1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
59 
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/restrack.h>
67 #include <uapi/rdma/rdma_user_ioctl.h>
68 #include <uapi/rdma/ib_user_ioctl_verbs.h>
69 
70 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
71 
72 extern struct workqueue_struct *ib_wq;
73 extern struct workqueue_struct *ib_comp_wq;
74 
75 union ib_gid {
76 	u8	raw[16];
77 	struct {
78 		__be64	subnet_prefix;
79 		__be64	interface_id;
80 	} global;
81 };
82 
83 extern union ib_gid zgid;
84 
85 enum ib_gid_type {
86 	/* If link layer is Ethernet, this is RoCE V1 */
87 	IB_GID_TYPE_IB        = 0,
88 	IB_GID_TYPE_ROCE      = 0,
89 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
90 	IB_GID_TYPE_SIZE
91 };
92 
93 #define ROCE_V2_UDP_DPORT      4791
94 struct ib_gid_attr {
95 	struct net_device	*ndev;
96 	struct ib_device	*device;
97 	union ib_gid		gid;
98 	enum ib_gid_type	gid_type;
99 	u16			index;
100 	u8			port_num;
101 };
102 
103 enum rdma_node_type {
104 	/* IB values map to NodeInfo:NodeType. */
105 	RDMA_NODE_IB_CA 	= 1,
106 	RDMA_NODE_IB_SWITCH,
107 	RDMA_NODE_IB_ROUTER,
108 	RDMA_NODE_RNIC,
109 	RDMA_NODE_USNIC,
110 	RDMA_NODE_USNIC_UDP,
111 };
112 
113 enum {
114 	/* set the local administered indication */
115 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
116 };
117 
118 enum rdma_transport_type {
119 	RDMA_TRANSPORT_IB,
120 	RDMA_TRANSPORT_IWARP,
121 	RDMA_TRANSPORT_USNIC,
122 	RDMA_TRANSPORT_USNIC_UDP
123 };
124 
125 enum rdma_protocol_type {
126 	RDMA_PROTOCOL_IB,
127 	RDMA_PROTOCOL_IBOE,
128 	RDMA_PROTOCOL_IWARP,
129 	RDMA_PROTOCOL_USNIC_UDP
130 };
131 
132 __attribute_const__ enum rdma_transport_type
133 rdma_node_get_transport(enum rdma_node_type node_type);
134 
135 enum rdma_network_type {
136 	RDMA_NETWORK_IB,
137 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
138 	RDMA_NETWORK_IPV4,
139 	RDMA_NETWORK_IPV6
140 };
141 
ib_network_to_gid_type(enum rdma_network_type network_type)142 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
143 {
144 	if (network_type == RDMA_NETWORK_IPV4 ||
145 	    network_type == RDMA_NETWORK_IPV6)
146 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
147 
148 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
149 	return IB_GID_TYPE_IB;
150 }
151 
152 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)153 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
154 {
155 	if (attr->gid_type == IB_GID_TYPE_IB)
156 		return RDMA_NETWORK_IB;
157 
158 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
159 		return RDMA_NETWORK_IPV4;
160 	else
161 		return RDMA_NETWORK_IPV6;
162 }
163 
164 enum rdma_link_layer {
165 	IB_LINK_LAYER_UNSPECIFIED,
166 	IB_LINK_LAYER_INFINIBAND,
167 	IB_LINK_LAYER_ETHERNET,
168 };
169 
170 enum ib_device_cap_flags {
171 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
172 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
173 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
174 	IB_DEVICE_RAW_MULTI			= (1 << 3),
175 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
176 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
177 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
178 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
179 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
180 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
181 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
182 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
183 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
184 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
185 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
186 
187 	/*
188 	 * This device supports a per-device lkey or stag that can be
189 	 * used without performing a memory registration for the local
190 	 * memory.  Note that ULPs should never check this flag, but
191 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
192 	 * which will always contain a usable lkey.
193 	 */
194 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
195 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
196 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
197 	/*
198 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
199 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
200 	 * messages and can verify the validity of checksum for
201 	 * incoming messages.  Setting this flag implies that the
202 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
203 	 */
204 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
205 	IB_DEVICE_UD_TSO			= (1 << 19),
206 	IB_DEVICE_XRC				= (1 << 20),
207 
208 	/*
209 	 * This device supports the IB "base memory management extension",
210 	 * which includes support for fast registrations (IB_WR_REG_MR,
211 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
212 	 * also be set by any iWarp device which must support FRs to comply
213 	 * to the iWarp verbs spec.  iWarp devices also support the
214 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
215 	 * stag.
216 	 */
217 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
218 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
219 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
220 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
221 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
222 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
223 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
224 	/*
225 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
226 	 * support execution of WQEs that involve synchronization
227 	 * of I/O operations with single completion queue managed
228 	 * by hardware.
229 	 */
230 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
231 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
232 	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
233 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
234 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
235 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
236 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
237 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
238 	IB_DEVICE_RDMA_NETDEV_OPA_VNIC		= (1ULL << 35),
239 	/* The device supports padding incoming writes to cacheline. */
240 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
241 };
242 
243 enum ib_signature_prot_cap {
244 	IB_PROT_T10DIF_TYPE_1 = 1,
245 	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
246 	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
247 };
248 
249 enum ib_signature_guard_cap {
250 	IB_GUARD_T10DIF_CRC	= 1,
251 	IB_GUARD_T10DIF_CSUM	= 1 << 1,
252 };
253 
254 enum ib_atomic_cap {
255 	IB_ATOMIC_NONE,
256 	IB_ATOMIC_HCA,
257 	IB_ATOMIC_GLOB
258 };
259 
260 enum ib_odp_general_cap_bits {
261 	IB_ODP_SUPPORT		= 1 << 0,
262 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
263 };
264 
265 enum ib_odp_transport_cap_bits {
266 	IB_ODP_SUPPORT_SEND	= 1 << 0,
267 	IB_ODP_SUPPORT_RECV	= 1 << 1,
268 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
269 	IB_ODP_SUPPORT_READ	= 1 << 3,
270 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
271 };
272 
273 struct ib_odp_caps {
274 	uint64_t general_caps;
275 	struct {
276 		uint32_t  rc_odp_caps;
277 		uint32_t  uc_odp_caps;
278 		uint32_t  ud_odp_caps;
279 	} per_transport_caps;
280 };
281 
282 struct ib_rss_caps {
283 	/* Corresponding bit will be set if qp type from
284 	 * 'enum ib_qp_type' is supported, e.g.
285 	 * supported_qpts |= 1 << IB_QPT_UD
286 	 */
287 	u32 supported_qpts;
288 	u32 max_rwq_indirection_tables;
289 	u32 max_rwq_indirection_table_size;
290 };
291 
292 enum ib_tm_cap_flags {
293 	/*  Support tag matching on RC transport */
294 	IB_TM_CAP_RC		    = 1 << 0,
295 };
296 
297 struct ib_tm_caps {
298 	/* Max size of RNDV header */
299 	u32 max_rndv_hdr_size;
300 	/* Max number of entries in tag matching list */
301 	u32 max_num_tags;
302 	/* From enum ib_tm_cap_flags */
303 	u32 flags;
304 	/* Max number of outstanding list operations */
305 	u32 max_ops;
306 	/* Max number of SGE in tag matching entry */
307 	u32 max_sge;
308 };
309 
310 struct ib_cq_init_attr {
311 	unsigned int	cqe;
312 	int		comp_vector;
313 	u32		flags;
314 };
315 
316 enum ib_cq_attr_mask {
317 	IB_CQ_MODERATE = 1 << 0,
318 };
319 
320 struct ib_cq_caps {
321 	u16     max_cq_moderation_count;
322 	u16     max_cq_moderation_period;
323 };
324 
325 struct ib_dm_mr_attr {
326 	u64		length;
327 	u64		offset;
328 	u32		access_flags;
329 };
330 
331 struct ib_dm_alloc_attr {
332 	u64	length;
333 	u32	alignment;
334 	u32	flags;
335 };
336 
337 struct ib_device_attr {
338 	u64			fw_ver;
339 	__be64			sys_image_guid;
340 	u64			max_mr_size;
341 	u64			page_size_cap;
342 	u32			vendor_id;
343 	u32			vendor_part_id;
344 	u32			hw_ver;
345 	int			max_qp;
346 	int			max_qp_wr;
347 	u64			device_cap_flags;
348 	int			max_send_sge;
349 	int			max_recv_sge;
350 	int			max_sge_rd;
351 	int			max_cq;
352 	int			max_cqe;
353 	int			max_mr;
354 	int			max_pd;
355 	int			max_qp_rd_atom;
356 	int			max_ee_rd_atom;
357 	int			max_res_rd_atom;
358 	int			max_qp_init_rd_atom;
359 	int			max_ee_init_rd_atom;
360 	enum ib_atomic_cap	atomic_cap;
361 	enum ib_atomic_cap	masked_atomic_cap;
362 	int			max_ee;
363 	int			max_rdd;
364 	int			max_mw;
365 	int			max_raw_ipv6_qp;
366 	int			max_raw_ethy_qp;
367 	int			max_mcast_grp;
368 	int			max_mcast_qp_attach;
369 	int			max_total_mcast_qp_attach;
370 	int			max_ah;
371 	int			max_fmr;
372 	int			max_map_per_fmr;
373 	int			max_srq;
374 	int			max_srq_wr;
375 	int			max_srq_sge;
376 	unsigned int		max_fast_reg_page_list_len;
377 	u16			max_pkeys;
378 	u8			local_ca_ack_delay;
379 	int			sig_prot_cap;
380 	int			sig_guard_cap;
381 	struct ib_odp_caps	odp_caps;
382 	uint64_t		timestamp_mask;
383 	uint64_t		hca_core_clock; /* in KHZ */
384 	struct ib_rss_caps	rss_caps;
385 	u32			max_wq_type_rq;
386 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
387 	struct ib_tm_caps	tm_caps;
388 	struct ib_cq_caps       cq_caps;
389 	u64			max_dm_size;
390 };
391 
392 enum ib_mtu {
393 	IB_MTU_256  = 1,
394 	IB_MTU_512  = 2,
395 	IB_MTU_1024 = 3,
396 	IB_MTU_2048 = 4,
397 	IB_MTU_4096 = 5
398 };
399 
ib_mtu_enum_to_int(enum ib_mtu mtu)400 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
401 {
402 	switch (mtu) {
403 	case IB_MTU_256:  return  256;
404 	case IB_MTU_512:  return  512;
405 	case IB_MTU_1024: return 1024;
406 	case IB_MTU_2048: return 2048;
407 	case IB_MTU_4096: return 4096;
408 	default: 	  return -1;
409 	}
410 }
411 
ib_mtu_int_to_enum(int mtu)412 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
413 {
414 	if (mtu >= 4096)
415 		return IB_MTU_4096;
416 	else if (mtu >= 2048)
417 		return IB_MTU_2048;
418 	else if (mtu >= 1024)
419 		return IB_MTU_1024;
420 	else if (mtu >= 512)
421 		return IB_MTU_512;
422 	else
423 		return IB_MTU_256;
424 }
425 
426 enum ib_port_state {
427 	IB_PORT_NOP		= 0,
428 	IB_PORT_DOWN		= 1,
429 	IB_PORT_INIT		= 2,
430 	IB_PORT_ARMED		= 3,
431 	IB_PORT_ACTIVE		= 4,
432 	IB_PORT_ACTIVE_DEFER	= 5
433 };
434 
435 enum ib_port_width {
436 	IB_WIDTH_1X	= 1,
437 	IB_WIDTH_4X	= 2,
438 	IB_WIDTH_8X	= 4,
439 	IB_WIDTH_12X	= 8
440 };
441 
ib_width_enum_to_int(enum ib_port_width width)442 static inline int ib_width_enum_to_int(enum ib_port_width width)
443 {
444 	switch (width) {
445 	case IB_WIDTH_1X:  return  1;
446 	case IB_WIDTH_4X:  return  4;
447 	case IB_WIDTH_8X:  return  8;
448 	case IB_WIDTH_12X: return 12;
449 	default: 	  return -1;
450 	}
451 }
452 
453 enum ib_port_speed {
454 	IB_SPEED_SDR	= 1,
455 	IB_SPEED_DDR	= 2,
456 	IB_SPEED_QDR	= 4,
457 	IB_SPEED_FDR10	= 8,
458 	IB_SPEED_FDR	= 16,
459 	IB_SPEED_EDR	= 32,
460 	IB_SPEED_HDR	= 64
461 };
462 
463 /**
464  * struct rdma_hw_stats
465  * @lock - Mutex to protect parallel write access to lifespan and values
466  *    of counters, which are 64bits and not guaranteeed to be written
467  *    atomicaly on 32bits systems.
468  * @timestamp - Used by the core code to track when the last update was
469  * @lifespan - Used by the core code to determine how old the counters
470  *   should be before being updated again.  Stored in jiffies, defaults
471  *   to 10 milliseconds, drivers can override the default be specifying
472  *   their own value during their allocation routine.
473  * @name - Array of pointers to static names used for the counters in
474  *   directory.
475  * @num_counters - How many hardware counters there are.  If name is
476  *   shorter than this number, a kernel oops will result.  Driver authors
477  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
478  *   in their code to prevent this.
479  * @value - Array of u64 counters that are accessed by the sysfs code and
480  *   filled in by the drivers get_stats routine
481  */
482 struct rdma_hw_stats {
483 	struct mutex	lock; /* Protect lifespan and values[] */
484 	unsigned long	timestamp;
485 	unsigned long	lifespan;
486 	const char * const *names;
487 	int		num_counters;
488 	u64		value[];
489 };
490 
491 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
492 /**
493  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
494  *   for drivers.
495  * @names - Array of static const char *
496  * @num_counters - How many elements in array
497  * @lifespan - How many milliseconds between updates
498  */
rdma_alloc_hw_stats_struct(const char * const * names,int num_counters,unsigned long lifespan)499 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
500 		const char * const *names, int num_counters,
501 		unsigned long lifespan)
502 {
503 	struct rdma_hw_stats *stats;
504 
505 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
506 			GFP_KERNEL);
507 	if (!stats)
508 		return NULL;
509 	stats->names = names;
510 	stats->num_counters = num_counters;
511 	stats->lifespan = msecs_to_jiffies(lifespan);
512 
513 	return stats;
514 }
515 
516 
517 /* Define bits for the various functionality this port needs to be supported by
518  * the core.
519  */
520 /* Management                           0x00000FFF */
521 #define RDMA_CORE_CAP_IB_MAD            0x00000001
522 #define RDMA_CORE_CAP_IB_SMI            0x00000002
523 #define RDMA_CORE_CAP_IB_CM             0x00000004
524 #define RDMA_CORE_CAP_IW_CM             0x00000008
525 #define RDMA_CORE_CAP_IB_SA             0x00000010
526 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
527 
528 /* Address format                       0x000FF000 */
529 #define RDMA_CORE_CAP_AF_IB             0x00001000
530 #define RDMA_CORE_CAP_ETH_AH            0x00002000
531 #define RDMA_CORE_CAP_OPA_AH            0x00004000
532 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
533 
534 /* Protocol                             0xFFF00000 */
535 #define RDMA_CORE_CAP_PROT_IB           0x00100000
536 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
537 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
538 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
539 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
540 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
541 
542 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
543 					| RDMA_CORE_CAP_PROT_ROCE     \
544 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
545 
546 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
547 					| RDMA_CORE_CAP_IB_MAD \
548 					| RDMA_CORE_CAP_IB_SMI \
549 					| RDMA_CORE_CAP_IB_CM  \
550 					| RDMA_CORE_CAP_IB_SA  \
551 					| RDMA_CORE_CAP_AF_IB)
552 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
553 					| RDMA_CORE_CAP_IB_MAD  \
554 					| RDMA_CORE_CAP_IB_CM   \
555 					| RDMA_CORE_CAP_AF_IB   \
556 					| RDMA_CORE_CAP_ETH_AH)
557 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
558 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
559 					| RDMA_CORE_CAP_IB_MAD  \
560 					| RDMA_CORE_CAP_IB_CM   \
561 					| RDMA_CORE_CAP_AF_IB   \
562 					| RDMA_CORE_CAP_ETH_AH)
563 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
564 					| RDMA_CORE_CAP_IW_CM)
565 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
566 					| RDMA_CORE_CAP_OPA_MAD)
567 
568 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
569 
570 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
571 
572 struct ib_port_attr {
573 	u64			subnet_prefix;
574 	enum ib_port_state	state;
575 	enum ib_mtu		max_mtu;
576 	enum ib_mtu		active_mtu;
577 	int			gid_tbl_len;
578 	unsigned int		ip_gids:1;
579 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
580 	u32			port_cap_flags;
581 	u32			max_msg_sz;
582 	u32			bad_pkey_cntr;
583 	u32			qkey_viol_cntr;
584 	u16			pkey_tbl_len;
585 	u32			sm_lid;
586 	u32			lid;
587 	u8			lmc;
588 	u8			max_vl_num;
589 	u8			sm_sl;
590 	u8			subnet_timeout;
591 	u8			init_type_reply;
592 	u8			active_width;
593 	u8			active_speed;
594 	u8                      phys_state;
595 };
596 
597 enum ib_device_modify_flags {
598 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
599 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
600 };
601 
602 #define IB_DEVICE_NODE_DESC_MAX 64
603 
604 struct ib_device_modify {
605 	u64	sys_image_guid;
606 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
607 };
608 
609 enum ib_port_modify_flags {
610 	IB_PORT_SHUTDOWN		= 1,
611 	IB_PORT_INIT_TYPE		= (1<<2),
612 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
613 	IB_PORT_OPA_MASK_CHG		= (1<<4)
614 };
615 
616 struct ib_port_modify {
617 	u32	set_port_cap_mask;
618 	u32	clr_port_cap_mask;
619 	u8	init_type;
620 };
621 
622 enum ib_event_type {
623 	IB_EVENT_CQ_ERR,
624 	IB_EVENT_QP_FATAL,
625 	IB_EVENT_QP_REQ_ERR,
626 	IB_EVENT_QP_ACCESS_ERR,
627 	IB_EVENT_COMM_EST,
628 	IB_EVENT_SQ_DRAINED,
629 	IB_EVENT_PATH_MIG,
630 	IB_EVENT_PATH_MIG_ERR,
631 	IB_EVENT_DEVICE_FATAL,
632 	IB_EVENT_PORT_ACTIVE,
633 	IB_EVENT_PORT_ERR,
634 	IB_EVENT_LID_CHANGE,
635 	IB_EVENT_PKEY_CHANGE,
636 	IB_EVENT_SM_CHANGE,
637 	IB_EVENT_SRQ_ERR,
638 	IB_EVENT_SRQ_LIMIT_REACHED,
639 	IB_EVENT_QP_LAST_WQE_REACHED,
640 	IB_EVENT_CLIENT_REREGISTER,
641 	IB_EVENT_GID_CHANGE,
642 	IB_EVENT_WQ_FATAL,
643 };
644 
645 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
646 
647 struct ib_event {
648 	struct ib_device	*device;
649 	union {
650 		struct ib_cq	*cq;
651 		struct ib_qp	*qp;
652 		struct ib_srq	*srq;
653 		struct ib_wq	*wq;
654 		u8		port_num;
655 	} element;
656 	enum ib_event_type	event;
657 };
658 
659 struct ib_event_handler {
660 	struct ib_device *device;
661 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
662 	struct list_head  list;
663 };
664 
665 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
666 	do {							\
667 		(_ptr)->device  = _device;			\
668 		(_ptr)->handler = _handler;			\
669 		INIT_LIST_HEAD(&(_ptr)->list);			\
670 	} while (0)
671 
672 struct ib_global_route {
673 	const struct ib_gid_attr *sgid_attr;
674 	union ib_gid	dgid;
675 	u32		flow_label;
676 	u8		sgid_index;
677 	u8		hop_limit;
678 	u8		traffic_class;
679 };
680 
681 struct ib_grh {
682 	__be32		version_tclass_flow;
683 	__be16		paylen;
684 	u8		next_hdr;
685 	u8		hop_limit;
686 	union ib_gid	sgid;
687 	union ib_gid	dgid;
688 };
689 
690 union rdma_network_hdr {
691 	struct ib_grh ibgrh;
692 	struct {
693 		/* The IB spec states that if it's IPv4, the header
694 		 * is located in the last 20 bytes of the header.
