1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * KCSAN access checks and modifiers. These can be used to explicitly check
4 * uninstrumented accesses, or change KCSAN checking behaviour of accesses.
5 *
6 * Copyright (C) 2019, Google LLC.
7 */
8
9 #ifndef _LINUX_KCSAN_CHECKS_H
10 #define _LINUX_KCSAN_CHECKS_H
11
12 /* Note: Only include what is already included by compiler.h. */
13 #include <linux/compiler_attributes.h>
14 #include <linux/types.h>
15
16 /* Access types -- if KCSAN_ACCESS_WRITE is not set, the access is a read. */
17 #define KCSAN_ACCESS_WRITE (1 << 0) /* Access is a write. */
18 #define KCSAN_ACCESS_COMPOUND (1 << 1) /* Compounded read-write instrumentation. */
19 #define KCSAN_ACCESS_ATOMIC (1 << 2) /* Access is atomic. */
20 /* The following are special, and never due to compiler instrumentation. */
21 #define KCSAN_ACCESS_ASSERT (1 << 3) /* Access is an assertion. */
22 #define KCSAN_ACCESS_SCOPED (1 << 4) /* Access is a scoped access. */
23
24 /*
25 * __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
26 * even in compilation units that selectively disable KCSAN, but must use KCSAN
27 * to validate access to an address. Never use these in header files!
28 */
29 #ifdef CONFIG_KCSAN
30 /**
31 * __kcsan_check_access - check generic access for races
32 *
33 * @ptr: address of access
34 * @size: size of access
35 * @type: access type modifier
36 */
37 void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
38
39 /**
40 * kcsan_disable_current - disable KCSAN for the current context
41 *
42 * Supports nesting.
43 */
44 void kcsan_disable_current(void);
45
46 /**
47 * kcsan_enable_current - re-enable KCSAN for the current context
48 *
49 * Supports nesting.
50 */
51 void kcsan_enable_current(void);
52 void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
53
54 /**
55 * kcsan_nestable_atomic_begin - begin nestable atomic region
56 *
57 * Accesses within the atomic region may appear to race with other accesses but
58 * should be considered atomic.
59 */
60 void kcsan_nestable_atomic_begin(void);
61
62 /**
63 * kcsan_nestable_atomic_end - end nestable atomic region
64 */
65 void kcsan_nestable_atomic_end(void);
66
67 /**
68 * kcsan_flat_atomic_begin - begin flat atomic region
69 *
70 * Accesses within the atomic region may appear to race with other accesses but
71 * should be considered atomic.
72 */
73 void kcsan_flat_atomic_begin(void);
74
75 /**
76 * kcsan_flat_atomic_end - end flat atomic region
77 */
78 void kcsan_flat_atomic_end(void);
79
80 /**
81 * kcsan_atomic_next - consider following accesses as atomic
82 *
83 * Force treating the next n memory accesses for the current context as atomic
84 * operations.
85 *
86 * @n: number of following memory accesses to treat as atomic.
87 */
88 void kcsan_atomic_next(int n);
89
90 /**
91 * kcsan_set_access_mask - set access mask
92 *
93 * Set the access mask for all accesses for the current context if non-zero.
94 * Only value changes to bits set in the mask will be reported.
95 *
96 * @mask: bitmask
97 */
98 void kcsan_set_access_mask(unsigned long mask);
99
100 /* Scoped access information. */
101 struct kcsan_scoped_access {
102 struct list_head list;
103 const volatile void *ptr;
104 size_t size;
105 int type;
106 };
107 /*
108 * Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
109 * out of scope; relies on attribute "cleanup", which is supported by all
110 * compilers that support KCSAN.
111 */
112 #define __kcsan_cleanup_scoped \
113 __maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
114
115 /**
116 * kcsan_begin_scoped_access - begin scoped access
117 *
118 * Begin scoped access and initialize @sa, which will cause KCSAN to
119 * continuously check the memory range in the current thread until
120 * kcsan_end_scoped_access() is called for @sa.
