1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4 
5 
6 #include <stdarg.h>
7 #include <linux/linkage.h>
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/compiler.h>
11 #include <linux/bitops.h>
12 #include <linux/log2.h>
13 #include <linux/typecheck.h>
14 #include <linux/printk.h>
15 #include <linux/build_bug.h>
16 #include <asm/byteorder.h>
17 #include <uapi/linux/kernel.h>
18 
19 #define USHRT_MAX	((u16)(~0U))
20 #define SHRT_MAX	((s16)(USHRT_MAX>>1))
21 #define SHRT_MIN	((s16)(-SHRT_MAX - 1))
22 #define INT_MAX		((int)(~0U>>1))
23 #define INT_MIN		(-INT_MAX - 1)
24 #define UINT_MAX	(~0U)
25 #define LONG_MAX	((long)(~0UL>>1))
26 #define LONG_MIN	(-LONG_MAX - 1)
27 #define ULONG_MAX	(~0UL)
28 #define LLONG_MAX	((long long)(~0ULL>>1))
29 #define LLONG_MIN	(-LLONG_MAX - 1)
30 #define ULLONG_MAX	(~0ULL)
31 #define SIZE_MAX	(~(size_t)0)
32 #define PHYS_ADDR_MAX	(~(phys_addr_t)0)
33 
34 #define U8_MAX		((u8)~0U)
35 #define S8_MAX		((s8)(U8_MAX>>1))
36 #define S8_MIN		((s8)(-S8_MAX - 1))
37 #define U16_MAX		((u16)~0U)
38 #define S16_MAX		((s16)(U16_MAX>>1))
39 #define S16_MIN		((s16)(-S16_MAX - 1))
40 #define U32_MAX		((u32)~0U)
41 #define S32_MAX		((s32)(U32_MAX>>1))
42 #define S32_MIN		((s32)(-S32_MAX - 1))
43 #define U64_MAX		((u64)~0ULL)
44 #define S64_MAX		((s64)(U64_MAX>>1))
45 #define S64_MIN		((s64)(-S64_MAX - 1))
46 
47 #define STACK_MAGIC	0xdeadbeef
48 
49 /**
50  * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
51  * @x: value to repeat
52  *
53  * NOTE: @x is not checked for > 0xff; larger values produce odd results.
54  */
55 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
56 
57 /* @a is a power of 2 value */
58 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
59 #define ALIGN_DOWN(x, a)	__ALIGN_KERNEL((x) - ((a) - 1), (a))
60 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
61 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
62 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
63 
64 /* generic data direction definitions */
65 #define READ			0
66 #define WRITE			1
67 
68 /**
69  * ARRAY_SIZE - get the number of elements in array @arr
70  * @arr: array to be sized
71  */
72 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
73 
74 #define u64_to_user_ptr(x) (		\
75 {					\
76 	typecheck(u64, x);		\
77 	(void __user *)(uintptr_t)x;	\
78 }					\
79 )
80 
81 /*
82  * This looks more complex than it should be. But we need to
83  * get the type for the ~ right in round_down (it needs to be
84  * as wide as the result!), and we want to evaluate the macro
85  * arguments just once each.
86  */
87 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
88 /**
89  * round_up - round up to next specified power of 2
90  * @x: the value to round
91  * @y: multiple to round up to (must be a power of 2)
92  *
93  * Rounds @x up to next multiple of @y (which must be a power of 2).
94  * To perform arbitrary rounding up, use roundup() below.
95  */
96 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
97 /**
98  * round_down - round down to next specified power of 2
99  * @x: the value to round
100  * @y: multiple to round down to (must be a power of 2)
101  *
102  * Rounds @x down to next multiple of @y (which must be a power of 2).
103  * To perform arbitrary rounding down, use rounddown() below.
104  */
105 #define round_down(x, y) ((x) & ~__round_mask(x, y))
106 
107 /**
108  * FIELD_SIZEOF - get the size of a struct's field
109  * @t: the target struct
110  * @f: the target struct's field
111  * Return: the size of @f in the struct definition without having a
112  * declared instance of @t.
113  */
114 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
115 
116 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
117 
118 #define DIV_ROUND_DOWN_ULL(ll, d) \
119 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
120 
121 #define DIV_ROUND_UP_ULL(ll, d)		DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
122 
123 #if BITS_PER_LONG == 32
124 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
125 #else
126 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
127 #endif
128 
129 /**
130  * roundup - round up to the next specified multiple
131  * @x: the value to up
132  * @y: multiple to round up to
133  *
134  * Rounds @x up to next multiple of @y. If @y will always be a power
135  * of 2, consider using the faster round_up().