695 		 */
696 		u8		reserved[20];
697 		struct iphdr	roce4grh;
698 	};
699 };
700 
701 #define IB_QPN_MASK		0xFFFFFF
702 
703 enum {
704 	IB_MULTICAST_QPN = 0xffffff
705 };
706 
707 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
708 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
709 
710 enum ib_ah_flags {
711 	IB_AH_GRH	= 1
712 };
713 
714 enum ib_rate {
715 	IB_RATE_PORT_CURRENT = 0,
716 	IB_RATE_2_5_GBPS = 2,
717 	IB_RATE_5_GBPS   = 5,
718 	IB_RATE_10_GBPS  = 3,
719 	IB_RATE_20_GBPS  = 6,
720 	IB_RATE_30_GBPS  = 4,
721 	IB_RATE_40_GBPS  = 7,
722 	IB_RATE_60_GBPS  = 8,
723 	IB_RATE_80_GBPS  = 9,
724 	IB_RATE_120_GBPS = 10,
725 	IB_RATE_14_GBPS  = 11,
726 	IB_RATE_56_GBPS  = 12,
727 	IB_RATE_112_GBPS = 13,
728 	IB_RATE_168_GBPS = 14,
729 	IB_RATE_25_GBPS  = 15,
730 	IB_RATE_100_GBPS = 16,
731 	IB_RATE_200_GBPS = 17,
732 	IB_RATE_300_GBPS = 18
733 };
734 
735 /**
736  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
737  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
738  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
739  * @rate: rate to convert.
740  */
741 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
742 
743 /**
744  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
745  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
746  * @rate: rate to convert.
747  */
748 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
749 
750 
751 /**
752  * enum ib_mr_type - memory region type
753  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
754  *                            normal registration
755  * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
756  *                            signature operations (data-integrity
757  *                            capable regions)
758  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
759  *                            register any arbitrary sg lists (without
760  *                            the normal mr constraints - see
761  *                            ib_map_mr_sg)
762  */
763 enum ib_mr_type {
764 	IB_MR_TYPE_MEM_REG,
765 	IB_MR_TYPE_SIGNATURE,
766 	IB_MR_TYPE_SG_GAPS,
767 };
768 
769 /**
770  * Signature types
771  * IB_SIG_TYPE_NONE: Unprotected.
772  * IB_SIG_TYPE_T10_DIF: Type T10-DIF
773  */
774 enum ib_signature_type {
775 	IB_SIG_TYPE_NONE,
776 	IB_SIG_TYPE_T10_DIF,
777 };
778 
779 /**
780  * Signature T10-DIF block-guard types
781  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
782  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
783  */
784 enum ib_t10_dif_bg_type {
785 	IB_T10DIF_CRC,
786 	IB_T10DIF_CSUM
787 };
788 
789 /**
790  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
791  *     domain.
792  * @bg_type: T10-DIF block guard type (CRC|CSUM)
793  * @pi_interval: protection information interval.
794  * @bg: seed of guard computation.
795  * @app_tag: application tag of guard block
796  * @ref_tag: initial guard block reference tag.
797  * @ref_remap: Indicate wethear the reftag increments each block
798  * @app_escape: Indicate to skip block check if apptag=0xffff
799  * @ref_escape: Indicate to skip block check if reftag=0xffffffff
800  * @apptag_check_mask: check bitmask of application tag.
801  */
802 struct ib_t10_dif_domain {
803 	enum ib_t10_dif_bg_type bg_type;
804 	u16			pi_interval;
805 	u16			bg;
806 	u16			app_tag;
807 	u32			ref_tag;
808 	bool			ref_remap;
809 	bool			app_escape;
810 	bool			ref_escape;
811 	u16			apptag_check_mask;
812 };
813 
814 /**
815  * struct ib_sig_domain - Parameters for signature domain
816  * @sig_type: specific signauture type
817  * @sig: union of all signature domain attributes that may
818  *     be used to set domain layout.
819  */
820 struct ib_sig_domain {
821 	enum ib_signature_type sig_type;
822 	union {
823 		struct ib_t10_dif_domain dif;
824 	} sig;
825 };
826 
827 /**
828  * struct ib_sig_attrs - Parameters for signature handover operation
829  * @check_mask: bitmask for signature byte check (8 bytes)
830  * @mem: memory domain layout desciptor.
831  * @wire: wire domain layout desciptor.
832  */
833 struct ib_sig_attrs {
834 	u8			check_mask;
835 	struct ib_sig_domain	mem;
836 	struct ib_sig_domain	wire;
837 };
838 
839 enum ib_sig_err_type {
840 	IB_SIG_BAD_GUARD,
841 	IB_SIG_BAD_REFTAG,
842 	IB_SIG_BAD_APPTAG,
843 };
844 
845 /**
846  * Signature check masks (8 bytes in total) according to the T10-PI standard:
847  *  -------- -------- ------------
848  * | GUARD  | APPTAG |   REFTAG   |
849  * |  2B    |  2B    |    4B      |
850  *  -------- -------- ------------
851  */
852 enum {
853 	IB_SIG_CHECK_GUARD	= 0xc0,
854 	IB_SIG_CHECK_APPTAG	= 0x30,
855 	IB_SIG_CHECK_REFTAG	= 0x0f,
856 };
857 
858 /**
859  * struct ib_sig_err - signature error descriptor
860  */
861 struct ib_sig_err {
862 	enum ib_sig_err_type	err_type;
863 	u32			expected;
864 	u32			actual;
865 	u64			sig_err_offset;
866 	u32			key;
867 };
868 
869 enum ib_mr_status_check {
870 	IB_MR_CHECK_SIG_STATUS = 1,
871 };
872 
873 /**
874  * struct ib_mr_status - Memory region status container
875  *
876  * @fail_status: Bitmask of MR checks status. For each
877  *     failed check a corresponding status bit is set.
878  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
879  *     failure.
880  */
881 struct ib_mr_status {
882 	u32		    fail_status;
883 	struct ib_sig_err   sig_err;
884 };
885 
886 /**
887  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
888  * enum.
889  * @mult: multiple to convert.
890  */
891 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
892 
893 enum rdma_ah_attr_type {
894 	RDMA_AH_ATTR_TYPE_UNDEFINED,
895 	RDMA_AH_ATTR_TYPE_IB,
896 	RDMA_AH_ATTR_TYPE_ROCE,
897 	RDMA_AH_ATTR_TYPE_OPA,
898 };
899 
900 struct ib_ah_attr {
901 	u16			dlid;
902 	u8			src_path_bits;
903 };
904 
905 struct roce_ah_attr {
906 	u8			dmac[ETH_ALEN];
907 };
908 
909 struct opa_ah_attr {
910 	u32			dlid;
911 	u8			src_path_bits;
912 	bool			make_grd;
913 };
914 
915 struct rdma_ah_attr {
916 	struct ib_global_route	grh;
917 	u8			sl;
918 	u8			static_rate;
919 	u8			port_num;
920 	u8			ah_flags;
921 	enum rdma_ah_attr_type type;
922 	union {
923 		struct ib_ah_attr ib;
924 		struct roce_ah_attr roce;
925 		struct opa_ah_attr opa;
926 	};
927 };
928 
929 enum ib_wc_status {
930 	IB_WC_SUCCESS,
931 	IB_WC_LOC_LEN_ERR,
932 	IB_WC_LOC_QP_OP_ERR,
933 	IB_WC_LOC_EEC_OP_ERR,
934 	IB_WC_LOC_PROT_ERR,
935 	IB_WC_WR_FLUSH_ERR,
936 	IB_WC_MW_BIND_ERR,
937 	IB_WC_BAD_RESP_ERR,
938 	IB_WC_LOC_ACCESS_ERR,
939 	IB_WC_REM_INV_REQ_ERR,
940 	IB_WC_REM_ACCESS_ERR,
941 	IB_WC_REM_OP_ERR,
942 	IB_WC_RETRY_EXC_ERR,
943 	IB_WC_RNR_RETRY_EXC_ERR,
944 	IB_WC_LOC_RDD_VIOL_ERR,
945 	IB_WC_REM_INV_RD_REQ_ERR,
946 	IB_WC_REM_ABORT_ERR,
947 	IB_WC_INV_EECN_ERR,
948 	IB_WC_INV_EEC_STATE_ERR,
949 	IB_WC_FATAL_ERR,
950 	IB_WC_RESP_TIMEOUT_ERR,
951 	IB_WC_GENERAL_ERR
952 };
953 
954 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
955 
956 enum ib_wc_opcode {
957 	IB_WC_SEND,
958 	IB_WC_RDMA_WRITE,
959 	IB_WC_RDMA_READ,
960 	IB_WC_COMP_SWAP,
961 	IB_WC_FETCH_ADD,
962 	IB_WC_LSO,
963 	IB_WC_LOCAL_INV,
964 	IB_WC_REG_MR,
965 	IB_WC_MASKED_COMP_SWAP,
966 	IB_WC_MASKED_FETCH_ADD,
967 /*
968  * Set value of IB_WC_RECV so consumers can test if a completion is a
969  * receive by testing (opcode & IB_WC_RECV).
970  */
971 	IB_WC_RECV			= 1 << 7,
972 	IB_WC_RECV_RDMA_WITH_IMM
973 };
974 
975 enum ib_wc_flags {
976 	IB_WC_GRH		= 1,
977 	IB_WC_WITH_IMM		= (1<<1),
978 	IB_WC_WITH_INVALIDATE	= (1<<2),
979 	IB_WC_IP_CSUM_OK	= (1<<3),
980 	IB_WC_WITH_SMAC		= (1<<4),
981 	IB_WC_WITH_VLAN		= (1<<5),
982 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
983 };
984 
985 struct ib_wc {
986 	union {
987 		u64		wr_id;
988 		struct ib_cqe	*wr_cqe;
989 	};
990 	enum ib_wc_status	status;
991 	enum ib_wc_opcode	opcode;
992 	u32			vendor_err;
993 	u32			byte_len;
994 	struct ib_qp	       *qp;
995 	union {
996 		__be32		imm_data;
997 		u32		invalidate_rkey;
998 	} ex;
999 	u32			src_qp;
1000 	u32			slid;
1001 	int			wc_flags;
1002 	u16			pkey_index;
1003 	u8			sl;
1004 	u8			dlid_path_bits;
1005 	u8			port_num;	/* valid only for DR SMPs on switches */
1006 	u8			smac[ETH_ALEN];
1007 	u16			vlan_id;
1008 	u8			network_hdr_type;
1009 };
1010 
1011 enum ib_cq_notify_flags {
1012 	IB_CQ_SOLICITED			= 1 << 0,
1013 	IB_CQ_NEXT_COMP			= 1 << 1,
1014 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1015 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1016 };
1017 
1018 enum ib_srq_type {
1019 	IB_SRQT_BASIC,
1020 	IB_SRQT_XRC,
1021 	IB_SRQT_TM,
1022 };
1023 
ib_srq_has_cq(enum ib_srq_type srq_type)1024 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1025 {
1026 	return srq_type == IB_SRQT_XRC ||
1027 	       srq_type == IB_SRQT_TM;
1028 }
1029 
1030 enum ib_srq_attr_mask {
1031 	IB_SRQ_MAX_WR	= 1 << 0,
1032 	IB_SRQ_LIMIT	= 1 << 1,
1033 };
1034 
1035 struct ib_srq_attr {
1036 	u32	max_wr;
1037 	u32	max_sge;
1038 	u32	srq_limit;
1039 };
1040 
1041 struct ib_srq_init_attr {
1042 	void		      (*event_handler)(struct ib_event *, void *);
1043 	void		       *srq_context;
1044 	struct ib_srq_attr	attr;
1045 	enum ib_srq_type	srq_type;
1046 
1047 	struct {
1048 		struct ib_cq   *cq;
1049 		union {
1050 			struct {
1051 				struct ib_xrcd *xrcd;
1052 			} xrc;
1053 
1054 			struct {
1055 				u32		max_num_tags;
1056 			} tag_matching;
1057 		};
1058 	} ext;
1059 };
1060 
1061 struct ib_qp_cap {
1062 	u32	max_send_wr;
1063 	u32	max_recv_wr;
1064 	u32	max_send_sge;
1065 	u32	max_recv_sge;
1066 	u32	max_inline_data;
1067 
1068 	/*
1069 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1070 	 * ib_create_qp() will calculate the right amount of neededed WRs
1071 	 * and MRs based on this.
1072 	 */
1073 	u32	max_rdma_ctxs;
1074 };
1075 
1076 enum ib_sig_type {
1077 	IB_SIGNAL_ALL_WR,
1078 	IB_SIGNAL_REQ_WR
1079 };
1080 
1081 enum ib_qp_type {
1082 	/*
1083 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1084 	 * here (and in that order) since the MAD layer uses them as
1085 	 * indices into a 2-entry table.
1086 	 */
1087 	IB_QPT_SMI,
1088 	IB_QPT_GSI,
1089 
1090 	IB_QPT_RC,
1091 	IB_QPT_UC,
1092 	IB_QPT_UD,
1093 	IB_QPT_RAW_IPV6,
1094 	IB_QPT_RAW_ETHERTYPE,
1095 	IB_QPT_RAW_PACKET = 8,
1096 	IB_QPT_XRC_INI = 9,
1097 	IB_QPT_XRC_TGT,
1098 	IB_QPT_MAX,
1099 	IB_QPT_DRIVER = 0xFF,
1100 	/* Reserve a range for qp types internal to the low level driver.
1101 	 * These qp types will not be visible at the IB core layer, so the
1102 	 * IB_QPT_MAX usages should not be affected in the core layer
1103 	 */
1104 	IB_QPT_RESERVED1 = 0x1000,
1105 	IB_QPT_RESERVED2,
1106 	IB_QPT_RESERVED3,
1107 	IB_QPT_RESERVED4,
1108 	IB_QPT_RESERVED5,
1109 	IB_QPT_RESERVED6,
1110 	IB_QPT_RESERVED7,
1111 	IB_QPT_RESERVED8,
1112 	IB_QPT_RESERVED9,
1113 	IB_QPT_RESERVED10,
1114 };
1115 
1116 enum ib_qp_create_flags {
1117 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1118 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1119 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1120 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1121 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1122 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1123 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1124 	/* FREE					= 1 << 7, */
1125 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1126 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1127 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1128 	IB_QP_CREATE_PCI_WRITE_END_PADDING	= 1 << 11,
1129 	/* reserve bits 26-31 for low level drivers' internal use */
1130 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1131 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1132 };
1133 
1134 /*
1135  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1136  * callback to destroy the passed in QP.