121 *
122 * Scoped accesses are implemented by appending @sa to an internal list for the
123 * current execution context, and then checked on every call into the KCSAN
124 * runtime.
125 *
126 * @ptr: address of access
127 * @size: size of access
128 * @type: access type modifier
129 * @sa: struct kcsan_scoped_access to use for the scope of the access
130 */
131 struct kcsan_scoped_access *
132 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
133 struct kcsan_scoped_access *sa);
134
135 /**
136 * kcsan_end_scoped_access - end scoped access
137 *
138 * End a scoped access, which will stop KCSAN checking the memory range.
139 * Requires that kcsan_begin_scoped_access() was previously called once for @sa.
140 *
141 * @sa: a previously initialized struct kcsan_scoped_access
142 */
143 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
144
145
146 #else /* CONFIG_KCSAN */
147
__kcsan_check_access(const volatile void * ptr,size_t size,int type)148 static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
149 int type) { }
150
kcsan_disable_current(void)151 static inline void kcsan_disable_current(void) { }
kcsan_enable_current(void)152 static inline void kcsan_enable_current(void) { }
kcsan_enable_current_nowarn(void)153 static inline void kcsan_enable_current_nowarn(void) { }
kcsan_nestable_atomic_begin(void)154 static inline void kcsan_nestable_atomic_begin(void) { }
kcsan_nestable_atomic_end(void)155 static inline void kcsan_nestable_atomic_end(void) { }
kcsan_flat_atomic_begin(void)156 static inline void kcsan_flat_atomic_begin(void) { }
kcsan_flat_atomic_end(void)157 static inline void kcsan_flat_atomic_end(void) { }
kcsan_atomic_next(int n)158 static inline void kcsan_atomic_next(int n) { }
kcsan_set_access_mask(unsigned long mask)159 static inline void kcsan_set_access_mask(unsigned long mask) { }
160
161 struct kcsan_scoped_access { };
162 #define __kcsan_cleanup_scoped __maybe_unused
163 static inline struct kcsan_scoped_access *
kcsan_begin_scoped_access(const volatile void * ptr,size_t size,int type,struct kcsan_scoped_access * sa)164 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
165 struct kcsan_scoped_access *sa) { return sa; }
kcsan_end_scoped_access(struct kcsan_scoped_access * sa)166 static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
167
168 #endif /* CONFIG_KCSAN */
169
170 #ifdef __SANITIZE_THREAD__
171 /*
172 * Only calls into the runtime when the particular compilation unit has KCSAN
173 * instrumentation enabled. May be used in header files.
174 */
175 #define kcsan_check_access __kcsan_check_access
176
177 /*
178 * Only use these to disable KCSAN for accesses in the current compilation unit;
179 * calls into libraries may still perform KCSAN checks.
180 */
181 #define __kcsan_disable_current kcsan_disable_current
182 #define __kcsan_enable_current kcsan_enable_current_nowarn
183 #else
kcsan_check_access(const volatile void * ptr,size_t size,int type)184 static inline void kcsan_check_access(const volatile void *ptr, size_t size,
185 int type) { }
__kcsan_enable_current(void)186 static inline void __kcsan_enable_current(void) { }
__kcsan_disable_current(void)187 static inline void __kcsan_disable_current(void) { }
188 #endif
189
190 /**
191 * __kcsan_check_read - check regular read access for races
192 *
193 * @ptr: address of access
194 * @size: size of access
195 */
196 #define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
197
198 /**
199 * __kcsan_check_write - check regular write access for races
200 *
201 * @ptr: address of access
202 * @size: size of access
203 */
204 #define __kcsan_check_write(ptr, size) \
205 __kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
206
207 /**
208 * __kcsan_check_read_write - check regular read-write access for races
209 *
210 * @ptr: address of access
211 * @size: size of access
212 */
213 #define __kcsan_check_read_write(ptr, size) \
214 __kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
215
216 /**
217 * kcsan_check_read - check regular read access for races
218 *
219 * @ptr: address of access
220 * @size: size of access
221 */
222 #define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
223
224 /**
225 * kcsan_check_write - check regular write access for races
226 *
227 * @ptr: address of access
228 * @size: size of access
229 */
230 #define kcsan_check_write(ptr, size) \
231 kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
232
233 /**
234 * kcsan_check_read_write - check regular read-write access for races
235 *
236 * @ptr: address of access
237 * @size: size of access
238 */
239 #define kcsan_check_read_write(ptr, size) \
240 kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
241
242 /*
243 * Check for atomic accesses: if atomic accesses are not ignored, this simply
244 * aliases to kcsan_check_access(), otherwise becomes a no-op.
