1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #ifndef _ICE_TXRX_H_
5 #define _ICE_TXRX_H_
6
7 #include "ice_type.h"
8
9 #define ICE_DFLT_IRQ_WORK 256
10 #define ICE_RXBUF_3072 3072
11 #define ICE_RXBUF_2048 2048
12 #define ICE_RXBUF_1664 1664
13 #define ICE_RXBUF_1536 1536
14 #define ICE_MAX_CHAINED_RX_BUFS 5
15 #define ICE_MAX_BUF_TXD 8
16 #define ICE_MIN_TX_LEN 17
17 #define ICE_MAX_FRAME_LEGACY_RX 8320
18
19 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
20 * In order to align with the read requests we will align the value to
21 * the nearest 4K which represents our maximum read request size.
22 */
23 #define ICE_MAX_READ_REQ_SIZE 4096
24 #define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1)
25 #define ICE_MAX_DATA_PER_TXD_ALIGNED \
26 (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD)
27
28 #define ICE_MAX_TXQ_PER_TXQG 128
29
30 /* Attempt to maximize the headroom available for incoming frames. We use a 2K
31 * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame.
32 * This leaves us with 512 bytes of room. From that we need to deduct the
33 * space needed for the shared info and the padding needed to IP align the
34 * frame.
35 *
36 * Note: For cache line sizes 256 or larger this value is going to end
37 * up negative. In these cases we should fall back to the legacy
38 * receive path.
39 */
40 #if (PAGE_SIZE < 8192)
41 #define ICE_2K_TOO_SMALL_WITH_PADDING \
42 ((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \
43 SKB_WITH_OVERHEAD(ICE_RXBUF_2048))
44
45 /**
46 * ice_compute_pad - compute the padding
47 * @rx_buf_len: buffer length
48 *
49 * Figure out the size of half page based on given buffer length and
50 * then subtract the skb_shared_info followed by subtraction of the
51 * actual buffer length; this in turn results in the actual space that
52 * is left for padding usage
53 */
ice_compute_pad(int rx_buf_len)54 static inline int ice_compute_pad(int rx_buf_len)
55 {
56 int half_page_size;
57
58 half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
59 return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len;
60 }
61
62 /**
63 * ice_skb_pad - determine the padding that we can supply
64 *
65 * Figure out the right Rx buffer size and based on that calculate the
66 * padding
67 */
ice_skb_pad(void)68 static inline int ice_skb_pad(void)
69 {
70 int rx_buf_len;
71
72 /* If a 2K buffer cannot handle a standard Ethernet frame then
73 * optimize padding for a 3K buffer instead of a 1.5K buffer.
74 *
75 * For a 3K buffer we need to add enough padding to allow for
76 * tailroom due to NET_IP_ALIGN possibly shifting us out of
77 * cache-line alignment.
78 */
79 if (ICE_2K_TOO_SMALL_WITH_PADDING)
80 rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
81 else
82 rx_buf_len = ICE_RXBUF_1536;
83
84 /* if needed make room for NET_IP_ALIGN */
85 rx_buf_len -= NET_IP_ALIGN;
86
87 return ice_compute_pad(rx_buf_len);
88 }
89
90 #define ICE_SKB_PAD ice_skb_pad()
91 #else
92 #define ICE_2K_TOO_SMALL_WITH_PADDING false
93 #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
94 #endif
95
96 /* We are assuming that the cache line is always 64 Bytes here for ice.
97 * In order to make sure that is a correct assumption there is a check in probe
98 * to print a warning if the read from GLPCI_CNF2 tells us that the cache line
99 * size is 128 bytes. We do it this way because we do not want to read the
100 * GLPCI_CNF2 register or a variable containing the value on every pass through
101 * the Tx path.