1137  */
1138 
1139 struct ib_qp_init_attr {
1140 	void                  (*event_handler)(struct ib_event *, void *);
1141 	void		       *qp_context;
1142 	struct ib_cq	       *send_cq;
1143 	struct ib_cq	       *recv_cq;
1144 	struct ib_srq	       *srq;
1145 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1146 	struct ib_qp_cap	cap;
1147 	enum ib_sig_type	sq_sig_type;
1148 	enum ib_qp_type		qp_type;
1149 	enum ib_qp_create_flags	create_flags;
1150 
1151 	/*
1152 	 * Only needed for special QP types, or when using the RW API.
1153 	 */
1154 	u8			port_num;
1155 	struct ib_rwq_ind_table *rwq_ind_tbl;
1156 	u32			source_qpn;
1157 };
1158 
1159 struct ib_qp_open_attr {
1160 	void                  (*event_handler)(struct ib_event *, void *);
1161 	void		       *qp_context;
1162 	u32			qp_num;
1163 	enum ib_qp_type		qp_type;
1164 };
1165 
1166 enum ib_rnr_timeout {
1167 	IB_RNR_TIMER_655_36 =  0,
1168 	IB_RNR_TIMER_000_01 =  1,
1169 	IB_RNR_TIMER_000_02 =  2,
1170 	IB_RNR_TIMER_000_03 =  3,
1171 	IB_RNR_TIMER_000_04 =  4,
1172 	IB_RNR_TIMER_000_06 =  5,
1173 	IB_RNR_TIMER_000_08 =  6,
1174 	IB_RNR_TIMER_000_12 =  7,
1175 	IB_RNR_TIMER_000_16 =  8,
1176 	IB_RNR_TIMER_000_24 =  9,
1177 	IB_RNR_TIMER_000_32 = 10,
1178 	IB_RNR_TIMER_000_48 = 11,
1179 	IB_RNR_TIMER_000_64 = 12,
1180 	IB_RNR_TIMER_000_96 = 13,
1181 	IB_RNR_TIMER_001_28 = 14,
1182 	IB_RNR_TIMER_001_92 = 15,
1183 	IB_RNR_TIMER_002_56 = 16,
1184 	IB_RNR_TIMER_003_84 = 17,
1185 	IB_RNR_TIMER_005_12 = 18,
1186 	IB_RNR_TIMER_007_68 = 19,
1187 	IB_RNR_TIMER_010_24 = 20,
1188 	IB_RNR_TIMER_015_36 = 21,
1189 	IB_RNR_TIMER_020_48 = 22,
1190 	IB_RNR_TIMER_030_72 = 23,
1191 	IB_RNR_TIMER_040_96 = 24,
1192 	IB_RNR_TIMER_061_44 = 25,
1193 	IB_RNR_TIMER_081_92 = 26,
1194 	IB_RNR_TIMER_122_88 = 27,
1195 	IB_RNR_TIMER_163_84 = 28,
1196 	IB_RNR_TIMER_245_76 = 29,
1197 	IB_RNR_TIMER_327_68 = 30,
1198 	IB_RNR_TIMER_491_52 = 31
1199 };
1200 
1201 enum ib_qp_attr_mask {
1202 	IB_QP_STATE			= 1,
1203 	IB_QP_CUR_STATE			= (1<<1),
1204 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1205 	IB_QP_ACCESS_FLAGS		= (1<<3),
1206 	IB_QP_PKEY_INDEX		= (1<<4),
1207 	IB_QP_PORT			= (1<<5),
1208 	IB_QP_QKEY			= (1<<6),
1209 	IB_QP_AV			= (1<<7),
1210 	IB_QP_PATH_MTU			= (1<<8),
1211 	IB_QP_TIMEOUT			= (1<<9),
1212 	IB_QP_RETRY_CNT			= (1<<10),
1213 	IB_QP_RNR_RETRY			= (1<<11),
1214 	IB_QP_RQ_PSN			= (1<<12),
1215 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1216 	IB_QP_ALT_PATH			= (1<<14),
1217 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1218 	IB_QP_SQ_PSN			= (1<<16),
1219 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1220 	IB_QP_PATH_MIG_STATE		= (1<<18),
1221 	IB_QP_CAP			= (1<<19),
1222 	IB_QP_DEST_QPN			= (1<<20),
1223 	IB_QP_RESERVED1			= (1<<21),
1224 	IB_QP_RESERVED2			= (1<<22),
1225 	IB_QP_RESERVED3			= (1<<23),
1226 	IB_QP_RESERVED4			= (1<<24),
1227 	IB_QP_RATE_LIMIT		= (1<<25),
1228 };
1229 
1230 enum ib_qp_state {
1231 	IB_QPS_RESET,
1232 	IB_QPS_INIT,
1233 	IB_QPS_RTR,
1234 	IB_QPS_RTS,
1235 	IB_QPS_SQD,
1236 	IB_QPS_SQE,
1237 	IB_QPS_ERR
1238 };
1239 
1240 enum ib_mig_state {
1241 	IB_MIG_MIGRATED,
1242 	IB_MIG_REARM,
1243 	IB_MIG_ARMED
1244 };
1245 
1246 enum ib_mw_type {
1247 	IB_MW_TYPE_1 = 1,
1248 	IB_MW_TYPE_2 = 2
1249 };
1250 
1251 struct ib_qp_attr {
1252 	enum ib_qp_state	qp_state;
1253 	enum ib_qp_state	cur_qp_state;
1254 	enum ib_mtu		path_mtu;
1255 	enum ib_mig_state	path_mig_state;
1256 	u32			qkey;
1257 	u32			rq_psn;
1258 	u32			sq_psn;
1259 	u32			dest_qp_num;
1260 	int			qp_access_flags;
1261 	struct ib_qp_cap	cap;
1262 	struct rdma_ah_attr	ah_attr;
1263 	struct rdma_ah_attr	alt_ah_attr;
1264 	u16			pkey_index;
1265 	u16			alt_pkey_index;
1266 	u8			en_sqd_async_notify;
1267 	u8			sq_draining;
1268 	u8			max_rd_atomic;
1269 	u8			max_dest_rd_atomic;
1270 	u8			min_rnr_timer;
1271 	u8			port_num;
1272 	u8			timeout;
1273 	u8			retry_cnt;
1274 	u8			rnr_retry;
1275 	u8			alt_port_num;
1276 	u8			alt_timeout;
1277 	u32			rate_limit;
1278 };
1279 
1280 enum ib_wr_opcode {
1281 	IB_WR_RDMA_WRITE,
1282 	IB_WR_RDMA_WRITE_WITH_IMM,
1283 	IB_WR_SEND,
1284 	IB_WR_SEND_WITH_IMM,
1285 	IB_WR_RDMA_READ,
1286 	IB_WR_ATOMIC_CMP_AND_SWP,
1287 	IB_WR_ATOMIC_FETCH_AND_ADD,
1288 	IB_WR_LSO,
1289 	IB_WR_SEND_WITH_INV,
1290 	IB_WR_RDMA_READ_WITH_INV,
1291 	IB_WR_LOCAL_INV,
1292 	IB_WR_REG_MR,
1293 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1294 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1295 	IB_WR_REG_SIG_MR,
1296 	/* reserve values for low level drivers' internal use.
1297 	 * These values will not be used at all in the ib core layer.
1298 	 */
1299 	IB_WR_RESERVED1 = 0xf0,
1300 	IB_WR_RESERVED2,
1301 	IB_WR_RESERVED3,
1302 	IB_WR_RESERVED4,
1303 	IB_WR_RESERVED5,
1304 	IB_WR_RESERVED6,
1305 	IB_WR_RESERVED7,
1306 	IB_WR_RESERVED8,
1307 	IB_WR_RESERVED9,
1308 	IB_WR_RESERVED10,
1309 };
1310 
1311 enum ib_send_flags {
1312 	IB_SEND_FENCE		= 1,
1313 	IB_SEND_SIGNALED	= (1<<1),
1314 	IB_SEND_SOLICITED	= (1<<2),
1315 	IB_SEND_INLINE		= (1<<3),
1316 	IB_SEND_IP_CSUM		= (1<<4),
1317 
1318 	/* reserve bits 26-31 for low level drivers' internal use */
1319 	IB_SEND_RESERVED_START	= (1 << 26),
1320 	IB_SEND_RESERVED_END	= (1 << 31),
1321 };
1322 
1323 struct ib_sge {
1324 	u64	addr;
1325 	u32	length;
1326 	u32	lkey;
1327 };
1328 
1329 struct ib_cqe {
1330 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1331 };
1332 
1333 struct ib_send_wr {
1334 	struct ib_send_wr      *next;
1335 	union {
1336 		u64		wr_id;
1337 		struct ib_cqe	*wr_cqe;
1338 	};
1339 	struct ib_sge	       *sg_list;
1340 	int			num_sge;
1341 	enum ib_wr_opcode	opcode;
1342 	int			send_flags;
1343 	union {
1344 		__be32		imm_data;
1345 		u32		invalidate_rkey;
1346 	} ex;
1347 };
1348 
1349 struct ib_rdma_wr {
1350 	struct ib_send_wr	wr;
1351 	u64			remote_addr;
1352 	u32			rkey;
1353 };
1354 
rdma_wr(const struct ib_send_wr * wr)1355 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1356 {
1357 	return container_of(wr, struct ib_rdma_wr, wr);
1358 }
1359 
1360 struct ib_atomic_wr {
1361 	struct ib_send_wr	wr;
1362 	u64			remote_addr;
1363 	u64			compare_add;
1364 	u64			swap;
1365 	u64			compare_add_mask;
1366 	u64			swap_mask;
1367 	u32			rkey;
1368 };
1369 
atomic_wr(const struct ib_send_wr * wr)1370 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1371 {
1372 	return container_of(wr, struct ib_atomic_wr, wr);
1373 }
1374 
1375 struct ib_ud_wr {
1376 	struct ib_send_wr	wr;
1377 	struct ib_ah		*ah;
1378 	void			*header;
1379 	int			hlen;
1380 	int			mss;
1381 	u32			remote_qpn;
1382 	u32			remote_qkey;
1383 	u16			pkey_index; /* valid for GSI only */
1384 	u8			port_num;   /* valid for DR SMPs on switch only */
1385 };
1386 
ud_wr(const struct ib_send_wr * wr)1387 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1388 {
1389 	return container_of(wr, struct ib_ud_wr, wr);
1390 }
1391 
1392 struct ib_reg_wr {
1393 	struct ib_send_wr	wr;
1394 	struct ib_mr		*mr;
1395 	u32			key;
1396 	int			access;
1397 };
1398 
reg_wr(const struct ib_send_wr * wr)1399 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1400 {
1401 	return container_of(wr, struct ib_reg_wr, wr);
1402 }
1403 
1404 struct ib_sig_handover_wr {
1405 	struct ib_send_wr	wr;
1406 	struct ib_sig_attrs    *sig_attrs;
1407 	struct ib_mr	       *sig_mr;
1408 	int			access_flags;
1409 	struct ib_sge	       *prot;
1410 };
1411 
1412 static inline const struct ib_sig_handover_wr *
sig_handover_wr(const struct ib_send_wr * wr)1413 sig_handover_wr(const struct ib_send_wr *wr)
1414 {
1415 	return container_of(wr, struct ib_sig_handover_wr, wr);
1416 }
1417 
1418 struct ib_recv_wr {
1419 	struct ib_recv_wr      *next;
1420 	union {
1421 		u64		wr_id;
1422 		struct ib_cqe	*wr_cqe;
1423 	};
1424 	struct ib_sge	       *sg_list;
1425 	int			num_sge;
1426 };
1427 
1428 enum ib_access_flags {
1429 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1430 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1431 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1432 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1433 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1434 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1435 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1436 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1437 
1438 	IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1439 };
1440 
1441 /*
1442  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1443  * are hidden here instead of a uapi header!
1444  */
1445 enum ib_mr_rereg_flags {
1446 	IB_MR_REREG_TRANS	= 1,
1447 	IB_MR_REREG_PD		= (1<<1),
1448 	IB_MR_REREG_ACCESS	= (1<<2),
1449 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1450 };
1451 
1452 struct ib_fmr_attr {
1453 	int	max_pages;
1454 	int	max_maps;
1455 	u8	page_shift;
1456 };
1457 
1458 struct ib_umem;
1459 
1460 enum rdma_remove_reason {
1461 	/*
1462 	 * Userspace requested uobject deletion or initial try
1463 	 * to remove uobject via cleanup. Call could fail
1464 	 */
1465 	RDMA_REMOVE_DESTROY,
1466 	/* Context deletion. This call should delete the actual object itself */
1467 	RDMA_REMOVE_CLOSE,
1468 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1469 	RDMA_REMOVE_DRIVER_REMOVE,
1470 	/* uobj is being cleaned-up before being committed */
1471 	RDMA_REMOVE_ABORT,
1472 };
1473 
1474 struct ib_rdmacg_object {
1475 #ifdef CONFIG_CGROUP_RDMA
1476 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1477 #endif
1478 };
1479 
1480 struct ib_ucontext {
1481 	struct ib_device       *device;
1482 	struct ib_uverbs_file  *ufile;
1483 	/*
1484 	 * 'closing' can be read by the driver only during a destroy callback,
1485 	 * it is set when we are closing the file descriptor and indicates
1486 	 * that mm_sem may be locked.
1487 	 */
1488 	int			closing;
1489 
1490 	bool cleanup_retryable;
1491 
1492 	struct pid             *tgid;
1493 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1494 	struct rb_root_cached   umem_tree;
1495 	/*
1496 	 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1497 	 * mmu notifiers registration.
1498 	 */
1499 	struct rw_semaphore	umem_rwsem;
1500 	void (*invalidate_range)(struct ib_umem *umem,
1501 				 unsigned long start, unsigned long end);
1502 
1503 	struct mmu_notifier	mn;
1504 	atomic_t		notifier_count;
1505 	/* A list of umems that don't have private mmu notifier counters yet. */
1506 	struct list_head	no_private_counters;
1507 	int                     odp_mrs_count;
1508 #endif
1509 
1510 	struct ib_rdmacg_object	cg_obj;
1511 };
1512 
1513 struct ib_uobject {
1514 	u64			user_handle;	/* handle given to us by userspace */
1515 	/* ufile & ucontext owning this object */
1516 	struct ib_uverbs_file  *ufile;
1517 	/* FIXME, save memory: ufile->context == context */
1518 	struct ib_ucontext     *context;	/* associated user context */
1519 	void		       *object;		/* containing object */
1520 	struct list_head	list;		/* link to context's list */
1521 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1522 	int			id;		/* index into kernel idr */
1523 	struct kref		ref;
1524 	atomic_t		usecnt;		/* protects exclusive access */
1525 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1526 
1527 	const struct uverbs_api_object *uapi_object;
1528 };
1529 
1530 struct ib_udata {
1531 	const void __user *inbuf;
1532 	void __user *outbuf;
1533 	size_t       inlen;
1534 	size_t       outlen;
1535 };
1536 
1537 struct ib_pd {
1538 	u32			local_dma_lkey;
1539 	u32			flags;
1540 	struct ib_device       *device;
1541 	struct ib_uobject      *uobject;
1542 	atomic_t          	usecnt; /* count all resources */
1543 
1544 	u32			unsafe_global_rkey;
1545 
1546 	/*
1547 	 * Implementation details of the RDMA core, don't use in drivers:
1548 	 */
1549 	struct ib_mr	       *__internal_mr;
1550 	struct rdma_restrack_entry res;
1551 };
1552 
1553 struct ib_xrcd {
1554 	struct ib_device       *device;
1555 	atomic_t		usecnt; /* count all exposed resources */
1556 	struct inode	       *inode;
1557 
1558 	struct mutex		tgt_qp_mutex;
1559 	struct list_head	tgt_qp_list;
1560 };
1561 
1562 struct ib_ah {
1563 	struct ib_device	*device;
1564 	struct ib_pd		*pd;
1565 	struct ib_uobject	*uobject;
1566 	const struct ib_gid_attr *sgid_attr;
1567 	enum rdma_ah_attr_type	type;
1568 };
1569 
1570 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1571 
1572 enum ib_poll_context {
1573 	IB_POLL_DIRECT,		/* caller context, no hw completions */
1574 	IB_POLL_SOFTIRQ,	/* poll from softirq context */
1575 	IB_POLL_WORKQUEUE,	/* poll from workqueue */
1576 };
1577 
1578 struct ib_cq {
1579 	struct ib_device       *device;
1580 	struct ib_uobject      *uobject;
1581 	ib_comp_handler   	comp_handler;
1582 	void                  (*event_handler)(struct ib_event *, void *);
1583 	void                   *cq_context;
1584 	int               	cqe;
1585 	atomic_t          	usecnt; /* count number of work queues */
1586 	enum ib_poll_context	poll_ctx;
1587 	struct ib_wc		*wc;
1588 	union {
1589 		struct irq_poll		iop;
1590 		struct work_struct	work;
1591 	};
1592 	/*
1593 	 * Implementation details of the RDMA core, don't use in drivers:
1594 	 */
1595 	struct rdma_restrack_entry res;
1596 };
1597 
1598 struct ib_srq {
1599 	struct ib_device       *device;
1600 	struct ib_pd	       *pd;
1601 	struct ib_uobject      *uobject;
1602 	void		      (*event_handler)(struct ib_event *, void *);
1603 	void		       *srq_context;
1604 	enum ib_srq_type	srq_type;
1605 	atomic_t		usecnt;
1606 
1607 	struct {
1608 		struct ib_cq   *cq;
1609 		union {
1610 			struct {
1611 				struct ib_xrcd *xrcd;
1612 				u32		srq_num;
1613 			} xrc;
1614 		};
1615 	} ext;
1616 };
1617 
1618 enum ib_raw_packet_caps {
1619 	/* Strip cvlan from incoming packet and report it in the matching work
1620 	 * completion is supported.
