1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 */
11
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
47
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 struct ib_port;
54 struct hw_stats_device_data;
55
56 extern struct workqueue_struct *ib_wq;
57 extern struct workqueue_struct *ib_comp_wq;
58 extern struct workqueue_struct *ib_comp_unbound_wq;
59
60 struct ib_ucq_object;
61
62 __printf(3, 4) __cold
63 void ibdev_printk(const char *level, const struct ib_device *ibdev,
64 const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77 __printf(2, 3) __cold
78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79
80 #if defined(CONFIG_DYNAMIC_DEBUG) || \
81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82 #define ibdev_dbg(__dev, format, args...) \
83 dynamic_ibdev_dbg(__dev, format, ##args)
84 #else
85 __printf(2, 3) __cold
86 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88 #endif
89
90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
91 do { \
92 static DEFINE_RATELIMIT_STATE(_rs, \
93 DEFAULT_RATELIMIT_INTERVAL, \
94 DEFAULT_RATELIMIT_BURST); \
95 if (__ratelimit(&_rs)) \
96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
97 } while (0)
98
99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113
114 #if defined(CONFIG_DYNAMIC_DEBUG) || \
115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
118 do { \
119 static DEFINE_RATELIMIT_STATE(_rs, \
120 DEFAULT_RATELIMIT_INTERVAL, \
121 DEFAULT_RATELIMIT_BURST); \
122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
125 ##__VA_ARGS__); \
126 } while (0)
127 #else
128 __printf(2, 3) __cold
129 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131 #endif
132
133 union ib_gid {
134 u8 raw[16];
135 struct {
136 __be64 subnet_prefix;
137 __be64 interface_id;
138 } global;
139 };
140
141 extern union ib_gid zgid;
142
143 enum ib_gid_type {
144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147 IB_GID_TYPE_SIZE
148 };
149
150 #define ROCE_V2_UDP_DPORT 4791
151 struct ib_gid_attr {
152 struct net_device __rcu *ndev;
153 struct ib_device *device;
154 union ib_gid gid;
155 enum ib_gid_type gid_type;
156 u16 index;
157 u32 port_num;
158 };
159
160 enum {
161 /* set the local administered indication */
162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
163 };
164
165 enum rdma_transport_type {
166 RDMA_TRANSPORT_IB,
167 RDMA_TRANSPORT_IWARP,
168 RDMA_TRANSPORT_USNIC,
169 RDMA_TRANSPORT_USNIC_UDP,
170 RDMA_TRANSPORT_UNSPECIFIED,
171 };
172
173 enum rdma_protocol_type {
174 RDMA_PROTOCOL_IB,
175 RDMA_PROTOCOL_IBOE,
176 RDMA_PROTOCOL_IWARP,
177 RDMA_PROTOCOL_USNIC_UDP
178 };
179
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(unsigned int node_type);
182
183 enum rdma_network_type {
184 RDMA_NETWORK_IB,
185 RDMA_NETWORK_ROCE_V1,
186 RDMA_NETWORK_IPV4,
187 RDMA_NETWORK_IPV6
188 };
189
ib_network_to_gid_type(enum rdma_network_type network_type)190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191 {
192 if (network_type == RDMA_NETWORK_IPV4 ||
193 network_type == RDMA_NETWORK_IPV6)
194 return IB_GID_TYPE_ROCE_UDP_ENCAP;
195 else if (network_type == RDMA_NETWORK_ROCE_V1)
196 return IB_GID_TYPE_ROCE;
197 else
198 return IB_GID_TYPE_IB;
199 }
200
201 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203 {
204 if (attr->gid_type == IB_GID_TYPE_IB)
205 return RDMA_NETWORK_IB;
206
207 if (attr->gid_type == IB_GID_TYPE_ROCE)
208 return RDMA_NETWORK_ROCE_V1;
209
210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211 return RDMA_NETWORK_IPV4;
212 else
213 return RDMA_NETWORK_IPV6;
214 }
215
216 enum rdma_link_layer {
217 IB_LINK_LAYER_UNSPECIFIED,
218 IB_LINK_LAYER_INFINIBAND,
219 IB_LINK_LAYER_ETHERNET,
220 };
221
222 enum ib_device_cap_flags {
223 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
224 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
225 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
226 IB_DEVICE_RAW_MULTI = (1 << 3),
227 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
228 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
229 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
230 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
231 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
232 /* Not in use, former INIT_TYPE = (1 << 9),*/
233 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
234 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
235 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
236 IB_DEVICE_SRQ_RESIZE = (1 << 13),
237 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
238
239 /*
240 * This device supports a per-device lkey or stag that can be
241 * used without performing a memory registration for the local
242 * memory. Note that ULPs should never check this flag, but
243 * instead of use the local_dma_lkey flag in the ib_pd structure,
244 * which will always contain a usable lkey.
245 */
246 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
247 /* Reserved, old SEND_W_INV = (1 << 16),*/
248 IB_DEVICE_MEM_WINDOW = (1 << 17),
249 /*
250 * Devices should set IB_DEVICE_UD_IP_SUM if they support
251 * insertion of UDP and TCP checksum on outgoing UD IPoIB
252 * messages and can verify the validity of checksum for
253 * incoming messages. Setting this flag implies that the
254 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
255 */
256 IB_DEVICE_UD_IP_CSUM = (1 << 18),
257 IB_DEVICE_UD_TSO = (1 << 19),
258 IB_DEVICE_XRC = (1 << 20),
259
260 /*
261 * This device supports the IB "base memory management extension",
262 * which includes support for fast registrations (IB_WR_REG_MR,
263 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
264 * also be set by any iWarp device which must support FRs to comply
265 * to the iWarp verbs spec. iWarp devices also support the
266 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
267 * stag.
268 */
269 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
270 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
271 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
272 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
273 IB_DEVICE_RC_IP_CSUM = (1 << 25),
274 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
275 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
276 /*
277 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
278 * support execution of WQEs that involve synchronization
279 * of I/O operations with single completion queue managed
280 * by hardware.
281 */
282 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
283 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
284 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30),
285 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
286 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
287 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
288 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
289 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
290 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35),
291 /* The device supports padding incoming writes to cacheline. */
292 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
293 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
294 };
295
296 enum ib_atomic_cap {
297 IB_ATOMIC_NONE,
298 IB_ATOMIC_HCA,
299 IB_ATOMIC_GLOB
300 };
301
302 enum ib_odp_general_cap_bits {
303 IB_ODP_SUPPORT = 1 << 0,
304 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
305 };
306
307 enum ib_odp_transport_cap_bits {
308 IB_ODP_SUPPORT_SEND = 1 << 0,
309 IB_ODP_SUPPORT_RECV = 1 << 1,
310 IB_ODP_SUPPORT_WRITE = 1 << 2,
311 IB_ODP_SUPPORT_READ = 1 << 3,
312 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
313 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
314 };
315
316 struct ib_odp_caps {
317 uint64_t general_caps;
318 struct {
319 uint32_t rc_odp_caps;
320 uint32_t uc_odp_caps;
321 uint32_t ud_odp_caps;
322 uint32_t xrc_odp_caps;
323 } per_transport_caps;
324 };
325
326 struct ib_rss_caps {
327 /* Corresponding bit will be set if qp type from
328 * 'enum ib_qp_type' is supported, e.g.
329 * supported_qpts |= 1 << IB_QPT_UD
330 */
331 u32 supported_qpts;
332 u32 max_rwq_indirection_tables;
333 u32 max_rwq_indirection_table_size;
334 };
335
336 enum ib_tm_cap_flags {
337 /* Support tag matching with rendezvous offload for RC transport */
338 IB_TM_CAP_RNDV_RC = 1 << 0,
339 };
340
341 struct ib_tm_caps {
342 /* Max size of RNDV header */
343 u32 max_rndv_hdr_size;
344 /* Max number of entries in tag matching list */
345 u32 max_num_tags;
346 /* From enum ib_tm_cap_flags */
347 u32 flags;
348 /* Max number of outstanding list operations */
349 u32 max_ops;
350 /* Max number of SGE in tag matching entry */
351 u32 max_sge;
352 };
353
354 struct ib_cq_init_attr {
355 unsigned int cqe;
356 u32 comp_vector;
357 u32 flags;
358 };
359
360 enum ib_cq_attr_mask {
361 IB_CQ_MODERATE = 1 << 0,
362 };
363
364 struct ib_cq_caps {
365 u16 max_cq_moderation_count;
366 u16 max_cq_moderation_period;
367 };
368
369 struct ib_dm_mr_attr {
370 u64 length;
371 u64 offset;
372 u32 access_flags;
373 };
374
375 struct ib_dm_alloc_attr {
376 u64 length;
377 u32 alignment;
378 u32 flags;
379 };
380
381 struct ib_device_attr {
382 u64 fw_ver;
383 __be64 sys_image_guid;
384 u64 max_mr_size;
385 u64 page_size_cap;
386 u32 vendor_id;
387 u32 vendor_part_id;
388 u32 hw_ver;
389 int max_qp;
390 int max_qp_wr;
391 u64 device_cap_flags;
392 int max_send_sge;
393 int max_recv_sge;
394 int max_sge_rd;
395 int max_cq;
396 int max_cqe;
397 int max_mr;
398 int max_pd;
399 int max_qp_rd_atom;
400 int max_ee_rd_atom;
401 int max_res_rd_atom;
402 int max_qp_init_rd_atom;
403 int max_ee_init_rd_atom;
404 enum ib_atomic_cap atomic_cap;
405 enum ib_atomic_cap masked_atomic_cap;
406 int max_ee;
407 int max_rdd;
408 int max_mw;
409 int max_raw_ipv6_qp;
410 int max_raw_ethy_qp;
411 int max_mcast_grp;
412 int max_mcast_qp_attach;
413 int max_total_mcast_qp_attach;
414 int max_ah;
415 int max_srq;
416 int max_srq_wr;
417 int max_srq_sge;
418 unsigned int max_fast_reg_page_list_len;
419 unsigned int max_pi_fast_reg_page_list_len;
420 u16 max_pkeys;
421 u8 local_ca_ack_delay;
422 int sig_prot_cap;
423 int sig_guard_cap;
424 struct ib_odp_caps odp_caps;
425 uint64_t timestamp_mask;
426 uint64_t hca_core_clock; /* in KHZ */
427 struct ib_rss_caps rss_caps;
428 u32 max_wq_type_rq;
429 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
430 struct ib_tm_caps tm_caps;
431 struct ib_cq_caps cq_caps;
432 u64 max_dm_size;
433 /* Max entries for sgl for optimized performance per READ */
434 u32 max_sgl_rd;
435 };
436
437 enum ib_mtu {
438 IB_MTU_256 = 1,
439 IB_MTU_512 = 2,
440 IB_MTU_1024 = 3,
441 IB_MTU_2048 = 4,
442 IB_MTU_4096 = 5
443 };
444
445 enum opa_mtu {
446 OPA_MTU_8192 = 6,
447 OPA_MTU_10240 = 7
448 };
449
ib_mtu_enum_to_int(enum ib_mtu mtu)450 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
451 {
452 switch (mtu) {
453 case IB_MTU_256: return 256;
454 case IB_MTU_512: return 512;
455 case IB_MTU_1024: return 1024;
456 case IB_MTU_2048: return 2048;
457 case IB_MTU_4096: return 4096;
458 default: return -1;
459 }
460 }
461
ib_mtu_int_to_enum(int mtu)462 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
463 {
464 if (mtu >= 4096)
465 return IB_MTU_4096;
466 else if (mtu >= 2048)
467 return IB_MTU_2048;
468 else if (mtu >= 1024)
469 return IB_MTU_1024;
470 else if (mtu >= 512)
471 return IB_MTU_512;
472 else
473 return IB_MTU_256;
474 }
475
opa_mtu_enum_to_int(enum opa_mtu mtu)476 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
477 {
478 switch (mtu) {
479 case OPA_MTU_8192:
480 return 8192;
481 case OPA_MTU_10240:
482 return 10240;
483 default:
484 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
485 }
486 }
487
opa_mtu_int_to_enum(int mtu)488 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
489 {
490 if (mtu >= 10240)
491 return OPA_MTU_10240;
492 else if (mtu >= 8192)
493 return OPA_MTU_8192;
494 else
495 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
496 }
497
498 enum ib_port_state {
499 IB_PORT_NOP = 0,
500 IB_PORT_DOWN = 1,
501 IB_PORT_INIT = 2,
502 IB_PORT_ARMED = 3,
503 IB_PORT_ACTIVE = 4,
504 IB_PORT_ACTIVE_DEFER = 5
505 };
506
507 enum ib_port_phys_state {
508 IB_PORT_PHYS_STATE_SLEEP = 1,
509 IB_PORT_PHYS_STATE_POLLING = 2,
510 IB_PORT_PHYS_STATE_DISABLED = 3,
511 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
512 IB_PORT_PHYS_STATE_LINK_UP = 5,
513 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
514 IB_PORT_PHYS_STATE_PHY_TEST = 7,
515 };
516
517 enum ib_port_width {
518 IB_WIDTH_1X = 1,
519 IB_WIDTH_2X = 16,
520 IB_WIDTH_4X = 2,
521 IB_WIDTH_8X = 4,
522 IB_WIDTH_12X = 8
523 };
524
ib_width_enum_to_int(enum ib_port_width width)525 static inline int ib_width_enum_to_int(enum ib_port_width width)
526 {
527 switch (width) {
528 case IB_WIDTH_1X: return 1;
529 case IB_WIDTH_2X: return 2;
530 case IB_WIDTH_4X: return 4;
531 case IB_WIDTH_8X: return 8;
532 case IB_WIDTH_12X: return 12;
533 default: return -1;
534 }
535 }
536
537 enum ib_port_speed {
538 IB_SPEED_SDR = 1,
539 IB_SPEED_DDR = 2,
540 IB_SPEED_QDR = 4,
541 IB_SPEED_FDR10 = 8,
542 IB_SPEED_FDR = 16,
543 IB_SPEED_EDR = 32,
544 IB_SPEED_HDR = 64,
545 IB_SPEED_NDR = 128,
546 };
547
548 /**
549 * struct rdma_hw_stats
550 * @lock - Mutex to protect parallel write access to lifespan and values
551 * of counters, which are 64bits and not guaranteeed to be written
552 * atomicaly on 32bits systems.
553 * @timestamp - Used by the core code to track when the last update was
554 * @lifespan - Used by the core code to determine how old the counters
555 * should be before being updated again. Stored in jiffies, defaults
556 * to 10 milliseconds, drivers can override the default be specifying
557 * their own value during their allocation routine.
558 * @name - Array of pointers to static names used for the counters in
559 * directory.
560 * @num_counters - How many hardware counters there are. If name is
561 * shorter than this number, a kernel oops will result. Driver authors
562 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
563 * in their code to prevent this.
564 * @value - Array of u64 counters that are accessed by the sysfs code and
565 * filled in by the drivers get_stats routine
566 */
567 struct rdma_hw_stats {
568 struct mutex lock; /* Protect lifespan and values[] */
569 unsigned long timestamp;
570 unsigned long lifespan;
571 const char * const *names;
572 int num_counters;
573 u64 value[];
574 };
575
576 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
577 /**
578 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
579 * for drivers.
580 * @names - Array of static const char *
581 * @num_counters - How many elements in array
582 * @lifespan - How many milliseconds between updates
583 */
rdma_alloc_hw_stats_struct(const char * const * names,int num_counters,unsigned long lifespan)584 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
585 const char * const *names, int num_counters,
586 unsigned long lifespan)
587 {
588 struct rdma_hw_stats *stats;
589
590 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
591 GFP_KERNEL);
592 if (!stats)
593 return NULL;
594 stats->names = names;
595 stats->num_counters = num_counters;
596 stats->lifespan = msecs_to_jiffies(lifespan);
597
598 return stats;
599 }
600
601
602 /* Define bits for the various functionality this port needs to be supported by
603 * the core.