102 */
103 #define ICE_CACHE_LINE_BYTES 64
104 #define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \
105 sizeof(struct ice_tx_desc))
106 #define ICE_DESCS_FOR_CTX_DESC 1
107 #define ICE_DESCS_FOR_SKB_DATA_PTR 1
108 /* Tx descriptors needed, worst case */
109 #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \
110 ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR)
111 #define ICE_DESC_UNUSED(R) \
112 (u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
113 (R)->next_to_clean - (R)->next_to_use - 1)
114
115 #define ICE_RX_DESC_UNUSED(R) \
116 ((((R)->first_desc > (R)->next_to_use) ? 0 : (R)->count) + \
117 (R)->first_desc - (R)->next_to_use - 1)
118
119 #define ICE_RING_QUARTER(R) ((R)->count >> 2)
120
121 #define ICE_TX_FLAGS_TSO BIT(0)
122 #define ICE_TX_FLAGS_HW_VLAN BIT(1)
123 #define ICE_TX_FLAGS_SW_VLAN BIT(2)
124 /* Free, was ICE_TX_FLAGS_DUMMY_PKT */
125 #define ICE_TX_FLAGS_TSYN BIT(4)
126 #define ICE_TX_FLAGS_IPV4 BIT(5)
127 #define ICE_TX_FLAGS_IPV6 BIT(6)
128 #define ICE_TX_FLAGS_TUNNEL BIT(7)
129 #define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(8)
130
131 #define ICE_XDP_PASS 0
132 #define ICE_XDP_CONSUMED BIT(0)
133 #define ICE_XDP_TX BIT(1)
134 #define ICE_XDP_REDIR BIT(2)
135 #define ICE_XDP_EXIT BIT(3)
136 #define ICE_SKB_CONSUMED ICE_XDP_CONSUMED
137
138 #define ICE_RX_DMA_ATTR \
139 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
140
141 #define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
142
143 #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS)
144
145 /**
146 * enum ice_tx_buf_type - type of &ice_tx_buf to act on Tx completion
147 * @ICE_TX_BUF_EMPTY: unused OR XSk frame, no action required
148 * @ICE_TX_BUF_DUMMY: dummy Flow Director packet, unmap and kfree()
149 * @ICE_TX_BUF_FRAG: mapped skb OR &xdp_buff frag, only unmap DMA
150 * @ICE_TX_BUF_SKB: &sk_buff, unmap and consume_skb(), update stats
151 * @ICE_TX_BUF_XDP_TX: &xdp_buff, unmap and page_frag_free(), stats
152 * @ICE_TX_BUF_XDP_XMIT: &xdp_frame, unmap and xdp_return_frame(), stats
153 * @ICE_TX_BUF_XSK_TX: &xdp_buff on XSk queue, xsk_buff_free(), stats
154 */
155 enum ice_tx_buf_type {
156 ICE_TX_BUF_EMPTY = 0U,
157 ICE_TX_BUF_DUMMY,
158 ICE_TX_BUF_FRAG,
159 ICE_TX_BUF_SKB,
160 ICE_TX_BUF_XDP_TX,
161 ICE_TX_BUF_XDP_XMIT,
162 ICE_TX_BUF_XSK_TX,
163 };
164
165 struct ice_tx_buf {
166 union {
167 struct ice_tx_desc *next_to_watch;
168 u32 rs_idx;
169 };
170 union {
171 void *raw_buf; /* used for XDP_TX and FDir rules */
172 struct sk_buff *skb; /* used for .ndo_start_xmit() */
173 struct xdp_frame *xdpf; /* used for .ndo_xdp_xmit() */
174 struct xdp_buff *xdp; /* used for XDP_TX ZC */
175 };
176 unsigned int bytecount;
177 union {
178 unsigned int gso_segs;
179 unsigned int nr_frags; /* used for mbuf XDP */
180 };
181 u32 tx_flags:12;
182 u32 type:4; /* &ice_tx_buf_type */
183 u32 vid:16;
184 DEFINE_DMA_UNMAP_LEN(len);
185 DEFINE_DMA_UNMAP_ADDR(dma);
186 };
187
188 struct ice_tx_offload_params {
189 u64 cd_qw1;
190 struct ice_tx_ring *tx_ring;
191 u32 td_cmd;
192 u32 td_offset;
193 u32 td_l2tag1;
194 u32 cd_tunnel_params;
195 u16 cd_l2tag2;
196 u8 header_len;
197 };
198
199 struct ice_rx_buf {
200 dma_addr_t dma;
201 struct page *page;
202 unsigned int page_offset;
203 unsigned int pgcnt;
204 unsigned int act;
205 unsigned int pagecnt_bias;
206 };
207
208 struct ice_q_stats {
209 u64 pkts;
210 u64 bytes;
211 };
212
213 struct ice_txq_stats {
214 u64 restart_q;
215 u64 tx_busy;
216 u64 tx_linearize;
217 int prev_pkt; /* negative if no pending Tx descriptors */
218 };
219
220 struct ice_rxq_stats {
221 u64 non_eop_descs;
222 u64 alloc_page_failed;
223 u64 alloc_buf_failed;
224 };
225
226 struct ice_ring_stats {
227 struct rcu_head rcu; /* to avoid race on free */
228 struct ice_q_stats stats;
229 struct u64_stats_sync syncp;
230 union {
231 struct ice_txq_stats tx_stats;
232 struct ice_rxq_stats rx_stats;
233 };
234 };
235
236 enum ice_ring_state_t {
237 ICE_TX_XPS_INIT_DONE,
238 ICE_TX_NBITS,
239 };
240
241 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
242 * registers and QINT registers or more generally anywhere in the manual
243 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
244 * register but instead is a special value meaning "don't update" ITR0/1/2.