1621 	 */
1622 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1623 	/* Scatter FCS field of an incoming packet to host memory is supported.
1624 	 */
1625 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1626 	/* Checksum offloads are supported (for both send and receive). */
1627 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1628 	/* When a packet is received for an RQ with no receive WQEs, the
1629 	 * packet processing is delayed.
1630 	 */
1631 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1632 };
1633 
1634 enum ib_wq_type {
1635 	IB_WQT_RQ
1636 };
1637 
1638 enum ib_wq_state {
1639 	IB_WQS_RESET,
1640 	IB_WQS_RDY,
1641 	IB_WQS_ERR
1642 };
1643 
1644 struct ib_wq {
1645 	struct ib_device       *device;
1646 	struct ib_uobject      *uobject;
1647 	void		    *wq_context;
1648 	void		    (*event_handler)(struct ib_event *, void *);
1649 	struct ib_pd	       *pd;
1650 	struct ib_cq	       *cq;
1651 	u32		wq_num;
1652 	enum ib_wq_state       state;
1653 	enum ib_wq_type	wq_type;
1654 	atomic_t		usecnt;
1655 };
1656 
1657 enum ib_wq_flags {
1658 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1659 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1660 	IB_WQ_FLAGS_DELAY_DROP		= 1 << 2,
1661 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1662 };
1663 
1664 struct ib_wq_init_attr {
1665 	void		       *wq_context;
1666 	enum ib_wq_type	wq_type;
1667 	u32		max_wr;
1668 	u32		max_sge;
1669 	struct	ib_cq	       *cq;
1670 	void		    (*event_handler)(struct ib_event *, void *);
1671 	u32		create_flags; /* Use enum ib_wq_flags */
1672 };
1673 
1674 enum ib_wq_attr_mask {
1675 	IB_WQ_STATE		= 1 << 0,
1676 	IB_WQ_CUR_STATE		= 1 << 1,
1677 	IB_WQ_FLAGS		= 1 << 2,
1678 };
1679 
1680 struct ib_wq_attr {
1681 	enum	ib_wq_state	wq_state;
1682 	enum	ib_wq_state	curr_wq_state;
1683 	u32			flags; /* Use enum ib_wq_flags */
1684 	u32			flags_mask; /* Use enum ib_wq_flags */
1685 };
1686 
1687 struct ib_rwq_ind_table {
1688 	struct ib_device	*device;
1689 	struct ib_uobject      *uobject;
1690 	atomic_t		usecnt;
1691 	u32		ind_tbl_num;
1692 	u32		log_ind_tbl_size;
1693 	struct ib_wq	**ind_tbl;
1694 };
1695 
1696 struct ib_rwq_ind_table_init_attr {
1697 	u32		log_ind_tbl_size;
1698 	/* Each entry is a pointer to Receive Work Queue */
1699 	struct ib_wq	**ind_tbl;
1700 };
1701 
1702 enum port_pkey_state {
1703 	IB_PORT_PKEY_NOT_VALID = 0,
1704 	IB_PORT_PKEY_VALID = 1,
1705 	IB_PORT_PKEY_LISTED = 2,
1706 };
1707 
1708 struct ib_qp_security;
1709 
1710 struct ib_port_pkey {
1711 	enum port_pkey_state	state;
1712 	u16			pkey_index;
1713 	u8			port_num;
1714 	struct list_head	qp_list;
1715 	struct list_head	to_error_list;
1716 	struct ib_qp_security  *sec;
1717 };
1718 
1719 struct ib_ports_pkeys {
1720 	struct ib_port_pkey	main;
1721 	struct ib_port_pkey	alt;
1722 };
1723 
1724 struct ib_qp_security {
1725 	struct ib_qp	       *qp;
1726 	struct ib_device       *dev;
1727 	/* Hold this mutex when changing port and pkey settings. */
1728 	struct mutex		mutex;
1729 	struct ib_ports_pkeys  *ports_pkeys;
1730 	/* A list of all open shared QP handles.  Required to enforce security
1731 	 * properly for all users of a shared QP.
1732 	 */
1733 	struct list_head        shared_qp_list;
1734 	void                   *security;
1735 	bool			destroying;
1736 	atomic_t		error_list_count;
1737 	struct completion	error_complete;
1738 	int			error_comps_pending;
1739 };
1740 
1741 /*
1742  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1743  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1744  */
1745 struct ib_qp {
1746 	struct ib_device       *device;
1747 	struct ib_pd	       *pd;
1748 	struct ib_cq	       *send_cq;
1749 	struct ib_cq	       *recv_cq;
1750 	spinlock_t		mr_lock;
1751 	int			mrs_used;
1752 	struct list_head	rdma_mrs;
1753 	struct list_head	sig_mrs;
1754 	struct ib_srq	       *srq;
1755 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1756 	struct list_head	xrcd_list;
1757 
1758 	/* count times opened, mcast attaches, flow attaches */
1759 	atomic_t		usecnt;
1760 	struct list_head	open_list;
1761 	struct ib_qp           *real_qp;
1762 	struct ib_uobject      *uobject;
1763 	void                  (*event_handler)(struct ib_event *, void *);
1764 	void		       *qp_context;
1765 	/* sgid_attrs associated with the AV's */
1766 	const struct ib_gid_attr *av_sgid_attr;
1767 	const struct ib_gid_attr *alt_path_sgid_attr;
1768 	u32			qp_num;
1769 	u32			max_write_sge;
1770 	u32			max_read_sge;
1771 	enum ib_qp_type		qp_type;
1772 	struct ib_rwq_ind_table *rwq_ind_tbl;
1773 	struct ib_qp_security  *qp_sec;
1774 	u8			port;
1775 
1776 	/*
1777 	 * Implementation details of the RDMA core, don't use in drivers:
1778 	 */
1779 	struct rdma_restrack_entry     res;
1780 };
1781 
1782 struct ib_dm {
1783 	struct ib_device  *device;
1784 	u32		   length;
1785 	u32		   flags;
1786 	struct ib_uobject *uobject;
1787 	atomic_t	   usecnt;
1788 };
1789 
1790 struct ib_mr {
1791 	struct ib_device  *device;
1792 	struct ib_pd	  *pd;
1793 	u32		   lkey;
1794 	u32		   rkey;
1795 	u64		   iova;
1796 	u64		   length;
1797 	unsigned int	   page_size;
1798 	bool		   need_inval;
1799 	union {
1800 		struct ib_uobject	*uobject;	/* user */
1801 		struct list_head	qp_entry;	/* FR */
1802 	};
1803 
1804 	struct ib_dm      *dm;
1805 
1806 	/*
1807 	 * Implementation details of the RDMA core, don't use in drivers:
1808 	 */
1809 	struct rdma_restrack_entry res;
1810 };
1811 
1812 struct ib_mw {
1813 	struct ib_device	*device;
1814 	struct ib_pd		*pd;
1815 	struct ib_uobject	*uobject;
1816 	u32			rkey;
1817 	enum ib_mw_type         type;
1818 };
1819 
1820 struct ib_fmr {
1821 	struct ib_device	*device;
1822 	struct ib_pd		*pd;
1823 	struct list_head	list;
1824 	u32			lkey;
1825 	u32			rkey;
1826 };
1827 
1828 /* Supported steering options */
1829 enum ib_flow_attr_type {
1830 	/* steering according to rule specifications */
1831 	IB_FLOW_ATTR_NORMAL		= 0x0,
1832 	/* default unicast and multicast rule -
1833 	 * receive all Eth traffic which isn't steered to any QP
1834 	 */
1835 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1836 	/* default multicast rule -
1837 	 * receive all Eth multicast traffic which isn't steered to any QP
1838 	 */
1839 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1840 	/* sniffer rule - receive all port traffic */
1841 	IB_FLOW_ATTR_SNIFFER		= 0x3
1842 };
1843 
1844 /* Supported steering header types */
1845 enum ib_flow_spec_type {
1846 	/* L2 headers*/
1847 	IB_FLOW_SPEC_ETH		= 0x20,
1848 	IB_FLOW_SPEC_IB			= 0x22,
1849 	/* L3 header*/
1850 	IB_FLOW_SPEC_IPV4		= 0x30,
1851 	IB_FLOW_SPEC_IPV6		= 0x31,
1852 	IB_FLOW_SPEC_ESP                = 0x34,
1853 	/* L4 headers*/
1854 	IB_FLOW_SPEC_TCP		= 0x40,
1855 	IB_FLOW_SPEC_UDP		= 0x41,
1856 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1857 	IB_FLOW_SPEC_GRE		= 0x51,
1858 	IB_FLOW_SPEC_MPLS		= 0x60,
1859 	IB_FLOW_SPEC_INNER		= 0x100,
1860 	/* Actions */
1861 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1862 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1863 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1864 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1865 };
1866 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1867 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1868 
1869 /* Flow steering rule priority is set according to it's domain.
1870  * Lower domain value means higher priority.
1871  */
1872 enum ib_flow_domain {
1873 	IB_FLOW_DOMAIN_USER,
1874 	IB_FLOW_DOMAIN_ETHTOOL,
1875 	IB_FLOW_DOMAIN_RFS,
1876 	IB_FLOW_DOMAIN_NIC,
1877 	IB_FLOW_DOMAIN_NUM /* Must be last */
1878 };
1879 
1880 enum ib_flow_flags {
1881 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1882 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1883 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1884 };
1885 
1886 struct ib_flow_eth_filter {
1887 	u8	dst_mac[6];
1888 	u8	src_mac[6];
1889 	__be16	ether_type;
1890 	__be16	vlan_tag;
1891 	/* Must be last */
1892 	u8	real_sz[0];
1893 };
1894 
1895 struct ib_flow_spec_eth {
1896 	u32			  type;
1897 	u16			  size;
1898 	struct ib_flow_eth_filter val;
1899 	struct ib_flow_eth_filter mask;
1900 };
1901 
1902 struct ib_flow_ib_filter {
1903 	__be16 dlid;
1904 	__u8   sl;
1905 	/* Must be last */
1906 	u8	real_sz[0];
1907 };
1908 
1909 struct ib_flow_spec_ib {
1910 	u32			 type;
1911 	u16			 size;
1912 	struct ib_flow_ib_filter val;
1913 	struct ib_flow_ib_filter mask;
1914 };
1915 
1916 /* IPv4 header flags */
1917 enum ib_ipv4_flags {
1918 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1919 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1920 				    last have this flag set */
1921 };
1922 
1923 struct ib_flow_ipv4_filter {
1924 	__be32	src_ip;
1925 	__be32	dst_ip;
1926 	u8	proto;
1927 	u8	tos;
1928 	u8	ttl;
1929 	u8	flags;
1930 	/* Must be last */
1931 	u8	real_sz[0];
1932 };
1933 
1934 struct ib_flow_spec_ipv4 {
1935 	u32			   type;
1936 	u16			   size;
1937 	struct ib_flow_ipv4_filter val;
1938 	struct ib_flow_ipv4_filter mask;
1939 };
1940 
1941 struct ib_flow_ipv6_filter {
1942 	u8	src_ip[16];
1943 	u8	dst_ip[16];
1944 	__be32	flow_label;
1945 	u8	next_hdr;
1946 	u8	traffic_class;
1947 	u8	hop_limit;
1948 	/* Must be last */
1949 	u8	real_sz[0];
1950 };
1951 
1952 struct ib_flow_spec_ipv6 {
1953 	u32			   type;
1954 	u16			   size;
1955 	struct ib_flow_ipv6_filter val;
1956 	struct ib_flow_ipv6_filter mask;
1957 };
1958 
1959 struct ib_flow_tcp_udp_filter {
1960 	__be16	dst_port;
1961 	__be16	src_port;
1962 	/* Must be last */
1963 	u8	real_sz[0];
1964 };
1965 
1966 struct ib_flow_spec_tcp_udp {
1967 	u32			      type;
1968 	u16			      size;
1969 	struct ib_flow_tcp_udp_filter val;
1970 	struct ib_flow_tcp_udp_filter mask;
1971 };
1972 
1973 struct ib_flow_tunnel_filter {
1974 	__be32	tunnel_id;
1975 	u8	real_sz[0];
1976 };
1977 
1978 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1979  * the tunnel_id from val has the vni value
1980  */
1981 struct ib_flow_spec_tunnel {
1982 	u32			      type;
1983 	u16			      size;
1984 	struct ib_flow_tunnel_filter  val;
1985 	struct ib_flow_tunnel_filter  mask;
1986 };
1987 
1988 struct ib_flow_esp_filter {
1989 	__be32	spi;
1990 	__be32  seq;
1991 	/* Must be last */
1992 	u8	real_sz[0];
1993 };
1994 
1995 struct ib_flow_spec_esp {
1996 	u32                           type;
1997 	u16			      size;
1998 	struct ib_flow_esp_filter     val;
1999 	struct ib_flow_esp_filter     mask;
2000 };
2001 
2002 struct ib_flow_gre_filter {
2003 	__be16 c_ks_res0_ver;
2004 	__be16 protocol;
2005 	__be32 key;
2006 	/* Must be last */
2007 	u8	real_sz[0];
2008 };
2009 
2010 struct ib_flow_spec_gre {
2011 	u32                           type;
2012 	u16			      size;
2013 	struct ib_flow_gre_filter     val;
2014 	struct ib_flow_gre_filter     mask;
2015 };
2016 
2017 struct ib_flow_mpls_filter {
2018 	__be32 tag;
2019 	/* Must be last */
2020 	u8	real_sz[0];
2021 };
2022 
2023 struct ib_flow_spec_mpls {
2024 	u32                           type;
2025 	u16			      size;
2026 	struct ib_flow_mpls_filter     val;
2027 	struct ib_flow_mpls_filter     mask;
2028 };
2029 
2030 struct ib_flow_spec_action_tag {
2031 	enum ib_flow_spec_type	      type;
2032 	u16			      size;
2033 	u32                           tag_id;
2034 };
2035 
2036 struct ib_flow_spec_action_drop {
2037 	enum ib_flow_spec_type	      type;
2038 	u16			      size;
2039 };
2040 
2041 struct ib_flow_spec_action_handle {
2042 	enum ib_flow_spec_type	      type;
2043 	u16			      size;
2044 	struct ib_flow_action	     *act;
2045 };
2046 
2047 enum ib_counters_description {
2048 	IB_COUNTER_PACKETS,
2049 	IB_COUNTER_BYTES,
2050 };
2051 
2052 struct ib_flow_spec_action_count {
2053 	enum ib_flow_spec_type type;
2054 	u16 size;
2055 	struct ib_counters *counters;
2056 };
2057 
2058 union ib_flow_spec {
2059 	struct {
2060 		u32			type;
2061 		u16			size;
2062 	};
2063 	struct ib_flow_spec_eth		eth;
2064 	struct ib_flow_spec_ib		ib;
2065 	struct ib_flow_spec_ipv4        ipv4;
2066 	struct ib_flow_spec_tcp_udp	tcp_udp;
2067 	struct ib_flow_spec_ipv6        ipv6;
2068 	struct ib_flow_spec_tunnel      tunnel;
2069 	struct ib_flow_spec_esp		esp;
2070 	struct ib_flow_spec_gre		gre;
2071 	struct ib_flow_spec_mpls	mpls;
2072 	struct ib_flow_spec_action_tag  flow_tag;
2073 	struct ib_flow_spec_action_drop drop;
2074 	struct ib_flow_spec_action_handle action;
2075 	struct ib_flow_spec_action_count flow_count;
2076 };
2077 
2078 struct ib_flow_attr {
2079 	enum ib_flow_attr_type type;
2080 	u16	     size;
2081 	u16	     priority;
2082 	u32	     flags;
2083 	u8	     num_of_specs;
2084 	u8	     port;
2085 	union ib_flow_spec flows[];
2086 };
2087 
2088 struct ib_flow {
2089 	struct ib_qp		*qp;
2090 	struct ib_device	*device;
2091 	struct ib_uobject	*uobject;
2092 };
2093 
2094 enum ib_flow_action_type {
2095 	IB_FLOW_ACTION_UNSPECIFIED,
2096 	IB_FLOW_ACTION_ESP = 1,
2097 };
2098 
2099 struct ib_flow_action_attrs_esp_keymats {
2100 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2101 	union {
2102 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2103 	} keymat;
2104 };
2105 
2106 struct ib_flow_action_attrs_esp_replays {
2107 	enum ib_uverbs_flow_action_esp_replay			protocol;
2108 	union {
2109 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2110 	} replay;
2111 };
2112 
2113 enum ib_flow_action_attrs_esp_flags {
2114 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2115 	 * This is done in order to share the same flags between user-space and
2116 	 * kernel and spare an unnecessary translation.
2117 	 */
2118 
2119 	/* Kernel flags */
2120 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2121 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2122 };
2123 
2124 struct ib_flow_spec_list {
2125 	struct ib_flow_spec_list	*next;
2126 	union ib_flow_spec		spec;
2127 };
2128 
2129 struct ib_flow_action_attrs_esp {
2130 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2131 	struct ib_flow_action_attrs_esp_replays		*replay;
2132 	struct ib_flow_spec_list			*encap;
2133 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2134 	 * Value of 0 is a valid value.