604 */
605 /* Management 0x00000FFF */
606 #define RDMA_CORE_CAP_IB_MAD 0x00000001
607 #define RDMA_CORE_CAP_IB_SMI 0x00000002
608 #define RDMA_CORE_CAP_IB_CM 0x00000004
609 #define RDMA_CORE_CAP_IW_CM 0x00000008
610 #define RDMA_CORE_CAP_IB_SA 0x00000010
611 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
612
613 /* Address format 0x000FF000 */
614 #define RDMA_CORE_CAP_AF_IB 0x00001000
615 #define RDMA_CORE_CAP_ETH_AH 0x00002000
616 #define RDMA_CORE_CAP_OPA_AH 0x00004000
617 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
618
619 /* Protocol 0xFFF00000 */
620 #define RDMA_CORE_CAP_PROT_IB 0x00100000
621 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
622 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
623 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
624 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
625 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
626
627 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
628 | RDMA_CORE_CAP_PROT_ROCE \
629 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
630
631 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
632 | RDMA_CORE_CAP_IB_MAD \
633 | RDMA_CORE_CAP_IB_SMI \
634 | RDMA_CORE_CAP_IB_CM \
635 | RDMA_CORE_CAP_IB_SA \
636 | RDMA_CORE_CAP_AF_IB)
637 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
638 | RDMA_CORE_CAP_IB_MAD \
639 | RDMA_CORE_CAP_IB_CM \
640 | RDMA_CORE_CAP_AF_IB \
641 | RDMA_CORE_CAP_ETH_AH)
642 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
643 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
644 | RDMA_CORE_CAP_IB_MAD \
645 | RDMA_CORE_CAP_IB_CM \
646 | RDMA_CORE_CAP_AF_IB \
647 | RDMA_CORE_CAP_ETH_AH)
648 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
649 | RDMA_CORE_CAP_IW_CM)
650 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
651 | RDMA_CORE_CAP_OPA_MAD)
652
653 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
654
655 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
656
657 struct ib_port_attr {
658 u64 subnet_prefix;
659 enum ib_port_state state;
660 enum ib_mtu max_mtu;
661 enum ib_mtu active_mtu;
662 u32 phys_mtu;
663 int gid_tbl_len;
664 unsigned int ip_gids:1;
665 /* This is the value from PortInfo CapabilityMask, defined by IBA */
666 u32 port_cap_flags;
667 u32 max_msg_sz;
668 u32 bad_pkey_cntr;
669 u32 qkey_viol_cntr;
670 u16 pkey_tbl_len;
671 u32 sm_lid;
672 u32 lid;
673 u8 lmc;
674 u8 max_vl_num;
675 u8 sm_sl;
676 u8 subnet_timeout;
677 u8 init_type_reply;
678 u8 active_width;
679 u16 active_speed;
680 u8 phys_state;
681 u16 port_cap_flags2;
682 };
683
684 enum ib_device_modify_flags {
685 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
686 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
687 };
688
689 #define IB_DEVICE_NODE_DESC_MAX 64
690
691 struct ib_device_modify {
692 u64 sys_image_guid;
693 char node_desc[IB_DEVICE_NODE_DESC_MAX];
694 };
695
696 enum ib_port_modify_flags {
697 IB_PORT_SHUTDOWN = 1,
698 IB_PORT_INIT_TYPE = (1<<2),
699 IB_PORT_RESET_QKEY_CNTR = (1<<3),
700 IB_PORT_OPA_MASK_CHG = (1<<4)
701 };
702
703 struct ib_port_modify {
704 u32 set_port_cap_mask;
705 u32 clr_port_cap_mask;
706 u8 init_type;
707 };
708
709 enum ib_event_type {
710 IB_EVENT_CQ_ERR,
711 IB_EVENT_QP_FATAL,
712 IB_EVENT_QP_REQ_ERR,
713 IB_EVENT_QP_ACCESS_ERR,
714 IB_EVENT_COMM_EST,
715 IB_EVENT_SQ_DRAINED,
716 IB_EVENT_PATH_MIG,
717 IB_EVENT_PATH_MIG_ERR,
718 IB_EVENT_DEVICE_FATAL,
719 IB_EVENT_PORT_ACTIVE,
720 IB_EVENT_PORT_ERR,
721 IB_EVENT_LID_CHANGE,
722 IB_EVENT_PKEY_CHANGE,
723 IB_EVENT_SM_CHANGE,
724 IB_EVENT_SRQ_ERR,
725 IB_EVENT_SRQ_LIMIT_REACHED,
726 IB_EVENT_QP_LAST_WQE_REACHED,
727 IB_EVENT_CLIENT_REREGISTER,
728 IB_EVENT_GID_CHANGE,
729 IB_EVENT_WQ_FATAL,
730 };
731
732 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
733
734 struct ib_event {
735 struct ib_device *device;
736 union {
737 struct ib_cq *cq;
738 struct ib_qp *qp;
739 struct ib_srq *srq;
740 struct ib_wq *wq;
741 u32 port_num;
742 } element;
743 enum ib_event_type event;
744 };
745
746 struct ib_event_handler {
747 struct ib_device *device;
748 void (*handler)(struct ib_event_handler *, struct ib_event *);
749 struct list_head list;
750 };
751
752 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
753 do { \
754 (_ptr)->device = _device; \
755 (_ptr)->handler = _handler; \
756 INIT_LIST_HEAD(&(_ptr)->list); \
757 } while (0)
758
759 struct ib_global_route {
760 const struct ib_gid_attr *sgid_attr;
761 union ib_gid dgid;
762 u32 flow_label;
763 u8 sgid_index;
764 u8 hop_limit;
765 u8 traffic_class;
766 };
767
768 struct ib_grh {
769 __be32 version_tclass_flow;
770 __be16 paylen;
771 u8 next_hdr;
772 u8 hop_limit;
773 union ib_gid sgid;
774 union ib_gid dgid;
775 };
776
777 union rdma_network_hdr {
778 struct ib_grh ibgrh;
779 struct {
780 /* The IB spec states that if it's IPv4, the header
781 * is located in the last 20 bytes of the header.
782 */
783 u8 reserved[20];
784 struct iphdr roce4grh;
785 };
786 };
787
788 #define IB_QPN_MASK 0xFFFFFF
789
790 enum {
791 IB_MULTICAST_QPN = 0xffffff
792 };
793
794 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
795 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
796
797 enum ib_ah_flags {
798 IB_AH_GRH = 1
799 };
800
801 enum ib_rate {
802 IB_RATE_PORT_CURRENT = 0,
803 IB_RATE_2_5_GBPS = 2,
804 IB_RATE_5_GBPS = 5,
805 IB_RATE_10_GBPS = 3,
806 IB_RATE_20_GBPS = 6,
807 IB_RATE_30_GBPS = 4,
808 IB_RATE_40_GBPS = 7,
809 IB_RATE_60_GBPS = 8,
810 IB_RATE_80_GBPS = 9,
811 IB_RATE_120_GBPS = 10,
812 IB_RATE_14_GBPS = 11,
813 IB_RATE_56_GBPS = 12,
814 IB_RATE_112_GBPS = 13,
815 IB_RATE_168_GBPS = 14,
816 IB_RATE_25_GBPS = 15,
817 IB_RATE_100_GBPS = 16,
818 IB_RATE_200_GBPS = 17,
819 IB_RATE_300_GBPS = 18,
820 IB_RATE_28_GBPS = 19,
821 IB_RATE_50_GBPS = 20,
822 IB_RATE_400_GBPS = 21,
823 IB_RATE_600_GBPS = 22,
824 };
825
826 /**
827 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
828 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
829 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
830 * @rate: rate to convert.
831 */
832 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
833
834 /**
835 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
836 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
837 * @rate: rate to convert.
838 */
839 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
840
841
842 /**
843 * enum ib_mr_type - memory region type
844 * @IB_MR_TYPE_MEM_REG: memory region that is used for
845 * normal registration
846 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
847 * register any arbitrary sg lists (without
848 * the normal mr constraints - see
849 * ib_map_mr_sg)
850 * @IB_MR_TYPE_DM: memory region that is used for device
851 * memory registration
852 * @IB_MR_TYPE_USER: memory region that is used for the user-space
853 * application
854 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
855 * without address translations (VA=PA)
856 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
857 * data integrity operations
858 */
859 enum ib_mr_type {
860 IB_MR_TYPE_MEM_REG,
861 IB_MR_TYPE_SG_GAPS,
862 IB_MR_TYPE_DM,
863 IB_MR_TYPE_USER,
864 IB_MR_TYPE_DMA,
865 IB_MR_TYPE_INTEGRITY,
866 };
867
868 enum ib_mr_status_check {
869 IB_MR_CHECK_SIG_STATUS = 1,
870 };
871
872 /**
873 * struct ib_mr_status - Memory region status container
874 *
875 * @fail_status: Bitmask of MR checks status. For each
876 * failed check a corresponding status bit is set.
877 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
878 * failure.
879 */
880 struct ib_mr_status {
881 u32 fail_status;
882 struct ib_sig_err sig_err;
883 };
884
885 /**
886 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
887 * enum.
888 * @mult: multiple to convert.
889 */
890 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
891
892 struct rdma_ah_init_attr {
893 struct rdma_ah_attr *ah_attr;
894 u32 flags;
895 struct net_device *xmit_slave;
896 };
897
898 enum rdma_ah_attr_type {
899 RDMA_AH_ATTR_TYPE_UNDEFINED,
900 RDMA_AH_ATTR_TYPE_IB,
901 RDMA_AH_ATTR_TYPE_ROCE,
902 RDMA_AH_ATTR_TYPE_OPA,
903 };
904
905 struct ib_ah_attr {
906 u16 dlid;
907 u8 src_path_bits;
908 };
909
910 struct roce_ah_attr {
911 u8 dmac[ETH_ALEN];
912 };
913
914 struct opa_ah_attr {
915 u32 dlid;
916 u8 src_path_bits;
917 bool make_grd;
918 };
919
920 struct rdma_ah_attr {
921 struct ib_global_route grh;
922 u8 sl;
923 u8 static_rate;
924 u32 port_num;
925 u8 ah_flags;
926 enum rdma_ah_attr_type type;
927 union {
928 struct ib_ah_attr ib;
929 struct roce_ah_attr roce;
930 struct opa_ah_attr opa;
931 };
932 };
933
934 enum ib_wc_status {
935 IB_WC_SUCCESS,
936 IB_WC_LOC_LEN_ERR,
937 IB_WC_LOC_QP_OP_ERR,
938 IB_WC_LOC_EEC_OP_ERR,
939 IB_WC_LOC_PROT_ERR,
940 IB_WC_WR_FLUSH_ERR,
941 IB_WC_MW_BIND_ERR,
942 IB_WC_BAD_RESP_ERR,
943 IB_WC_LOC_ACCESS_ERR,
944 IB_WC_REM_INV_REQ_ERR,
945 IB_WC_REM_ACCESS_ERR,
946 IB_WC_REM_OP_ERR,
947 IB_WC_RETRY_EXC_ERR,
948 IB_WC_RNR_RETRY_EXC_ERR,
949 IB_WC_LOC_RDD_VIOL_ERR,
950 IB_WC_REM_INV_RD_REQ_ERR,
951 IB_WC_REM_ABORT_ERR,
952 IB_WC_INV_EECN_ERR,
953 IB_WC_INV_EEC_STATE_ERR,
954 IB_WC_FATAL_ERR,
955 IB_WC_RESP_TIMEOUT_ERR,
956 IB_WC_GENERAL_ERR
957 };
958
959 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
960
961 enum ib_wc_opcode {
962 IB_WC_SEND = IB_UVERBS_WC_SEND,
963 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
964 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
965 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
966 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
967 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
968 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
969 IB_WC_LSO = IB_UVERBS_WC_TSO,
970 IB_WC_REG_MR,
971 IB_WC_MASKED_COMP_SWAP,
972 IB_WC_MASKED_FETCH_ADD,
973 /*
974 * Set value of IB_WC_RECV so consumers can test if a completion is a
975 * receive by testing (opcode & IB_WC_RECV).
976 */
977 IB_WC_RECV = 1 << 7,
978 IB_WC_RECV_RDMA_WITH_IMM
979 };
980
981 enum ib_wc_flags {
982 IB_WC_GRH = 1,
983 IB_WC_WITH_IMM = (1<<1),
984 IB_WC_WITH_INVALIDATE = (1<<2),
985 IB_WC_IP_CSUM_OK = (1<<3),
986 IB_WC_WITH_SMAC = (1<<4),
987 IB_WC_WITH_VLAN = (1<<5),
988 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
989 };
990
991 struct ib_wc {
992 union {
993 u64 wr_id;
994 struct ib_cqe *wr_cqe;
995 };
996 enum ib_wc_status status;
997 enum ib_wc_opcode opcode;
998 u32 vendor_err;
999 u32 byte_len;
1000 struct ib_qp *qp;
1001 union {
1002 __be32 imm_data;
1003 u32 invalidate_rkey;
1004 } ex;
1005 u32 src_qp;
1006 u32 slid;
1007 int wc_flags;
1008 u16 pkey_index;
1009 u8 sl;
1010 u8 dlid_path_bits;
1011 u32 port_num; /* valid only for DR SMPs on switches */
1012 u8 smac[ETH_ALEN];
1013 u16 vlan_id;
1014 u8 network_hdr_type;
1015 };
1016
1017 enum ib_cq_notify_flags {
1018 IB_CQ_SOLICITED = 1 << 0,
1019 IB_CQ_NEXT_COMP = 1 << 1,
1020 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1021 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1022 };
1023
1024 enum ib_srq_type {
1025 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1026 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1027 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1028 };
1029
ib_srq_has_cq(enum ib_srq_type srq_type)1030 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1031 {
1032 return srq_type == IB_SRQT_XRC ||
1033 srq_type == IB_SRQT_TM;
1034 }
1035
1036 enum ib_srq_attr_mask {
1037 IB_SRQ_MAX_WR = 1 << 0,
1038 IB_SRQ_LIMIT = 1 << 1,
1039 };
1040
1041 struct ib_srq_attr {
1042 u32 max_wr;
1043 u32 max_sge;
1044 u32 srq_limit;
1045 };
1046
1047 struct ib_srq_init_attr {
1048 void (*event_handler)(struct ib_event *, void *);
1049 void *srq_context;
1050 struct ib_srq_attr attr;
1051 enum ib_srq_type srq_type;
1052
1053 struct {
1054 struct ib_cq *cq;
1055 union {
1056 struct {
1057 struct ib_xrcd *xrcd;
1058 } xrc;
1059
1060 struct {
1061 u32 max_num_tags;
1062 } tag_matching;
1063 };
1064 } ext;
1065 };
1066
1067 struct ib_qp_cap {
1068 u32 max_send_wr;
1069 u32 max_recv_wr;
1070 u32 max_send_sge;
1071 u32 max_recv_sge;
1072 u32 max_inline_data;
1073
1074 /*
1075 * Maximum number of rdma_rw_ctx structures in flight at a time.
1076 * ib_create_qp() will calculate the right amount of neededed WRs
1077 * and MRs based on this.
1078 */
1079 u32 max_rdma_ctxs;
1080 };
1081
1082 enum ib_sig_type {
1083 IB_SIGNAL_ALL_WR,
1084 IB_SIGNAL_REQ_WR
1085 };
1086
1087 enum ib_qp_type {
1088 /*
1089 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1090 * here (and in that order) since the MAD layer uses them as
1091 * indices into a 2-entry table.
1092 */
1093 IB_QPT_SMI,
1094 IB_QPT_GSI,
1095
1096 IB_QPT_RC = IB_UVERBS_QPT_RC,
1097 IB_QPT_UC = IB_UVERBS_QPT_UC,
1098 IB_QPT_UD = IB_UVERBS_QPT_UD,
1099 IB_QPT_RAW_IPV6,
1100 IB_QPT_RAW_ETHERTYPE,
1101 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1102 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1103 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1104 IB_QPT_MAX,
1105 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1106 /* Reserve a range for qp types internal to the low level driver.
1107 * These qp types will not be visible at the IB core layer, so the
1108 * IB_QPT_MAX usages should not be affected in the core layer
1109 */
1110 IB_QPT_RESERVED1 = 0x1000,
1111 IB_QPT_RESERVED2,
1112 IB_QPT_RESERVED3,
1113 IB_QPT_RESERVED4,
1114 IB_QPT_RESERVED5,
1115 IB_QPT_RESERVED6,
1116 IB_QPT_RESERVED7,
1117 IB_QPT_RESERVED8,
1118 IB_QPT_RESERVED9,
1119 IB_QPT_RESERVED10,
1120 };
1121
1122 enum ib_qp_create_flags {
1123 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1124 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1125 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1126 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1127 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1128 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1129 IB_QP_CREATE_NETIF_QP = 1 << 5,
1130 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1131 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1132 IB_QP_CREATE_SCATTER_FCS =
1133 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1134 IB_QP_CREATE_CVLAN_STRIPPING =
1135 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1136 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1137 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1138 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1139 /* reserve bits 26-31 for low level drivers' internal use */
1140 IB_QP_CREATE_RESERVED_START = 1 << 26,
1141 IB_QP_CREATE_RESERVED_END = 1 << 31,
1142 };
1143
1144 /*
1145 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1146 * callback to destroy the passed in QP.
1147 */
1148
1149 struct ib_qp_init_attr {
1150 /* Consumer's event_handler callback must not block */
1151 void (*event_handler)(struct ib_event *, void *);
1152
1153 void *qp_context;
1154 struct ib_cq *send_cq;
1155 struct ib_cq *recv_cq;
1156 struct ib_srq *srq;
1157 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1158 struct ib_qp_cap cap;
1159 enum ib_sig_type sq_sig_type;
1160 enum ib_qp_type qp_type;
1161 u32 create_flags;
1162
1163 /*
1164 * Only needed for special QP types, or when using the RW API.