245 */
246 enum ice_dyn_idx_t {
247 ICE_IDX_ITR0 = 0,
248 ICE_IDX_ITR1 = 1,
249 ICE_IDX_ITR2 = 2,
250 ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
251 };
252
253 /* Header split modes defined by DTYPE field of Rx RLAN context */
254 enum ice_rx_dtype {
255 ICE_RX_DTYPE_NO_SPLIT = 0,
256 ICE_RX_DTYPE_HEADER_SPLIT = 1,
257 ICE_RX_DTYPE_SPLIT_ALWAYS = 2,
258 };
259
260 /* indices into GLINT_ITR registers */
261 #define ICE_RX_ITR ICE_IDX_ITR0
262 #define ICE_TX_ITR ICE_IDX_ITR1
263 #define ICE_ITR_8K 124
264 #define ICE_ITR_20K 50
265 #define ICE_ITR_MAX 8160 /* 0x1FE0 */
266 #define ICE_DFLT_TX_ITR ICE_ITR_20K
267 #define ICE_DFLT_RX_ITR ICE_ITR_20K
268 enum ice_dynamic_itr {
269 ITR_STATIC = 0,
270 ITR_DYNAMIC = 1
271 };
272
273 #define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC)
274 #define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */
275 #define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S)
276 #define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */
277 #define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK)
278
279 #define ICE_DFLT_INTRL 0
280 #define ICE_MAX_INTRL 236
281
282 #define ICE_IN_WB_ON_ITR_MODE 255
283 /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows
284 * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also,
285 * set the write-back latency to the usecs passed in.
286 */
287 #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \
288 ((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \
289 GLINT_DYN_CTL_INTERVAL_M) | \
290 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \
291 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \
292 GLINT_DYN_CTL_WB_ON_ITR_M)
293
294 /* Legacy or Advanced Mode Queue */
295 #define ICE_TX_ADVANCED 0
296 #define ICE_TX_LEGACY 1
297
298 /* descriptor ring, associated with a VSI */
299 struct ice_rx_ring {
300 /* CL1 - 1st cacheline starts here */
301 struct ice_rx_ring *next; /* pointer to next ring in q_vector */
302 void *desc; /* Descriptor ring memory */
303 struct device *dev; /* Used for DMA mapping */
304 struct net_device *netdev; /* netdev ring maps to */
305 struct ice_vsi *vsi; /* Backreference to associated VSI */
306 struct ice_q_vector *q_vector; /* Backreference to associated vector */
307 u8 __iomem *tail;
308 u16 q_index; /* Queue number of ring */
309
310 u16 count; /* Number of descriptors */
311 u16 reg_idx; /* HW register index of the ring */
312 u16 next_to_alloc;
313 /* CL2 - 2nd cacheline starts here */
314 union {
315 struct ice_rx_buf *rx_buf;
316 struct xdp_buff **xdp_buf;
317 };
318 struct xdp_buff xdp;
319 /* CL3 - 3rd cacheline starts here */
320 struct bpf_prog *xdp_prog;
321 u16 rx_offset;
322
323 /* used in interrupt processing */
324 u16 next_to_use;
325 u16 next_to_clean;
326 u16 first_desc;
327
328 /* stats structs */
329 struct ice_ring_stats *ring_stats;
330
331 struct rcu_head rcu; /* to avoid race on free */
332 /* CL4 - 4th cacheline starts here */
333 struct ice_channel *ch;
334 struct ice_tx_ring *xdp_ring;
335 struct xsk_buff_pool *xsk_pool;
336 dma_addr_t dma; /* physical address of ring */
337 u64 cached_phctime;
338 u16 rx_buf_len;
339 u8 dcb_tc; /* Traffic class of ring */
340 u8 ptp_rx;
341 #define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1)
342 #define ICE_RX_FLAGS_CRC_STRIP_DIS BIT(2)
343 u8 flags;
344 /* CL5 - 5th cacheline starts here */
345 struct xdp_rxq_info xdp_rxq;
346 } ____cacheline_internodealigned_in_smp;
347
348 struct ice_tx_ring {
349 /* CL1 - 1st cacheline starts here */
350 struct ice_tx_ring *next; /* pointer to next ring in q_vector */
351 void *desc; /* Descriptor ring memory */
352 struct device *dev; /* Used for DMA mapping */
353 u8 __iomem *tail;
354 struct ice_tx_buf *tx_buf;
355 struct ice_q_vector *q_vector; /* Backreference to associated vector */
356 struct net_device *netdev; /* netdev ring maps to */
357 struct ice_vsi *vsi; /* Backreference to associated VSI */
358 /* CL2 - 2nd cacheline starts here */
359 dma_addr_t dma; /* physical address of ring */
360 struct xsk_buff_pool *xsk_pool;
361 u16 next_to_use;
362 u16 next_to_clean;
