmem_cache_zalloc(struct kmem_cache * k,gfp_t flags)709 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
710 {
711 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
712 }
713 
714 /**
715  * kzalloc - allocate memory. The memory is set to zero.
716  * @size: how many bytes of memory are required.
717  * @flags: the type of memory to allocate (see kmalloc).
718  */
kzalloc(size_t size,gfp_t flags)719 static inline void *kzalloc(size_t size, gfp_t flags)
720 {
721 	return kmalloc(size, flags | __GFP_ZERO);
722 }
723 
724 /**
725  * kzalloc_node - allocate zeroed memory from a particular memory node.
726  * @size: how many bytes of memory are required.
727  * @flags: the type of memory to allocate (see kmalloc).
728  * @node: memory node from which to allocate
729  */
kzalloc_node(size_t size,gfp_t flags,int node)730 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
731 {
732 	return kmalloc_node(size, flags | __GFP_ZERO, node);
733 }
734 
735 unsigned int kmem_cache_size(struct kmem_cache *s);
736 void __init kmem_cache_init_late(void);
737 
738 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
739 int slab_prepare_cpu(unsigned int cpu);
740 int slab_dead_cpu(unsigned int cpu);
741 #else
742 #define slab_prepare_cpu	NULL
743 #define slab_dead_cpu		NULL
744 #endif
745 
746 #endif	/* _LINUX_SLAB_H */
747