1165 */
1166 u32 port_num;
1167 struct ib_rwq_ind_table *rwq_ind_tbl;
1168 u32 source_qpn;
1169 };
1170
1171 struct ib_qp_open_attr {
1172 void (*event_handler)(struct ib_event *, void *);
1173 void *qp_context;
1174 u32 qp_num;
1175 enum ib_qp_type qp_type;
1176 };
1177
1178 enum ib_rnr_timeout {
1179 IB_RNR_TIMER_655_36 = 0,
1180 IB_RNR_TIMER_000_01 = 1,
1181 IB_RNR_TIMER_000_02 = 2,
1182 IB_RNR_TIMER_000_03 = 3,
1183 IB_RNR_TIMER_000_04 = 4,
1184 IB_RNR_TIMER_000_06 = 5,
1185 IB_RNR_TIMER_000_08 = 6,
1186 IB_RNR_TIMER_000_12 = 7,
1187 IB_RNR_TIMER_000_16 = 8,
1188 IB_RNR_TIMER_000_24 = 9,
1189 IB_RNR_TIMER_000_32 = 10,
1190 IB_RNR_TIMER_000_48 = 11,
1191 IB_RNR_TIMER_000_64 = 12,
1192 IB_RNR_TIMER_000_96 = 13,
1193 IB_RNR_TIMER_001_28 = 14,
1194 IB_RNR_TIMER_001_92 = 15,
1195 IB_RNR_TIMER_002_56 = 16,
1196 IB_RNR_TIMER_003_84 = 17,
1197 IB_RNR_TIMER_005_12 = 18,
1198 IB_RNR_TIMER_007_68 = 19,
1199 IB_RNR_TIMER_010_24 = 20,
1200 IB_RNR_TIMER_015_36 = 21,
1201 IB_RNR_TIMER_020_48 = 22,
1202 IB_RNR_TIMER_030_72 = 23,
1203 IB_RNR_TIMER_040_96 = 24,
1204 IB_RNR_TIMER_061_44 = 25,
1205 IB_RNR_TIMER_081_92 = 26,
1206 IB_RNR_TIMER_122_88 = 27,
1207 IB_RNR_TIMER_163_84 = 28,
1208 IB_RNR_TIMER_245_76 = 29,
1209 IB_RNR_TIMER_327_68 = 30,
1210 IB_RNR_TIMER_491_52 = 31
1211 };
1212
1213 enum ib_qp_attr_mask {
1214 IB_QP_STATE = 1,
1215 IB_QP_CUR_STATE = (1<<1),
1216 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1217 IB_QP_ACCESS_FLAGS = (1<<3),
1218 IB_QP_PKEY_INDEX = (1<<4),
1219 IB_QP_PORT = (1<<5),
1220 IB_QP_QKEY = (1<<6),
1221 IB_QP_AV = (1<<7),
1222 IB_QP_PATH_MTU = (1<<8),
1223 IB_QP_TIMEOUT = (1<<9),
1224 IB_QP_RETRY_CNT = (1<<10),
1225 IB_QP_RNR_RETRY = (1<<11),
1226 IB_QP_RQ_PSN = (1<<12),
1227 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1228 IB_QP_ALT_PATH = (1<<14),
1229 IB_QP_MIN_RNR_TIMER = (1<<15),
1230 IB_QP_SQ_PSN = (1<<16),
1231 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1232 IB_QP_PATH_MIG_STATE = (1<<18),
1233 IB_QP_CAP = (1<<19),
1234 IB_QP_DEST_QPN = (1<<20),
1235 IB_QP_RESERVED1 = (1<<21),
1236 IB_QP_RESERVED2 = (1<<22),
1237 IB_QP_RESERVED3 = (1<<23),
1238 IB_QP_RESERVED4 = (1<<24),
1239 IB_QP_RATE_LIMIT = (1<<25),
1240
1241 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1242 };
1243
1244 enum ib_qp_state {
1245 IB_QPS_RESET,
1246 IB_QPS_INIT,
1247 IB_QPS_RTR,
1248 IB_QPS_RTS,
1249 IB_QPS_SQD,
1250 IB_QPS_SQE,
1251 IB_QPS_ERR
1252 };
1253
1254 enum ib_mig_state {
1255 IB_MIG_MIGRATED,
1256 IB_MIG_REARM,
1257 IB_MIG_ARMED
1258 };
1259
1260 enum ib_mw_type {
1261 IB_MW_TYPE_1 = 1,
1262 IB_MW_TYPE_2 = 2
1263 };
1264
1265 struct ib_qp_attr {
1266 enum ib_qp_state qp_state;
1267 enum ib_qp_state cur_qp_state;
1268 enum ib_mtu path_mtu;
1269 enum ib_mig_state path_mig_state;
1270 u32 qkey;
1271 u32 rq_psn;
1272 u32 sq_psn;
1273 u32 dest_qp_num;
1274 int qp_access_flags;
1275 struct ib_qp_cap cap;
1276 struct rdma_ah_attr ah_attr;
1277 struct rdma_ah_attr alt_ah_attr;
1278 u16 pkey_index;
1279 u16 alt_pkey_index;
1280 u8 en_sqd_async_notify;
1281 u8 sq_draining;
1282 u8 max_rd_atomic;
1283 u8 max_dest_rd_atomic;
1284 u8 min_rnr_timer;
1285 u32 port_num;
1286 u8 timeout;
1287 u8 retry_cnt;
1288 u8 rnr_retry;
1289 u32 alt_port_num;
1290 u8 alt_timeout;
1291 u32 rate_limit;
1292 struct net_device *xmit_slave;
1293 };
1294
1295 enum ib_wr_opcode {
1296 /* These are shared with userspace */
1297 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1298 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1299 IB_WR_SEND = IB_UVERBS_WR_SEND,
1300 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1301 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1302 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1303 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1304 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1305 IB_WR_LSO = IB_UVERBS_WR_TSO,
1306 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1307 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1308 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1309 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1310 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1311 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1312 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1313
1314 /* These are kernel only and can not be issued by userspace */
1315 IB_WR_REG_MR = 0x20,
1316 IB_WR_REG_MR_INTEGRITY,
1317
1318 /* reserve values for low level drivers' internal use.
1319 * These values will not be used at all in the ib core layer.
1320 */
1321 IB_WR_RESERVED1 = 0xf0,
1322 IB_WR_RESERVED2,
1323 IB_WR_RESERVED3,
1324 IB_WR_RESERVED4,
1325 IB_WR_RESERVED5,
1326 IB_WR_RESERVED6,
1327 IB_WR_RESERVED7,
1328 IB_WR_RESERVED8,
1329 IB_WR_RESERVED9,
1330 IB_WR_RESERVED10,
1331 };
1332
1333 enum ib_send_flags {
1334 IB_SEND_FENCE = 1,
1335 IB_SEND_SIGNALED = (1<<1),
1336 IB_SEND_SOLICITED = (1<<2),
1337 IB_SEND_INLINE = (1<<3),
1338 IB_SEND_IP_CSUM = (1<<4),
1339
1340 /* reserve bits 26-31 for low level drivers' internal use */
1341 IB_SEND_RESERVED_START = (1 << 26),
1342 IB_SEND_RESERVED_END = (1 << 31),
1343 };
1344
1345 struct ib_sge {
1346 u64 addr;
1347 u32 length;
1348 u32 lkey;
1349 };
1350
1351 struct ib_cqe {
1352 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1353 };
1354
1355 struct ib_send_wr {
1356 struct ib_send_wr *next;
1357 union {
1358 u64 wr_id;
1359 struct ib_cqe *wr_cqe;
1360 };
1361 struct ib_sge *sg_list;
1362 int num_sge;
1363 enum ib_wr_opcode opcode;
1364 int send_flags;
1365 union {
1366 __be32 imm_data;
1367 u32 invalidate_rkey;
1368 } ex;
1369 };
1370
1371 struct ib_rdma_wr {
1372 struct ib_send_wr wr;
1373 u64 remote_addr;
1374 u32 rkey;
1375 };
1376
rdma_wr(const struct ib_send_wr * wr)1377 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1378 {
1379 return container_of(wr, struct ib_rdma_wr, wr);
1380 }
1381
1382 struct ib_atomic_wr {
1383 struct ib_send_wr wr;
1384 u64 remote_addr;
1385 u64 compare_add;
1386 u64 swap;
1387 u64 compare_add_mask;
1388 u64 swap_mask;
1389 u32 rkey;
1390 };
1391
atomic_wr(const struct ib_send_wr * wr)1392 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1393 {
1394 return container_of(wr, struct ib_atomic_wr, wr);
1395 }
1396
1397 struct ib_ud_wr {
1398 struct ib_send_wr wr;
1399 struct ib_ah *ah;
1400 void *header;
1401 int hlen;
1402 int mss;
1403 u32 remote_qpn;
1404 u32 remote_qkey;
1405 u16 pkey_index; /* valid for GSI only */
1406 u32 port_num; /* valid for DR SMPs on switch only */
1407 };
1408
ud_wr(const struct ib_send_wr * wr)1409 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1410 {
1411 return container_of(wr, struct ib_ud_wr, wr);
1412 }
1413
1414 struct ib_reg_wr {
1415 struct ib_send_wr wr;
1416 struct ib_mr *mr;
1417 u32 key;
1418 int access;
1419 };
1420
reg_wr(const struct ib_send_wr * wr)1421 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1422 {
1423 return container_of(wr, struct ib_reg_wr, wr);
1424 }
1425
1426 struct ib_recv_wr {
1427 struct ib_recv_wr *next;
1428 union {
1429 u64 wr_id;
1430 struct ib_cqe *wr_cqe;
1431 };
1432 struct ib_sge *sg_list;
1433 int num_sge;
1434 };
1435
1436 enum ib_access_flags {
1437 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1438 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1439 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1440 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1441 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1442 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1443 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1444 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1445 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1446
1447 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1448 IB_ACCESS_SUPPORTED =
1449 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1450 };
1451
1452 /*
1453 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1454 * are hidden here instead of a uapi header!
1455 */
1456 enum ib_mr_rereg_flags {
1457 IB_MR_REREG_TRANS = 1,
1458 IB_MR_REREG_PD = (1<<1),
1459 IB_MR_REREG_ACCESS = (1<<2),
1460 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1461 };
1462
1463 struct ib_umem;
1464
1465 enum rdma_remove_reason {
1466 /*
1467 * Userspace requested uobject deletion or initial try
1468 * to remove uobject via cleanup. Call could fail
1469 */
1470 RDMA_REMOVE_DESTROY,
1471 /* Context deletion. This call should delete the actual object itself */
1472 RDMA_REMOVE_CLOSE,
1473 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1474 RDMA_REMOVE_DRIVER_REMOVE,
1475 /* uobj is being cleaned-up before being committed */
1476 RDMA_REMOVE_ABORT,
1477 /* The driver failed to destroy the uobject and is being disconnected */
1478 RDMA_REMOVE_DRIVER_FAILURE,
1479 };
1480
1481 struct ib_rdmacg_object {
1482 #ifdef CONFIG_CGROUP_RDMA
1483 struct rdma_cgroup *cg; /* owner rdma cgroup */
1484 #endif
1485 };
1486
1487 struct ib_ucontext {
1488 struct ib_device *device;
1489 struct ib_uverbs_file *ufile;
1490
1491 struct ib_rdmacg_object cg_obj;
1492 /*
1493 * Implementation details of the RDMA core, don't use in drivers:
1494 */
1495 struct rdma_restrack_entry res;
1496 struct xarray mmap_xa;
1497 };
1498
1499 struct ib_uobject {
1500 u64 user_handle; /* handle given to us by userspace */
1501 /* ufile & ucontext owning this object */
1502 struct ib_uverbs_file *ufile;
1503 /* FIXME, save memory: ufile->context == context */
1504 struct ib_ucontext *context; /* associated user context */
1505 void *object; /* containing object */
1506 struct list_head list; /* link to context's list */
1507 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1508 int id; /* index into kernel idr */
1509 struct kref ref;
1510 atomic_t usecnt; /* protects exclusive access */
1511 struct rcu_head rcu; /* kfree_rcu() overhead */
1512
1513 const struct uverbs_api_object *uapi_object;
1514 };
1515
1516 struct ib_udata {
1517 const void __user *inbuf;
1518 void __user *outbuf;
1519 size_t inlen;
1520 size_t outlen;
1521 };
1522
1523 struct ib_pd {
1524 u32 local_dma_lkey;
1525 u32 flags;
1526 struct ib_device *device;
1527 struct ib_uobject *uobject;
1528 atomic_t usecnt; /* count all resources */
1529
1530 u32 unsafe_global_rkey;
1531
1532 /*
1533 * Implementation details of the RDMA core, don't use in drivers:
1534 */
1535 struct ib_mr *__internal_mr;
1536 struct rdma_restrack_entry res;
1537 };
1538
1539 struct ib_xrcd {
1540 struct ib_device *device;
1541 atomic_t usecnt; /* count all exposed resources */
1542 struct inode *inode;
1543 struct rw_semaphore tgt_qps_rwsem;
1544 struct xarray tgt_qps;
1545 };
1546
1547 struct ib_ah {
1548 struct ib_device *device;
1549 struct ib_pd *pd;
1550 struct ib_uobject *uobject;
1551 const struct ib_gid_attr *sgid_attr;
1552 enum rdma_ah_attr_type type;
1553 };
1554
1555 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1556
1557 enum ib_poll_context {
1558 IB_POLL_SOFTIRQ, /* poll from softirq context */
1559 IB_POLL_WORKQUEUE, /* poll from workqueue */
1560 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1561 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1562
1563 IB_POLL_DIRECT, /* caller context, no hw completions */
1564 };
1565
1566 struct ib_cq {
1567 struct ib_device *device;
1568 struct ib_ucq_object *uobject;
1569 ib_comp_handler comp_handler;
1570 void (*event_handler)(struct ib_event *, void *);
1571 void *cq_context;
1572 int cqe;
1573 unsigned int cqe_used;
1574 atomic_t usecnt; /* count number of work queues */
1575 enum ib_poll_context poll_ctx;
1576 struct ib_wc *wc;
1577 struct list_head pool_entry;
1578 union {
1579 struct irq_poll iop;
1580 struct work_struct work;
1581 };
1582 struct workqueue_struct *comp_wq;
1583 struct dim *dim;
1584
1585 /* updated only by trace points */
1586 ktime_t timestamp;
1587 u8 interrupt:1;
1588 u8 shared:1;
1589 unsigned int comp_vector;
1590
1591 /*
1592 * Implementation details of the RDMA core, don't use in drivers:
1593 */
1594 struct rdma_restrack_entry res;
1595 };
1596
1597 struct ib_srq {
1598 struct ib_device *device;
1599 struct ib_pd *pd;
1600 struct ib_usrq_object *uobject;
1601 void (*event_handler)(struct ib_event *, void *);
1602 void *srq_context;
1603 enum ib_srq_type srq_type;
1604 atomic_t usecnt;
1605
1606 struct {
1607 struct ib_cq *cq;
1608 union {
1609 struct {
1610 struct ib_xrcd *xrcd;
1611 u32 srq_num;
1612 } xrc;
1613 };
1614 } ext;
1615
1616 /*
1617 * Implementation details of the RDMA core, don't use in drivers:
1618 */
1619 struct rdma_restrack_entry res;
1620 };
1621
1622 enum ib_raw_packet_caps {
1623 /* Strip cvlan from incoming packet and report it in the matching work
1624 * completion is supported.
1625 */
1626 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1627 /* Scatter FCS field of an incoming packet to host memory is supported.
1628 */
1629 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1630 /* Checksum offloads are supported (for both send and receive). */
1631 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1632 /* When a packet is received for an RQ with no receive WQEs, the
1633 * packet processing is delayed.
1634 */
1635 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1636 };
1637
1638 enum ib_wq_type {
1639 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1640 };
1641
1642 enum ib_wq_state {
1643 IB_WQS_RESET,
1644 IB_WQS_RDY,
1645 IB_WQS_ERR
1646 };
1647
1648 struct ib_wq {
1649 struct ib_device *device;
1650 struct ib_uwq_object *uobject;
1651 void *wq_context;
1652 void (*event_handler)(struct ib_event *, void *);
1653 struct ib_pd *pd;
1654 struct ib_cq *cq;
1655 u32 wq_num;
1656 enum ib_wq_state state;
1657 enum ib_wq_type wq_type;
1658 atomic_t usecnt;
1659 };
1660
1661 enum ib_wq_flags {
1662 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1663 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1664 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1665 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1666 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1667 };
1668
1669 struct ib_wq_init_attr {
1670 void *wq_context;
1671 enum ib_wq_type wq_type;
1672 u32 max_wr;
1673 u32 max_sge;
1674 struct ib_cq *cq;
1675 void (*event_handler)(struct ib_event *, void *);
1676 u32 create_flags; /* Use enum ib_wq_flags */
1677 };
1678
1679 enum ib_wq_attr_mask {
1680 IB_WQ_STATE = 1 << 0,
1681 IB_WQ_CUR_STATE = 1 << 1,
1682 IB_WQ_FLAGS = 1 << 2,
1683 };
1684
1685 struct ib_wq_attr {
1686 enum ib_wq_state wq_state;
1687 enum ib_wq_state curr_wq_state;
1688 u32 flags; /* Use enum ib_wq_flags */
1689 u32 flags_mask; /* Use enum ib_wq_flags */
1690 };
1691
1692 struct ib_rwq_ind_table {
1693 struct ib_device *device;
1694 struct ib_uobject *uobject;
1695 atomic_t usecnt;
1696 u32 ind_tbl_num;
1697 u32 log_ind_tbl_size;
1698 struct ib_wq **ind_tbl;
1699 };
1700
1701 struct ib_rwq_ind_table_init_attr {
1702 u32 log_ind_tbl_size;
1703 /* Each entry is a pointer to Receive Work Queue */
1704 struct ib_wq **ind_tbl;
1705 };
1706
1707 enum port_pkey_state {
1708 IB_PORT_PKEY_NOT_VALID = 0,
1709 IB_PORT_PKEY_VALID = 1,
1710 IB_PORT_PKEY_LISTED = 2,
1711 };
1712
1713 struct ib_qp_security;
1714
1715 struct ib_port_pkey {
1716 enum port_pkey_state state;
1717 u16 pkey_index;
1718 u32 port_num;
1719 struct list_head qp_list;
1720 struct list_head to_error_list;
1721 struct ib_qp_security *sec;
1722 };
1723
1724 struct ib_ports_pkeys {
1725 struct ib_port_pkey main;
1726 struct ib_port_pkey alt;
1727 };
1728
1729 struct ib_qp_security {
1730 struct ib_qp *qp;
1731 struct ib_device *dev;
1732 /* Hold this mutex when changing port and pkey settings. */
1733 struct mutex mutex;
1734 struct ib_ports_pkeys *ports_pkeys;
1735 /* A list of all open shared QP handles. Required to enforce security
1736 * properly for all users of a shared QP.