363 u16 q_handle; /* Queue handle per TC */
364 u16 reg_idx; /* HW register index of the ring */
365 u16 count; /* Number of descriptors */
366 u16 q_index; /* Queue number of ring */
367 u16 xdp_tx_active;
368 /* stats structs */
369 struct ice_ring_stats *ring_stats;
370 /* CL3 - 3rd cacheline starts here */
371 struct rcu_head rcu; /* to avoid race on free */
372 DECLARE_BITMAP(xps_state, ICE_TX_NBITS); /* XPS Config State */
373 struct ice_channel *ch;
374 struct ice_ptp_tx *tx_tstamps;
375 spinlock_t tx_lock;
376 u32 txq_teid; /* Added Tx queue TEID */
377 /* CL4 - 4th cacheline starts here */
378 #define ICE_TX_FLAGS_RING_XDP BIT(0)
379 #define ICE_TX_FLAGS_RING_VLAN_L2TAG1 BIT(1)
380 #define ICE_TX_FLAGS_RING_VLAN_L2TAG2 BIT(2)
381 u8 flags;
382 u8 dcb_tc; /* Traffic class of ring */
383 u8 ptp_tx;
384 } ____cacheline_internodealigned_in_smp;
385
ice_ring_uses_build_skb(struct ice_rx_ring * ring)386 static inline bool ice_ring_uses_build_skb(struct ice_rx_ring *ring)
387 {
388 return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB);
389 }
390
ice_set_ring_build_skb_ena(struct ice_rx_ring * ring)391 static inline void ice_set_ring_build_skb_ena(struct ice_rx_ring *ring)
392 {
393 ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB;
394 }
395
ice_clear_ring_build_skb_ena(struct ice_rx_ring * ring)396 static inline void ice_clear_ring_build_skb_ena(struct ice_rx_ring *ring)
397 {
398 ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB;
399 }
400
ice_ring_ch_enabled(struct ice_tx_ring * ring)401 static inline bool ice_ring_ch_enabled(struct ice_tx_ring *ring)
402 {
403 return !!ring->ch;
404 }
405
ice_ring_is_xdp(struct ice_tx_ring * ring)406 static inline bool ice_ring_is_xdp(struct ice_tx_ring *ring)
407 {
408 return !!(ring->flags & ICE_TX_FLAGS_RING_XDP);
409 }
410
411 enum ice_container_type {
412 ICE_RX_CONTAINER,
413 ICE_TX_CONTAINER,
414 };
415
416 struct ice_ring_container {
417 /* head of linked-list of rings */
418 union {
419 struct ice_rx_ring *rx_ring;
420 struct ice_tx_ring *tx_ring;
421 };
422 struct dim dim; /* data for net_dim algorithm */
423 u16 itr_idx; /* index in the interrupt vector */
424 /* this matches the maximum number of ITR bits, but in usec
425 * values, so it is shifted left one bit (bit zero is ignored)
426 */
427 union {
428 struct {
429 u16 itr_setting:13;
430 u16 itr_reserved:2;
431 u16 itr_mode:1;
432 };
433 u16 itr_settings;
434 };
435 enum ice_container_type type;
436 };
437
438 struct ice_coalesce_stored {
439 u16 itr_tx;
440 u16 itr_rx;
441 u8 intrl;
442 u8 tx_valid;
443 u8 rx_valid;
444 };
445
446 /* iterator for handling rings in ring container */
447 #define ice_for_each_rx_ring(pos, head) \
448 for (pos = (head).rx_ring; pos; pos = pos->next)
449
450 #define ice_for_each_tx_ring(pos, head) \
451 for (pos = (head).tx_ring; pos; pos = pos->next)
452
ice_rx_pg_order(struct ice_rx_ring * ring)453 static inline unsigned int ice_rx_pg_order(struct ice_rx_ring *ring)
454 {
455 #if (PAGE_SIZE < 8192)
456 if (ring->rx_buf_len > (PAGE_SIZE / 2))
457 return 1;
458 #endif
459 return 0;
460 }
461
462 #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring))
463
464 union ice_32b_rx_flex_desc;
465
466 bool ice_alloc_rx_bufs(struct ice_rx_ring *rxr, unsigned int cleaned_count);
467 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev);
468 u16
469 ice_select_queue(struct net_device *dev, struct sk_buff *skb,
470 struct net_device *sb_dev);
471 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring);
472 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring);
473 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring);
474 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring);
475 void ice_free_tx_ring(struct ice_tx_ring *tx_ring);
476 void ice_free_rx_ring(struct ice_rx_ring *rx_ring);
477 int ice_napi_poll(struct napi_struct *napi, int budget);
478 int
479 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
480 u8 *raw_packet);
481 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget);
482 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring);
483 #endif /* _ICE_TXRX_H_ */
484