2135 	 */
2136 	u32						esn;
2137 	u32						spi;
2138 	u32						seq;
2139 	u32						tfc_pad;
2140 	/* Use enum ib_flow_action_attrs_esp_flags */
2141 	u64						flags;
2142 	u64						hard_limit_pkts;
2143 };
2144 
2145 struct ib_flow_action {
2146 	struct ib_device		*device;
2147 	struct ib_uobject		*uobject;
2148 	enum ib_flow_action_type	type;
2149 	atomic_t			usecnt;
2150 };
2151 
2152 struct ib_mad_hdr;
2153 struct ib_grh;
2154 
2155 enum ib_process_mad_flags {
2156 	IB_MAD_IGNORE_MKEY	= 1,
2157 	IB_MAD_IGNORE_BKEY	= 2,
2158 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2159 };
2160 
2161 enum ib_mad_result {
2162 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2163 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2164 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2165 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2166 };
2167 
2168 struct ib_port_cache {
2169 	u64		      subnet_prefix;
2170 	struct ib_pkey_cache  *pkey;
2171 	struct ib_gid_table   *gid;
2172 	u8                     lmc;
2173 	enum ib_port_state     port_state;
2174 };
2175 
2176 struct ib_cache {
2177 	rwlock_t                lock;
2178 	struct ib_event_handler event_handler;
2179 	struct ib_port_cache   *ports;
2180 };
2181 
2182 struct iw_cm_verbs;
2183 
2184 struct ib_port_immutable {
2185 	int                           pkey_tbl_len;
2186 	int                           gid_tbl_len;
2187 	u32                           core_cap_flags;
2188 	u32                           max_mad_size;
2189 };
2190 
2191 /* rdma netdev type - specifies protocol type */
2192 enum rdma_netdev_t {
2193 	RDMA_NETDEV_OPA_VNIC,
2194 	RDMA_NETDEV_IPOIB,
2195 };
2196 
2197 /**
2198  * struct rdma_netdev - rdma netdev
2199  * For cases where netstack interfacing is required.
2200  */
2201 struct rdma_netdev {
2202 	void              *clnt_priv;
2203 	struct ib_device  *hca;
2204 	u8                 port_num;
2205 
2206 	/*
2207 	 * cleanup function must be specified.
2208 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2209 	 * removed too.
2210 	 */
2211 	void (*free_rdma_netdev)(struct net_device *netdev);
2212 
2213 	/* control functions */
2214 	void (*set_id)(struct net_device *netdev, int id);
2215 	/* send packet */
2216 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2217 		    struct ib_ah *address, u32 dqpn);
2218 	/* multicast */
2219 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2220 			    union ib_gid *gid, u16 mlid,
2221 			    int set_qkey, u32 qkey);
2222 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2223 			    union ib_gid *gid, u16 mlid);
2224 };
2225 
2226 struct ib_port_pkey_list {
2227 	/* Lock to hold while modifying the list. */
2228 	spinlock_t                    list_lock;
2229 	struct list_head              pkey_list;
2230 };
2231 
2232 struct ib_counters {
2233 	struct ib_device	*device;
2234 	struct ib_uobject	*uobject;
2235 	/* num of objects attached */
2236 	atomic_t	usecnt;
2237 };
2238 
2239 struct ib_counters_read_attr {
2240 	u64	*counters_buff;
2241 	u32	ncounters;
2242 	u32	flags; /* use enum ib_read_counters_flags */
2243 };
2244 
2245 struct uverbs_attr_bundle;
2246 
2247 struct ib_device {
2248 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2249 	struct device                *dma_device;
2250 
2251 	char                          name[IB_DEVICE_NAME_MAX];
2252 
2253 	struct list_head              event_handler_list;
2254 	spinlock_t                    event_handler_lock;
2255 
2256 	spinlock_t                    client_data_lock;
2257 	struct list_head              core_list;
2258 	/* Access to the client_data_list is protected by the client_data_lock
2259 	 * spinlock and the lists_rwsem read-write semaphore */
2260 	struct list_head              client_data_list;
2261 
2262 	struct ib_cache               cache;
2263 	/**
2264 	 * port_immutable is indexed by port number
2265 	 */
2266 	struct ib_port_immutable     *port_immutable;
2267 
2268 	int			      num_comp_vectors;
2269 
2270 	struct ib_port_pkey_list     *port_pkey_list;
2271 
2272 	struct iw_cm_verbs	     *iwcm;
2273 
2274 	/**
2275 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2276 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2277 	 *   core when the device is removed.  A lifespan of -1 in the return
2278 	 *   struct tells the core to set a default lifespan.
2279 	 */
2280 	struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
2281 						     u8 port_num);
2282 	/**
2283 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2284 	 * @index - The index in the value array we wish to have updated, or
2285 	 *   num_counters if we want all stats updated
2286 	 * Return codes -
2287 	 *   < 0 - Error, no counters updated
2288 	 *   index - Updated the single counter pointed to by index
2289 	 *   num_counters - Updated all counters (will reset the timestamp
2290 	 *     and prevent further calls for lifespan milliseconds)
2291 	 * Drivers are allowed to update all counters in leiu of just the
2292 	 *   one given in index at their option
2293 	 */
2294 	int		           (*get_hw_stats)(struct ib_device *device,
2295 						   struct rdma_hw_stats *stats,
2296 						   u8 port, int index);
2297 	int		           (*query_device)(struct ib_device *device,
2298 						   struct ib_device_attr *device_attr,
2299 						   struct ib_udata *udata);
2300 	int		           (*query_port)(struct ib_device *device,
2301 						 u8 port_num,
2302 						 struct ib_port_attr *port_attr);
2303 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
2304 						     u8 port_num);
2305 	/* When calling get_netdev, the HW vendor's driver should return the
2306 	 * net device of device @device at port @port_num or NULL if such
2307 	 * a net device doesn't exist. The vendor driver should call dev_hold
2308 	 * on this net device. The HW vendor's device driver must guarantee
2309 	 * that this function returns NULL before the net device has finished
2310 	 * NETDEV_UNREGISTER state.
2311 	 */
2312 	struct net_device	  *(*get_netdev)(struct ib_device *device,
2313 						 u8 port_num);
2314 	/* query_gid should be return GID value for @device, when @port_num
2315 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2316 	 * is RoCE link layer.
2317 	 */
2318 	int		           (*query_gid)(struct ib_device *device,
2319 						u8 port_num, int index,
2320 						union ib_gid *gid);
2321 	/* When calling add_gid, the HW vendor's driver should add the gid
2322 	 * of device of port at gid index available at @attr. Meta-info of
2323 	 * that gid (for example, the network device related to this gid) is
2324 	 * available at @attr. @context allows the HW vendor driver to store
2325 	 * extra information together with a GID entry. The HW vendor driver may
2326 	 * allocate memory to contain this information and store it in @context
2327 	 * when a new GID entry is written to. Params are consistent until the
2328 	 * next call of add_gid or delete_gid. The function should return 0 on
2329 	 * success or error otherwise. The function could be called
2330 	 * concurrently for different ports. This function is only called when
2331 	 * roce_gid_table is used.
2332 	 */
2333 	int		           (*add_gid)(const struct ib_gid_attr *attr,
2334 					      void **context);
2335 	/* When calling del_gid, the HW vendor's driver should delete the
2336 	 * gid of device @device at gid index gid_index of port port_num
2337 	 * available in @attr.
2338 	 * Upon the deletion of a GID entry, the HW vendor must free any
2339 	 * allocated memory. The caller will clear @context afterwards.
2340 	 * This function is only called when roce_gid_table is used.
2341 	 */
2342 	int		           (*del_gid)(const struct ib_gid_attr *attr,
2343 					      void **context);
2344 	int		           (*query_pkey)(struct ib_device *device,
2345 						 u8 port_num, u16 index, u16 *pkey);
2346 	int		           (*modify_device)(struct ib_device *device,
2347 						    int device_modify_mask,
2348 						    struct ib_device_modify *device_modify);
2349 	int		           (*modify_port)(struct ib_device *device,
2350 						  u8 port_num, int port_modify_mask,
2351 						  struct ib_port_modify *port_modify);
2352 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
2353 						     struct ib_udata *udata);
2354 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
2355 	int                        (*mmap)(struct ib_ucontext *context,
2356 					   struct vm_area_struct *vma);
2357 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
2358 					       struct ib_ucontext *context,
2359 					       struct ib_udata *udata);
2360 	int                        (*dealloc_pd)(struct ib_pd *pd);
2361 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
2362 						struct rdma_ah_attr *ah_attr,
2363 						struct ib_udata *udata);
2364 	int                        (*modify_ah)(struct ib_ah *ah,
2365 						struct rdma_ah_attr *ah_attr);
2366 	int                        (*query_ah)(struct ib_ah *ah,
2367 					       struct rdma_ah_attr *ah_attr);
2368 	int                        (*destroy_ah)(struct ib_ah *ah);
2369 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
2370 						 struct ib_srq_init_attr *srq_init_attr,
2371 						 struct ib_udata *udata);
2372 	int                        (*modify_srq)(struct ib_srq *srq,
2373 						 struct ib_srq_attr *srq_attr,
2374 						 enum ib_srq_attr_mask srq_attr_mask,
2375 						 struct ib_udata *udata);
2376 	int                        (*query_srq)(struct ib_srq *srq,
2377 						struct ib_srq_attr *srq_attr);
2378 	int                        (*destroy_srq)(struct ib_srq *srq);
2379 	int                        (*post_srq_recv)(struct ib_srq *srq,
2380 						    const struct ib_recv_wr *recv_wr,
2381 						    const struct ib_recv_wr **bad_recv_wr);
2382 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
2383 						struct ib_qp_init_attr *qp_init_attr,
2384 						struct ib_udata *udata);
2385 	int                        (*modify_qp)(struct ib_qp *qp,
2386 						struct ib_qp_attr *qp_attr,
2387 						int qp_attr_mask,
2388 						struct ib_udata *udata);
2389 	int                        (*query_qp)(struct ib_qp *qp,
2390 					       struct ib_qp_attr *qp_attr,
2391 					       int qp_attr_mask,
2392 					       struct ib_qp_init_attr *qp_init_attr);
2393 	int                        (*destroy_qp)(struct ib_qp *qp);
2394 	int                        (*post_send)(struct ib_qp *qp,
2395 						const struct ib_send_wr *send_wr,
2396 						const struct ib_send_wr **bad_send_wr);
2397 	int                        (*post_recv)(struct ib_qp *qp,
2398 						const struct ib_recv_wr *recv_wr,
2399 						const struct ib_recv_wr **bad_recv_wr);
2400 	struct ib_cq *             (*create_cq)(struct ib_device *device,
2401 						const struct ib_cq_init_attr *attr,
2402 						struct ib_ucontext *context,
2403 						struct ib_udata *udata);
2404 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2405 						u16 cq_period);
2406 	int                        (*destroy_cq)(struct ib_cq *cq);
2407 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
2408 						struct ib_udata *udata);
2409 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
2410 					      struct ib_wc *wc);
2411 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2412 	int                        (*req_notify_cq)(struct ib_cq *cq,
2413 						    enum ib_cq_notify_flags flags);
2414 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
2415 						      int wc_cnt);
2416 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
2417 						 int mr_access_flags);
2418 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2419 						  u64 start, u64 length,
2420 						  u64 virt_addr,
2421 						  int mr_access_flags,
2422 						  struct ib_udata *udata);
2423 	int			   (*rereg_user_mr)(struct ib_mr *mr,
2424 						    int flags,
2425 						    u64 start, u64 length,
2426 						    u64 virt_addr,
2427 						    int mr_access_flags,
2428 						    struct ib_pd *pd,
2429 						    struct ib_udata *udata);
2430 	int                        (*dereg_mr)(struct ib_mr *mr);
2431 	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd,
2432 					       enum ib_mr_type mr_type,
2433 					       u32 max_num_sg);
2434 	int                        (*map_mr_sg)(struct ib_mr *mr,
2435 						struct scatterlist *sg,
2436 						int sg_nents,
2437 						unsigned int *sg_offset);
2438 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2439 					       enum ib_mw_type type,
2440 					       struct ib_udata *udata);
2441 	int                        (*dealloc_mw)(struct ib_mw *mw);
2442 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
2443 						int mr_access_flags,
2444 						struct ib_fmr_attr *fmr_attr);
2445 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
2446 						   u64 *page_list, int list_len,
2447 						   u64 iova);
2448 	int		           (*unmap_fmr)(struct list_head *fmr_list);
2449 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
2450 	int                        (*attach_mcast)(struct ib_qp *qp,
2451 						   union ib_gid *gid,
2452 						   u16 lid);
2453 	int                        (*detach_mcast)(struct ib_qp *qp,
2454 						   union ib_gid *gid,
2455 						   u16 lid);
2456 	int                        (*process_mad)(struct ib_device *device,
2457 						  int process_mad_flags,
2458 						  u8 port_num,
2459 						  const struct ib_wc *in_wc,
2460 						  const struct ib_grh *in_grh,
2461 						  const struct ib_mad_hdr *in_mad,
2462 						  size_t in_mad_size,
2463 						  struct ib_mad_hdr *out_mad,
2464 						  size_t *out_mad_size,
2465 						  u16 *out_mad_pkey_index);
2466 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
2467 						 struct ib_ucontext *ucontext,
2468 						 struct ib_udata *udata);
2469 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2470 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
2471 						  struct ib_flow_attr
2472 						  *flow_attr,
2473 						  int domain,
2474 						  struct ib_udata *udata);
2475 	int			   (*destroy_flow)(struct ib_flow *flow_id);
2476 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2477 						      struct ib_mr_status *mr_status);
2478 	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2479 	void			   (*drain_rq)(struct ib_qp *qp);
2480 	void			   (*drain_sq)(struct ib_qp *qp);
2481 	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2482 							int state);
2483 	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2484 						   struct ifla_vf_info *ivf);
2485 	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2486 						   struct ifla_vf_stats *stats);
2487 	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2488 						  int type);
2489 	struct ib_wq *		   (*create_wq)(struct ib_pd *pd,
2490 						struct ib_wq_init_attr *init_attr,
2491 						struct ib_udata *udata);
2492 	int			   (*destroy_wq)(struct ib_wq *wq);
2493 	int			   (*modify_wq)(struct ib_wq *wq,
2494 						struct ib_wq_attr *attr,
2495 						u32 wq_attr_mask,
2496 						struct ib_udata *udata);
2497 	struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2498 							   struct ib_rwq_ind_table_init_attr *init_attr,
2499 							   struct ib_udata *udata);
2500 	int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2501 	struct ib_flow_action *	   (*create_flow_action_esp)(struct ib_device *device,
2502 							     const struct ib_flow_action_attrs_esp *attr,
2503 							     struct uverbs_attr_bundle *attrs);
2504 	int			   (*destroy_flow_action)(struct ib_flow_action *action);
2505 	int			   (*modify_flow_action_esp)(struct ib_flow_action *action,
2506 							     const struct ib_flow_action_attrs_esp *attr,
2507 							     struct uverbs_attr_bundle *attrs);
2508 	struct ib_dm *             (*alloc_dm)(struct ib_device *device,
2509 					       struct ib_ucontext *context,
2510 					       struct ib_dm_alloc_attr *attr,
2511 					       struct uverbs_attr_bundle *attrs);
2512 	int                        (*dealloc_dm)(struct ib_dm *dm);
2513 	struct ib_mr *             (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2514 						struct ib_dm_mr_attr *attr,
2515 						struct uverbs_attr_bundle *attrs);
2516 	struct ib_counters *	(*create_counters)(struct ib_device *device,
2517 						   struct uverbs_attr_bundle *attrs);
2518 	int	(*destroy_counters)(struct ib_counters	*counters);
2519 	int	(*read_counters)(struct ib_counters *counters,
2520 				 struct ib_counters_read_attr *counters_read_attr,
2521 				 struct uverbs_attr_bundle *attrs);
2522 
2523 	/**
2524 	 * rdma netdev operation
2525 	 *
2526 	 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2527 	 * doesn't support the specified rdma netdev type.
2528 	 */
2529 	struct net_device *(*alloc_rdma_netdev)(
2530 					struct ib_device *device,
2531 					u8 port_num,
2532 					enum rdma_netdev_t type,
2533 					const char *name,
2534 					unsigned char name_assign_type,
2535 					void (*setup)(struct net_device *));
2536 
2537 	struct module               *owner;
2538 	struct device                dev;
2539 	struct kobject               *ports_parent;
2540 	struct list_head             port_list;
2541 
2542 	enum {
2543 		IB_DEV_UNINITIALIZED,
2544 		IB_DEV_REGISTERED,
2545 		IB_DEV_UNREGISTERED
2546 	}                            reg_state;
2547 
2548 	int			     uverbs_abi_ver;
2549 	u64			     uverbs_cmd_mask;
2550 	u64			     uverbs_ex_cmd_mask;
2551 
2552 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2553 	__be64			     node_guid;
2554 	u32			     local_dma_lkey;
2555 	u16                          is_switch:1;
2556 	u8                           node_type;
2557 	u8                           phys_port_cnt;
2558 	struct ib_device_attr        attrs;
2559 	struct attribute_group	     *hw_stats_ag;
2560 	struct rdma_hw_stats         *hw_stats;
2561 
2562 #ifdef CONFIG_CGROUP_RDMA
2563 	struct rdmacg_device         cg_device;
2564 #endif
2565 
2566 	u32                          index;
2567 	/*
2568 	 * Implementation details of the RDMA core, don't use in drivers
2569 	 */
2570 	struct rdma_restrack_root     res;
2571 
2572 	/**
2573 	 * The following mandatory functions are used only at device
2574 	 * registration.  Keep functions such as these at the end of this
2575 	 * structure to avoid cache line misses when accessing struct ib_device
2576 	 * in fast paths.