136  *
137  * The `const' here prevents gcc-3.3 from calling __divdi3
138  */
139 #define roundup(x, y) (					\
140 {							\
141 	const typeof(y) __y = y;			\
142 	(((x) + (__y - 1)) / __y) * __y;		\
143 }							\
144 )
145 /**
146  * rounddown - round down to next specified multiple
147  * @x: the value to round
148  * @y: multiple to round down to
149  *
150  * Rounds @x down to next multiple of @y. If @y will always be a power
151  * of 2, consider using the faster round_down().
152  */
153 #define rounddown(x, y) (				\
154 {							\
155 	typeof(x) __x = (x);				\
156 	__x - (__x % (y));				\
157 }							\
158 )
159 
160 /*
161  * Divide positive or negative dividend by positive or negative divisor
162  * and round to closest integer. Result is undefined for negative
163  * divisors if the dividend variable type is unsigned and for negative
164  * dividends if the divisor variable type is unsigned.
165  */
166 #define DIV_ROUND_CLOSEST(x, divisor)(			\
167 {							\
168 	typeof(x) __x = x;				\
169 	typeof(divisor) __d = divisor;			\
170 	(((typeof(x))-1) > 0 ||				\
171 	 ((typeof(divisor))-1) > 0 ||			\
172 	 (((__x) > 0) == ((__d) > 0))) ?		\
173 		(((__x) + ((__d) / 2)) / (__d)) :	\
174 		(((__x) - ((__d) / 2)) / (__d));	\
175 }							\
176 )
177 /*
178  * Same as above but for u64 dividends. divisor must be a 32-bit
179  * number.
180  */
181 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
182 {							\
183 	typeof(divisor) __d = divisor;			\
184 	unsigned long long _tmp = (x) + (__d) / 2;	\
185 	do_div(_tmp, __d);				\
186 	_tmp;						\
187 }							\
188 )
189 
190 /*
191  * Multiplies an integer by a fraction, while avoiding unnecessary
192  * overflow or loss of precision.
193  */
194 #define mult_frac(x, numer, denom)(			\
195 {							\
196 	typeof(x) quot = (x) / (denom);			\
197 	typeof(x) rem  = (x) % (denom);			\
198 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
199 }							\
200 )
201 
202 
203 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
204 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
205 
206 #ifdef CONFIG_LBDAF
207 # include <asm/div64.h>
208 # define sector_div(a, b) do_div(a, b)
209 #else
210 # define sector_div(n, b)( \
211 { \
212 	int _res; \
213 	_res = (n) % (b); \
214 	(n) /= (b); \
215 	_res; \
216 } \
217 )
218 #endif
219 
220 /**
221  * upper_32_bits - return bits 32-63 of a number
222  * @n: the number we're accessing
223  *
224  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
225  * the "right shift count >= width of type" warning when that quantity is
226  * 32-bits.
227  */
228 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
229 
230 /**
231  * lower_32_bits - return bits 0-31 of a number
232  * @n: the number we're accessing
233  */
234 #define lower_32_bits(n) ((u32)(n))
235 
236 struct completion;
237 struct pt_regs;
238 struct user;
239 
240 #ifdef CONFIG_PREEMPT_VOLUNTARY
241 extern int _cond_resched(void);
242 # define might_resched() _cond_resched()
243 #else
244 # define might_resched() do { } while (0)
245 #endif
246 
247 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
248   void ___might_sleep(const char *file, int line, int preempt_offset);
249   void __might_sleep(const char *file, int line, int preempt_offset);
250 /**
251  * might_sleep - annotation for functions that can sleep
252  *
253  * this macro will print a stack trace if it is executed in an atomic
254  * context (spinlock, irq-handler, ...).
255  *
256  * This is a useful debugging help to be able to catch problems early and not
257  * be bitten later when the calling function happens to sleep when it is not
258  * supposed to.