245 */
246 #ifdef CONFIG_KCSAN_IGNORE_ATOMICS
247 #define kcsan_check_atomic_read(...) do { } while (0)
248 #define kcsan_check_atomic_write(...) do { } while (0)
249 #define kcsan_check_atomic_read_write(...) do { } while (0)
250 #else
251 #define kcsan_check_atomic_read(ptr, size) \
252 kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC)
253 #define kcsan_check_atomic_write(ptr, size) \
254 kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE)
255 #define kcsan_check_atomic_read_write(ptr, size) \
256 kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND)
257 #endif
258
259 /**
260 * ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var
261 *
262 * Assert that there are no concurrent writes to @var; other readers are
263 * allowed. This assertion can be used to specify properties of concurrent code,
264 * where violation cannot be detected as a normal data race.
265 *
266 * For example, if we only have a single writer, but multiple concurrent
267 * readers, to avoid data races, all these accesses must be marked; even
268 * concurrent marked writes racing with the single writer are bugs.
269 * Unfortunately, due to being marked, they are no longer data races. For cases
270 * like these, we can use the macro as follows:
271 *
272 * .. code-block:: c
273 *
274 * void writer(void) {
275 * spin_lock(&update_foo_lock);
276 * ASSERT_EXCLUSIVE_WRITER(shared_foo);
277 * WRITE_ONCE(shared_foo, ...);
278 * spin_unlock(&update_foo_lock);
279 * }
280 * void reader(void) {
281 * // update_foo_lock does not need to be held!
282 * ... = READ_ONCE(shared_foo);
283 * }
284 *
285 * Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
286 * checking if a clear scope where no concurrent writes are expected exists.
287 *
288 * @var: variable to assert on
289 */
290 #define ASSERT_EXCLUSIVE_WRITER(var) \
291 __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
292
293 /*
294 * Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
295 * expected to be unique for the scope in which instances of kcsan_scoped_access
296 * are declared.
297 */
298 #define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
299 #define __ASSERT_EXCLUSIVE_SCOPED(var, type, id) \
300 struct kcsan_scoped_access __kcsan_scoped_name(id, _) \
301 __kcsan_cleanup_scoped; \
302 struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p) \
303 __maybe_unused = kcsan_begin_scoped_access( \
304 &(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type), \
305 &__kcsan_scoped_name(id, _))
306
307 /**
308 * ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
309 *
310 * Scoped variant of ASSERT_EXCLUSIVE_WRITER().
311 *
312 * Assert that there are no concurrent writes to @var for the duration of the
313 * scope in which it is introduced. This provides a better way to fully cover
314 * the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
315 * increases the likelihood for KCSAN to detect racing accesses.
316 *
317 * For example, it allows finding race-condition bugs that only occur due to
318 * state changes within the scope itself:
319 *
320 * .. code-block:: c
321 *
322 * void writer(void) {
323 * spin_lock(&update_foo_lock);
324 * {
325 * ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
326 * WRITE_ONCE(shared_foo, 42);
327 * ...
328 * // shared_foo should still be 42 here!