1737 */
1738 struct list_head shared_qp_list;
1739 void *security;
1740 bool destroying;
1741 atomic_t error_list_count;
1742 struct completion error_complete;
1743 int error_comps_pending;
1744 };
1745
1746 /*
1747 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1748 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1749 */
1750 struct ib_qp {
1751 struct ib_device *device;
1752 struct ib_pd *pd;
1753 struct ib_cq *send_cq;
1754 struct ib_cq *recv_cq;
1755 spinlock_t mr_lock;
1756 int mrs_used;
1757 struct list_head rdma_mrs;
1758 struct list_head sig_mrs;
1759 struct ib_srq *srq;
1760 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1761 struct list_head xrcd_list;
1762
1763 /* count times opened, mcast attaches, flow attaches */
1764 atomic_t usecnt;
1765 struct list_head open_list;
1766 struct ib_qp *real_qp;
1767 struct ib_uqp_object *uobject;
1768 void (*event_handler)(struct ib_event *, void *);
1769 void *qp_context;
1770 /* sgid_attrs associated with the AV's */
1771 const struct ib_gid_attr *av_sgid_attr;
1772 const struct ib_gid_attr *alt_path_sgid_attr;
1773 u32 qp_num;
1774 u32 max_write_sge;
1775 u32 max_read_sge;
1776 enum ib_qp_type qp_type;
1777 struct ib_rwq_ind_table *rwq_ind_tbl;
1778 struct ib_qp_security *qp_sec;
1779 u32 port;
1780
1781 bool integrity_en;
1782 /*
1783 * Implementation details of the RDMA core, don't use in drivers:
1784 */
1785 struct rdma_restrack_entry res;
1786
1787 /* The counter the qp is bind to */
1788 struct rdma_counter *counter;
1789 };
1790
1791 struct ib_dm {
1792 struct ib_device *device;
1793 u32 length;
1794 u32 flags;
1795 struct ib_uobject *uobject;
1796 atomic_t usecnt;
1797 };
1798
1799 struct ib_mr {
1800 struct ib_device *device;
1801 struct ib_pd *pd;
1802 u32 lkey;
1803 u32 rkey;
1804 u64 iova;
1805 u64 length;
1806 unsigned int page_size;
1807 enum ib_mr_type type;
1808 bool need_inval;
1809 union {
1810 struct ib_uobject *uobject; /* user */
1811 struct list_head qp_entry; /* FR */
1812 };
1813
1814 struct ib_dm *dm;
1815 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1816 /*
1817 * Implementation details of the RDMA core, don't use in drivers:
1818 */
1819 struct rdma_restrack_entry res;
1820 };
1821
1822 struct ib_mw {
1823 struct ib_device *device;
1824 struct ib_pd *pd;
1825 struct ib_uobject *uobject;
1826 u32 rkey;
1827 enum ib_mw_type type;
1828 };
1829
1830 /* Supported steering options */
1831 enum ib_flow_attr_type {
1832 /* steering according to rule specifications */
1833 IB_FLOW_ATTR_NORMAL = 0x0,
1834 /* default unicast and multicast rule -
1835 * receive all Eth traffic which isn't steered to any QP
1836 */
1837 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1838 /* default multicast rule -
1839 * receive all Eth multicast traffic which isn't steered to any QP
1840 */
1841 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1842 /* sniffer rule - receive all port traffic */
1843 IB_FLOW_ATTR_SNIFFER = 0x3
1844 };
1845
1846 /* Supported steering header types */
1847 enum ib_flow_spec_type {
1848 /* L2 headers*/
1849 IB_FLOW_SPEC_ETH = 0x20,
1850 IB_FLOW_SPEC_IB = 0x22,
1851 /* L3 header*/
1852 IB_FLOW_SPEC_IPV4 = 0x30,
1853 IB_FLOW_SPEC_IPV6 = 0x31,
1854 IB_FLOW_SPEC_ESP = 0x34,
1855 /* L4 headers*/
1856 IB_FLOW_SPEC_TCP = 0x40,
1857 IB_FLOW_SPEC_UDP = 0x41,
1858 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1859 IB_FLOW_SPEC_GRE = 0x51,
1860 IB_FLOW_SPEC_MPLS = 0x60,
1861 IB_FLOW_SPEC_INNER = 0x100,
1862 /* Actions */
1863 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1864 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1865 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1866 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1867 };
1868 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1869 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1870
1871 enum ib_flow_flags {
1872 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1873 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1874 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1875 };
1876
1877 struct ib_flow_eth_filter {
1878 u8 dst_mac[6];
1879 u8 src_mac[6];
1880 __be16 ether_type;
1881 __be16 vlan_tag;
1882 /* Must be last */
1883 u8 real_sz[];
1884 };
1885
1886 struct ib_flow_spec_eth {
1887 u32 type;
1888 u16 size;
1889 struct ib_flow_eth_filter val;
1890 struct ib_flow_eth_filter mask;
1891 };
1892
1893 struct ib_flow_ib_filter {
1894 __be16 dlid;
1895 __u8 sl;
1896 /* Must be last */
1897 u8 real_sz[];
1898 };
1899
1900 struct ib_flow_spec_ib {
1901 u32 type;
1902 u16 size;
1903 struct ib_flow_ib_filter val;
1904 struct ib_flow_ib_filter mask;
1905 };
1906
1907 /* IPv4 header flags */
1908 enum ib_ipv4_flags {
1909 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1910 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1911 last have this flag set */
1912 };
1913
1914 struct ib_flow_ipv4_filter {
1915 __be32 src_ip;
1916 __be32 dst_ip;
1917 u8 proto;
1918 u8 tos;
1919 u8 ttl;
1920 u8 flags;
1921 /* Must be last */
1922 u8 real_sz[];
1923 };
1924
1925 struct ib_flow_spec_ipv4 {
1926 u32 type;
1927 u16 size;
1928 struct ib_flow_ipv4_filter val;
1929 struct ib_flow_ipv4_filter mask;
1930 };
1931
1932 struct ib_flow_ipv6_filter {
1933 u8 src_ip[16];
1934 u8 dst_ip[16];
1935 __be32 flow_label;
1936 u8 next_hdr;
1937 u8 traffic_class;
1938 u8 hop_limit;
1939 /* Must be last */
1940 u8 real_sz[];
1941 };
1942
1943 struct ib_flow_spec_ipv6 {
1944 u32 type;
1945 u16 size;
1946 struct ib_flow_ipv6_filter val;
1947 struct ib_flow_ipv6_filter mask;
1948 };
1949
1950 struct ib_flow_tcp_udp_filter {
1951 __be16 dst_port;
1952 __be16 src_port;
1953 /* Must be last */
1954 u8 real_sz[];
1955 };
1956
1957 struct ib_flow_spec_tcp_udp {
1958 u32 type;
1959 u16 size;
1960 struct ib_flow_tcp_udp_filter val;
1961 struct ib_flow_tcp_udp_filter mask;
1962 };
1963
1964 struct ib_flow_tunnel_filter {
1965 __be32 tunnel_id;
1966 u8 real_sz[];
1967 };
1968
1969 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1970 * the tunnel_id from val has the vni value
1971 */
1972 struct ib_flow_spec_tunnel {
1973 u32 type;
1974 u16 size;
1975 struct ib_flow_tunnel_filter val;
1976 struct ib_flow_tunnel_filter mask;
1977 };
1978
1979 struct ib_flow_esp_filter {
1980 __be32 spi;
1981 __be32 seq;
1982 /* Must be last */
1983 u8 real_sz[];
1984 };
1985
1986 struct ib_flow_spec_esp {
1987 u32 type;
1988 u16 size;
1989 struct ib_flow_esp_filter val;
1990 struct ib_flow_esp_filter mask;
1991 };
1992
1993 struct ib_flow_gre_filter {
1994 __be16 c_ks_res0_ver;
1995 __be16 protocol;
1996 __be32 key;
1997 /* Must be last */
1998 u8 real_sz[];
1999 };
2000
2001 struct ib_flow_spec_gre {
2002 u32 type;
2003 u16 size;
2004 struct ib_flow_gre_filter val;
2005 struct ib_flow_gre_filter mask;
2006 };
2007
2008 struct ib_flow_mpls_filter {
2009 __be32 tag;
2010 /* Must be last */
2011 u8 real_sz[];
2012 };
2013
2014 struct ib_flow_spec_mpls {
2015 u32 type;
2016 u16 size;
2017 struct ib_flow_mpls_filter val;
2018 struct ib_flow_mpls_filter mask;
2019 };
2020
2021 struct ib_flow_spec_action_tag {
2022 enum ib_flow_spec_type type;
2023 u16 size;
2024 u32 tag_id;
2025 };
2026
2027 struct ib_flow_spec_action_drop {
2028 enum ib_flow_spec_type type;
2029 u16 size;
2030 };
2031
2032 struct ib_flow_spec_action_handle {
2033 enum ib_flow_spec_type type;
2034 u16 size;
2035 struct ib_flow_action *act;
2036 };
2037
2038 enum ib_counters_description {
2039 IB_COUNTER_PACKETS,
2040 IB_COUNTER_BYTES,
2041 };
2042
2043 struct ib_flow_spec_action_count {
2044 enum ib_flow_spec_type type;
2045 u16 size;
2046 struct ib_counters *counters;
2047 };
2048
2049 union ib_flow_spec {
2050 struct {
2051 u32 type;
2052 u16 size;
2053 };
2054 struct ib_flow_spec_eth eth;
2055 struct ib_flow_spec_ib ib;
2056 struct ib_flow_spec_ipv4 ipv4;
2057 struct ib_flow_spec_tcp_udp tcp_udp;
2058 struct ib_flow_spec_ipv6 ipv6;
2059 struct ib_flow_spec_tunnel tunnel;
2060 struct ib_flow_spec_esp esp;
2061 struct ib_flow_spec_gre gre;
2062 struct ib_flow_spec_mpls mpls;
2063 struct ib_flow_spec_action_tag flow_tag;
2064 struct ib_flow_spec_action_drop drop;
2065 struct ib_flow_spec_action_handle action;
2066 struct ib_flow_spec_action_count flow_count;
2067 };
2068
2069 struct ib_flow_attr {
2070 enum ib_flow_attr_type type;
2071 u16 size;
2072 u16 priority;
2073 u32 flags;
2074 u8 num_of_specs;
2075 u32 port;
2076 union ib_flow_spec flows[];
2077 };
2078
2079 struct ib_flow {
2080 struct ib_qp *qp;
2081 struct ib_device *device;
2082 struct ib_uobject *uobject;
2083 };
2084
2085 enum ib_flow_action_type {
2086 IB_FLOW_ACTION_UNSPECIFIED,
2087 IB_FLOW_ACTION_ESP = 1,
2088 };
2089
2090 struct ib_flow_action_attrs_esp_keymats {
2091 enum ib_uverbs_flow_action_esp_keymat protocol;
2092 union {
2093 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2094 } keymat;
2095 };
2096
2097 struct ib_flow_action_attrs_esp_replays {
2098 enum ib_uverbs_flow_action_esp_replay protocol;
2099 union {
2100 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2101 } replay;
2102 };
2103
2104 enum ib_flow_action_attrs_esp_flags {
2105 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2106 * This is done in order to share the same flags between user-space and
2107 * kernel and spare an unnecessary translation.
2108 */
2109
2110 /* Kernel flags */
2111 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2112 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2113 };
2114
2115 struct ib_flow_spec_list {
2116 struct ib_flow_spec_list *next;
2117 union ib_flow_spec spec;
2118 };
2119
2120 struct ib_flow_action_attrs_esp {
2121 struct ib_flow_action_attrs_esp_keymats *keymat;
2122 struct ib_flow_action_attrs_esp_replays *replay;
2123 struct ib_flow_spec_list *encap;
2124 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2125 * Value of 0 is a valid value.
2126 */
2127 u32 esn;
2128 u32 spi;
2129 u32 seq;
2130 u32 tfc_pad;
2131 /* Use enum ib_flow_action_attrs_esp_flags */
2132 u64 flags;
2133 u64 hard_limit_pkts;
2134 };
2135
2136 struct ib_flow_action {
2137 struct ib_device *device;
2138 struct ib_uobject *uobject;
2139 enum ib_flow_action_type type;
2140 atomic_t usecnt;
2141 };
2142
2143 struct ib_mad;
2144
2145 enum ib_process_mad_flags {
2146 IB_MAD_IGNORE_MKEY = 1,
2147 IB_MAD_IGNORE_BKEY = 2,
2148 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2149 };
2150
2151 enum ib_mad_result {
2152 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2153 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2154 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2155 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2156 };
2157
2158 struct ib_port_cache {
2159 u64 subnet_prefix;
2160 struct ib_pkey_cache *pkey;
2161 struct ib_gid_table *gid;
2162 u8 lmc;
2163 enum ib_port_state port_state;
2164 };
2165
2166 struct ib_port_immutable {
2167 int pkey_tbl_len;
2168 int gid_tbl_len;
2169 u32 core_cap_flags;
2170 u32 max_mad_size;
2171 };
2172
2173 struct ib_port_data {
2174 struct ib_device *ib_dev;
2175
2176 struct ib_port_immutable immutable;
2177
2178 spinlock_t pkey_list_lock;
2179
2180 spinlock_t netdev_lock;
2181
2182 struct list_head pkey_list;
2183
2184 struct ib_port_cache cache;
2185
2186 struct net_device __rcu *netdev;
2187 struct hlist_node ndev_hash_link;
2188 struct rdma_port_counter port_counter;
2189 struct ib_port *sysfs;
2190 };
2191
2192 /* rdma netdev type - specifies protocol type */
2193 enum rdma_netdev_t {
2194 RDMA_NETDEV_OPA_VNIC,
2195 RDMA_NETDEV_IPOIB,
2196 };
2197
2198 /**
2199 * struct rdma_netdev - rdma netdev
2200 * For cases where netstack interfacing is required.
2201 */
2202 struct rdma_netdev {
2203 void *clnt_priv;
2204 struct ib_device *hca;
2205 u32 port_num;
2206 int mtu;
2207
2208 /*
2209 * cleanup function must be specified.
2210 * FIXME: This is only used for OPA_VNIC and that usage should be
2211 * removed too.
2212 */
2213 void (*free_rdma_netdev)(struct net_device *netdev);
2214
2215 /* control functions */
2216 void (*set_id)(struct net_device *netdev, int id);
2217 /* send packet */
2218 int (*send)(struct net_device *dev, struct sk_buff *skb,
2219 struct ib_ah *address, u32 dqpn);
2220 /* multicast */
2221 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2222 union ib_gid *gid, u16 mlid,
2223 int set_qkey, u32 qkey);
2224 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2225 union ib_gid *gid, u16 mlid);
2226 /* timeout */
2227 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2228 };
2229
2230 struct rdma_netdev_alloc_params {
2231 size_t sizeof_priv;
2232 unsigned int txqs;
2233 unsigned int rxqs;
2234 void *param;
2235
2236 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2237 struct net_device *netdev, void *param);
2238 };
2239
2240 struct ib_odp_counters {
2241 atomic64_t faults;
2242 atomic64_t invalidations;
2243 atomic64_t prefetch;
2244 };
2245
2246 struct ib_counters {
2247 struct ib_device *device;
2248 struct ib_uobject *uobject;
2249 /* num of objects attached */
2250 atomic_t usecnt;
2251 };
2252
2253 struct ib_counters_read_attr {
2254 u64 *counters_buff;
2255 u32 ncounters;
2256 u32 flags; /* use enum ib_read_counters_flags */
2257 };
2258
2259 struct uverbs_attr_bundle;
2260 struct iw_cm_id;
2261 struct iw_cm_conn_param;
2262
2263 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2264 .size_##ib_struct = \
2265 (sizeof(struct drv_struct) + \
2266 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2267 BUILD_BUG_ON_ZERO( \
2268 !__same_type(((struct drv_struct *)NULL)->member, \
2269 struct ib_struct)))
2270
2271 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2272 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2273 gfp, false))
2274
2275 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2276 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2277 GFP_KERNEL, true))
2278
2279 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2280 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2281
2282 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2283
2284 struct rdma_user_mmap_entry {
2285 struct kref ref;
2286 struct ib_ucontext *ucontext;
2287 unsigned long start_pgoff;
2288 size_t npages;
2289 bool driver_removed;
2290 };
2291
2292 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2293 static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2294 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2295 {
2296 return (u64)entry->start_pgoff << PAGE_SHIFT;
2297 }
2298
2299 /**
2300 * struct ib_device_ops - InfiniBand device operations
2301 * This structure defines all the InfiniBand device operations, providers will
2302 * need to define the supported operations, otherwise they will be set to null.
2303 */
2304 struct ib_device_ops {
2305 struct module *owner;
2306 enum rdma_driver_id driver_id;
2307 u32 uverbs_abi_ver;
2308 unsigned int uverbs_no_driver_id_binding:1;
2309
2310 /*
2311 * NOTE: New drivers should not make use of device_group; instead new
2312 * device parameter should be exposed via netlink command. This
2313 * mechanism exists only for existing drivers.
2314 */
2315 const struct attribute_group *device_group;
2316 const struct attribute_group **port_groups;
2317
2318 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2319 const struct ib_send_wr **bad_send_wr);
2320 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2321 const struct ib_recv_wr **bad_recv_wr);
2322 void (*drain_rq)(struct ib_qp *qp);
2323 void (*drain_sq)(struct ib_qp *qp);
2324 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2325 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2326 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2327 int (*post_srq_recv)(struct ib_srq *srq,
2328 const struct ib_recv_wr *recv_wr,
2329 const struct ib_recv_wr **bad_recv_wr);
2330 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2331 u32 port_num, const struct ib_wc *in_wc,
2332 const struct ib_grh *in_grh,
2333 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2334 size_t *out_mad_size, u16 *out_mad_pkey_index);
2335 int (*query_device)(struct ib_device *device,
2336 struct ib_device_attr *device_attr,
2337 struct ib_udata *udata);
2338 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2339 struct ib_device_modify *device_modify);
2340 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2341 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2342 int comp_vector);
2343 int (*query_port)(struct ib_device *device, u32 port_num,
2344 struct ib_port_attr *port_attr);
2345 int (*modify_port)(struct ib_device *device, u32 port_num,
2346 int port_modify_mask,
2347 struct ib_port_modify *port_modify);
2348 /**
2349 * The following mandatory functions are used only at device
2350 * registration. Keep functions such as these at the end of this
2351 * structure to avoid cache line misses when accessing struct ib_device
2352 * in fast paths.
2353 */
2354 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2355 struct ib_port_immutable *immutable);
2356 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2357 u32 port_num);
2358 /**
2359 * When calling get_netdev, the HW vendor's driver should return the
2360 * net device of device @device at port @port_num or NULL if such
2361 * a net device doesn't exist. The vendor driver should call dev_hold
2362 * on this net device. The HW vendor's device driver must guarantee
2363 * that this function returns NULL before the net device has finished
2364 * NETDEV_UNREGISTER state.