259  */
260 # define might_sleep() \
261 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
262 # define sched_annotate_sleep()	(current->task_state_change = 0)
263 #else
___might_sleep(const char * file,int line,int preempt_offset)264   static inline void ___might_sleep(const char *file, int line,
265 				   int preempt_offset) { }
__might_sleep(const char * file,int line,int preempt_offset)266   static inline void __might_sleep(const char *file, int line,
267 				   int preempt_offset) { }
268 # define might_sleep() do { might_resched(); } while (0)
269 # define sched_annotate_sleep() do { } while (0)
270 #endif
271 
272 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
273 
274 /**
275  * abs - return absolute value of an argument
276  * @x: the value.  If it is unsigned type, it is converted to signed type first.
277  *     char is treated as if it was signed (regardless of whether it really is)
278  *     but the macro's return type is preserved as char.
279  *
280  * Return: an absolute value of x.
281  */
282 #define abs(x)	__abs_choose_expr(x, long long,				\
283 		__abs_choose_expr(x, long,				\
284 		__abs_choose_expr(x, int,				\
285 		__abs_choose_expr(x, short,				\
286 		__abs_choose_expr(x, char,				\
287 		__builtin_choose_expr(					\
288 			__builtin_types_compatible_p(typeof(x), char),	\
289 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
290 			((void)0)))))))
291 
292 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
293 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
294 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
295 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
296 
297 /**
298  * reciprocal_scale - "scale" a value into range [0, ep_ro)
299  * @val: value
300  * @ep_ro: right open interval endpoint
301  *
302  * Perform a "reciprocal multiplication" in order to "scale" a value into
303  * range [0, @ep_ro), where the upper interval endpoint is right-open.
304  * This is useful, e.g. for accessing a index of an array containing
305  * @ep_ro elements, for example. Think of it as sort of modulus, only that
306  * the result isn't that of modulo. ;) Note that if initial input is a
307  * small value, then result will return 0.
308  *
309  * Return: a result based on @val in interval [0, @ep_ro).
310  */
reciprocal_scale(u32 val,u32 ep_ro)311 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
312 {
313 	return (u32)(((u64) val * ep_ro) >> 32);
314 }
315 
316 #if defined(CONFIG_MMU) && \
317 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
318 #define might_fault() __might_fault(__FILE__, __LINE__)
319 void __might_fault(const char *file, int line);
320 #else
might_fault(void)321 static inline void might_fault(void) { }
322 #endif
323 
324 extern struct atomic_notifier_head panic_notifier_list;
325 extern long (*panic_blink)(int state);
326 __printf(1, 2)
327 void panic(const char *fmt, ...) __noreturn __cold;
328 void nmi_panic(struct pt_regs *regs, const char *msg);
329 extern void oops_enter(void);
330 extern void oops_exit(void);
331 void print_oops_end_marker(void);
332 extern int oops_may_print(void);
333 void do_exit(long error_code) __noreturn;
334 void complete_and_exit(struct completion *, long) __noreturn;
335 
336 #ifdef CONFIG_ARCH_HAS_REFCOUNT
337 void refcount_error_report(struct pt_regs *regs, const char *err);
338 #else
refcount_error_report(struct pt_regs * regs,const char * err)339 static inline void refcount_error_report(struct pt_regs *regs, const char *err)
340 { }
341 #endif
342 
343 /* Internal, do not use. */
344 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
345 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
346 
347 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
348 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
349 
350 /**
351  * kstrtoul - convert a string to an unsigned long
352  * @s: The start of the string. The string must be null-terminated, and may also
353  *  include a single newline before its terminating null. The first character
354  *  may also be a plus sign, but not a minus sign.
355  * @base: The number base to use. The maximum supported base is 16. If base is
356  *  given as 0, then the base of the string is automatically detected with the
357  *  conventional semantics - If it begins with 0x the number will be parsed as a
358  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
359  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
360  * @res: Where to write the result of the conversion on success.
361  *
362  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
363  * Used as a replacement for the obsolete simple_strtoull. Return code must
364  * be checked.
365 */
kstrtoul(const char * s,unsigned int base,unsigned long * res)366 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
367 {
368 	/*
369 	 * We want to shortcut function call, but
370 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
371 	 */
372 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
373 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
374 		return kstrtoull(s, base, (unsigned long long *)res);
375 	else
376 		return _kstrtoul(s, base, res);
377 }
378 
379 /**
380  * kstrtol - convert a string to a long
381  * @s: The start of the string. The string must be null-terminated, and may also
382  *  include a single newline before its terminating null. The first character
383  *  may also be a plus sign or a minus sign.
384  * @base: The number base to use. The maximum supported base is 16. If base is
385  *  given as 0, then the base of the string is automatically detected with the
386  *  conventional semantics - If it begins with 0x the number will be parsed as a
387  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
388  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
389  * @res: Where to write the result of the conversion on success.