329 * }
330 * spin_unlock(&update_foo_lock);
331 * }
332 * void buggy(void) {
333 * if (READ_ONCE(shared_foo) == 42)
334 * WRITE_ONCE(shared_foo, 1); // bug!
335 * }
336 *
337 * @var: variable to assert on
338 */
339 #define ASSERT_EXCLUSIVE_WRITER_SCOPED(var) \
340 __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
341
342 /**
343 * ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
344 *
345 * Assert that there are no concurrent accesses to @var (no readers nor
346 * writers). This assertion can be used to specify properties of concurrent
347 * code, where violation cannot be detected as a normal data race.
348 *
349 * For example, where exclusive access is expected after determining no other
350 * users of an object are left, but the object is not actually freed. We can
351 * check that this property actually holds as follows:
352 *
353 * .. code-block:: c
354 *
355 * if (refcount_dec_and_test(&obj->refcnt)) {
356 * ASSERT_EXCLUSIVE_ACCESS(*obj);
357 * do_some_cleanup(obj);
358 * release_for_reuse(obj);
359 * }
360 *
361 * Note:
362 *
363 * 1. ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
364 * checking if a clear scope where no concurrent accesses are expected exists.
365 *
366 * 2. For cases where the object is freed, `KASAN <kasan.html>`_ is a better
367 * fit to detect use-after-free bugs.
368 *
369 * @var: variable to assert on
370 */
371 #define ASSERT_EXCLUSIVE_ACCESS(var) \
372 __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
373
374 /**
375 * ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
376 *
377 * Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
378 *
379 * Assert that there are no concurrent accesses to @var (no readers nor writers)
380 * for the entire duration of the scope in which it is introduced. This provides
381 * a better way to fully cover the enclosing scope, compared to multiple
382 * ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
383 * racing accesses.
384 *
385 * @var: variable to assert on
386 */
387 #define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var) \
388 __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
389
390 /**
391 * ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
392 *
393 * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
394 *
395 * Assert that there are no concurrent writes to a subset of bits in @var;
396 * concurrent readers are permitted. This assertion captures more detailed
397 * bit-level properties, compared to the other (word granularity) assertions.
398 * Only the bits set in @mask are checked for concurrent modifications, while
399 * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
400 * are ignored.
401 *
402 * Use this for variables, where some bits must not be modified concurrently,
403 * yet other bits are expected to be modified concurrently.
404 *
405 * For example, variables where, after initialization, some bits are read-only,
406 * but other bits may still be modified concurrently. A reader may wish to
407 * assert that this is true as follows:
408 *
409 * .. code-block:: c
410 *
411 * ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
412 * foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
413 *
414 * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
415 * to access the masked bits only, and KCSAN optimistically assumes it is
416 * therefore safe, even in the presence of data races, and marking it with
417 * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
418 * it may still be advisable to do so, since we cannot reason about all compiler
419 * optimizations when it comes to bit manipulations (on the reader and writer
420 * side). If you are sure nothing can go wrong, we can write the above simply
421 * as:
422 *
423 * .. code-block:: c
424 *
425 * ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
426 * foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
427 *
428 * Another example, where this may be used, is when certain bits of @var may
429 * only be modified when holding the appropriate lock, but other bits may still
430 * be modified concurrently. Writers, where other bits may change concurrently,
431 * could use the assertion as follows:
432 *
433 * .. code-block:: c
434 *
435 * spin_lock(&foo_lock);
436 * ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
437 * old_flags = flags;
438 * new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
439 * if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
440 * spin_unlock(&foo_lock);
441 *
442 * @var: variable to assert on
443 * @mask: only check for modifications to bits set in @mask
444 */
445 #define ASSERT_EXCLUSIVE_BITS(var, mask) \
446 do { \
447 kcsan_set_access_mask(mask); \
448 __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\
449 kcsan_set_access_mask(0); \
450 kcsan_atomic_next(1); \
451 } while (0)
452
453 #endif /* _LINUX_KCSAN_CHECKS_H */
454