2577 	 */
2578 	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2579 	void (*get_dev_fw_str)(struct ib_device *, char *str);
2580 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2581 						     int comp_vector);
2582 
2583 	const struct uverbs_object_tree_def *const *driver_specs;
2584 	enum rdma_driver_id		driver_id;
2585 };
2586 
2587 struct ib_client {
2588 	char  *name;
2589 	void (*add)   (struct ib_device *);
2590 	void (*remove)(struct ib_device *, void *client_data);
2591 
2592 	/* Returns the net_dev belonging to this ib_client and matching the
2593 	 * given parameters.
2594 	 * @dev:	 An RDMA device that the net_dev use for communication.
2595 	 * @port:	 A physical port number on the RDMA device.
2596 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2597 	 * @gid:	 A GID that the net_dev uses to communicate.
2598 	 * @addr:	 An IP address the net_dev is configured with.
2599 	 * @client_data: The device's client data set by ib_set_client_data().
2600 	 *
2601 	 * An ib_client that implements a net_dev on top of RDMA devices
2602 	 * (such as IP over IB) should implement this callback, allowing the
2603 	 * rdma_cm module to find the right net_dev for a given request.
2604 	 *
2605 	 * The caller is responsible for calling dev_put on the returned
2606 	 * netdev. */
2607 	struct net_device *(*get_net_dev_by_params)(
2608 			struct ib_device *dev,
2609 			u8 port,
2610 			u16 pkey,
2611 			const union ib_gid *gid,
2612 			const struct sockaddr *addr,
2613 			void *client_data);
2614 	struct list_head list;
2615 };
2616 
2617 struct ib_device *ib_alloc_device(size_t size);
2618 void ib_dealloc_device(struct ib_device *device);
2619 
2620 void ib_get_device_fw_str(struct ib_device *device, char *str);
2621 
2622 int ib_register_device(struct ib_device *device,
2623 		       int (*port_callback)(struct ib_device *,
2624 					    u8, struct kobject *));
2625 void ib_unregister_device(struct ib_device *device);
2626 
2627 int ib_register_client   (struct ib_client *client);
2628 void ib_unregister_client(struct ib_client *client);
2629 
2630 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2631 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2632 			 void *data);
2633 
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2634 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2635 {
2636 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2637 }
2638 
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2639 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2640 {
2641 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2642 }
2643 
ib_is_buffer_cleared(const void __user * p,size_t len)2644 static inline bool ib_is_buffer_cleared(const void __user *p,
2645 					size_t len)
2646 {
2647 	bool ret;
2648 	u8 *buf;
2649 
2650 	if (len > USHRT_MAX)
2651 		return false;
2652 
2653 	buf = memdup_user(p, len);
2654 	if (IS_ERR(buf))
2655 		return false;
2656 
2657 	ret = !memchr_inv(buf, 0, len);
2658 	kfree(buf);
2659 	return ret;
2660 }
2661 
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2662 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2663 				       size_t offset,
2664 				       size_t len)
2665 {
2666 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2667 }
2668 
2669 /**
2670  * ib_is_destroy_retryable - Check whether the uobject destruction
2671  * is retryable.
2672  * @ret: The initial destruction return code
2673  * @why: remove reason
2674  * @uobj: The uobject that is destroyed
2675  *
2676  * This function is a helper function that IB layer and low-level drivers
2677  * can use to consider whether the destruction of the given uobject is
2678  * retry-able.
2679  * It checks the original return code, if it wasn't success the destruction
2680  * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2681  * the remove reason. (i.e. why).
2682  * Must be called with the object locked for destroy.
2683  */
ib_is_destroy_retryable(int ret,enum rdma_remove_reason why,struct ib_uobject * uobj)2684 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2685 					   struct ib_uobject *uobj)
2686 {
2687 	return ret && (why == RDMA_REMOVE_DESTROY ||
2688 		       uobj->context->cleanup_retryable);
2689 }
2690 
2691 /**
2692  * ib_destroy_usecnt - Called during destruction to check the usecnt
2693  * @usecnt: The usecnt atomic
2694  * @why: remove reason
2695  * @uobj: The uobject that is destroyed
2696  *
2697  * Non-zero usecnts will block destruction unless destruction was triggered by
2698  * a ucontext cleanup.
2699  */
ib_destroy_usecnt(atomic_t * usecnt,enum rdma_remove_reason why,struct ib_uobject * uobj)2700 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2701 				    enum rdma_remove_reason why,
2702 				    struct ib_uobject *uobj)
2703 {
2704 	if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2705 		return -EBUSY;
2706 	return 0;
2707 }
2708 
2709 /**
2710  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2711  * contains all required attributes and no attributes not allowed for
2712  * the given QP state transition.
2713  * @cur_state: Current QP state
2714  * @next_state: Next QP state
2715  * @type: QP type
2716  * @mask: Mask of supplied QP attributes
2717  * @ll : link layer of port
2718  *
2719  * This function is a helper function that a low-level driver's
2720  * modify_qp method can use to validate the consumer's input.  It
2721  * checks that cur_state and next_state are valid QP states, that a
2722  * transition from cur_state to next_state is allowed by the IB spec,
2723  * and that the attribute mask supplied is allowed for the transition.
2724  */
2725 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2726 			enum ib_qp_type type, enum ib_qp_attr_mask mask,
2727 			enum rdma_link_layer ll);
2728 
2729 void ib_register_event_handler(struct ib_event_handler *event_handler);
2730 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2731 void ib_dispatch_event(struct ib_event *event);
2732 
2733 int ib_query_port(struct ib_device *device,
2734 		  u8 port_num, struct ib_port_attr *port_attr);
2735 
2736 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2737 					       u8 port_num);
2738 
2739 /**
2740  * rdma_cap_ib_switch - Check if the device is IB switch
2741  * @device: Device to check
2742  *
2743  * Device driver is responsible for setting is_switch bit on
2744  * in ib_device structure at init time.
2745  *
2746  * Return: true if the device is IB switch.
2747  */
rdma_cap_ib_switch(const struct ib_device * device)2748 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2749 {
2750 	return device->is_switch;
2751 }
2752 
2753 /**
2754  * rdma_start_port - Return the first valid port number for the device
2755  * specified
2756  *
2757  * @device: Device to be checked
2758  *
2759  * Return start port number
2760  */
rdma_start_port(const struct ib_device * device)2761 static inline u8 rdma_start_port(const struct ib_device *device)
2762 {
2763 	return rdma_cap_ib_switch(device) ? 0 : 1;
2764 }
2765 
2766 /**
2767  * rdma_end_port - Return the last valid port number for the device
2768  * specified
2769  *
2770  * @device: Device to be checked
2771  *
2772  * Return last port number
2773  */
rdma_end_port(const struct ib_device * device)2774 static inline u8 rdma_end_port(const struct ib_device *device)
2775 {
2776 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2777 }
2778 
rdma_is_port_valid(const struct ib_device * device,unsigned int port)2779 static inline int rdma_is_port_valid(const struct ib_device *device,
2780 				     unsigned int port)
2781 {
2782 	return (port >= rdma_start_port(device) &&
2783 		port <= rdma_end_port(device));
2784 }
2785 
rdma_is_grh_required(const struct ib_device * device,u8 port_num)2786 static inline bool rdma_is_grh_required(const struct ib_device *device,
2787 					u8 port_num)
2788 {
2789 	return device->port_immutable[port_num].core_cap_flags &
2790 		RDMA_CORE_PORT_IB_GRH_REQUIRED;
2791 }
2792 
rdma_protocol_ib(const struct ib_device * device,u8 port_num)2793 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2794 {
2795 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2796 }
2797 
rdma_protocol_roce(const struct ib_device * device,u8 port_num)2798 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2799 {
2800 	return device->port_immutable[port_num].core_cap_flags &
2801 		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2802 }
2803 
rdma_protocol_roce_udp_encap(const struct ib_device * device,u8 port_num)2804 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2805 {
2806 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2807 }
2808 
rdma_protocol_roce_eth_encap(const struct ib_device * device,u8 port_num)2809 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2810 {
2811 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2812 }
2813 
rdma_protocol_iwarp(const struct ib_device * device,u8 port_num)2814 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2815 {
2816 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2817 }
2818 
rdma_ib_or_roce(const struct ib_device * device,u8 port_num)2819 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2820 {
2821 	return rdma_protocol_ib(device, port_num) ||
2822 		rdma_protocol_roce(device, port_num);
2823 }
2824 
rdma_protocol_raw_packet(const struct ib_device * device,u8 port_num)2825 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2826 {
2827 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2828 }
2829 
rdma_protocol_usnic(const struct ib_device * device,u8 port_num)2830 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2831 {
2832 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2833 }
2834 
2835 /**
2836  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2837  * Management Datagrams.
2838  * @device: Device to check
2839  * @port_num: Port number to check
2840  *
2841  * Management Datagrams (MAD) are a required part of the InfiniBand
2842  * specification and are supported on all InfiniBand devices.  A slightly
2843  * extended version are also supported on OPA interfaces.
2844  *
2845  * Return: true if the port supports sending/receiving of MAD packets.
2846  */
rdma_cap_ib_mad(const struct ib_device * device,u8 port_num)2847 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2848 {
2849 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2850 }
2851 
2852 /**
2853  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2854  * Management Datagrams.
2855  * @device: Device to check
2856  * @port_num: Port number to check
2857  *
2858  * Intel OmniPath devices extend and/or replace the InfiniBand Management
2859  * datagrams with their own versions.  These OPA MADs share many but not all of
2860  * the characteristics of InfiniBand MADs.
2861  *
2862  * OPA MADs differ in the following ways:
2863  *
2864  *    1) MADs are variable size up to 2K
2865  *       IBTA defined MADs remain fixed at 256 bytes
2866  *    2) OPA SMPs must carry valid PKeys
2867  *    3) OPA SMP packets are a different format
2868  *
2869  * Return: true if the port supports OPA MAD packet formats.
2870  */
rdma_cap_opa_mad(struct ib_device * device,u8 port_num)2871 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2872 {
2873 	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2874 		== RDMA_CORE_CAP_OPA_MAD;
2875 }
2876 
2877 /**
2878  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2879  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2880  * @device: Device to check
2881  * @port_num: Port number to check
2882  *
2883  * Each InfiniBand node is required to provide a Subnet Management Agent
2884  * that the subnet manager can access.  Prior to the fabric being fully
2885  * configured by the subnet manager, the SMA is accessed via a well known
2886  * interface called the Subnet Management Interface (SMI).  This interface
2887  * uses directed route packets to communicate with the SM to get around the
2888  * chicken and egg problem of the SM needing to know what's on the fabric
2889  * in order to configure the fabric, and needing to configure the fabric in
2890  * order to send packets to the devices on the fabric.  These directed
2891  * route packets do not need the fabric fully configured in order to reach
2892  * their destination.  The SMI is the only method allowed to send
2893  * directed route packets on an InfiniBand fabric.
2894  *
2895  * Return: true if the port provides an SMI.
2896  */
rdma_cap_ib_smi(const struct ib_device * device,u8 port_num)2897 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2898 {
2899 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2900 }
2901 
2902 /**
2903  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2904  * Communication Manager.
2905  * @device: Device to check
2906  * @port_num: Port number to check
2907  *
2908  * The InfiniBand Communication Manager is one of many pre-defined General
2909  * Service Agents (GSA) that are accessed via the General Service
2910  * Interface (GSI).  It's role is to facilitate establishment of connections
2911  * between nodes as well as other management related tasks for established
2912  * connections.
2913  *
2914  * Return: true if the port supports an IB CM (this does not guarantee that
2915  * a CM is actually running however).
2916  */
rdma_cap_ib_cm(const struct ib_device * device,u8 port_num)2917 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2918 {
2919 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2920 }
2921 
2922 /**
2923  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2924  * Communication Manager.
2925  * @device: Device to check
2926  * @port_num: Port number to check
2927  *
2928  * Similar to above, but specific to iWARP connections which have a different
2929  * managment protocol than InfiniBand.
2930  *
2931  * Return: true if the port supports an iWARP CM (this does not guarantee that
2932  * a CM is actually running however).
2933  */
rdma_cap_iw_cm(const struct ib_device * device,u8 port_num)2934 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2935 {
2936 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2937 }
2938 
2939 /**
2940  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2941  * Subnet Administration.
2942  * @device: Device to check
2943  * @port_num: Port number to check
2944  *
2945  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2946  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2947  * fabrics, devices should resolve routes to other hosts by contacting the
2948  * SA to query the proper route.
2949  *
2950  * Return: true if the port should act as a client to the fabric Subnet
2951  * Administration interface.  This does not imply that the SA service is
2952  * running locally.
2953  */
rdma_cap_ib_sa(const struct ib_device * device,u8 port_num)2954 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2955 {
2956 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2957 }
2958 
2959 /**
2960  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2961  * Multicast.
2962  * @device: Device to check
2963  * @port_num: Port number to check
2964  *
2965  * InfiniBand multicast registration is more complex than normal IPv4 or
2966  * IPv6 multicast registration.  Each Host Channel Adapter must register
2967  * with the Subnet Manager when it wishes to join a multicast group.  It
2968  * should do so only once regardless of how many queue pairs it subscribes
2969  * to this group.  And it should leave the group only after all queue pairs
2970  * attached to the group have been detached.
2971  *
2972  * Return: true if the port must undertake the additional adminstrative
2973  * overhead of registering/unregistering with the SM and tracking of the
2974  * total number of queue pairs attached to the multicast group.
2975  */
rdma_cap_ib_mcast(const struct ib_device * device,u8 port_num)2976 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2977 {
2978 	return rdma_cap_ib_sa(device, port_num);
2979 }
2980 
2981 /**
2982  * rdma_cap_af_ib - Check if the port of device has the capability
2983  * Native Infiniband Address.
2984  * @device: Device to check
2985  * @port_num: Port number to check
2986  *
2987  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2988  * GID.  RoCE uses a different mechanism, but still generates a GID via
2989  * a prescribed mechanism and port specific data.
2990  *
2991  * Return: true if the port uses a GID address to identify devices on the
2992  * network.
2993  */
rdma_cap_af_ib(const struct ib_device * device,u8 port_num)2994 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2995 {
2996 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2997 }
2998 
2999 /**
3000  * rdma_cap_eth_ah - Check if the port of device has the capability
3001  * Ethernet Address Handle.
3002  * @device: Device to check
3003  * @port_num: Port number to check
3004  *
3005  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3006  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3007  * port.  Normally, packet headers are generated by the sending host
3008  * adapter, but when sending connectionless datagrams, we must manually
3009  * inject the proper headers for the fabric we are communicating over.
3010  *
3011  * Return: true if we are running as a RoCE port and must force the
3012  * addition of a Global Route Header built from our Ethernet Address
3013  * Handle into our header list for connectionless packets.
3014  */
rdma_cap_eth_ah(const struct ib_device * device,u8 port_num)3015 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3016 {
3017 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
3018 }
3019 
3020 /**
3021  * rdma_cap_opa_ah - Check if the port of device supports
3022  * OPA Address handles
3023  * @device: Device to check
3024  * @port_num: Port number to check
3025  *
3026  * Return: true if we are running on an OPA device which supports
3027  * the extended OPA addressing.
3028  */
rdma_cap_opa_ah(struct ib_device * device,u8 port_num)3029 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3030 {
3031 	return (device->port_immutable[port_num].core_cap_flags &
3032 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3033 }
3034 
3035 /**
3036  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3037  *
3038  * @device: Device
3039  * @port_num: Port number
3040  *
3041  * This MAD size includes the MAD headers and MAD payload.  No other headers
3042  * are included.
3043  *
3044  * Return the max MAD size required by the Port.  Will return 0 if the port
3045  * does not support MADs
3046  */
rdma_max_mad_size(const struct ib_device * device,u8 port_num)3047 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3048 {
3049 	return device->port_immutable[port_num].max_mad_size;
3050 }
3051 
3052 /**
3053  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3054  * @device: Device to check
3055  * @port_num: Port number to check
3056  *
3057  * RoCE GID table mechanism manages the various GIDs for a device.
3058  *
3059  * NOTE: if allocating the port's GID table has failed, this call will still
3060  * return true, but any RoCE GID table API will fail.
3061  *
3062  * Return: true if the port uses RoCE GID table mechanism in order to manage
3063  * its GIDs.
3064  */
rdma_cap_roce_gid_table(const struct ib_device * device,u8 port_num)3065 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3066 					   u8 port_num)
3067 {
3068 	return rdma_protocol_roce(device, port_num) &&
3069 		device->add_gid && device->del_gid;
3070 }
3071 
3072 /*
3073  * Check if the device supports READ W/ INVALIDATE.
3074  */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3075 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3076 {
3077 	/*
3078 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3079 	 * has support for it yet.
3080 	 */
3081 	return rdma_protocol_iwarp(dev, port_num);
3082 }
3083 
3084 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3085 			 int state);
3086 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3087 		     struct ifla_vf_info *info);
3088 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3089 		    struct ifla_vf_stats *stats);
3090 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3091 		   int type);
3092 
3093 int ib_query_pkey(struct ib_device *device,
3094 		  u8 port_num, u16 index, u16 *pkey);
3095 
3096 int ib_modify_device(struct ib_device *device,
3097 		     int device_modify_mask,
3098 		     struct ib_device_modify *device_modify);
3099 
3100 int ib_modify_port(struct ib_device *device,
3101 		   u8 port_num, int port_modify_mask,
3102 		   struct ib_port_modify *port_modify);
3103 
3104 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3105 		u8 *port_num, u16 *index);
3106 
3107 int ib_find_pkey(struct ib_device *device,
3108 		 u8 port_num, u16 pkey, u16 *index);
3109 
3110 enum ib_pd_flags {
3111 	/*
3112 	 * Create a memory registration for all memory in the system and place
3113 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3114 	 * ULPs to avoid the overhead of dynamic MRs.