390  *
391  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
392  * Used as a replacement for the obsolete simple_strtoull. Return code must
393  * be checked.
394  */
kstrtol(const char * s,unsigned int base,long * res)395 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
396 {
397 	/*
398 	 * We want to shortcut function call, but
399 	 * __builtin_types_compatible_p(long, long long) = 0.
400 	 */
401 	if (sizeof(long) == sizeof(long long) &&
402 	    __alignof__(long) == __alignof__(long long))
403 		return kstrtoll(s, base, (long long *)res);
404 	else
405 		return _kstrtol(s, base, res);
406 }
407 
408 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
409 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
410 
kstrtou64(const char * s,unsigned int base,u64 * res)411 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
412 {
413 	return kstrtoull(s, base, res);
414 }
415 
kstrtos64(const char * s,unsigned int base,s64 * res)416 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
417 {
418 	return kstrtoll(s, base, res);
419 }
420 
kstrtou32(const char * s,unsigned int base,u32 * res)421 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
422 {
423 	return kstrtouint(s, base, res);
424 }
425 
kstrtos32(const char * s,unsigned int base,s32 * res)426 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
427 {
428 	return kstrtoint(s, base, res);
429 }
430 
431 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
432 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
433 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
434 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
435 int __must_check kstrtobool(const char *s, bool *res);
436 
437 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
438 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
439 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
440 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
441 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
442 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
443 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
444 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
445 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
446 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
447 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
448 
kstrtou64_from_user(const char __user * s,size_t count,unsigned int base,u64 * res)449 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
450 {
451 	return kstrtoull_from_user(s, count, base, res);
452 }
453 
kstrtos64_from_user(const char __user * s,size_t count,unsigned int base,s64 * res)454 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
455 {
456 	return kstrtoll_from_user(s, count, base, res);
457 }
458 
kstrtou32_from_user(const char __user * s,size_t count,unsigned int base,u32 * res)459 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
460 {
461 	return kstrtouint_from_user(s, count, base, res);
462 }
463 
kstrtos32_from_user(const char __user * s,size_t count,unsigned int base,s32 * res)464 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
465 {
466 	return kstrtoint_from_user(s, count, base, res);
467 }
468 
469 /* Obsolete, do not use.  Use kstrto<foo> instead */
470 
471 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
472 extern long simple_strtol(const char *,char **,unsigned int);
473 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
474 extern long long simple_strtoll(const char *,char **,unsigned int);
475 
476 extern int num_to_str(char *buf, int size,
477 		      unsigned long long num, unsigned int width);
478 
479 /* lib/printf utilities */
480 
481 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
482 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
483 extern __printf(3, 4)
484 int snprintf(char *buf, size_t size, const char *fmt, ...);
485 extern __printf(3, 0)
486 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
487 extern __printf(3, 4)
488 int scnprintf(char *buf, size_t size, const char *fmt, ...);
489 extern __printf(3, 0)
490 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
491 extern __printf(2, 3) __malloc
492 char *kasprintf(gfp_t gfp, const char *fmt, ...);
493 extern __printf(2, 0) __malloc
494 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
495 extern __printf(2, 0)
496 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
497 
498 extern __scanf(2, 3)
499 int sscanf(const char *, const char *, ...);
500 extern __scanf(2, 0)
501 int vsscanf(const char *, const char *, va_list);
502 
503 extern int get_option(char **str, int *pint);
504 extern char *get_options(const char *str, int nints, int *ints);
505 extern unsigned long long memparse(const char *ptr, char **retptr);
506 extern bool parse_option_str(const char *str, const char *option);
507 extern char *next_arg(char *args, char **param, char **val);
508 
509 extern int core_kernel_text(unsigned long addr);
510 extern int init_kernel_text(unsigned long addr);
511 extern int core_kernel_data(unsigned long addr);
512 extern int __kernel_text_address(unsigned long addr);
513 extern int kernel_text_address(unsigned long addr);
514 extern int func_ptr_is_kernel_text(void *ptr);
515 
516 unsigned long int_sqrt(unsigned long);
517 
518 #if BITS_PER_LONG < 64
519 u32 int_sqrt64(u64 x);
520 #else
int_sqrt64(u64 x)521 static inline u32 int_sqrt64(u64 x)
522 {
523 	return (u32)int_sqrt(x);
524 }
525 #endif
526 
527 extern void bust_spinlocks(int yes);
528 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
529 extern int panic_timeout;
530 extern int panic_on_oops;
531 extern int panic_on_unrecovered_nmi;
532 extern int panic_on_io_nmi;
533 extern int panic_on_warn;
534 extern int sysctl_panic_on_rcu_stall;
535 extern int sysctl_panic_on_stackoverflow;
536 
537 extern bool crash_kexec_post_notifiers;
538 
539 /*
540  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
541  * holds a CPU number which is executing panic() currently. A value of
542  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
543  */
544 extern atomic_t panic_cpu;
545 #define PANIC_CPU_INVALID	-1
546 
547 /*
548  * Only to be used by arch init code. If the user over-wrote the default
549  * CONFIG_PANIC_TIMEOUT, honor it.
