1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3 *
4 * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
5 *
6 ******************************************************************************/
7 #define _HAL_INIT_C_
8
9 #include <linux/firmware.h>
10 #include <linux/vmalloc.h>
11 #include <drv_types.h>
12 #include <rtw_efuse.h>
13 #include <phy.h>
14 #include <rtl8188e_hal.h>
15
16 #include <rtw_iol.h>
17
iol_mode_enable(struct adapter * padapter,u8 enable)18 void iol_mode_enable(struct adapter *padapter, u8 enable)
19 {
20 u8 reg_0xf0 = 0;
21
22 if (enable) {
23 /* Enable initial offload */
24 reg_0xf0 = usb_read8(padapter, REG_SYS_CFG);
25 usb_write8(padapter, REG_SYS_CFG, reg_0xf0|SW_OFFLOAD_EN);
26
27 if (!padapter->bFWReady) {
28 DBG_88E("bFWReady == false call reset 8051...\n");
29 _8051Reset88E(padapter);
30 }
31
32 } else {
33 /* disable initial offload */
34 reg_0xf0 = usb_read8(padapter, REG_SYS_CFG);
35 usb_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN);
36 }
37 }
38
iol_execute(struct adapter * padapter,u8 control)39 s32 iol_execute(struct adapter *padapter, u8 control)
40 {
41 s32 status = _FAIL;
42 u8 reg_0x88 = 0;
43 unsigned long start = 0;
44
45 control = control&0x0f;
46 reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0);
47 usb_write8(padapter, REG_HMEBOX_E0, reg_0x88|control);
48
49 start = jiffies;
50 while ((reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0)) & control &&
51 jiffies_to_msecs(jiffies - start) < 1000) {
52 udelay(5);
53 }
54
55 reg_0x88 = usb_read8(padapter, REG_HMEBOX_E0);
56 status = (reg_0x88 & control) ? _FAIL : _SUCCESS;
57 if (reg_0x88 & control<<4)
58 status = _FAIL;
59 return status;
60 }
61
iol_InitLLTTable(struct adapter * padapter,u8 txpktbuf_bndy)62 static s32 iol_InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
63 {
64 s32 rst = _SUCCESS;
65
66 iol_mode_enable(padapter, 1);
67 usb_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
68 rst = iol_execute(padapter, CMD_INIT_LLT);
69 iol_mode_enable(padapter, 0);
70 return rst;
71 }
72
rtl8188e_iol_efuse_patch(struct adapter * padapter)73 s32 rtl8188e_iol_efuse_patch(struct adapter *padapter)
74 {
75 s32 result = _SUCCESS;
76
77 DBG_88E("==> %s\n", __func__);
78 if (rtw_iol_applied(padapter)) {
79 iol_mode_enable(padapter, 1);
80 result = iol_execute(padapter, CMD_READ_EFUSE_MAP);
81 if (result == _SUCCESS)
82 result = iol_execute(padapter, CMD_EFUSE_PATCH);
83
84 iol_mode_enable(padapter, 0);
85 }
86 return result;
87 }
88
89 #define MAX_REG_BOLCK_SIZE 196
90
_8051Reset88E(struct adapter * padapter)91 void _8051Reset88E(struct adapter *padapter)
92 {
93 u8 u1bTmp;
94
95 u1bTmp = usb_read8(padapter, REG_SYS_FUNC_EN+1);
96 usb_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT(2)));
97 usb_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp|(BIT(2)));
98 DBG_88E("=====> _8051Reset88E(): 8051 reset success .\n");
99 }
100
rtl8188e_InitializeFirmwareVars(struct adapter * padapter)101 void rtl8188e_InitializeFirmwareVars(struct adapter *padapter)
102 {
103 /* Init Fw LPS related. */
104 padapter->pwrctrlpriv.bFwCurrentInPSMode = false;
105
106 /* Init H2C counter. by tynli. 2009.12.09. */
107 padapter->HalData->LastHMEBoxNum = 0;
108 }
109
rtw_hal_free_data(struct adapter * padapter)110 void rtw_hal_free_data(struct adapter *padapter)
111 {
112 kfree(padapter->HalData);
113 padapter->HalData = NULL;
114 }
115
rtw_hal_read_chip_version(struct adapter * padapter)116 void rtw_hal_read_chip_version(struct adapter *padapter)
117 {
118 u32 value32;
119 struct HAL_VERSION ChipVersion;
120 struct hal_data_8188e *pHalData = padapter->HalData;
121
122 value32 = usb_read32(padapter, REG_SYS_CFG);
123 ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
124 ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
125 ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /* IC version (CUT) */
126
127 dump_chip_info(ChipVersion);
128
129 pHalData->VersionID = ChipVersion;
130 }
131
rtw_hal_set_odm_var(struct adapter * Adapter,enum hal_odm_variable eVariable,void * pValue1,bool bSet)132 void rtw_hal_set_odm_var(struct adapter *Adapter, enum hal_odm_variable eVariable, void *pValue1, bool bSet)
133 {
134 struct odm_dm_struct *podmpriv = &Adapter->HalData->odmpriv;
135
136 switch (eVariable) {
137 case HAL_ODM_STA_INFO:
138 {
139 struct sta_info *psta = pValue1;
140
141 if (bSet) {
142 DBG_88E("### Set STA_(%d) info\n", psta->mac_id);