2365 */
2366 struct net_device *(*get_netdev)(struct ib_device *device,
2367 u32 port_num);
2368 /**
2369 * rdma netdev operation
2370 *
2371 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2372 * must return -EOPNOTSUPP if it doesn't support the specified type.
2373 */
2374 struct net_device *(*alloc_rdma_netdev)(
2375 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2376 const char *name, unsigned char name_assign_type,
2377 void (*setup)(struct net_device *));
2378
2379 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2380 enum rdma_netdev_t type,
2381 struct rdma_netdev_alloc_params *params);
2382 /**
2383 * query_gid should be return GID value for @device, when @port_num
2384 * link layer is either IB or iWarp. It is no-op if @port_num port
2385 * is RoCE link layer.
2386 */
2387 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2388 union ib_gid *gid);
2389 /**
2390 * When calling add_gid, the HW vendor's driver should add the gid
2391 * of device of port at gid index available at @attr. Meta-info of
2392 * that gid (for example, the network device related to this gid) is
2393 * available at @attr. @context allows the HW vendor driver to store
2394 * extra information together with a GID entry. The HW vendor driver may
2395 * allocate memory to contain this information and store it in @context
2396 * when a new GID entry is written to. Params are consistent until the
2397 * next call of add_gid or delete_gid. The function should return 0 on
2398 * success or error otherwise. The function could be called
2399 * concurrently for different ports. This function is only called when
2400 * roce_gid_table is used.
2401 */
2402 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2403 /**
2404 * When calling del_gid, the HW vendor's driver should delete the
2405 * gid of device @device at gid index gid_index of port port_num
2406 * available in @attr.
2407 * Upon the deletion of a GID entry, the HW vendor must free any
2408 * allocated memory. The caller will clear @context afterwards.
2409 * This function is only called when roce_gid_table is used.
2410 */
2411 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2412 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2413 u16 *pkey);
2414 int (*alloc_ucontext)(struct ib_ucontext *context,
2415 struct ib_udata *udata);
2416 void (*dealloc_ucontext)(struct ib_ucontext *context);
2417 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2418 /**
2419 * This will be called once refcount of an entry in mmap_xa reaches
2420 * zero. The type of the memory that was mapped may differ between
2421 * entries and is opaque to the rdma_user_mmap interface.
2422 * Therefore needs to be implemented by the driver in mmap_free.
2423 */
2424 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2425 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2426 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2427 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2428 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2429 struct ib_udata *udata);
2430 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2431 struct ib_udata *udata);
2432 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2433 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2434 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2435 int (*create_srq)(struct ib_srq *srq,
2436 struct ib_srq_init_attr *srq_init_attr,
2437 struct ib_udata *udata);
2438 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2439 enum ib_srq_attr_mask srq_attr_mask,
2440 struct ib_udata *udata);
2441 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2442 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2443 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2444 struct ib_udata *udata);
2445 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2446 int qp_attr_mask, struct ib_udata *udata);
2447 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2448 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2449 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2450 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2451 struct ib_udata *udata);
2452 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2453 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2454 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2455 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2456 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2457 u64 virt_addr, int mr_access_flags,
2458 struct ib_udata *udata);
2459 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2460 u64 length, u64 virt_addr, int fd,
2461 int mr_access_flags,
2462 struct ib_udata *udata);
2463 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2464 u64 length, u64 virt_addr,
2465 int mr_access_flags, struct ib_pd *pd,
2466 struct ib_udata *udata);
2467 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2468 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2469 u32 max_num_sg);
2470 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2471 u32 max_num_data_sg,
2472 u32 max_num_meta_sg);
2473 int (*advise_mr)(struct ib_pd *pd,
2474 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2475 struct ib_sge *sg_list, u32 num_sge,
2476 struct uverbs_attr_bundle *attrs);
2477
2478 /*
2479 * Kernel users should universally support relaxed ordering (RO), as
2480 * they are designed to read data only after observing the CQE and use
2481 * the DMA API correctly.
2482 *
2483 * Some drivers implicitly enable RO if platform supports it.
2484 */
2485 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2486 unsigned int *sg_offset);
2487 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2488 struct ib_mr_status *mr_status);
2489 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2490 int (*dealloc_mw)(struct ib_mw *mw);
2491 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2492 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2493 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2494 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2495 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2496 struct ib_flow_attr *flow_attr,
2497 struct ib_udata *udata);
2498 int (*destroy_flow)(struct ib_flow *flow_id);
2499 struct ib_flow_action *(*create_flow_action_esp)(
2500 struct ib_device *device,
2501 const struct ib_flow_action_attrs_esp *attr,
2502 struct uverbs_attr_bundle *attrs);
2503 int (*destroy_flow_action)(struct ib_flow_action *action);
2504 int (*modify_flow_action_esp)(
2505 struct ib_flow_action *action,
2506 const struct ib_flow_action_attrs_esp *attr,
2507 struct uverbs_attr_bundle *attrs);
2508 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2509 int state);
2510 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2511 struct ifla_vf_info *ivf);
2512 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2513 struct ifla_vf_stats *stats);
2514 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2515 struct ifla_vf_guid *node_guid,
2516 struct ifla_vf_guid *port_guid);
2517 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2518 int type);
2519 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2520 struct ib_wq_init_attr *init_attr,
2521 struct ib_udata *udata);
2522 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2523 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2524 u32 wq_attr_mask, struct ib_udata *udata);
2525 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2526 struct ib_rwq_ind_table_init_attr *init_attr,
2527 struct ib_udata *udata);
2528 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2529 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2530 struct ib_ucontext *context,
2531 struct ib_dm_alloc_attr *attr,
2532 struct uverbs_attr_bundle *attrs);
2533 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2534 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2535 struct ib_dm_mr_attr *attr,
2536 struct uverbs_attr_bundle *attrs);
2537 int (*create_counters)(struct ib_counters *counters,
2538 struct uverbs_attr_bundle *attrs);
2539 int (*destroy_counters)(struct ib_counters *counters);
2540 int (*read_counters)(struct ib_counters *counters,
2541 struct ib_counters_read_attr *counters_read_attr,
2542 struct uverbs_attr_bundle *attrs);
2543 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2544 int data_sg_nents, unsigned int *data_sg_offset,
2545 struct scatterlist *meta_sg, int meta_sg_nents,
2546 unsigned int *meta_sg_offset);
2547
2548 /**
2549 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2550 * fill in the driver initialized data. The struct is kfree()'ed by
2551 * the sysfs core when the device is removed. A lifespan of -1 in the
2552 * return struct tells the core to set a default lifespan.
2553 */
2554 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2555 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2556 u32 port_num);
2557 /**
2558 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2559 * @index - The index in the value array we wish to have updated, or
2560 * num_counters if we want all stats updated
2561 * Return codes -
2562 * < 0 - Error, no counters updated
2563 * index - Updated the single counter pointed to by index
2564 * num_counters - Updated all counters (will reset the timestamp
2565 * and prevent further calls for lifespan milliseconds)
2566 * Drivers are allowed to update all counters in leiu of just the
2567 * one given in index at their option
2568 */
2569 int (*get_hw_stats)(struct ib_device *device,
2570 struct rdma_hw_stats *stats, u32 port, int index);
2571
2572 /**
2573 * Allows rdma drivers to add their own restrack attributes.
2574 */
2575 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2576 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2577 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2578 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2579 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2580 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2581 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2582
2583 /* Device lifecycle callbacks */
2584 /*
2585 * Called after the device becomes registered, before clients are
2586 * attached
2587 */
2588 int (*enable_driver)(struct ib_device *dev);
2589 /*
2590 * This is called as part of ib_dealloc_device().
2591 */
2592 void (*dealloc_driver)(struct ib_device *dev);
2593
2594 /* iWarp CM callbacks */
2595 void (*iw_add_ref)(struct ib_qp *qp);
2596 void (*iw_rem_ref)(struct ib_qp *qp);
2597 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2598 int (*iw_connect)(struct iw_cm_id *cm_id,
2599 struct iw_cm_conn_param *conn_param);
2600 int (*iw_accept)(struct iw_cm_id *cm_id,
2601 struct iw_cm_conn_param *conn_param);
2602 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2603 u8 pdata_len);
2604 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2605 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2606 /**
2607 * counter_bind_qp - Bind a QP to a counter.
2608 * @counter - The counter to be bound. If counter->id is zero then
2609 * the driver needs to allocate a new counter and set counter->id
2610 */
2611 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2612 /**
2613 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2614 * counter and bind it onto the default one
2615 */
2616 int (*counter_unbind_qp)(struct ib_qp *qp);
2617 /**
2618 * counter_dealloc -De-allocate the hw counter
2619 */
2620 int (*counter_dealloc)(struct rdma_counter *counter);
2621 /**
2622 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2623 * the driver initialized data.
2624 */
2625 struct rdma_hw_stats *(*counter_alloc_stats)(
2626 struct rdma_counter *counter);
2627 /**
2628 * counter_update_stats - Query the stats value of this counter
2629 */
2630 int (*counter_update_stats)(struct rdma_counter *counter);
2631
2632 /**
2633 * Allows rdma drivers to add their own restrack attributes
2634 * dumped via 'rdma stat' iproute2 command.
2635 */
2636 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2637
2638 /* query driver for its ucontext properties */
2639 int (*query_ucontext)(struct ib_ucontext *context,
2640 struct uverbs_attr_bundle *attrs);
2641
2642 /*
2643 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2644 * Everyone else relies on Linux memory management model.
2645 */
2646 int (*get_numa_node)(struct ib_device *dev);
2647
2648 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2649 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2650 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2651 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2652 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2653 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2654 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2655 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2656 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2657 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2658 };
2659
2660 struct ib_core_device {
2661 /* device must be the first element in structure until,
2662 * union of ib_core_device and device exists in ib_device.
2663 */
2664 struct device dev;
2665 possible_net_t rdma_net;
2666 struct kobject *ports_kobj;
2667 struct list_head port_list;
2668 struct ib_device *owner; /* reach back to owner ib_device */
2669 };
2670
2671 struct rdma_restrack_root;
2672 struct ib_device {
2673 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2674 struct device *dma_device;
2675 struct ib_device_ops ops;
2676 char name[IB_DEVICE_NAME_MAX];
2677 struct rcu_head rcu_head;
2678
2679 struct list_head event_handler_list;
2680 /* Protects event_handler_list */
2681 struct rw_semaphore event_handler_rwsem;
2682
2683 /* Protects QP's event_handler calls and open_qp list */
2684 spinlock_t qp_open_list_lock;
2685
2686 struct rw_semaphore client_data_rwsem;
2687 struct xarray client_data;
2688 struct mutex unregistration_lock;
2689
2690 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2691 rwlock_t cache_lock;
2692 /**
2693 * port_data is indexed by port number
2694 */
2695 struct ib_port_data *port_data;
2696
2697 int num_comp_vectors;
2698
2699 union {
2700 struct device dev;
2701 struct ib_core_device coredev;
2702 };
2703
2704 /* First group is for device attributes,
2705 * Second group is for driver provided attributes (optional).
2706 * Third group is for the hw_stats
2707 * It is a NULL terminated array.
2708 */
2709 const struct attribute_group *groups[4];
2710
2711 u64 uverbs_cmd_mask;
2712
2713 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2714 __be64 node_guid;
2715 u32 local_dma_lkey;
2716 u16 is_switch:1;
2717 /* Indicates kernel verbs support, should not be used in drivers */
2718 u16 kverbs_provider:1;
2719 /* CQ adaptive moderation (RDMA DIM) */
2720 u16 use_cq_dim:1;
2721 u8 node_type;
2722 u32 phys_port_cnt;
2723 struct ib_device_attr attrs;
2724 struct hw_stats_device_data *hw_stats_data;
2725
2726 #ifdef CONFIG_CGROUP_RDMA
2727 struct rdmacg_device cg_device;
2728 #endif
2729
2730 u32 index;
2731
2732 spinlock_t cq_pools_lock;
2733 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2734
2735 struct rdma_restrack_root *res;
2736
2737 const struct uapi_definition *driver_def;
2738
2739 /*
2740 * Positive refcount indicates that the device is currently
2741 * registered and cannot be unregistered.
2742 */
2743 refcount_t refcount;
2744 struct completion unreg_completion;
2745 struct work_struct unregistration_work;
2746
2747 const struct rdma_link_ops *link_ops;
2748
2749 /* Protects compat_devs xarray modifications */
2750 struct mutex compat_devs_mutex;
2751 /* Maintains compat devices for each net namespace */
2752 struct xarray compat_devs;
2753
2754 /* Used by iWarp CM */
2755 char iw_ifname[IFNAMSIZ];
2756 u32 iw_driver_flags;
2757 u32 lag_flags;
2758 };
2759
rdma_zalloc_obj(struct ib_device * dev,size_t size,gfp_t gfp,bool is_numa_aware)2760 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2761 gfp_t gfp, bool is_numa_aware)
2762 {
2763 if (is_numa_aware && dev->ops.get_numa_node)
2764 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2765
2766 return kzalloc(size, gfp);
2767 }
2768
2769 struct ib_client_nl_info;
2770 struct ib_client {
2771 const char *name;
2772 int (*add)(struct ib_device *ibdev);
2773 void (*remove)(struct ib_device *, void *client_data);
2774 void (*rename)(struct ib_device *dev, void *client_data);
2775 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2776 struct ib_client_nl_info *res);
2777 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2778
2779 /* Returns the net_dev belonging to this ib_client and matching the
2780 * given parameters.
2781 * @dev: An RDMA device that the net_dev use for communication.
2782 * @port: A physical port number on the RDMA device.
2783 * @pkey: P_Key that the net_dev uses if applicable.
2784 * @gid: A GID that the net_dev uses to communicate.
2785 * @addr: An IP address the net_dev is configured with.
2786 * @client_data: The device's client data set by ib_set_client_data().
2787 *
2788 * An ib_client that implements a net_dev on top of RDMA devices
2789 * (such as IP over IB) should implement this callback, allowing the
2790 * rdma_cm module to find the right net_dev for a given request.
2791 *
2792 * The caller is responsible for calling dev_put on the returned
2793 * netdev. */
2794 struct net_device *(*get_net_dev_by_params)(
2795 struct ib_device *dev,
2796 u32 port,
2797 u16 pkey,
2798 const union ib_gid *gid,
2799 const struct sockaddr *addr,
2800 void *client_data);
2801
2802 refcount_t uses;
2803 struct completion uses_zero;
2804 u32 client_id;
2805
2806 /* kverbs are not required by the client */
2807 u8 no_kverbs_req:1;
2808 };
2809
2810 /*
2811 * IB block DMA iterator
2812 *
2813 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2814 * to a HW supported page size.
2815 */
2816 struct ib_block_iter {
2817 /* internal states */
2818 struct scatterlist *__sg; /* sg holding the current aligned block */
2819 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2820 unsigned int __sg_nents; /* number of SG entries */
2821 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2822 unsigned int __pg_bit; /* alignment of current block */
2823 };
2824
2825 struct ib_device *_ib_alloc_device(size_t size);
2826 #define ib_alloc_device(drv_struct, member) \
2827 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2828 BUILD_BUG_ON_ZERO(offsetof( \
2829 struct drv_struct, member))), \
2830 struct drv_struct, member)
2831
2832 void ib_dealloc_device(struct ib_device *device);
2833
2834 void ib_get_device_fw_str(struct ib_device *device, char *str);
2835
2836 int ib_register_device(struct ib_device *device, const char *name,
2837 struct device *dma_device);
2838 void ib_unregister_device(struct ib_device *device);
2839 void ib_unregister_driver(enum rdma_driver_id driver_id);
2840 void ib_unregister_device_and_put(struct ib_device *device);
2841 void ib_unregister_device_queued(struct ib_device *ib_dev);
2842
2843 int ib_register_client (struct ib_client *client);
2844 void ib_unregister_client(struct ib_client *client);
2845
2846 void __rdma_block_iter_start(struct ib_block_iter *biter,
2847 struct scatterlist *sglist,
2848 unsigned int nents,
2849 unsigned long pgsz);
2850 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2851
2852 /**
2853 * rdma_block_iter_dma_address - get the aligned dma address of the current
2854 * block held by the block iterator.
2855 * @biter: block iterator holding the memory block
2856 */
2857 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2858 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2859 {
2860 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2861 }
2862
2863 /**
2864 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2865 * @sglist: sglist to iterate over
2866 * @biter: block iterator holding the memory block
2867 * @nents: maximum number of sg entries to iterate over
2868 * @pgsz: best HW supported page size to use
2869 *
2870 * Callers may use rdma_block_iter_dma_address() to get each
2871 * blocks aligned DMA address.
2872 */
2873 #define rdma_for_each_block(sglist, biter, nents, pgsz) \
2874 for (__rdma_block_iter_start(biter, sglist, nents, \
2875 pgsz); \
2876 __rdma_block_iter_next(biter);)
2877
2878 /**
2879 * ib_get_client_data - Get IB client context
2880 * @device:Device to get context for
2881 * @client:Client to get context for
2882 *
2883 * ib_get_client_data() returns the client context data set with
2884 * ib_set_client_data(). This can only be called while the client is
2885 * registered to the device, once the ib_client remove() callback returns this
2886 * cannot be called.