3115 	 *
3116 	 * This flag is generally considered unsafe and must only be used in
3117 	 * extremly trusted environments.  Every use of it will log a warning
3118 	 * in the kernel log.
3119 	 */
3120 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3121 };
3122 
3123 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3124 		const char *caller);
3125 #define ib_alloc_pd(device, flags) \
3126 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3127 void ib_dealloc_pd(struct ib_pd *pd);
3128 
3129 /**
3130  * rdma_create_ah - Creates an address handle for the given address vector.
3131  * @pd: The protection domain associated with the address handle.
3132  * @ah_attr: The attributes of the address vector.
3133  *
3134  * The address handle is used to reference a local or global destination
3135  * in all UD QP post sends.
3136  */
3137 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
3138 
3139 /**
3140  * rdma_create_user_ah - Creates an address handle for the given address vector.
3141  * It resolves destination mac address for ah attribute of RoCE type.
3142  * @pd: The protection domain associated with the address handle.
3143  * @ah_attr: The attributes of the address vector.
3144  * @udata: pointer to user's input output buffer information need by
3145  *         provider driver.
3146  *
3147  * It returns 0 on success and returns appropriate error code on error.
3148  * The address handle is used to reference a local or global destination
3149  * in all UD QP post sends.
3150  */
3151 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3152 				  struct rdma_ah_attr *ah_attr,
3153 				  struct ib_udata *udata);
3154 /**
3155  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3156  *   work completion.
3157  * @hdr: the L3 header to parse
3158  * @net_type: type of header to parse
3159  * @sgid: place to store source gid
3160  * @dgid: place to store destination gid
3161  */
3162 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3163 			      enum rdma_network_type net_type,
3164 			      union ib_gid *sgid, union ib_gid *dgid);
3165 
3166 /**
3167  * ib_get_rdma_header_version - Get the header version
3168  * @hdr: the L3 header to parse
3169  */
3170 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3171 
3172 /**
3173  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3174  *   work completion.
3175  * @device: Device on which the received message arrived.
3176  * @port_num: Port on which the received message arrived.
3177  * @wc: Work completion associated with the received message.
3178  * @grh: References the received global route header.  This parameter is
3179  *   ignored unless the work completion indicates that the GRH is valid.
3180  * @ah_attr: Returned attributes that can be used when creating an address
3181  *   handle for replying to the message.
3182  * When ib_init_ah_attr_from_wc() returns success,
3183  * (a) for IB link layer it optionally contains a reference to SGID attribute
3184  * when GRH is present for IB link layer.
3185  * (b) for RoCE link layer it contains a reference to SGID attribute.
3186  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3187  * attributes which are initialized using ib_init_ah_attr_from_wc().
3188  *
3189  */
3190 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3191 			    const struct ib_wc *wc, const struct ib_grh *grh,
3192 			    struct rdma_ah_attr *ah_attr);
3193 
3194 /**
3195  * ib_create_ah_from_wc - Creates an address handle associated with the
3196  *   sender of the specified work completion.
3197  * @pd: The protection domain associated with the address handle.
3198  * @wc: Work completion information associated with a received message.
3199  * @grh: References the received global route header.  This parameter is
3200  *   ignored unless the work completion indicates that the GRH is valid.
3201  * @port_num: The outbound port number to associate with the address.
3202  *
3203  * The address handle is used to reference a local or global destination
3204  * in all UD QP post sends.
3205  */
3206 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3207 				   const struct ib_grh *grh, u8 port_num);
3208 
3209 /**
3210  * rdma_modify_ah - Modifies the address vector associated with an address
3211  *   handle.
3212  * @ah: The address handle to modify.
3213  * @ah_attr: The new address vector attributes to associate with the
3214  *   address handle.
3215  */
3216 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3217 
3218 /**
3219  * rdma_query_ah - Queries the address vector associated with an address
3220  *   handle.
3221  * @ah: The address handle to query.
3222  * @ah_attr: The address vector attributes associated with the address
3223  *   handle.
3224  */
3225 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3226 
3227 /**
3228  * rdma_destroy_ah - Destroys an address handle.
3229  * @ah: The address handle to destroy.
3230  */
3231 int rdma_destroy_ah(struct ib_ah *ah);
3232 
3233 /**
3234  * ib_create_srq - Creates a SRQ associated with the specified protection
3235  *   domain.
3236  * @pd: The protection domain associated with the SRQ.
3237  * @srq_init_attr: A list of initial attributes required to create the
3238  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3239  *   the actual capabilities of the created SRQ.
3240  *
3241  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3242  * requested size of the SRQ, and set to the actual values allocated
3243  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3244  * will always be at least as large as the requested values.
3245  */
3246 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3247 			     struct ib_srq_init_attr *srq_init_attr);
3248 
3249 /**
3250  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3251  * @srq: The SRQ to modify.
3252  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3253  *   the current values of selected SRQ attributes are returned.
3254  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3255  *   are being modified.
3256  *
3257  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3258  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3259  * the number of receives queued drops below the limit.
3260  */
3261 int ib_modify_srq(struct ib_srq *srq,
3262 		  struct ib_srq_attr *srq_attr,
3263 		  enum ib_srq_attr_mask srq_attr_mask);
3264 
3265 /**
3266  * ib_query_srq - Returns the attribute list and current values for the
3267  *   specified SRQ.
3268  * @srq: The SRQ to query.
3269  * @srq_attr: The attributes of the specified SRQ.
3270  */
3271 int ib_query_srq(struct ib_srq *srq,
3272 		 struct ib_srq_attr *srq_attr);
3273 
3274 /**
3275  * ib_destroy_srq - Destroys the specified SRQ.
3276  * @srq: The SRQ to destroy.
3277  */
3278 int ib_destroy_srq(struct ib_srq *srq);
3279 
3280 /**
3281  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3282  * @srq: The SRQ to post the work request on.
3283  * @recv_wr: A list of work requests to post on the receive queue.
3284  * @bad_recv_wr: On an immediate failure, this parameter will reference
3285  *   the work request that failed to be posted on the QP.
3286  */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3287 static inline int ib_post_srq_recv(struct ib_srq *srq,
3288 				   const struct ib_recv_wr *recv_wr,
3289 				   const struct ib_recv_wr **bad_recv_wr)
3290 {
3291 	const struct ib_recv_wr *dummy;
3292 
3293 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr ? : &dummy);
3294 }
3295 
3296 /**
3297  * ib_create_qp - Creates a QP associated with the specified protection
3298  *   domain.
3299  * @pd: The protection domain associated with the QP.
3300  * @qp_init_attr: A list of initial attributes required to create the
3301  *   QP.  If QP creation succeeds, then the attributes are updated to
3302  *   the actual capabilities of the created QP.
3303  */
3304 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3305 			   struct ib_qp_init_attr *qp_init_attr);
3306 
3307 /**
3308  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3309  * @qp: The QP to modify.
3310  * @attr: On input, specifies the QP attributes to modify.  On output,
3311  *   the current values of selected QP attributes are returned.
3312  * @attr_mask: A bit-mask used to specify which attributes of the QP
3313  *   are being modified.
3314  * @udata: pointer to user's input output buffer information
3315  *   are being modified.
3316  * It returns 0 on success and returns appropriate error code on error.
3317  */
3318 int ib_modify_qp_with_udata(struct ib_qp *qp,
3319 			    struct ib_qp_attr *attr,
3320 			    int attr_mask,
3321 			    struct ib_udata *udata);
3322 
3323 /**
3324  * ib_modify_qp - Modifies the attributes for the specified QP and then
3325  *   transitions the QP to the given state.
3326  * @qp: The QP to modify.
3327  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3328  *   the current values of selected QP attributes are returned.
3329  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3330  *   are being modified.
3331  */
3332 int ib_modify_qp(struct ib_qp *qp,
3333 		 struct ib_qp_attr *qp_attr,
3334 		 int qp_attr_mask);
3335 
3336 /**
3337  * ib_query_qp - Returns the attribute list and current values for the
3338  *   specified QP.
3339  * @qp: The QP to query.
3340  * @qp_attr: The attributes of the specified QP.
3341  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3342  * @qp_init_attr: Additional attributes of the selected QP.
3343  *
3344  * The qp_attr_mask may be used to limit the query to gathering only the
3345  * selected attributes.
3346  */
3347 int ib_query_qp(struct ib_qp *qp,
3348 		struct ib_qp_attr *qp_attr,
3349 		int qp_attr_mask,
3350 		struct ib_qp_init_attr *qp_init_attr);
3351 
3352 /**
3353  * ib_destroy_qp - Destroys the specified QP.
3354  * @qp: The QP to destroy.
3355  */
3356 int ib_destroy_qp(struct ib_qp *qp);
3357 
3358 /**
3359  * ib_open_qp - Obtain a reference to an existing sharable QP.
3360  * @xrcd - XRC domain
3361  * @qp_open_attr: Attributes identifying the QP to open.
3362  *
3363  * Returns a reference to a sharable QP.
3364  */
3365 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3366 			 struct ib_qp_open_attr *qp_open_attr);
3367 
3368 /**
3369  * ib_close_qp - Release an external reference to a QP.
3370  * @qp: The QP handle to release
3371  *
3372  * The opened QP handle is released by the caller.  The underlying
3373  * shared QP is not destroyed until all internal references are released.
3374  */
3375 int ib_close_qp(struct ib_qp *qp);
3376 
3377 /**
3378  * ib_post_send - Posts a list of work requests to the send queue of
3379  *   the specified QP.
3380  * @qp: The QP to post the work request on.
3381  * @send_wr: A list of work requests to post on the send queue.
3382  * @bad_send_wr: On an immediate failure, this parameter will reference
3383  *   the work request that failed to be posted on the QP.
3384  *
3385  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3386  * error is returned, the QP state shall not be affected,
3387  * ib_post_send() will return an immediate error after queueing any
3388  * earlier work requests in the list.
3389  */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3390 static inline int ib_post_send(struct ib_qp *qp,
3391 			       const struct ib_send_wr *send_wr,
3392 			       const struct ib_send_wr **bad_send_wr)
3393 {
3394 	const struct ib_send_wr *dummy;
3395 
3396 	return qp->device->post_send(qp, send_wr, bad_send_wr ? : &dummy);
3397 }
3398 
3399 /**
3400  * ib_post_recv - Posts a list of work requests to the receive queue of
3401  *   the specified QP.
3402  * @qp: The QP to post the work request on.
3403  * @recv_wr: A list of work requests to post on the receive queue.
3404  * @bad_recv_wr: On an immediate failure, this parameter will reference
3405  *   the work request that failed to be posted on the QP.
3406  */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3407 static inline int ib_post_recv(struct ib_qp *qp,
3408 			       const struct ib_recv_wr *recv_wr,
3409 			       const struct ib_recv_wr **bad_recv_wr)
3410 {
3411 	const struct ib_recv_wr *dummy;
3412 
3413 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3414 }
3415 
3416 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3417 			    int nr_cqe, int comp_vector,
3418 			    enum ib_poll_context poll_ctx, const char *caller);
3419 #define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3420 	__ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3421 
3422 void ib_free_cq(struct ib_cq *cq);
3423 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3424 
3425 /**
3426  * ib_create_cq - Creates a CQ on the specified device.
3427  * @device: The device on which to create the CQ.
3428  * @comp_handler: A user-specified callback that is invoked when a
3429  *   completion event occurs on the CQ.
3430  * @event_handler: A user-specified callback that is invoked when an
3431  *   asynchronous event not associated with a completion occurs on the CQ.
3432  * @cq_context: Context associated with the CQ returned to the user via
3433  *   the associated completion and event handlers.
3434  * @cq_attr: The attributes the CQ should be created upon.
3435  *
3436  * Users can examine the cq structure to determine the actual CQ size.
3437  */
3438 struct ib_cq *__ib_create_cq(struct ib_device *device,
3439 			     ib_comp_handler comp_handler,
3440 			     void (*event_handler)(struct ib_event *, void *),
3441 			     void *cq_context,
3442 			     const struct ib_cq_init_attr *cq_attr,
3443 			     const char *caller);
3444 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3445 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3446 
3447 /**
3448  * ib_resize_cq - Modifies the capacity of the CQ.
3449  * @cq: The CQ to resize.
3450  * @cqe: The minimum size of the CQ.
3451  *
3452  * Users can examine the cq structure to determine the actual CQ size.
3453  */
3454 int ib_resize_cq(struct ib_cq *cq, int cqe);
3455 
3456 /**
3457  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3458  * @cq: The CQ to modify.
3459  * @cq_count: number of CQEs that will trigger an event
3460  * @cq_period: max period of time in usec before triggering an event
3461  *
3462  */
3463 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3464 
3465 /**
3466  * ib_destroy_cq - Destroys the specified CQ.
3467  * @cq: The CQ to destroy.
3468  */
3469 int ib_destroy_cq(struct ib_cq *cq);
3470 
3471 /**
3472  * ib_poll_cq - poll a CQ for completion(s)
3473  * @cq:the CQ being polled
3474  * @num_entries:maximum number of completions to return
3475  * @wc:array of at least @num_entries &struct ib_wc where completions
3476  *   will be returned
3477  *
3478  * Poll a CQ for (possibly multiple) completions.  If the return value
3479  * is < 0, an error occurred.  If the return value is >= 0, it is the
3480  * number of completions returned.  If the return value is
3481  * non-negative and < num_entries, then the CQ was emptied.
3482  */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3483 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3484 			     struct ib_wc *wc)
3485 {
3486 	return cq->device->poll_cq(cq, num_entries, wc);
3487 }
3488 
3489 /**
3490  * ib_req_notify_cq - Request completion notification on a CQ.
3491  * @cq: The CQ to generate an event for.
3492  * @flags:
3493  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3494  *   to request an event on the next solicited event or next work
3495  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3496  *   may also be |ed in to request a hint about missed events, as
3497  *   described below.
3498  *
3499  * Return Value:
3500  *    < 0 means an error occurred while requesting notification
3501  *   == 0 means notification was requested successfully, and if
3502  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3503  *        were missed and it is safe to wait for another event.  In
3504  *        this case is it guaranteed that any work completions added
3505  *        to the CQ since the last CQ poll will trigger a completion
3506  *        notification event.
3507  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3508  *        in.  It means that the consumer must poll the CQ again to
3509  *        make sure it is empty to avoid missing an event because of a
3510  *        race between requesting notification and an entry being
3511  *        added to the CQ.  This return value means it is possible
3512  *        (but not guaranteed) that a work completion has been added
3513  *        to the CQ since the last poll without triggering a
3514  *        completion notification event.
3515  */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)3516 static inline int ib_req_notify_cq(struct ib_cq *cq,
3517 				   enum ib_cq_notify_flags flags)
3518 {
3519 	return cq->device->req_notify_cq(cq, flags);
3520 }
3521 
3522 /**
3523  * ib_req_ncomp_notif - Request completion notification when there are
3524  *   at least the specified number of unreaped completions on the CQ.
3525  * @cq: The CQ to generate an event for.
3526  * @wc_cnt: The number of unreaped completions that should be on the
3527  *   CQ before an event is generated.
3528  */
ib_req_ncomp_notif(struct ib_cq * cq,int wc_cnt)3529 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3530 {
3531 	return cq->device->req_ncomp_notif ?