143 ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, psta);
144 ODM_RAInfo_Init(podmpriv, psta->mac_id);
145 } else {
146 DBG_88E("### Clean STA_(%d) info\n", psta->mac_id);
147 ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, NULL);
148 }
149 }
150 break;
151 case HAL_ODM_P2P_STATE:
152 podmpriv->bWIFI_Direct = bSet;
153 break;
154 case HAL_ODM_WIFI_DISPLAY_STATE:
155 podmpriv->bWIFI_Display = bSet;
156 break;
157 default:
158 break;
159 }
160 }
161
rtw_hal_notch_filter(struct adapter * adapter,bool enable)162 void rtw_hal_notch_filter(struct adapter *adapter, bool enable)
163 {
164 if (enable) {
165 DBG_88E("Enable notch filter\n");
166 usb_write8(adapter, rOFDM0_RxDSP+1, usb_read8(adapter, rOFDM0_RxDSP+1) | BIT(1));
167 } else {
168 DBG_88E("Disable notch filter\n");
169 usb_write8(adapter, rOFDM0_RxDSP+1, usb_read8(adapter, rOFDM0_RxDSP+1) & ~BIT(1));
170 }
171 }
172
173 /* */
174 /* */
175 /* LLT R/W/Init function */
176 /* */
177 /* */
_LLTWrite(struct adapter * padapter,u32 address,u32 data)178 static s32 _LLTWrite(struct adapter *padapter, u32 address, u32 data)
179 {
180 s32 status = _SUCCESS;
181 s32 count = 0;
182 u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
183 u16 LLTReg = REG_LLT_INIT;
184
185 usb_write32(padapter, LLTReg, value);
186
187 /* polling */
188 do {
189 value = usb_read32(padapter, LLTReg);
190 if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
191 break;
192
193 if (count > POLLING_LLT_THRESHOLD) {
194 RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling write LLT done at address %d!\n", address));
195 status = _FAIL;
196 break;
197 }
198 udelay(5);
199 } while (count++);
200
201 return status;
202 }
203
InitLLTTable(struct adapter * padapter,u8 txpktbuf_bndy)204 s32 InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
205 {
206 s32 status = _FAIL;
207 u32 i;
208 u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;/* 176, 22k */
209
210 if (rtw_iol_applied(padapter)) {
211 status = iol_InitLLTTable(padapter, txpktbuf_bndy);
212 } else {
213 for (i = 0; i < (txpktbuf_bndy - 1); i++) {
214 status = _LLTWrite(padapter, i, i + 1);
215 if (status != _SUCCESS)
216 return status;
217 }
218
219 /* end of list */
220 status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
221 if (status != _SUCCESS)
222 return status;
223
224 /* Make the other pages as ring buffer */
225 /* This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */
226 /* Otherwise used as local loopback buffer. */
227 for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
228 status = _LLTWrite(padapter, i, (i + 1));
229 if (status != _SUCCESS)
230 return status;
231 }
232
233 /* Let last entry point to the start entry of ring buffer */
234 status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
235 if (status != _SUCCESS) {
236 return status;
237 }
238 }
239
240 return status;
241 }
242
243 void
Hal_InitPGData88E(struct adapter * padapter)244 Hal_InitPGData88E(struct adapter *padapter)
245 {
246 struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
247
248 if (!pEEPROM->bautoload_fail_flag) { /* autoload OK. */
249 if (!is_boot_from_eeprom(padapter)) {
250 /* Read EFUSE real map to shadow. */
251 EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI);
252 }
253 } else {/* autoload fail */
254 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
255 /* update to default value 0xFF */
256 if (!is_boot_from_eeprom(padapter))
257 EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI);
258 }
259 }
260
261 void
Hal_EfuseParseIDCode88E(struct adapter * padapter,u8 * hwinfo)262 Hal_EfuseParseIDCode88E(
263 struct adapter *padapter,
264 u8 *hwinfo
265 )
266 {
267 struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
268 u16 EEPROMId;
269
270 /* Checl 0x8129 again for making sure autoload status!! */
271 EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
272 if (EEPROMId != RTL_EEPROM_ID) {
273 DBG_88E("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
274 pEEPROM->bautoload_fail_flag = true;
275 } else {
276 pEEPROM->bautoload_fail_flag = false;
277 }
278
279 DBG_88E("EEPROM ID = 0x%04x\n", EEPROMId);
280 }
281
Hal_ReadPowerValueFromPROM_8188E(struct txpowerinfo24g * pwrInfo24G,u8 * PROMContent,bool AutoLoadFail)282 static void Hal_ReadPowerValueFromPROM_8188E(struct txpowerinfo24g *pwrInfo24G, u8 *PROMContent, bool AutoLoadFail)
283 {