2887 */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2888 static inline void *ib_get_client_data(struct ib_device *device,
2889 struct ib_client *client)
2890 {
2891 return xa_load(&device->client_data, client->client_id);
2892 }
2893 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2894 void *data);
2895 void ib_set_device_ops(struct ib_device *device,
2896 const struct ib_device_ops *ops);
2897
2898 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2899 unsigned long pfn, unsigned long size, pgprot_t prot,
2900 struct rdma_user_mmap_entry *entry);
2901 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2902 struct rdma_user_mmap_entry *entry,
2903 size_t length);
2904 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2905 struct rdma_user_mmap_entry *entry,
2906 size_t length, u32 min_pgoff,
2907 u32 max_pgoff);
2908
2909 struct rdma_user_mmap_entry *
2910 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2911 unsigned long pgoff);
2912 struct rdma_user_mmap_entry *
2913 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2914 struct vm_area_struct *vma);
2915 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2916
2917 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2918
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2919 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2920 {
2921 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2922 }
2923
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2924 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2925 {
2926 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2927 }
2928
ib_is_buffer_cleared(const void __user * p,size_t len)2929 static inline bool ib_is_buffer_cleared(const void __user *p,
2930 size_t len)
2931 {
2932 bool ret;
2933 u8 *buf;
2934
2935 if (len > USHRT_MAX)
2936 return false;
2937
2938 buf = memdup_user(p, len);
2939 if (IS_ERR(buf))
2940 return false;
2941
2942 ret = !memchr_inv(buf, 0, len);
2943 kfree(buf);
2944 return ret;
2945 }
2946
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2947 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2948 size_t offset,
2949 size_t len)
2950 {
2951 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2952 }
2953
2954 /**
2955 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2956 * contains all required attributes and no attributes not allowed for
2957 * the given QP state transition.
2958 * @cur_state: Current QP state
2959 * @next_state: Next QP state
2960 * @type: QP type
2961 * @mask: Mask of supplied QP attributes
2962 *
2963 * This function is a helper function that a low-level driver's
2964 * modify_qp method can use to validate the consumer's input. It
2965 * checks that cur_state and next_state are valid QP states, that a
2966 * transition from cur_state to next_state is allowed by the IB spec,
2967 * and that the attribute mask supplied is allowed for the transition.
2968 */
2969 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2970 enum ib_qp_type type, enum ib_qp_attr_mask mask);
2971
2972 void ib_register_event_handler(struct ib_event_handler *event_handler);
2973 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2974 void ib_dispatch_event(const struct ib_event *event);
2975
2976 int ib_query_port(struct ib_device *device,
2977 u32 port_num, struct ib_port_attr *port_attr);
2978
2979 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2980 u32 port_num);
2981
2982 /**
2983 * rdma_cap_ib_switch - Check if the device is IB switch
2984 * @device: Device to check
2985 *
2986 * Device driver is responsible for setting is_switch bit on
2987 * in ib_device structure at init time.
2988 *
2989 * Return: true if the device is IB switch.
2990 */
rdma_cap_ib_switch(const struct ib_device * device)2991 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2992 {
2993 return device->is_switch;
2994 }
2995
2996 /**
2997 * rdma_start_port - Return the first valid port number for the device
2998 * specified
2999 *
3000 * @device: Device to be checked
3001 *
3002 * Return start port number
3003 */
rdma_start_port(const struct ib_device * device)3004 static inline u32 rdma_start_port(const struct ib_device *device)
3005 {
3006 return rdma_cap_ib_switch(device) ? 0 : 1;
3007 }
3008
3009 /**
3010 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3011 * @device - The struct ib_device * to iterate over
3012 * @iter - The unsigned int to store the port number
3013 */
3014 #define rdma_for_each_port(device, iter) \
3015 for (iter = rdma_start_port(device + \
3016 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3017 iter))); \
3018 iter <= rdma_end_port(device); iter++)
3019
3020 /**
3021 * rdma_end_port - Return the last valid port number for the device
3022 * specified
3023 *
3024 * @device: Device to be checked
3025 *
3026 * Return last port number
3027 */
rdma_end_port(const struct ib_device * device)3028 static inline u32 rdma_end_port(const struct ib_device *device)
3029 {
3030 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3031 }
3032
rdma_is_port_valid(const struct ib_device * device,unsigned int port)3033 static inline int rdma_is_port_valid(const struct ib_device *device,
3034 unsigned int port)
3035 {
3036 return (port >= rdma_start_port(device) &&
3037 port <= rdma_end_port(device));
3038 }
3039
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3040 static inline bool rdma_is_grh_required(const struct ib_device *device,
3041 u32 port_num)
3042 {
3043 return device->port_data[port_num].immutable.core_cap_flags &
3044 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3045 }
3046
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3047 static inline bool rdma_protocol_ib(const struct ib_device *device,
3048 u32 port_num)
3049 {
3050 return device->port_data[port_num].immutable.core_cap_flags &
3051 RDMA_CORE_CAP_PROT_IB;
3052 }
3053
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3054 static inline bool rdma_protocol_roce(const struct ib_device *device,
3055 u32 port_num)
3056 {
3057 return device->port_data[port_num].immutable.core_cap_flags &
3058 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3059 }
3060
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3061 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3062 u32 port_num)
3063 {
3064 return device->port_data[port_num].immutable.core_cap_flags &
3065 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3066 }
3067
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3068 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3069 u32 port_num)
3070 {
3071 return device->port_data[port_num].immutable.core_cap_flags &
3072 RDMA_CORE_CAP_PROT_ROCE;
3073 }
3074
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3075 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3076 u32 port_num)
3077 {
3078 return device->port_data[port_num].immutable.core_cap_flags &
3079 RDMA_CORE_CAP_PROT_IWARP;
3080 }
3081
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3082 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3083 u32 port_num)
3084 {
3085 return rdma_protocol_ib(device, port_num) ||
3086 rdma_protocol_roce(device, port_num);
3087 }
3088
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3089 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3090 u32 port_num)
3091 {
3092 return device->port_data[port_num].immutable.core_cap_flags &
3093 RDMA_CORE_CAP_PROT_RAW_PACKET;
3094 }
3095
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3096 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3097 u32 port_num)
3098 {
3099 return device->port_data[port_num].immutable.core_cap_flags &
3100 RDMA_CORE_CAP_PROT_USNIC;
3101 }
3102
3103 /**
3104 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3105 * Management Datagrams.
3106 * @device: Device to check
3107 * @port_num: Port number to check
3108 *
3109 * Management Datagrams (MAD) are a required part of the InfiniBand
3110 * specification and are supported on all InfiniBand devices. A slightly
3111 * extended version are also supported on OPA interfaces.
3112 *
3113 * Return: true if the port supports sending/receiving of MAD packets.
3114 */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3115 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3116 {
3117 return device->port_data[port_num].immutable.core_cap_flags &
3118 RDMA_CORE_CAP_IB_MAD;
3119 }
3120
3121 /**
3122 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3123 * Management Datagrams.
3124 * @device: Device to check
3125 * @port_num: Port number to check
3126 *
3127 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3128 * datagrams with their own versions. These OPA MADs share many but not all of
3129 * the characteristics of InfiniBand MADs.
3130 *
3131 * OPA MADs differ in the following ways:
3132 *
3133 * 1) MADs are variable size up to 2K
3134 * IBTA defined MADs remain fixed at 256 bytes
3135 * 2) OPA SMPs must carry valid PKeys
3136 * 3) OPA SMP packets are a different format
3137 *
3138 * Return: true if the port supports OPA MAD packet formats.
3139 */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3140 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3141 {
3142 return device->port_data[port_num].immutable.core_cap_flags &
3143 RDMA_CORE_CAP_OPA_MAD;
3144 }
3145
3146 /**
3147 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3148 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3149 * @device: Device to check
3150 * @port_num: Port number to check
3151 *
3152 * Each InfiniBand node is required to provide a Subnet Management Agent
3153 * that the subnet manager can access. Prior to the fabric being fully
3154 * configured by the subnet manager, the SMA is accessed via a well known
3155 * interface called the Subnet Management Interface (SMI). This interface
3156 * uses directed route packets to communicate with the SM to get around the
3157 * chicken and egg problem of the SM needing to know what's on the fabric
3158 * in order to configure the fabric, and needing to configure the fabric in
3159 * order to send packets to the devices on the fabric. These directed
3160 * route packets do not need the fabric fully configured in order to reach
3161 * their destination. The SMI is the only method allowed to send
3162 * directed route packets on an InfiniBand fabric.
3163 *
3164 * Return: true if the port provides an SMI.
3165 */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3166 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3167 {
3168 return device->port_data[port_num].immutable.core_cap_flags &
3169 RDMA_CORE_CAP_IB_SMI;
3170 }
3171
3172 /**
3173 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3174 * Communication Manager.
3175 * @device: Device to check
3176 * @port_num: Port number to check
3177 *
3178 * The InfiniBand Communication Manager is one of many pre-defined General
3179 * Service Agents (GSA) that are accessed via the General Service
3180 * Interface (GSI). It's role is to facilitate establishment of connections
3181 * between nodes as well as other management related tasks for established
3182 * connections.
3183 *
3184 * Return: true if the port supports an IB CM (this does not guarantee that
3185 * a CM is actually running however).
3186 */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3187 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3188 {
3189 return device->port_data[port_num].immutable.core_cap_flags &
3190 RDMA_CORE_CAP_IB_CM;
3191 }
3192
3193 /**
3194 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3195 * Communication Manager.
3196 * @device: Device to check
3197 * @port_num: Port number to check
3198 *
3199 * Similar to above, but specific to iWARP connections which have a different
3200 * managment protocol than InfiniBand.
3201 *
3202 * Return: true if the port supports an iWARP CM (this does not guarantee that
3203 * a CM is actually running however).
3204 */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3205 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3206 {
3207 return device->port_data[port_num].immutable.core_cap_flags &
3208 RDMA_CORE_CAP_IW_CM;
3209 }
3210
3211 /**
3212 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3213 * Subnet Administration.
3214 * @device: Device to check
3215 * @port_num: Port number to check
3216 *
3217 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3218 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3219 * fabrics, devices should resolve routes to other hosts by contacting the
3220 * SA to query the proper route.
3221 *
3222 * Return: true if the port should act as a client to the fabric Subnet
3223 * Administration interface. This does not imply that the SA service is
3224 * running locally.
3225 */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3226 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3227 {
3228 return device->port_data[port_num].immutable.core_cap_flags &
3229 RDMA_CORE_CAP_IB_SA;
3230 }
3231
3232 /**
3233 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3234 * Multicast.
3235 * @device: Device to check
3236 * @port_num: Port number to check
3237 *
3238 * InfiniBand multicast registration is more complex than normal IPv4 or
3239 * IPv6 multicast registration. Each Host Channel Adapter must register
3240 * with the Subnet Manager when it wishes to join a multicast group. It
3241 * should do so only once regardless of how many queue pairs it subscribes
3242 * to this group. And it should leave the group only after all queue pairs
3243 * attached to the group have been detached.
3244 *
3245 * Return: true if the port must undertake the additional adminstrative
3246 * overhead of registering/unregistering with the SM and tracking of the
3247 * total number of queue pairs attached to the multicast group.
3248 */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3249 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3250 u32 port_num)
3251 {
3252 return rdma_cap_ib_sa(device, port_num);
3253 }
3254
3255 /**
3256 * rdma_cap_af_ib - Check if the port of device has the capability
3257 * Native Infiniband Address.
3258 * @device: Device to check
3259 * @port_num: Port number to check
3260 *
3261 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3262 * GID. RoCE uses a different mechanism, but still generates a GID via
3263 * a prescribed mechanism and port specific data.
3264 *
3265 * Return: true if the port uses a GID address to identify devices on the
3266 * network.
3267 */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3268 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3269 {
3270 return device->port_data[port_num].immutable.core_cap_flags &
3271 RDMA_CORE_CAP_AF_IB;
3272 }
3273
3274 /**
3275 * rdma_cap_eth_ah - Check if the port of device has the capability
3276 * Ethernet Address Handle.
3277 * @device: Device to check
3278 * @port_num: Port number to check
3279 *
3280 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3281 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3282 * port. Normally, packet headers are generated by the sending host
3283 * adapter, but when sending connectionless datagrams, we must manually
3284 * inject the proper headers for the fabric we are communicating over.
3285 *
3286 * Return: true if we are running as a RoCE port and must force the
3287 * addition of a Global Route Header built from our Ethernet Address
3288 * Handle into our header list for connectionless packets.
3289 */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3290 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3291 {
3292 return device->port_data[port_num].immutable.core_cap_flags &
3293 RDMA_CORE_CAP_ETH_AH;
3294 }
3295
3296 /**
3297 * rdma_cap_opa_ah - Check if the port of device supports
3298 * OPA Address handles
3299 * @device: Device to check
3300 * @port_num: Port number to check
3301 *
3302 * Return: true if we are running on an OPA device which supports
3303 * the extended OPA addressing.
3304 */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3305 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3306 {
3307 return (device->port_data[port_num].immutable.core_cap_flags &
3308 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3309 }
3310
3311 /**
3312 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3313 *
3314 * @device: Device
3315 * @port_num: Port number
3316 *
3317 * This MAD size includes the MAD headers and MAD payload. No other headers
3318 * are included.
3319 *
3320 * Return the max MAD size required by the Port. Will return 0 if the port
3321 * does not support MADs
3322 */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3323 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3324 u32 port_num)
3325 {
3326 return device->port_data[port_num].immutable.max_mad_size;
3327 }
3328
3329 /**
3330 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3331 * @device: Device to check
3332 * @port_num: Port number to check
3333 *
3334 * RoCE GID table mechanism manages the various GIDs for a device.
3335 *
3336 * NOTE: if allocating the port's GID table has failed, this call will still
3337 * return true, but any RoCE GID table API will fail.
3338 *
3339 * Return: true if the port uses RoCE GID table mechanism in order to manage
3340 * its GIDs.
3341 */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3342 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3343 u32 port_num)
3344 {
3345 return rdma_protocol_roce(device, port_num) &&
3346 device->ops.add_gid && device->ops.del_gid;
3347 }
3348
3349 /*
3350 * Check if the device supports READ W/ INVALIDATE.
3351 */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3352 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3353 {
3354 /*
3355 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3356 * has support for it yet.
3357 */
3358 return rdma_protocol_iwarp(dev, port_num);
3359 }
3360
3361 /**
3362 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3363 * @device: Device
3364 * @port_num: 1 based Port number
3365 *
3366 * Return true if port is an Intel OPA port , false if not
3367 */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3368 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3369 u32 port_num)
3370 {
3371 return (device->port_data[port_num].immutable.core_cap_flags &
3372 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3373 }
3374
3375 /**
3376 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3377 * @device: Device
3378 * @port_num: Port number
3379 * @mtu: enum value of MTU
3380 *
3381 * Return the MTU size supported by the port as an integer value. Will return
3382 * -1 if enum value of mtu is not supported.
3383 */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3384 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3385 int mtu)
3386 {
3387 if (rdma_core_cap_opa_port(device, port))
3388 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3389 else
3390 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3391 }
3392
3393 /**
3394 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3395 * @device: Device
3396 * @port_num: Port number
3397 * @attr: port attribute
3398 *
3399 * Return the MTU size supported by the port as an integer value.
3400 */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3401 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3402 struct ib_port_attr *attr)
3403 {
3404 if (rdma_core_cap_opa_port(device, port))
3405 return attr->phys_mtu;
3406 else
3407 return ib_mtu_enum_to_int(attr->max_mtu);
3408 }
3409
3410 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3411 int state);
3412 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3413 struct ifla_vf_info *info);
3414 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3415 struct ifla_vf_stats *stats);
3416 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3417 struct ifla_vf_guid *node_guid,
3418 struct ifla_vf_guid *port_guid);
3419 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3420 int type);
3421
3422 int ib_query_pkey(struct ib_device *device,
3423 u32 port_num, u16 index, u16 *pkey);
3424
3425 int ib_modify_device(struct ib_device *device,
3426 int device_modify_mask,
3427 struct ib_device_modify *device_modify);
3428
3429 int ib_modify_port(struct ib_device *device,
3430 u32 port_num, int port_modify_mask,
3431 struct ib_port_modify *port_modify);
3432
3433 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3434 u32 *port_num, u16 *index);
3435
3436 int ib_find_pkey(struct ib_device *device,
3437 u32 port_num, u16 pkey, u16 *index);
3438
3439 enum ib_pd_flags {
3440 /*
3441 * Create a memory registration for all memory in the system and place
3442 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3443 * ULPs to avoid the overhead of dynamic MRs.
3444 *
3445 * This flag is generally considered unsafe and must only be used in
3446 * extremly trusted environments. Every use of it will log a warning
3447 * in the kernel log.
3448 */
3449 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3450 };
3451
3452 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3453 const char *caller);
3454
3455 /**
3456 * ib_alloc_pd - Allocates an unused protection domain.
3457 * @device: The device on which to allocate the protection domain.
3458 * @flags: protection domain flags
3459 *
3460 * A protection domain object provides an association between QPs, shared
3461 * receive queues, address handles, memory regions, and memory windows.
3462 *
3463 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3464 * memory operations.
3465 */
3466 #define ib_alloc_pd(device, flags) \
3467 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3468
3469 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3470
3471 /**
3472 * ib_dealloc_pd - Deallocate kernel PD
3473 * @pd: The protection domain
3474 *
3475 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3476 */
ib_dealloc_pd(struct ib_pd * pd)3477 static inline void ib_dealloc_pd(struct ib_pd *pd)
3478 {
3479 int ret = ib_dealloc_pd_user(pd, NULL);
3480
3481 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3482 }
3483
3484 enum rdma_create_ah_flags {
3485 /* In a sleepable context */
3486 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3487 };
3488
3489 /**
3490 * rdma_create_ah - Creates an address handle for the given address vector.
3491 * @pd: The protection domain associated with the address handle.
3492 * @ah_attr: The attributes of the address vector.
3493 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3494 *
3495 * The address handle is used to reference a local or global destination
3496 * in all UD QP post sends.
3497 */
3498 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3499 u32 flags);
3500
3501 /**
3502 * rdma_create_user_ah - Creates an address handle for the given address vector.
3503 * It resolves destination mac address for ah attribute of RoCE type.
3504 * @pd: The protection domain associated with the address handle.
3505 * @ah_attr: The attributes of the address vector.
3506 * @udata: pointer to user's input output buffer information need by
3507 * provider driver.
3508 *
3509 * It returns 0 on success and returns appropriate error code on error.
3510 * The address handle is used to reference a local or global destination
3511 * in all UD QP post sends.