550  */
set_arch_panic_timeout(int timeout,int arch_default_timeout)551 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
552 {
553 	if (panic_timeout == arch_default_timeout)
554 		panic_timeout = timeout;
555 }
556 extern const char *print_tainted(void);
557 enum lockdep_ok {
558 	LOCKDEP_STILL_OK,
559 	LOCKDEP_NOW_UNRELIABLE
560 };
561 extern void add_taint(unsigned flag, enum lockdep_ok);
562 extern int test_taint(unsigned flag);
563 extern unsigned long get_taint(void);
564 extern int root_mountflags;
565 
566 extern bool early_boot_irqs_disabled;
567 
568 /*
569  * Values used for system_state. Ordering of the states must not be changed
570  * as code checks for <, <=, >, >= STATE.
571  */
572 extern enum system_states {
573 	SYSTEM_BOOTING,
574 	SYSTEM_SCHEDULING,
575 	SYSTEM_RUNNING,
576 	SYSTEM_HALT,
577 	SYSTEM_POWER_OFF,
578 	SYSTEM_RESTART,
579 	SYSTEM_SUSPEND,
580 } system_state;
581 
582 /* This cannot be an enum because some may be used in assembly source. */
583 #define TAINT_PROPRIETARY_MODULE	0
584 #define TAINT_FORCED_MODULE		1
585 #define TAINT_CPU_OUT_OF_SPEC		2
586 #define TAINT_FORCED_RMMOD		3
587 #define TAINT_MACHINE_CHECK		4
588 #define TAINT_BAD_PAGE			5
589 #define TAINT_USER			6
590 #define TAINT_DIE			7
591 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
592 #define TAINT_WARN			9
593 #define TAINT_CRAP			10
594 #define TAINT_FIRMWARE_WORKAROUND	11
595 #define TAINT_OOT_MODULE		12
596 #define TAINT_UNSIGNED_MODULE		13
597 #define TAINT_SOFTLOCKUP		14
598 #define TAINT_LIVEPATCH			15
599 #define TAINT_AUX			16
600 #define TAINT_RANDSTRUCT		17
601 #define TAINT_FLAGS_COUNT		18
602 
603 struct taint_flag {
604 	char c_true;	/* character printed when tainted */
605 	char c_false;	/* character printed when not tainted */
606 	bool module;	/* also show as a per-module taint flag */
607 };
608 
609 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
610 
611 extern const char hex_asc[];
612 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
613 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
614 
hex_byte_pack(char * buf,u8 byte)615 static inline char *hex_byte_pack(char *buf, u8 byte)
616 {
617 	*buf++ = hex_asc_hi(byte);
618 	*buf++ = hex_asc_lo(byte);
619 	return buf;
620 }
621 
622 extern const char hex_asc_upper[];
623 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
624 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
625 
hex_byte_pack_upper(char * buf,u8 byte)626 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
627 {
628 	*buf++ = hex_asc_upper_hi(byte);
629 	*buf++ = hex_asc_upper_lo(byte);
630 	return buf;
631 }
632 
633 extern int hex_to_bin(char ch);
634 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
635 extern char *bin2hex(char *dst, const void *src, size_t count);
636 
637 bool mac_pton(const char *s, u8 *mac);
638 
639 /*
640  * General tracing related utility functions - trace_printk(),
641  * tracing_on/tracing_off and tracing_start()/tracing_stop
642  *
643  * Use tracing_on/tracing_off when you want to quickly turn on or off
644  * tracing. It simply enables or disables the recording of the trace events.
645  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
646  * file, which gives a means for the kernel and userspace to interact.