284 u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_88E, group, TxCount = 0;
285
286 memset(pwrInfo24G, 0, sizeof(struct txpowerinfo24g));
287
288 if (AutoLoadFail) {
289 for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
290 /* 2.4G default value */
291 for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
292 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
293 pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
294 }
295 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
296 if (TxCount == 0) {
297 pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
298 pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
299 } else {
300 pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
301 pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
302 pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
303 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
304 }
305 }
306 }
307 return;
308 }
309
310 for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
311 /* 2.4G default value */
312 for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
313 pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++];
314 if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
315 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
316 }
317 for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
318 pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
319 if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
320 pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
321 }
322 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
323 if (TxCount == 0) {
324 pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
325 if (PROMContent[eeAddr] == 0xFF) {
326 pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF;
327 } else {
328 pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
329 if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */
330 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
331 }
332
333 if (PROMContent[eeAddr] == 0xFF) {
334 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
335 } else {
336 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
337 if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */
338 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
339 }
340 pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
341 eeAddr++;
342 } else {
343 if (PROMContent[eeAddr] == 0xFF) {
344 pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
345 } else {
346 pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
347 if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */
348 pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
349 }
350
351 if (PROMContent[eeAddr] == 0xFF) {
352 pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
353 } else {
354 pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
355 if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */
356 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
357 }
358 eeAddr++;
359
360 if (PROMContent[eeAddr] == 0xFF) {
361 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
362 } else {
363 pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
364 if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */
365 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
366 }
367
368 if (PROMContent[eeAddr] == 0xFF) {
369 pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
370 } else {
371 pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
372 if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT(3)) /* 4bit sign number to 8 bit sign number */
373 pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
374 }
375 eeAddr++;
376 }
377 }
378 }
379 }
380
Hal_GetChnlGroup88E(u8 chnl,u8 * pGroup)381 static u8 Hal_GetChnlGroup88E(u8 chnl, u8 *pGroup)
382 {
383 u8 bIn24G = true;
384
385 if (chnl <= 14) {
386 bIn24G = true;
387
388 if (chnl < 3) /* Channel 1-2 */
389 *pGroup = 0;
390 else if (chnl < 6) /* Channel 3-5 */
391 *pGroup = 1;
392 else if (chnl < 9) /* Channel 6-8 */
393 *pGroup = 2;
394 else if (chnl < 12) /* Channel 9-11 */
395 *pGroup = 3;
396 else if (chnl < 14) /* Channel 12-13 */
397 *pGroup = 4;
398 else if (chnl == 14) /* Channel 14 */
399 *pGroup = 5;
400 } else {
401 /* probably, this branch is suitable only for 5 GHz */
402
403 bIn24G = false;
404
405 if (chnl <= 40)
406 *pGroup = 0;
407 else if (chnl <= 48)
408 *pGroup = 1;
409 else if (chnl <= 56)
410 *pGroup = 2;
411 else if (chnl <= 64)
412 *pGroup = 3;
413 else if (chnl <= 104)
414 *pGroup = 4;