3532 		cq->device->req_ncomp_notif(cq, wc_cnt) :
3533 		-ENOSYS;
3534 }
3535 
3536 /**
3537  * ib_dma_mapping_error - check a DMA addr for error
3538  * @dev: The device for which the dma_addr was created
3539  * @dma_addr: The DMA address to check
3540  */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)3541 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3542 {
3543 	return dma_mapping_error(dev->dma_device, dma_addr);
3544 }
3545 
3546 /**
3547  * ib_dma_map_single - Map a kernel virtual address to DMA address
3548  * @dev: The device for which the dma_addr is to be created
3549  * @cpu_addr: The kernel virtual address
3550  * @size: The size of the region in bytes
3551  * @direction: The direction of the DMA
3552  */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)3553 static inline u64 ib_dma_map_single(struct ib_device *dev,
3554 				    void *cpu_addr, size_t size,
3555 				    enum dma_data_direction direction)
3556 {
3557 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3558 }
3559 
3560 /**
3561  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3562  * @dev: The device for which the DMA address was created
3563  * @addr: The DMA address
3564  * @size: The size of the region in bytes
3565  * @direction: The direction of the DMA
3566  */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)3567 static inline void ib_dma_unmap_single(struct ib_device *dev,
3568 				       u64 addr, size_t size,
3569 				       enum dma_data_direction direction)
3570 {
3571 	dma_unmap_single(dev->dma_device, addr, size, direction);
3572 }
3573 
3574 /**
3575  * ib_dma_map_page - Map a physical page to DMA address
3576  * @dev: The device for which the dma_addr is to be created
3577  * @page: The page to be mapped
3578  * @offset: The offset within the page
3579  * @size: The size of the region in bytes
3580  * @direction: The direction of the DMA
3581  */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)3582 static inline u64 ib_dma_map_page(struct ib_device *dev,
3583 				  struct page *page,
3584 				  unsigned long offset,
3585 				  size_t size,
3586 					 enum dma_data_direction direction)
3587 {
3588 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3589 }
3590 
3591 /**
3592  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3593  * @dev: The device for which the DMA address was created
3594  * @addr: The DMA address
3595  * @size: The size of the region in bytes
3596  * @direction: The direction of the DMA
3597  */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)3598 static inline void ib_dma_unmap_page(struct ib_device *dev,
3599 				     u64 addr, size_t size,
3600 				     enum dma_data_direction direction)
3601 {
3602 	dma_unmap_page(dev->dma_device, addr, size, direction);
3603 }
3604 
3605 /**
3606  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3607  * @dev: The device for which the DMA addresses are to be created
3608  * @sg: The array of scatter/gather entries
3609  * @nents: The number of scatter/gather entries
3610  * @direction: The direction of the DMA
3611  */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)3612 static inline int ib_dma_map_sg(struct ib_device *dev,
3613 				struct scatterlist *sg, int nents,
3614 				enum dma_data_direction direction)
3615 {
3616 	return dma_map_sg(dev->dma_device, sg, nents, direction);
3617 }
3618 
3619 /**
3620  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3621  * @dev: The device for which the DMA addresses were created
3622  * @sg: The array of scatter/gather entries
3623  * @nents: The number of scatter/gather entries
3624  * @direction: The direction of the DMA
3625  */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)3626 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3627 				   struct scatterlist *sg, int nents,
3628 				   enum dma_data_direction direction)
3629 {
3630 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
3631 }
3632 
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)3633 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3634 				      struct scatterlist *sg, int nents,
3635 				      enum dma_data_direction direction,
3636 				      unsigned long dma_attrs)
3637 {
3638 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3639 				dma_attrs);
3640 }
3641 
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)3642 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3643 					 struct scatterlist *sg, int nents,
3644 					 enum dma_data_direction direction,
3645 					 unsigned long dma_attrs)
3646 {
3647 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3648 }
3649 /**
3650  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3651  * @dev: The device for which the DMA addresses were created
3652  * @sg: The scatter/gather entry
3653  *
3654  * Note: this function is obsolete. To do: change all occurrences of
3655  * ib_sg_dma_address() into sg_dma_address().
3656  */
ib_sg_dma_address(struct ib_device * dev,struct scatterlist * sg)3657 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3658 				    struct scatterlist *sg)
3659 {
3660 	return sg_dma_address(sg);
3661 }
3662 
3663 /**
3664  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3665  * @dev: The device for which the DMA addresses were created
3666  * @sg: The scatter/gather entry
3667  *
3668  * Note: this function is obsolete. To do: change all occurrences of
3669  * ib_sg_dma_len() into sg_dma_len().
3670  */
ib_sg_dma_len(struct ib_device * dev,struct scatterlist * sg)3671 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3672 					 struct scatterlist *sg)
3673 {
3674 	return sg_dma_len(sg);
3675 }
3676 
3677 /**
3678  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3679  * @dev: The device for which the DMA address was created
3680  * @addr: The DMA address
3681  * @size: The size of the region in bytes
3682  * @dir: The direction of the DMA
3683  */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)3684 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3685 					      u64 addr,
3686 					      size_t size,
3687 					      enum dma_data_direction dir)
3688 {
3689 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3690 }
3691 
3692 /**
3693  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3694  * @dev: The device for which the DMA address was created
3695  * @addr: The DMA address
3696  * @size: The size of the region in bytes
3697  * @dir: The direction of the DMA
3698  */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)3699 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3700 						 u64 addr,
3701 						 size_t size,
3702 						 enum dma_data_direction dir)
3703 {
3704 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3705 }
3706 
3707 /**
3708  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3709  * @dev: The device for which the DMA address is requested
3710  * @size: The size of the region to allocate in bytes
3711  * @dma_handle: A pointer for returning the DMA address of the region
3712  * @flag: memory allocator flags
3713  */
ib_dma_alloc_coherent(struct ib_device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)3714 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3715 					   size_t size,
3716 					   dma_addr_t *dma_handle,
3717 					   gfp_t flag)
3718 {
3719 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3720 }
3721 
3722 /**
3723  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3724  * @dev: The device for which the DMA addresses were allocated
3725  * @size: The size of the region
3726  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3727  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3728  */
ib_dma_free_coherent(struct ib_device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle)3729 static inline void ib_dma_free_coherent(struct ib_device *dev,
3730 					size_t size, void *cpu_addr,
3731 					dma_addr_t dma_handle)
3732 {
3733 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3734 }
3735 
3736 /**
3737  * ib_dereg_mr - Deregisters a memory region and removes it from the
3738  *   HCA translation table.
3739  * @mr: The memory region to deregister.
3740  *
3741  * This function can fail, if the memory region has memory windows bound to it.
3742  */
3743 int ib_dereg_mr(struct ib_mr *mr);
3744 
3745 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3746 			  enum ib_mr_type mr_type,
3747 			  u32 max_num_sg);
3748 
3749 /**
3750  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3751  *   R_Key and L_Key.
3752  * @mr - struct ib_mr pointer to be updated.
3753  * @newkey - new key to be used.
3754  */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)3755 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3756 {
3757 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3758 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3759 }
3760 
3761 /**
3762  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3763  * for calculating a new rkey for type 2 memory windows.
3764  * @rkey - the rkey to increment.
3765  */
ib_inc_rkey(u32 rkey)3766 static inline u32 ib_inc_rkey(u32 rkey)
3767 {
3768 	const u32 mask = 0x000000ff;
3769 	return ((rkey + 1) & mask) | (rkey & ~mask);
3770 }
3771 
3772 /**
3773  * ib_alloc_fmr - Allocates a unmapped fast memory region.
3774  * @pd: The protection domain associated with the unmapped region.
3775  * @mr_access_flags: Specifies the memory access rights.
3776  * @fmr_attr: Attributes of the unmapped region.
3777  *
3778  * A fast memory region must be mapped before it can be used as part of
3779  * a work request.
3780  */
3781 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3782 			    int mr_access_flags,
3783 			    struct ib_fmr_attr *fmr_attr);
3784 
3785 /**
3786  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3787  * @fmr: The fast memory region to associate with the pages.
3788  * @page_list: An array of physical pages to map to the fast memory region.
3789  * @list_len: The number of pages in page_list.
3790  * @iova: The I/O virtual address to use with the mapped region.
3791  */
ib_map_phys_fmr(struct ib_fmr * fmr,u64 * page_list,int list_len,u64 iova)3792 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3793 				  u64 *page_list, int list_len,
3794 				  u64 iova)
3795 {
3796 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3797 }
3798 
3799 /**
3800  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3801  * @fmr_list: A linked list of fast memory regions to unmap.
3802  */
3803 int ib_unmap_fmr(struct list_head *fmr_list);
3804 
3805 /**
3806  * ib_dealloc_fmr - Deallocates a fast memory region.
3807  * @fmr: The fast memory region to deallocate.
3808  */
3809 int ib_dealloc_fmr(struct ib_fmr *fmr);
3810 
3811 /**
3812  * ib_attach_mcast - Attaches the specified QP to a multicast group.
3813  * @qp: QP to attach to the multicast group.  The QP must be type
3814  *   IB_QPT_UD.
3815  * @gid: Multicast group GID.
3816  * @lid: Multicast group LID in host byte order.
3817  *
3818  * In order to send and receive multicast packets, subnet
3819  * administration must have created the multicast group and configured
3820  * the fabric appropriately.  The port associated with the specified
3821  * QP must also be a member of the multicast group.
3822  */
3823 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3824 
3825 /**
3826  * ib_detach_mcast - Detaches the specified QP from a multicast group.
3827  * @qp: QP to detach from the multicast group.
3828  * @gid: Multicast group GID.
3829  * @lid: Multicast group LID in host byte order.
3830  */
3831 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3832 
3833 /**
3834  * ib_alloc_xrcd - Allocates an XRC domain.
3835  * @device: The device on which to allocate the XRC domain.
3836  * @caller: Module name for kernel consumers
3837  */
3838 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3839 #define ib_alloc_xrcd(device) \
3840 	__ib_alloc_xrcd((device), KBUILD_MODNAME)
3841 
3842 /**
3843  * ib_dealloc_xrcd - Deallocates an XRC domain.
3844  * @xrcd: The XRC domain to deallocate.
3845  */
3846 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3847 
ib_check_mr_access(int flags)3848 static inline int ib_check_mr_access(int flags)
3849 {
3850 	/*
3851 	 * Local write permission is required if remote write or
3852 	 * remote atomic permission is also requested.
3853 	 */
3854 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3855 	    !(flags & IB_ACCESS_LOCAL_WRITE))
3856 		return -EINVAL;
3857 
3858 	return 0;
3859 }
3860 
ib_access_writable(int access_flags)3861 static inline bool ib_access_writable(int access_flags)
3862 {
3863 	/*
3864 	 * We have writable memory backing the MR if any of the following
3865 	 * access flags are set.  "Local write" and "remote write" obviously
3866 	 * require write access.  "Remote atomic" can do things like fetch and
3867 	 * add, which will modify memory, and "MW bind" can change permissions
3868 	 * by binding a window.
3869 	 */
3870 	return access_flags &
3871 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
3872 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3873 }
3874 
3875 /**
3876  * ib_check_mr_status: lightweight check of MR status.
3877  *     This routine may provide status checks on a selected
3878  *     ib_mr. first use is for signature status check.
3879  *
3880  * @mr: A memory region.
3881  * @check_mask: Bitmask of which checks to perform from
3882  *     ib_mr_status_check enumeration.
3883  * @mr_status: The container of relevant status checks.
3884  *     failed checks will be indicated in the status bitmask
3885  *     and the relevant info shall be in the error item.
3886  */
3887 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3888 		       struct ib_mr_status *mr_status);
3889 
3890 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3891 					    u16 pkey, const union ib_gid *gid,
3892 					    const struct sockaddr *addr);
3893 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3894 			   struct ib_wq_init_attr *init_attr);
3895 int ib_destroy_wq(struct ib_wq *wq);
3896 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3897 		 u32 wq_attr_mask);
3898 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3899 						 struct ib_rwq_ind_table_init_attr*
3900 						 wq_ind_table_init_attr);
3901 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3902 
3903 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3904 		 unsigned int *sg_offset, unsigned int page_size);
3905 
3906 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)3907 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3908 		  unsigned int *sg_offset, unsigned int page_size)
3909 {
3910 	int n;
3911 
3912 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3913 	mr->iova = 0;
3914 
3915 	return n;
3916 }
3917 
3918 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3919 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3920 
3921 void ib_drain_rq(struct ib_qp *qp);
3922 void ib_drain_sq(struct ib_qp *qp);
3923 void ib_drain_qp(struct ib_qp *qp);
3924 
3925 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3926 
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)3927 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3928 {
3929 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3930 		return attr->roce.dmac;
3931 	return NULL;
3932 }
3933 
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)3934 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3935 {
3936 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3937 		attr->ib.dlid = (u16)dlid;
3938 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3939 		attr->opa.dlid = dlid;
3940 }
3941 
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)3942 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3943 {
3944 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3945 		return attr->ib.dlid;
3946 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3947 		return attr->opa.dlid;
3948 	return 0;
3949 }
3950 
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)3951 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3952 {
3953 	attr->sl = sl;
3954 }
3955 
rdma_ah_get_sl(const struct rdma_ah_attr * attr)3956 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3957 {
3958 	return attr->sl;
3959 }
3960 
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)3961 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3962 					 u8 src_path_bits)
3963 {
3964 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3965 		attr->ib.src_path_bits = src_path_bits;
3966 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3967 		attr->opa.src_path_bits = src_path_bits;
3968 }
3969 
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)3970 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3971 {
3972 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3973 		return attr->ib.src_path_bits;
3974 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3975 		return attr->opa.src_path_bits;
3976 	return 0;
3977 }
3978 
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)3979 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3980 					bool make_grd)
3981 {
3982 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3983 		attr->opa.make_grd = make_grd;
3984 }
3985 
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)3986 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3987 {
3988 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3989 		return attr->opa.make_grd;
3990 	return false;
3991 }
3992 
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u8 port_num)3993 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3994 {
3995 	attr->port_num = port_num;
3996 }
3997 
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)3998 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3999 {
4000 	return attr->port_num;
4001 }
4002 
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4003 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4004 					   u8 static_rate)
4005 {
4006 	attr->static_rate = static_rate;
4007 }
4008 
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4009 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4010 {
4011 	return attr->static_rate;
4012 }
4013 
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4014 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4015 					enum ib_ah_flags flag)
4016 {
4017 	attr->ah_flags = flag;
4018 }
4019 
4020 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4021 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4022 {
4023 	return attr->ah_flags;
4024 }
4025 
4026 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4027 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4028 {
4029 	return &attr->grh;
4030 }
4031 
4032 /*To retrieve and modify the grh */
4033 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4034 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4035 {
4036 	return &attr->grh;
4037 }
4038 
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4039 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4040 {
4041 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4042 
4043 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4044 }
4045 
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4046 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4047 					     __be64 prefix)
4048 {
4049 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4050 
4051 	grh->dgid.global.subnet_prefix = prefix;
4052 }
4053 
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4054 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4055 					    __be64 if_id)
4056 {
4057 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4058 
4059 	grh->dgid.global.interface_id = if_id;
4060 }
4061 
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4062 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4063 				   union ib_gid *dgid, u32 flow_label,
4064 				   u8 sgid_index, u8 hop_limit,
4065 				   u8 traffic_class)
4066 {
4067 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4068 
4069 	attr->ah_flags = IB_AH_GRH;
4070 	if (dgid)
4071 		grh->dgid = *dgid;
4072 	grh->flow_label = flow_label;
4073 	grh->sgid_index = sgid_index;
4074 	grh->hop_limit = hop_limit;
4075 	grh->traffic_class = traffic_class;
4076 	grh->sgid_attr = NULL;
4077 }
4078 
4079 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4080 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4081 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4082 			     const struct ib_gid_attr *sgid_attr);
4083 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4084 		       const struct rdma_ah_attr *src);
4085 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4086 			  const struct rdma_ah_attr *new);
4087 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4088 
4089 /**
4090  * rdma_ah_find_type - Return address handle type.
4091  *
4092  * @dev: Device to be checked
4093  * @port_num: Port number
4094  */
rdma_ah_find_type(struct ib_device * dev,u8 port_num)4095 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4096 						       u8 port_num)
4097 {
4098 	if (rdma_protocol_roce(dev, port_num))
4099 		return RDMA_AH_ATTR_TYPE_ROCE;
4100 	if (rdma_protocol_ib(dev, port_num)) {
4101 		if (rdma_cap_opa_ah(dev, port_num))
4102 			return RDMA_AH_ATTR_TYPE_OPA;
4103 		return RDMA_AH_ATTR_TYPE_IB;
4104 	}
4105 
4106 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4107 }
4108 
4109 /**
4110  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4111  *     In the current implementation the only way to get
4112  *     get the 32bit lid is from other sources for OPA.
4113  *     For IB, lids will always be 16bits so cast the
4114  *     value accordingly.
4115  *
4116  * @lid: A 32bit LID
4117  */
ib_lid_cpu16(u32 lid)4118 static inline u16 ib_lid_cpu16(u32 lid)
4119 {
4120 	WARN_ON_ONCE(lid & 0xFFFF0000);
4121 	return (u16)lid;
4122 }
4123 
4124 /**
4125  * ib_lid_be16 - Return lid in 16bit BE encoding.
4126  *
4127  * @lid: A 32bit LID
4128  */
ib_lid_be16(u32 lid)4129 static inline __be16 ib_lid_be16(u32 lid)
4130 {
4131 	WARN_ON_ONCE(lid & 0xFFFF0000);
4132 	return cpu_to_be16((u16)lid);
4133 }
4134 
4135 /**
4136  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4137  *   vector
4138  * @device:         the rdma device
4139  * @comp_vector:    index of completion vector
4140  *
4141  * Returns NULL on failure, otherwise a corresponding cpu map of the
4142  * completion vector (returns all-cpus map if the device driver doesn't
4143  * implement get_vector_affinity).
4144  */
4145 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4146 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4147 {
4148 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4149 	    !device->get_vector_affinity)
4150 		return NULL;
4151 
4152 	return device->get_vector_affinity(device, comp_vector);
4153 
4154 }
4155 
ib_set_flow(struct ib_uobject * uobj,struct ib_flow * ibflow,struct ib_qp * qp,struct ib_device * device)4156 static inline void ib_set_flow(struct ib_uobject *uobj, struct ib_flow *ibflow,
4157 			       struct ib_qp *qp, struct ib_device *device)
4158 {
4159 	uobj->object = ibflow;
4160 	ibflow->uobject = uobj;
4161 
4162 	if (qp) {
4163 		atomic_inc(&qp->usecnt);
4164 		ibflow->qp = qp;
4165 	}
4166 
4167 	ibflow->device = device;
4168 }
4169 
4170 /**
4171  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4172  * and add their gids, as needed, to the relevant RoCE devices.
4173  *
4174  * @device:         the rdma device
4175  */
4176 void rdma_roce_rescan_device(struct ib_device *ibdev);
4177 
4178 struct ib_ucontext *ib_uverbs_get_ucontext(struct ib_uverbs_file *ufile);
4179 
4180 int uverbs_destroy_def_handler(struct ib_uverbs_file *file,
4181 			       struct uverbs_attr_bundle *attrs);
4182 #endif /* IB_VERBS_H */
4183