647  * Place a tracing_off() in the kernel where you want tracing to end.
648  * From user space, examine the trace, and then echo 1 > tracing_on
649  * to continue tracing.
650  *
651  * tracing_stop/tracing_start has slightly more overhead. It is used
652  * by things like suspend to ram where disabling the recording of the
653  * trace is not enough, but tracing must actually stop because things
654  * like calling smp_processor_id() may crash the system.
655  *
656  * Most likely, you want to use tracing_on/tracing_off.
657  */
658 
659 enum ftrace_dump_mode {
660 	DUMP_NONE,
661 	DUMP_ALL,
662 	DUMP_ORIG,
663 };
664 
665 #ifdef CONFIG_TRACING
666 void tracing_on(void);
667 void tracing_off(void);
668 int tracing_is_on(void);
669 void tracing_snapshot(void);
670 void tracing_snapshot_alloc(void);
671 
672 extern void tracing_start(void);
673 extern void tracing_stop(void);
674 
675 static inline __printf(1, 2)
____trace_printk_check_format(const char * fmt,...)676 void ____trace_printk_check_format(const char *fmt, ...)
677 {
678 }
679 #define __trace_printk_check_format(fmt, args...)			\
680 do {									\
681 	if (0)								\
682 		____trace_printk_check_format(fmt, ##args);		\
683 } while (0)
684 
685 /**
686  * trace_printk - printf formatting in the ftrace buffer
687  * @fmt: the printf format for printing
688  *
689  * Note: __trace_printk is an internal function for trace_printk() and
690  *       the @ip is passed in via the trace_printk() macro.
691  *
692  * This function allows a kernel developer to debug fast path sections
693  * that printk is not appropriate for. By scattering in various
694  * printk like tracing in the code, a developer can quickly see
695  * where problems are occurring.
696  *
697  * This is intended as a debugging tool for the developer only.
698  * Please refrain from leaving trace_printks scattered around in
699  * your code. (Extra memory is used for special buffers that are
700  * allocated when trace_printk() is used.)
701  *
702  * A little optimization trick is done here. If there's only one
703  * argument, there's no need to scan the string for printf formats.
704  * The trace_puts() will suffice. But how can we take advantage of
705  * using trace_puts() when trace_printk() has only one argument?
706  * By stringifying the args and checking the size we can tell
707  * whether or not there are args. __stringify((__VA_ARGS__)) will
708  * turn into "()\0" with a size of 3 when there are no args, anything
709  * else will be bigger. All we need to do is define a string to this,
710  * and then take its size and compare to 3. If it's bigger, use
711  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
712  * let gcc optimize the rest.
713  */
714 
715 #define trace_printk(fmt, ...)				\
716 do {							\
717 	char _______STR[] = __stringify((__VA_ARGS__));	\
718 	if (sizeof(_______STR) > 3)			\
719 		do_trace_printk(fmt, ##__VA_ARGS__);	\
720 	else						\
721 		trace_puts(fmt);			\
722 } while (0)
723 
724 #define do_trace_printk(fmt, args...)					\
725 do {									\
726 	static const char *trace_printk_fmt __used			\
727 		__attribute__((section("__trace_printk_fmt"))) =	\
728 		__builtin_constant_p(fmt) ? fmt : NULL;			\
729 									\
730 	__trace_printk_check_format(fmt, ##args);			\
731 									\
732 	if (__builtin_constant_p(fmt))					\
733 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
734 	else								\
735 		__trace_printk(_THIS_IP_, fmt, ##args);			\
736 } while (0)
737 
738 extern __printf(2, 3)
739 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
740 
741 extern __printf(2, 3)
742 int __trace_printk(unsigned long ip, const char *fmt, ...);
743 
744 /**
745  * trace_puts - write a string into the ftrace buffer
746  * @str: the string to record
747  *
748  * Note: __trace_bputs is an internal function for trace_puts and
749  *       the @ip is passed in via the trace_puts macro.
750  *
751  * This is similar to trace_printk() but is made for those really fast
752  * paths that a developer wants the least amount of "Heisenbug" effects,
753  * where the processing of the print format is still too much.
754  *
755  * This function allows a kernel developer to debug fast path sections
756  * that printk is not appropriate for. By scattering in various
757  * printk like tracing in the code, a developer can quickly see
758  * where problems are occurring.
759  *
760  * This is intended as a debugging tool for the developer only.