415 else if (chnl <= 112)
416 *pGroup = 5;
417 else if (chnl <= 120)
418 *pGroup = 5;
419 else if (chnl <= 128)
420 *pGroup = 6;
421 else if (chnl <= 136)
422 *pGroup = 7;
423 else if (chnl <= 144)
424 *pGroup = 8;
425 else if (chnl <= 153)
426 *pGroup = 9;
427 else if (chnl <= 161)
428 *pGroup = 10;
429 else if (chnl <= 177)
430 *pGroup = 11;
431 }
432 return bIn24G;
433 }
434
Hal_ReadPowerSavingMode88E(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)435 void Hal_ReadPowerSavingMode88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
436 {
437 if (AutoLoadFail) {
438 padapter->pwrctrlpriv.bHWPowerdown = false;
439 padapter->pwrctrlpriv.bSupportRemoteWakeup = false;
440 } else {
441 /* hw power down mode selection , 0:rf-off / 1:power down */
442
443 if (padapter->registrypriv.hwpdn_mode == 2)
444 padapter->pwrctrlpriv.bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT(4));
445 else
446 padapter->pwrctrlpriv.bHWPowerdown = padapter->registrypriv.hwpdn_mode;
447
448 /* decide hw if support remote wakeup function */
449 /* if hw supported, 8051 (SIE) will generate WeakUP signal(D+/D- toggle) when autoresume */
450 padapter->pwrctrlpriv.bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT(1)) ? true : false;
451
452 DBG_88E("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) , bSupportRemoteWakeup(%x)\n", __func__,
453 padapter->pwrctrlpriv.bHWPwrPindetect, padapter->pwrctrlpriv.bHWPowerdown, padapter->pwrctrlpriv.bSupportRemoteWakeup);
454
455 DBG_88E("### PS params => power_mgnt(%x), usbss_enable(%x) ###\n", padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable);
456 }
457 }
458
Hal_ReadTxPowerInfo88E(struct adapter * padapter,u8 * PROMContent,bool AutoLoadFail)459 void Hal_ReadTxPowerInfo88E(struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail)
460 {
461 struct hal_data_8188e *pHalData = padapter->HalData;
462 struct txpowerinfo24g pwrInfo24G;
463 u8 ch, group;
464 u8 bIn24G, TxCount;
465
466 Hal_ReadPowerValueFromPROM_8188E(&pwrInfo24G, PROMContent, AutoLoadFail);
467
468 if (!AutoLoadFail)
469 pHalData->bTXPowerDataReadFromEEPORM = true;
470
471 for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
472 bIn24G = Hal_GetChnlGroup88E(ch, &group);
473 if (bIn24G) {
474 pHalData->Index24G_CCK_Base[0][ch] = pwrInfo24G.IndexCCK_Base[0][group];
475 if (ch == 14)
476 pHalData->Index24G_BW40_Base[0][ch] = pwrInfo24G.IndexBW40_Base[0][4];
477 else
478 pHalData->Index24G_BW40_Base[0][ch] = pwrInfo24G.IndexBW40_Base[0][group];
479 }
480 if (bIn24G) {
481 DBG_88E("======= Path %d, Channel %d =======\n", 0, ch);
482 DBG_88E("Index24G_CCK_Base[%d][%d] = 0x%x\n", 0, ch, pHalData->Index24G_CCK_Base[0][ch]);
483 DBG_88E("Index24G_BW40_Base[%d][%d] = 0x%x\n", 0, ch, pHalData->Index24G_BW40_Base[0][ch]);
484 }
485 }
486 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
487 pHalData->CCK_24G_Diff[0][TxCount] = pwrInfo24G.CCK_Diff[0][TxCount];
488 pHalData->OFDM_24G_Diff[0][TxCount] = pwrInfo24G.OFDM_Diff[0][TxCount];
489 pHalData->BW20_24G_Diff[0][TxCount] = pwrInfo24G.BW20_Diff[0][TxCount];
490 pHalData->BW40_24G_Diff[0][TxCount] = pwrInfo24G.BW40_Diff[0][TxCount];
491 DBG_88E("======= TxCount %d =======\n", TxCount);
492 DBG_88E("CCK_24G_Diff[%d][%d] = %d\n", 0, TxCount, pHalData->CCK_24G_Diff[0][TxCount]);
493 DBG_88E("OFDM_24G_Diff[%d][%d] = %d\n", 0, TxCount, pHalData->OFDM_24G_Diff[0][TxCount]);
494 DBG_88E("BW20_24G_Diff[%d][%d] = %d\n", 0, TxCount, pHalData->BW20_24G_Diff[0][TxCount]);
495 DBG_88E("BW40_24G_Diff[%d][%d] = %d\n", 0, TxCount, pHalData->BW40_24G_Diff[0][TxCount]);
496 }
497
498 /* 2010/10/19 MH Add Regulator recognize for CU. */
499 if (!AutoLoadFail) {
500 pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x7); /* bit0~2 */
501 if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
502 pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */
503 } else {
504 pHalData->EEPROMRegulatory = 0;
505 }
506 DBG_88E("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
507 }
508
Hal_EfuseParseXtal_8188E(struct adapter * pAdapter,u8 * hwinfo,bool AutoLoadFail)509 void Hal_EfuseParseXtal_8188E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail)
510 {
511 struct hal_data_8188e *pHalData = pAdapter->HalData;
512
513 if (!AutoLoadFail) {
514 pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E];
515 if (pHalData->CrystalCap == 0xFF)
516 pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