3512 */
3513 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3514 struct rdma_ah_attr *ah_attr,
3515 struct ib_udata *udata);
3516 /**
3517 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3518 * work completion.
3519 * @hdr: the L3 header to parse
3520 * @net_type: type of header to parse
3521 * @sgid: place to store source gid
3522 * @dgid: place to store destination gid
3523 */
3524 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3525 enum rdma_network_type net_type,
3526 union ib_gid *sgid, union ib_gid *dgid);
3527
3528 /**
3529 * ib_get_rdma_header_version - Get the header version
3530 * @hdr: the L3 header to parse
3531 */
3532 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3533
3534 /**
3535 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3536 * work completion.
3537 * @device: Device on which the received message arrived.
3538 * @port_num: Port on which the received message arrived.
3539 * @wc: Work completion associated with the received message.
3540 * @grh: References the received global route header. This parameter is
3541 * ignored unless the work completion indicates that the GRH is valid.
3542 * @ah_attr: Returned attributes that can be used when creating an address
3543 * handle for replying to the message.
3544 * When ib_init_ah_attr_from_wc() returns success,
3545 * (a) for IB link layer it optionally contains a reference to SGID attribute
3546 * when GRH is present for IB link layer.
3547 * (b) for RoCE link layer it contains a reference to SGID attribute.
3548 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3549 * attributes which are initialized using ib_init_ah_attr_from_wc().
3550 *
3551 */
3552 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3553 const struct ib_wc *wc, const struct ib_grh *grh,
3554 struct rdma_ah_attr *ah_attr);
3555
3556 /**
3557 * ib_create_ah_from_wc - Creates an address handle associated with the
3558 * sender of the specified work completion.
3559 * @pd: The protection domain associated with the address handle.
3560 * @wc: Work completion information associated with a received message.
3561 * @grh: References the received global route header. This parameter is
3562 * ignored unless the work completion indicates that the GRH is valid.
3563 * @port_num: The outbound port number to associate with the address.
3564 *
3565 * The address handle is used to reference a local or global destination
3566 * in all UD QP post sends.
3567 */
3568 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3569 const struct ib_grh *grh, u32 port_num);
3570
3571 /**
3572 * rdma_modify_ah - Modifies the address vector associated with an address
3573 * handle.
3574 * @ah: The address handle to modify.
3575 * @ah_attr: The new address vector attributes to associate with the
3576 * address handle.
3577 */
3578 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3579
3580 /**
3581 * rdma_query_ah - Queries the address vector associated with an address
3582 * handle.
3583 * @ah: The address handle to query.
3584 * @ah_attr: The address vector attributes associated with the address
3585 * handle.
3586 */
3587 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3588
3589 enum rdma_destroy_ah_flags {
3590 /* In a sleepable context */
3591 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3592 };
3593
3594 /**
3595 * rdma_destroy_ah_user - Destroys an address handle.
3596 * @ah: The address handle to destroy.
3597 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3598 * @udata: Valid user data or NULL for kernel objects
3599 */
3600 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3601
3602 /**
3603 * rdma_destroy_ah - Destroys an kernel address handle.
3604 * @ah: The address handle to destroy.
3605 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3606 *
3607 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3608 */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3609 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3610 {
3611 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3612
3613 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3614 }
3615
3616 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3617 struct ib_srq_init_attr *srq_init_attr,
3618 struct ib_usrq_object *uobject,
3619 struct ib_udata *udata);
3620 static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3621 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3622 {
3623 if (!pd->device->ops.create_srq)
3624 return ERR_PTR(-EOPNOTSUPP);
3625
3626 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3627 }
3628
3629 /**
3630 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3631 * @srq: The SRQ to modify.
3632 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3633 * the current values of selected SRQ attributes are returned.
3634 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3635 * are being modified.
3636 *
3637 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3638 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3639 * the number of receives queued drops below the limit.
3640 */
3641 int ib_modify_srq(struct ib_srq *srq,
3642 struct ib_srq_attr *srq_attr,
3643 enum ib_srq_attr_mask srq_attr_mask);
3644
3645 /**
3646 * ib_query_srq - Returns the attribute list and current values for the
3647 * specified SRQ.
3648 * @srq: The SRQ to query.
3649 * @srq_attr: The attributes of the specified SRQ.
3650 */
3651 int ib_query_srq(struct ib_srq *srq,
3652 struct ib_srq_attr *srq_attr);
3653
3654 /**
3655 * ib_destroy_srq_user - Destroys the specified SRQ.
3656 * @srq: The SRQ to destroy.
3657 * @udata: Valid user data or NULL for kernel objects
3658 */
3659 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3660
3661 /**
3662 * ib_destroy_srq - Destroys the specified kernel SRQ.
3663 * @srq: The SRQ to destroy.
3664 *
3665 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3666 */
ib_destroy_srq(struct ib_srq * srq)3667 static inline void ib_destroy_srq(struct ib_srq *srq)
3668 {
3669 int ret = ib_destroy_srq_user(srq, NULL);
3670
3671 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3672 }
3673
3674 /**
3675 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3676 * @srq: The SRQ to post the work request on.
3677 * @recv_wr: A list of work requests to post on the receive queue.
3678 * @bad_recv_wr: On an immediate failure, this parameter will reference
3679 * the work request that failed to be posted on the QP.
3680 */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3681 static inline int ib_post_srq_recv(struct ib_srq *srq,
3682 const struct ib_recv_wr *recv_wr,
3683 const struct ib_recv_wr **bad_recv_wr)
3684 {
3685 const struct ib_recv_wr *dummy;
3686
3687 return srq->device->ops.post_srq_recv(srq, recv_wr,
3688 bad_recv_wr ? : &dummy);
3689 }
3690
3691 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3692 struct ib_qp_init_attr *qp_init_attr,
3693 const char *caller);
3694 /**
3695 * ib_create_qp - Creates a kernel QP associated with the specific protection
3696 * domain.
3697 * @pd: The protection domain associated with the QP.
3698 * @init_attr: A list of initial attributes required to create the
3699 * QP. If QP creation succeeds, then the attributes are updated to
3700 * the actual capabilities of the created QP.
3701 */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3702 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3703 struct ib_qp_init_attr *init_attr)
3704 {
3705 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3706 }
3707
3708 /**
3709 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3710 * @qp: The QP to modify.
3711 * @attr: On input, specifies the QP attributes to modify. On output,
3712 * the current values of selected QP attributes are returned.
3713 * @attr_mask: A bit-mask used to specify which attributes of the QP
3714 * are being modified.
3715 * @udata: pointer to user's input output buffer information
3716 * are being modified.
3717 * It returns 0 on success and returns appropriate error code on error.
3718 */
3719 int ib_modify_qp_with_udata(struct ib_qp *qp,
3720 struct ib_qp_attr *attr,
3721 int attr_mask,
3722 struct ib_udata *udata);
3723
3724 /**
3725 * ib_modify_qp - Modifies the attributes for the specified QP and then
3726 * transitions the QP to the given state.
3727 * @qp: The QP to modify.
3728 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3729 * the current values of selected QP attributes are returned.
3730 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3731 * are being modified.
3732 */
3733 int ib_modify_qp(struct ib_qp *qp,
3734 struct ib_qp_attr *qp_attr,
3735 int qp_attr_mask);
3736
3737 /**
3738 * ib_query_qp - Returns the attribute list and current values for the
3739 * specified QP.
3740 * @qp: The QP to query.
3741 * @qp_attr: The attributes of the specified QP.
3742 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3743 * @qp_init_attr: Additional attributes of the selected QP.
3744 *
3745 * The qp_attr_mask may be used to limit the query to gathering only the
3746 * selected attributes.
3747 */
3748 int ib_query_qp(struct ib_qp *qp,
3749 struct ib_qp_attr *qp_attr,
3750 int qp_attr_mask,
3751 struct ib_qp_init_attr *qp_init_attr);
3752
3753 /**
3754 * ib_destroy_qp - Destroys the specified QP.
3755 * @qp: The QP to destroy.
3756 * @udata: Valid udata or NULL for kernel objects
3757 */
3758 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3759
3760 /**
3761 * ib_destroy_qp - Destroys the specified kernel QP.
3762 * @qp: The QP to destroy.
3763 *
3764 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3765 */
ib_destroy_qp(struct ib_qp * qp)3766 static inline int ib_destroy_qp(struct ib_qp *qp)
3767 {
3768 return ib_destroy_qp_user(qp, NULL);
3769 }
3770
3771 /**
3772 * ib_open_qp - Obtain a reference to an existing sharable QP.
3773 * @xrcd - XRC domain
3774 * @qp_open_attr: Attributes identifying the QP to open.
3775 *
3776 * Returns a reference to a sharable QP.
3777 */
3778 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3779 struct ib_qp_open_attr *qp_open_attr);
3780
3781 /**
3782 * ib_close_qp - Release an external reference to a QP.
3783 * @qp: The QP handle to release
3784 *
3785 * The opened QP handle is released by the caller. The underlying
3786 * shared QP is not destroyed until all internal references are released.
3787 */
3788 int ib_close_qp(struct ib_qp *qp);
3789
3790 /**
3791 * ib_post_send - Posts a list of work requests to the send queue of
3792 * the specified QP.
3793 * @qp: The QP to post the work request on.
3794 * @send_wr: A list of work requests to post on the send queue.
3795 * @bad_send_wr: On an immediate failure, this parameter will reference
3796 * the work request that failed to be posted on the QP.
3797 *
3798 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3799 * error is returned, the QP state shall not be affected,
3800 * ib_post_send() will return an immediate error after queueing any
3801 * earlier work requests in the list.
3802 */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3803 static inline int ib_post_send(struct ib_qp *qp,
3804 const struct ib_send_wr *send_wr,
3805 const struct ib_send_wr **bad_send_wr)
3806 {
3807 const struct ib_send_wr *dummy;
3808
3809 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3810 }
3811
3812 /**
3813 * ib_post_recv - Posts a list of work requests to the receive queue of
3814 * the specified QP.
3815 * @qp: The QP to post the work request on.
3816 * @recv_wr: A list of work requests to post on the receive queue.
3817 * @bad_recv_wr: On an immediate failure, this parameter will reference
3818 * the work request that failed to be posted on the QP.
3819 */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3820 static inline int ib_post_recv(struct ib_qp *qp,
3821 const struct ib_recv_wr *recv_wr,
3822 const struct ib_recv_wr **bad_recv_wr)
3823 {
3824 const struct ib_recv_wr *dummy;
3825
3826 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3827 }
3828
3829 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3830 int comp_vector, enum ib_poll_context poll_ctx,
3831 const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3832 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3833 int nr_cqe, int comp_vector,
3834 enum ib_poll_context poll_ctx)
3835 {
3836 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3837 KBUILD_MODNAME);
3838 }
3839
3840 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3841 int nr_cqe, enum ib_poll_context poll_ctx,
3842 const char *caller);
3843
3844 /**
3845 * ib_alloc_cq_any: Allocate kernel CQ
3846 * @dev: The IB device
3847 * @private: Private data attached to the CQE
3848 * @nr_cqe: Number of CQEs in the CQ
3849 * @poll_ctx: Context used for polling the CQ
3850 */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3851 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3852 void *private, int nr_cqe,
3853 enum ib_poll_context poll_ctx)
3854 {
3855 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3856 KBUILD_MODNAME);
3857 }
3858
3859 void ib_free_cq(struct ib_cq *cq);
3860 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3861
3862 /**
3863 * ib_create_cq - Creates a CQ on the specified device.
3864 * @device: The device on which to create the CQ.
3865 * @comp_handler: A user-specified callback that is invoked when a
3866 * completion event occurs on the CQ.
3867 * @event_handler: A user-specified callback that is invoked when an
3868 * asynchronous event not associated with a completion occurs on the CQ.
3869 * @cq_context: Context associated with the CQ returned to the user via
3870 * the associated completion and event handlers.
3871 * @cq_attr: The attributes the CQ should be created upon.
3872 *
3873 * Users can examine the cq structure to determine the actual CQ size.
3874 */
3875 struct ib_cq *__ib_create_cq(struct ib_device *device,
3876 ib_comp_handler comp_handler,
3877 void (*event_handler)(struct ib_event *, void *),
3878 void *cq_context,
3879 const struct ib_cq_init_attr *cq_attr,
3880 const char *caller);
3881 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3882 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3883
3884 /**
3885 * ib_resize_cq - Modifies the capacity of the CQ.
3886 * @cq: The CQ to resize.
3887 * @cqe: The minimum size of the CQ.
3888 *
3889 * Users can examine the cq structure to determine the actual CQ size.
3890 */
3891 int ib_resize_cq(struct ib_cq *cq, int cqe);
3892
3893 /**
3894 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3895 * @cq: The CQ to modify.
3896 * @cq_count: number of CQEs that will trigger an event
3897 * @cq_period: max period of time in usec before triggering an event
3898 *
3899 */
3900 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3901
3902 /**
3903 * ib_destroy_cq_user - Destroys the specified CQ.
3904 * @cq: The CQ to destroy.
3905 * @udata: Valid user data or NULL for kernel objects
3906 */
3907 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3908
3909 /**
3910 * ib_destroy_cq - Destroys the specified kernel CQ.
3911 * @cq: The CQ to destroy.
3912 *
3913 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3914 */
ib_destroy_cq(struct ib_cq * cq)3915 static inline void ib_destroy_cq(struct ib_cq *cq)
3916 {
3917 int ret = ib_destroy_cq_user(cq, NULL);
3918
3919 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3920 }
3921
3922 /**
3923 * ib_poll_cq - poll a CQ for completion(s)
3924 * @cq:the CQ being polled
3925 * @num_entries:maximum number of completions to return
3926 * @wc:array of at least @num_entries &struct ib_wc where completions
3927 * will be returned
3928 *
3929 * Poll a CQ for (possibly multiple) completions. If the return value
3930 * is < 0, an error occurred. If the return value is >= 0, it is the
3931 * number of completions returned. If the return value is
3932 * non-negative and < num_entries, then the CQ was emptied.
3933 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3934 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3935 struct ib_wc *wc)
3936 {
3937 return cq->device->ops.poll_cq(cq, num_entries, wc);
3938 }
3939
3940 /**
3941 * ib_req_notify_cq - Request completion notification on a CQ.
3942 * @cq: The CQ to generate an event for.
3943 * @flags:
3944 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3945 * to request an event on the next solicited event or next work
3946 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3947 * may also be |ed in to request a hint about missed events, as
3948 * described below.
3949 *
3950 * Return Value:
3951 * < 0 means an error occurred while requesting notification
3952 * == 0 means notification was requested successfully, and if
3953 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3954 * were missed and it is safe to wait for another event. In
3955 * this case is it guaranteed that any work completions added
3956 * to the CQ since the last CQ poll will trigger a completion
3957 * notification event.
3958 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3959 * in. It means that the consumer must poll the CQ again to
3960 * make sure it is empty to avoid missing an event because of a
3961 * race between requesting notification and an entry being
3962 * added to the CQ. This return value means it is possible
3963 * (but not guaranteed) that a work completion has been added
3964 * to the CQ since the last poll without triggering a
3965 * completion notification event.
3966 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)3967 static inline int ib_req_notify_cq(struct ib_cq *cq,
3968 enum ib_cq_notify_flags flags)
3969 {
3970 return cq->device->ops.req_notify_cq(cq, flags);
3971 }
3972
3973 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
3974 int comp_vector_hint,
3975 enum ib_poll_context poll_ctx);
3976
3977 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
3978
3979 /*
3980 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
3981 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
3982 * address into the dma address.