761  * Please refrain from leaving trace_puts scattered around in
762  * your code. (Extra memory is used for special buffers that are
763  * allocated when trace_puts() is used.)
764  *
765  * Returns: 0 if nothing was written, positive # if string was.
766  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
767  */
768 
769 #define trace_puts(str) ({						\
770 	static const char *trace_printk_fmt __used			\
771 		__attribute__((section("__trace_printk_fmt"))) =	\
772 		__builtin_constant_p(str) ? str : NULL;			\
773 									\
774 	if (__builtin_constant_p(str))					\
775 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
776 	else								\
777 		__trace_puts(_THIS_IP_, str, strlen(str));		\
778 })
779 extern int __trace_bputs(unsigned long ip, const char *str);
780 extern int __trace_puts(unsigned long ip, const char *str, int size);
781 
782 extern void trace_dump_stack(int skip);
783 
784 /*
785  * The double __builtin_constant_p is because gcc will give us an error
786  * if we try to allocate the static variable to fmt if it is not a
787  * constant. Even with the outer if statement.
788  */
789 #define ftrace_vprintk(fmt, vargs)					\
790 do {									\
791 	if (__builtin_constant_p(fmt)) {				\
792 		static const char *trace_printk_fmt __used		\
793 		  __attribute__((section("__trace_printk_fmt"))) =	\
794 			__builtin_constant_p(fmt) ? fmt : NULL;		\
795 									\
796 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
797 	} else								\
798 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
799 } while (0)
800 
801 extern __printf(2, 0) int
802 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
803 
804 extern __printf(2, 0) int
805 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
806 
807 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
808 #else
tracing_start(void)809 static inline void tracing_start(void) { }
tracing_stop(void)810 static inline void tracing_stop(void) { }
trace_dump_stack(int skip)811 static inline void trace_dump_stack(int skip) { }
812 
tracing_on(void)813 static inline void tracing_on(void) { }
tracing_off(void)814 static inline void tracing_off(void) { }
tracing_is_on(void)815 static inline int tracing_is_on(void) { return 0; }
tracing_snapshot(void)816 static inline void tracing_snapshot(void) { }
tracing_snapshot_alloc(void)817 static inline void tracing_snapshot_alloc(void) { }
818 
819 static inline __printf(1, 2)
trace_printk(const char * fmt,...)820 int trace_printk(const char *fmt, ...)
821 {
822 	return 0;
823 }
824 static __printf(1, 0) inline int
ftrace_vprintk(const char * fmt,va_list ap)825 ftrace_vprintk(const char *fmt, va_list ap)
826 {
827 	return 0;
828 }
ftrace_dump(enum ftrace_dump_mode oops_dump_mode)829 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
830 #endif /* CONFIG_TRACING */
831 
832 /*
833  * min()/max()/clamp() macros must accomplish three things:
834  *
835  * - avoid multiple evaluations of the arguments (so side-effects like
836  *   "x++" happen only once) when non-constant.
837  * - perform strict type-checking (to generate warnings instead of
838  *   nasty runtime surprises). See the "unnecessary" pointer comparison
839  *   in __typecheck().
840  * - retain result as a constant expressions when called with only
841  *   constant expressions (to avoid tripping VLA warnings in stack
842  *   allocation usage).
843  */
844 #define __typecheck(x, y) \
845 		(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
846 
847 /*
848  * This returns a constant expression while determining if an argument is
849  * a constant expression, most importantly without evaluating the argument.