517 } else {
518 pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
519 }
520 DBG_88E("CrystalCap: 0x%2x\n", pHalData->CrystalCap);
521 }
522
Hal_EfuseParseBoardType88E(struct adapter * pAdapter,u8 * hwinfo,bool AutoLoadFail)523 void Hal_EfuseParseBoardType88E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail)
524 {
525 struct hal_data_8188e *pHalData = pAdapter->HalData;
526
527 if (!AutoLoadFail)
528 pHalData->BoardType = (hwinfo[EEPROM_RF_BOARD_OPTION_88E]
529 & 0xE0) >> 5;
530 else
531 pHalData->BoardType = 0;
532 DBG_88E("Board Type: 0x%2x\n", pHalData->BoardType);
533 }
534
Hal_EfuseParseEEPROMVer88E(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)535 void Hal_EfuseParseEEPROMVer88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
536 {
537 struct hal_data_8188e *pHalData = padapter->HalData;
538
539 if (!AutoLoadFail) {
540 pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E];
541 if (pHalData->EEPROMVersion == 0xFF)
542 pHalData->EEPROMVersion = EEPROM_Default_Version;
543 } else {
544 pHalData->EEPROMVersion = 1;
545 }
546 RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
547 ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
548 pHalData->EEPROMVersion));
549 }
550
rtl8188e_EfuseParseChnlPlan(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)551 void rtl8188e_EfuseParseChnlPlan(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
552 {
553 padapter->mlmepriv.ChannelPlan =
554 hal_com_get_channel_plan(padapter,
555 hwinfo ? hwinfo[EEPROM_ChannelPlan_88E] : 0xFF,
556 padapter->registrypriv.channel_plan,
557 RT_CHANNEL_DOMAIN_WORLD_WIDE_13, AutoLoadFail);
558
559 DBG_88E("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan);
560 }
561
Hal_EfuseParseCustomerID88E(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)562 void Hal_EfuseParseCustomerID88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
563 {
564 struct hal_data_8188e *pHalData = padapter->HalData;
565
566 if (!AutoLoadFail) {
567 pHalData->EEPROMCustomerID = hwinfo[EEPROM_CUSTOMERID_88E];
568 } else {
569 pHalData->EEPROMCustomerID = 0;
570 pHalData->EEPROMSubCustomerID = 0;
571 }
572 DBG_88E("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID);
573 }
574
Hal_ReadAntennaDiversity88E(struct adapter * pAdapter,u8 * PROMContent,bool AutoLoadFail)575 void Hal_ReadAntennaDiversity88E(struct adapter *pAdapter, u8 *PROMContent, bool AutoLoadFail)
576 {
577 struct hal_data_8188e *pHalData = pAdapter->HalData;
578 struct registry_priv *registry_par = &pAdapter->registrypriv;
579
580 if (!AutoLoadFail) {
581 /* Antenna Diversity setting. */
582 if (registry_par->antdiv_cfg == 2) { /* 2:By EFUSE */
583 pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x18)>>3;
584 if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
585 pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION&0x18)>>3;
586 } else {
587 pHalData->AntDivCfg = registry_par->antdiv_cfg; /* 0:OFF , 1:ON, 2:By EFUSE */
588 }
589
590 if (registry_par->antdiv_type == 0) {
591 /* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */
592 pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E];
593 if (pHalData->TRxAntDivType == 0xFF)
594 pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; /* For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */
595 } else {
596 pHalData->TRxAntDivType = registry_par->antdiv_type;
597 }
598
599 if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV)
600 pHalData->AntDivCfg = 1; /* 0xC1[3] is ignored. */
601 } else {
602 pHalData->AntDivCfg = 0;
603 pHalData->TRxAntDivType = pHalData->TRxAntDivType; /* The value in the driver setting of device manager. */
604 }
605 DBG_88E("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType);
606 }
607
Hal_ReadThermalMeter_88E(struct adapter * Adapter,u8 * PROMContent,bool AutoloadFail)608 void Hal_ReadThermalMeter_88E(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail)
609 {
610 struct hal_data_8188e *pHalData = Adapter->HalData;
611
612 /* ThermalMeter from EEPROM */
613 if (!AutoloadFail)
614 pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E];
615 else
616 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
617
618 if (pHalData->EEPROMThermalMeter == 0xff || AutoloadFail) {
619 pHalData->bAPKThermalMeterIgnore = true;
620 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
621 }
622 DBG_88E("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter);
623 }
624