3983 */
ib_uses_virt_dma(struct ib_device * dev)3984 static inline bool ib_uses_virt_dma(struct ib_device *dev)
3985 {
3986 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
3987 }
3988
3989 /**
3990 * ib_dma_mapping_error - check a DMA addr for error
3991 * @dev: The device for which the dma_addr was created
3992 * @dma_addr: The DMA address to check
3993 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)3994 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3995 {
3996 if (ib_uses_virt_dma(dev))
3997 return 0;
3998 return dma_mapping_error(dev->dma_device, dma_addr);
3999 }
4000
4001 /**
4002 * ib_dma_map_single - Map a kernel virtual address to DMA address
4003 * @dev: The device for which the dma_addr is to be created
4004 * @cpu_addr: The kernel virtual address
4005 * @size: The size of the region in bytes
4006 * @direction: The direction of the DMA
4007 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)4008 static inline u64 ib_dma_map_single(struct ib_device *dev,
4009 void *cpu_addr, size_t size,
4010 enum dma_data_direction direction)
4011 {
4012 if (ib_uses_virt_dma(dev))
4013 return (uintptr_t)cpu_addr;
4014 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4015 }
4016
4017 /**
4018 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4019 * @dev: The device for which the DMA address was created
4020 * @addr: The DMA address
4021 * @size: The size of the region in bytes
4022 * @direction: The direction of the DMA
4023 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4024 static inline void ib_dma_unmap_single(struct ib_device *dev,
4025 u64 addr, size_t size,
4026 enum dma_data_direction direction)
4027 {
4028 if (!ib_uses_virt_dma(dev))
4029 dma_unmap_single(dev->dma_device, addr, size, direction);
4030 }
4031
4032 /**
4033 * ib_dma_map_page - Map a physical page to DMA address
4034 * @dev: The device for which the dma_addr is to be created
4035 * @page: The page to be mapped
4036 * @offset: The offset within the page
4037 * @size: The size of the region in bytes
4038 * @direction: The direction of the DMA
4039 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)4040 static inline u64 ib_dma_map_page(struct ib_device *dev,
4041 struct page *page,
4042 unsigned long offset,
4043 size_t size,
4044 enum dma_data_direction direction)
4045 {
4046 if (ib_uses_virt_dma(dev))
4047 return (uintptr_t)(page_address(page) + offset);
4048 return dma_map_page(dev->dma_device, page, offset, size, direction);
4049 }
4050
4051 /**
4052 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4053 * @dev: The device for which the DMA address was created
4054 * @addr: The DMA address
4055 * @size: The size of the region in bytes
4056 * @direction: The direction of the DMA
4057 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4058 static inline void ib_dma_unmap_page(struct ib_device *dev,
4059 u64 addr, size_t size,
4060 enum dma_data_direction direction)
4061 {
4062 if (!ib_uses_virt_dma(dev))
4063 dma_unmap_page(dev->dma_device, addr, size, direction);
4064 }
4065
4066 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4067 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4068 struct scatterlist *sg, int nents,
4069 enum dma_data_direction direction,
4070 unsigned long dma_attrs)
4071 {
4072 if (ib_uses_virt_dma(dev))
4073 return ib_dma_virt_map_sg(dev, sg, nents);
4074 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4075 dma_attrs);
4076 }
4077
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4078 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4079 struct scatterlist *sg, int nents,
4080 enum dma_data_direction direction,
4081 unsigned long dma_attrs)
4082 {
4083 if (!ib_uses_virt_dma(dev))
4084 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4085 dma_attrs);
4086 }
4087
4088 /**
4089 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4090 * @dev: The device for which the DMA addresses are to be created
4091 * @sg: The sg_table object describing the buffer
4092 * @direction: The direction of the DMA
4093 * @attrs: Optional DMA attributes for the map operation
4094 */
ib_dma_map_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4095 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4096 struct sg_table *sgt,
4097 enum dma_data_direction direction,
4098 unsigned long dma_attrs)
4099 {
4100 if (ib_uses_virt_dma(dev)) {
4101 ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4102 return 0;
4103 }
4104 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4105 }
4106
ib_dma_unmap_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4107 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4108 struct sg_table *sgt,
4109 enum dma_data_direction direction,
4110 unsigned long dma_attrs)
4111 {
4112 if (!ib_uses_virt_dma(dev))
4113 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4114 }
4115
4116 /**
4117 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4118 * @dev: The device for which the DMA addresses are to be created
4119 * @sg: The array of scatter/gather entries
4120 * @nents: The number of scatter/gather entries
4121 * @direction: The direction of the DMA
4122 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4123 static inline int ib_dma_map_sg(struct ib_device *dev,
4124 struct scatterlist *sg, int nents,
4125 enum dma_data_direction direction)
4126 {
4127 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4128 }
4129
4130 /**
4131 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4132 * @dev: The device for which the DMA addresses were created
4133 * @sg: The array of scatter/gather entries
4134 * @nents: The number of scatter/gather entries
4135 * @direction: The direction of the DMA
4136 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4137 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4138 struct scatterlist *sg, int nents,
4139 enum dma_data_direction direction)
4140 {
4141 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4142 }
4143
4144 /**
4145 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4146 * @dev: The device to query
4147 *
4148 * The returned value represents a size in bytes.
4149 */
ib_dma_max_seg_size(struct ib_device * dev)4150 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4151 {
4152 if (ib_uses_virt_dma(dev))
4153 return UINT_MAX;
4154 return dma_get_max_seg_size(dev->dma_device);
4155 }
4156
4157 /**
4158 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4159 * @dev: The device for which the DMA address was created
4160 * @addr: The DMA address
4161 * @size: The size of the region in bytes
4162 * @dir: The direction of the DMA
4163 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4164 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4165 u64 addr,
4166 size_t size,
4167 enum dma_data_direction dir)
4168 {
4169 if (!ib_uses_virt_dma(dev))
4170 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4171 }
4172
4173 /**
4174 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4175 * @dev: The device for which the DMA address was created
4176 * @addr: The DMA address
4177 * @size: The size of the region in bytes
4178 * @dir: The direction of the DMA
4179 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4180 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4181 u64 addr,
4182 size_t size,
4183 enum dma_data_direction dir)
4184 {
4185 if (!ib_uses_virt_dma(dev))
4186 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4187 }
4188
4189 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4190 * space. This function should be called when 'current' is the owning MM.
4191 */
4192 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4193 u64 virt_addr, int mr_access_flags);
4194
4195 /* ib_advise_mr - give an advice about an address range in a memory region */
4196 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4197 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4198 /**
4199 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4200 * HCA translation table.
4201 * @mr: The memory region to deregister.
4202 * @udata: Valid user data or NULL for kernel object
4203 *
4204 * This function can fail, if the memory region has memory windows bound to it.
4205 */
4206 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4207
4208 /**
4209 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4210 * HCA translation table.
4211 * @mr: The memory region to deregister.
4212 *
4213 * This function can fail, if the memory region has memory windows bound to it.
4214 *
4215 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4216 */
ib_dereg_mr(struct ib_mr * mr)4217 static inline int ib_dereg_mr(struct ib_mr *mr)
4218 {
4219 return ib_dereg_mr_user(mr, NULL);
4220 }
4221
4222 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4223 u32 max_num_sg);
4224
4225 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4226 u32 max_num_data_sg,
4227 u32 max_num_meta_sg);
4228
4229 /**
4230 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4231 * R_Key and L_Key.
4232 * @mr - struct ib_mr pointer to be updated.
4233 * @newkey - new key to be used.
4234 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4235 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4236 {
4237 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4238 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4239 }
4240
4241 /**
4242 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4243 * for calculating a new rkey for type 2 memory windows.
4244 * @rkey - the rkey to increment.
4245 */
ib_inc_rkey(u32 rkey)4246 static inline u32 ib_inc_rkey(u32 rkey)
4247 {
4248 const u32 mask = 0x000000ff;
4249 return ((rkey + 1) & mask) | (rkey & ~mask);
4250 }
4251
4252 /**
4253 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4254 * @qp: QP to attach to the multicast group. The QP must be type
4255 * IB_QPT_UD.
4256 * @gid: Multicast group GID.
4257 * @lid: Multicast group LID in host byte order.
4258 *
4259 * In order to send and receive multicast packets, subnet
4260 * administration must have created the multicast group and configured
4261 * the fabric appropriately. The port associated with the specified
4262 * QP must also be a member of the multicast group.
4263 */
4264 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4265
4266 /**
4267 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4268 * @qp: QP to detach from the multicast group.
4269 * @gid: Multicast group GID.
4270 * @lid: Multicast group LID in host byte order.
4271 */
4272 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4273
4274 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4275 struct inode *inode, struct ib_udata *udata);
4276 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4277
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4278 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4279 unsigned int flags)
4280 {
4281 /*
4282 * Local write permission is required if remote write or
4283 * remote atomic permission is also requested.
4284 */
4285 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4286 !(flags & IB_ACCESS_LOCAL_WRITE))
4287 return -EINVAL;
4288
4289 if (flags & ~IB_ACCESS_SUPPORTED)
4290 return -EINVAL;
4291
4292 if (flags & IB_ACCESS_ON_DEMAND &&
4293 !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING))
4294 return -EINVAL;
4295 return 0;
4296 }
4297
ib_access_writable(int access_flags)4298 static inline bool ib_access_writable(int access_flags)
4299 {
4300 /*
4301 * We have writable memory backing the MR if any of the following
4302 * access flags are set. "Local write" and "remote write" obviously
4303 * require write access. "Remote atomic" can do things like fetch and
4304 * add, which will modify memory, and "MW bind" can change permissions
4305 * by binding a window.
4306 */
4307 return access_flags &
4308 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4309 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4310 }
4311
4312 /**
4313 * ib_check_mr_status: lightweight check of MR status.
4314 * This routine may provide status checks on a selected
4315 * ib_mr. first use is for signature status check.
4316 *
4317 * @mr: A memory region.
4318 * @check_mask: Bitmask of which checks to perform from
4319 * ib_mr_status_check enumeration.
4320 * @mr_status: The container of relevant status checks.
4321 * failed checks will be indicated in the status bitmask
4322 * and the relevant info shall be in the error item.
4323 */
4324 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4325 struct ib_mr_status *mr_status);
4326
4327 /**
4328 * ib_device_try_get: Hold a registration lock
4329 * device: The device to lock
4330 *
4331 * A device under an active registration lock cannot become unregistered. It
4332 * is only possible to obtain a registration lock on a device that is fully
4333 * registered, otherwise this function returns false.
4334 *
4335 * The registration lock is only necessary for actions which require the
4336 * device to still be registered. Uses that only require the device pointer to
4337 * be valid should use get_device(&ibdev->dev) to hold the memory.
4338 *
4339 */
ib_device_try_get(struct ib_device * dev)4340 static inline bool ib_device_try_get(struct ib_device *dev)
4341 {
4342 return refcount_inc_not_zero(&dev->refcount);
4343 }
4344
4345 void ib_device_put(struct ib_device *device);
4346 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4347 enum rdma_driver_id driver_id);
4348 struct ib_device *ib_device_get_by_name(const char *name,
4349 enum rdma_driver_id driver_id);
4350 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4351 u16 pkey, const union ib_gid *gid,
4352 const struct sockaddr *addr);
4353 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4354 unsigned int port);
4355 struct net_device *ib_device_netdev(struct ib_device *dev, u32 port);
4356
4357 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4358 struct ib_wq_init_attr *init_attr);
4359 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4360
4361 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4362 unsigned int *sg_offset, unsigned int page_size);
4363 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4364 int data_sg_nents, unsigned int *data_sg_offset,
4365 struct scatterlist *meta_sg, int meta_sg_nents,
4366 unsigned int *meta_sg_offset, unsigned int page_size);
4367
4368 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4369 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4370 unsigned int *sg_offset, unsigned int page_size)
4371 {
4372 int n;
4373
4374 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4375 mr->iova = 0;
4376
4377 return n;
4378 }
4379
4380 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4381 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4382
4383 void ib_drain_rq(struct ib_qp *qp);
4384 void ib_drain_sq(struct ib_qp *qp);
4385 void ib_drain_qp(struct ib_qp *qp);
4386
4387 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4388 u8 *width);
4389
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4390 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4391 {
4392 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4393 return attr->roce.dmac;
4394 return NULL;
4395 }
4396
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4397 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4398 {
4399 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4400 attr->ib.dlid = (u16)dlid;
4401 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4402 attr->opa.dlid = dlid;
4403 }
4404
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4405 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4406 {
4407 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4408 return attr->ib.dlid;
4409 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4410 return attr->opa.dlid;
4411 return 0;
4412 }
4413
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4414 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4415 {
4416 attr->sl = sl;
4417 }
4418
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4419 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4420 {
4421 return attr->sl;
4422 }
4423
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4424 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4425 u8 src_path_bits)
4426 {
4427 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4428 attr->ib.src_path_bits = src_path_bits;
4429 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4430 attr->opa.src_path_bits = src_path_bits;
4431 }
4432
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4433 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4434 {
4435 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4436 return attr->ib.src_path_bits;
4437 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4438 return attr->opa.src_path_bits;
4439 return 0;
4440 }
4441
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4442 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4443 bool make_grd)
4444 {
4445 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4446 attr->opa.make_grd = make_grd;
4447 }
4448
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4449 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4450 {
4451 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4452 return attr->opa.make_grd;
4453 return false;
4454 }
4455
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4456 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4457 {
4458 attr->port_num = port_num;
4459 }
4460
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4461 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4462 {
4463 return attr->port_num;
4464 }
4465
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4466 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4467 u8 static_rate)
4468 {
4469 attr->static_rate = static_rate;
4470 }
4471
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4472 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4473 {
4474 return attr->static_rate;
4475 }
4476
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4477 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4478 enum ib_ah_flags flag)
4479 {
4480 attr->ah_flags = flag;
4481 }
4482
4483 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4484 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4485 {
4486 return attr->ah_flags;
4487 }
4488
4489 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4490 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4491 {
4492 return &attr->grh;
4493 }
4494
4495 /*To retrieve and modify the grh */
4496 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4497 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4498 {
4499 return &attr->grh;
4500 }
4501
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4502 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4503 {
4504 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4505
4506 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4507 }
4508
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4509 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4510 __be64 prefix)
4511 {
4512 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4513
4514 grh->dgid.global.subnet_prefix = prefix;
4515 }
4516
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4517 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4518 __be64 if_id)
4519 {
4520 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4521
4522 grh->dgid.global.interface_id = if_id;
4523 }
4524
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4525 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4526 union ib_gid *dgid, u32 flow_label,
4527 u8 sgid_index, u8 hop_limit,
4528 u8 traffic_class)
4529 {
4530 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4531
4532 attr->ah_flags = IB_AH_GRH;
4533 if (dgid)
4534 grh->dgid = *dgid;
4535 grh->flow_label = flow_label;
4536 grh->sgid_index = sgid_index;
4537 grh->hop_limit = hop_limit;
4538 grh->traffic_class = traffic_class;
4539 grh->sgid_attr = NULL;
4540 }
4541
4542 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4543 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4544 u32 flow_label, u8 hop_limit, u8 traffic_class,
4545 const struct ib_gid_attr *sgid_attr);
4546 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4547 const struct rdma_ah_attr *src);
4548 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4549 const struct rdma_ah_attr *new);
4550 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4551
4552 /**
4553 * rdma_ah_find_type - Return address handle type.
4554 *
4555 * @dev: Device to be checked
4556 * @port_num: Port number
4557 */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4558 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4559 u32 port_num)
4560 {
4561 if (rdma_protocol_roce(dev, port_num))
4562 return RDMA_AH_ATTR_TYPE_ROCE;
4563 if (rdma_protocol_ib(dev, port_num)) {
4564 if (rdma_cap_opa_ah(dev, port_num))
4565 return RDMA_AH_ATTR_TYPE_OPA;
4566 return RDMA_AH_ATTR_TYPE_IB;
4567 }
4568
4569 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4570 }
4571
4572 /**
4573 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4574 * In the current implementation the only way to get
4575 * get the 32bit lid is from other sources for OPA.
4576 * For IB, lids will always be 16bits so cast the
4577 * value accordingly.
4578 *
4579 * @lid: A 32bit LID
4580 */
ib_lid_cpu16(u32 lid)4581 static inline u16 ib_lid_cpu16(u32 lid)
4582 {
4583 WARN_ON_ONCE(lid & 0xFFFF0000);
4584 return (u16)lid;
4585 }
4586
4587 /**
4588 * ib_lid_be16 - Return lid in 16bit BE encoding.
4589 *
4590 * @lid: A 32bit LID
4591 */
ib_lid_be16(u32 lid)4592 static inline __be16 ib_lid_be16(u32 lid)
4593 {
4594 WARN_ON_ONCE(lid & 0xFFFF0000);
4595 return cpu_to_be16((u16)lid);
4596 }
4597
4598 /**
4599 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4600 * vector
4601 * @device: the rdma device
4602 * @comp_vector: index of completion vector
4603 *
4604 * Returns NULL on failure, otherwise a corresponding cpu map of the
4605 * completion vector (returns all-cpus map if the device driver doesn't
4606 * implement get_vector_affinity).
4607 */
4608 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4609 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4610 {
4611 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4612 !device->ops.get_vector_affinity)
4613 return NULL;
4614
4615 return device->ops.get_vector_affinity(device, comp_vector);
4616
4617 }
4618
4619 /**
4620 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4621 * and add their gids, as needed, to the relevant RoCE devices.
4622 *
4623 * @device: the rdma device
4624 */
4625 void rdma_roce_rescan_device(struct ib_device *ibdev);
4626
4627 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4628
4629 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4630
4631 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4632 enum rdma_netdev_t type, const char *name,
4633 unsigned char name_assign_type,
4634 void (*setup)(struct net_device *));
4635
4636 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4637 enum rdma_netdev_t type, const char *name,
4638 unsigned char name_assign_type,
4639 void (*setup)(struct net_device *),
4640 struct net_device *netdev);
4641
4642 /**
4643 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4644 *
4645 * @device: device pointer for which ib_device pointer to retrieve
4646 *
4647 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4648 *
4649 */
rdma_device_to_ibdev(struct device * device)4650 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4651 {
4652 struct ib_core_device *coredev =
4653 container_of(device, struct ib_core_device, dev);
4654
4655 return coredev->owner;
4656 }
4657
4658 /**
4659 * ibdev_to_node - return the NUMA node for a given ib_device
4660 * @dev: device to get the NUMA node for.
4661 */
ibdev_to_node(struct ib_device * ibdev)4662 static inline int ibdev_to_node(struct ib_device *ibdev)
4663 {
4664 struct device *parent = ibdev->dev.parent;
4665
4666 if (!parent)
4667 return NUMA_NO_NODE;
4668 return dev_to_node(parent);
4669 }
4670
4671 /**
4672 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4673 * ib_device holder structure from device pointer.
4674 *
4675 * NOTE: New drivers should not make use of this API; This API is only for
4676 * existing drivers who have exposed sysfs entries using
4677 * ops->device_group.
4678 */
4679 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4680 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4681
4682 bool rdma_dev_access_netns(const struct ib_device *device,
4683 const struct net *net);
4684
4685 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4686 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4687 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4688
4689 /**
4690 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4691 * on the flow_label
4692 *
4693 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4694 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4695 * convention.
4696 */
rdma_flow_label_to_udp_sport(u32 fl)4697 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4698 {
4699 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4700
4701 fl_low ^= fl_high >> 14;
4702 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4703 }
4704
4705 /**
4706 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4707 * local and remote qpn values
4708 *
4709 * This function folded the multiplication results of two qpns, 24 bit each,
4710 * fields, and converts it to a 20 bit results.
4711 *
4712 * This function will create symmetric flow_label value based on the local
4713 * and remote qpn values. this will allow both the requester and responder
4714 * to calculate the same flow_label for a given connection.
4715 *
4716 * This helper function should be used by driver in case the upper layer
4717 * provide a zero flow_label value. This is to improve entropy of RDMA
4718 * traffic in the network.
4719 */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4720 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4721 {
4722 u64 v = (u64)lqpn * rqpn;
4723
4724 v ^= v >> 20;
4725 v ^= v >> 40;
4726
4727 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4728 }
4729
4730 const struct ib_port_immutable*
4731 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4732 #endif /* IB_VERBS_H */
4733