850  * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
851  */
852 #define __is_constexpr(x) \
853 	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
854 
855 #define __no_side_effects(x, y) \
856 		(__is_constexpr(x) && __is_constexpr(y))
857 
858 #define __safe_cmp(x, y) \
859 		(__typecheck(x, y) && __no_side_effects(x, y))
860 
861 #define __cmp(x, y, op)	((x) op (y) ? (x) : (y))
862 
863 #define __cmp_once(x, y, unique_x, unique_y, op) ({	\
864 		typeof(x) unique_x = (x);		\
865 		typeof(y) unique_y = (y);		\
866 		__cmp(unique_x, unique_y, op); })
867 
868 #define __careful_cmp(x, y, op) \
869 	__builtin_choose_expr(__safe_cmp(x, y), \
870 		__cmp(x, y, op), \
871 		__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
872 
873 /**
874  * min - return minimum of two values of the same or compatible types
875  * @x: first value
876  * @y: second value
877  */
878 #define min(x, y)	__careful_cmp(x, y, <)
879 
880 /**
881  * max - return maximum of two values of the same or compatible types
882  * @x: first value
883  * @y: second value
884  */
885 #define max(x, y)	__careful_cmp(x, y, >)
886 
887 /**
888  * min3 - return minimum of three values
889  * @x: first value
890  * @y: second value
891  * @z: third value
892  */
893 #define min3(x, y, z) min((typeof(x))min(x, y), z)
894 
895 /**
896  * max3 - return maximum of three values
897  * @x: first value
898  * @y: second value
899  * @z: third value
900  */
901 #define max3(x, y, z) max((typeof(x))max(x, y), z)
902 
903 /**
904  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
905  * @x: value1
906  * @y: value2
907  */
908 #define min_not_zero(x, y) ({			\
909 	typeof(x) __x = (x);			\
910 	typeof(y) __y = (y);			\
911 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
912 
913 /**
914  * clamp - return a value clamped to a given range with strict typechecking
915  * @val: current value
916  * @lo: lowest allowable value
917  * @hi: highest allowable value
918  *
919  * This macro does strict typechecking of @lo/@hi to make sure they are of the
920  * same type as @val.  See the unnecessary pointer comparisons.
921  */
922 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
923 
924 /*
925  * ..and if you can't take the strict
926  * types, you can specify one yourself.
927  *
928  * Or not use min/max/clamp at all, of course.
929  */
930 
931 /**
932  * min_t - return minimum of two values, using the specified type
933  * @type: data type to use
934  * @x: first value
935  * @y: second value
936  */
937 #define min_t(type, x, y)	__careful_cmp((type)(x), (type)(y), <)
938 
939 /**
940  * max_t - return maximum of two values, using the specified type
941  * @type: data type to use
942  * @x: first value
943  * @y: second value
944  */
945 #define max_t(type, x, y)	__careful_cmp((type)(x), (type)(y), >)
946 
947 /**
948  * clamp_t - return a value clamped to a given range using a given type
949  * @type: the type of variable to use
950  * @val: current value
951  * @lo: minimum allowable value
952  * @hi: maximum allowable value
953  *
954  * This macro does no typechecking and uses temporary variables of type
955  * @type to make all the comparisons.
956  */
957 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
958 
959 /**
960  * clamp_val - return a value clamped to a given range using val's type
961  * @val: current value
962  * @lo: minimum allowable value
963  * @hi: maximum allowable value
964  *
965  * This macro does no typechecking and uses temporary variables of whatever
966  * type the input argument @val is.  This is useful when @val is an unsigned
967  * type and @lo and @hi are literals that will otherwise be assigned a signed
968  * integer type.
969  */
970 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
971 
972 
973 /**
974  * swap - swap values of @a and @b
975  * @a: first value
976  * @b: second value
977  */
978 #define swap(a, b) \
979 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
980 
981 /* This counts to 12. Any more, it will return 13th argument. */
982 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
983 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
984 
985 #define __CONCAT(a, b) a ## b
986 #define CONCATENATE(a, b) __CONCAT(a, b)
987 
988 /**
989  * container_of - cast a member of a structure out to the containing structure
990  * @ptr:	the pointer to the member.
991  * @type:	the type of the container struct this is embedded in.
992  * @member:	the name of the member within the struct.
993  *
994  */
995 #define container_of(ptr, type, member) ({				\
996 	void *__mptr = (void *)(ptr);					\
997 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
998 			 !__same_type(*(ptr), void),			\
999 			 "pointer type mismatch in container_of()");	\
1000 	((type *)(__mptr - offsetof(type, member))); })
1001 
1002 /**
1003  * container_of_safe - cast a member of a structure out to the containing structure
1004  * @ptr:	the pointer to the member.
1005  * @type:	the type of the container struct this is embedded in.
1006  * @member:	the name of the member within the struct.
1007  *
1008  * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
1009  */
1010 #define container_of_safe(ptr, type, member) ({				\
1011 	void *__mptr = (void *)(ptr);					\
1012 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
1013 			 !__same_type(*(ptr), void),			\
1014 			 "pointer type mismatch in container_of()");	\
1015 	IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :			\
1016 		((type *)(__mptr - offsetof(type, member))); })
1017 
1018 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1019 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
1020 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1021 #endif
1022 
1023 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1024 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
1025 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
1026 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
1027 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
1028 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
1029 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
1030 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
1031 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
1032 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
1033 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
1034 	 (perms))
1035 #endif
1036