1 #ifndef _HFI1_KERNEL_H
2 #define _HFI1_KERNEL_H
3 /*
4 * Copyright(c) 2015-2018 Intel Corporation.
5 *
6 * This file is provided under a dual BSD/GPLv2 license. When using or
7 * redistributing this file, you may do so under either license.
8 *
9 * GPL LICENSE SUMMARY
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * BSD LICENSE
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 *
26 * - Redistributions of source code must retain the above copyright
27 * notice, this list of conditions and the following disclaimer.
28 * - Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in
30 * the documentation and/or other materials provided with the
31 * distribution.
32 * - Neither the name of Intel Corporation nor the names of its
33 * contributors may be used to endorse or promote products derived
34 * from this software without specific prior written permission.
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 *
48 */
49
50 #include <linux/interrupt.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/mutex.h>
54 #include <linux/list.h>
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/idr.h>
58 #include <linux/io.h>
59 #include <linux/fs.h>
60 #include <linux/completion.h>
61 #include <linux/kref.h>
62 #include <linux/sched.h>
63 #include <linux/cdev.h>
64 #include <linux/delay.h>
65 #include <linux/kthread.h>
66 #include <linux/i2c.h>
67 #include <linux/i2c-algo-bit.h>
68 #include <rdma/ib_hdrs.h>
69 #include <rdma/opa_addr.h>
70 #include <linux/rhashtable.h>
71 #include <linux/netdevice.h>
72 #include <rdma/rdma_vt.h>
73
74 #include "chip_registers.h"
75 #include "common.h"
76 #include "verbs.h"
77 #include "pio.h"
78 #include "chip.h"
79 #include "mad.h"
80 #include "qsfp.h"
81 #include "platform.h"
82 #include "affinity.h"
83
84 /* bumped 1 from s/w major version of TrueScale */
85 #define HFI1_CHIP_VERS_MAJ 3U
86
87 /* don't care about this except printing */
88 #define HFI1_CHIP_VERS_MIN 0U
89
90 /* The Organization Unique Identifier (Mfg code), and its position in GUID */
91 #define HFI1_OUI 0x001175
92 #define HFI1_OUI_LSB 40
93
94 #define DROP_PACKET_OFF 0
95 #define DROP_PACKET_ON 1
96
97 #define NEIGHBOR_TYPE_HFI 0
98 #define NEIGHBOR_TYPE_SWITCH 1
99
100 extern unsigned long hfi1_cap_mask;
101 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap)
102 #define HFI1_CAP_UGET_MASK(mask, cap) \
103 (((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap)
104 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap))
105 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap))
106 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap))
107 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap))
108 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \
109 HFI1_CAP_MISC_MASK)
110 /* Offline Disabled Reason is 4-bits */
111 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON)
112
113 /*
114 * Control context is always 0 and handles the error packets.
115 * It also handles the VL15 and multicast packets.
116 */
117 #define HFI1_CTRL_CTXT 0
118
119 /*
120 * Driver context will store software counters for each of the events
121 * associated with these status registers
122 */
123 #define NUM_CCE_ERR_STATUS_COUNTERS 41
124 #define NUM_RCV_ERR_STATUS_COUNTERS 64
125 #define NUM_MISC_ERR_STATUS_COUNTERS 13
126 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36
127 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4
128 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64
129 #define NUM_SEND_ERR_STATUS_COUNTERS 3
130 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5
131 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24
132
133 /*
134 * per driver stats, either not device nor port-specific, or
135 * summed over all of the devices and ports.
136 * They are described by name via ipathfs filesystem, so layout
137 * and number of elements can change without breaking compatibility.
138 * If members are added or deleted hfi1_statnames[] in debugfs.c must
139 * change to match.
140 */
141 struct hfi1_ib_stats {
142 __u64 sps_ints; /* number of interrupts handled */
143 __u64 sps_errints; /* number of error interrupts */
144 __u64 sps_txerrs; /* tx-related packet errors */
145 __u64 sps_rcverrs; /* non-crc rcv packet errors */
146 __u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */
147 __u64 sps_nopiobufs; /* no pio bufs avail from kernel */
148 __u64 sps_ctxts; /* number of contexts currently open */
149 __u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */
150 __u64 sps_buffull;
151 __u64 sps_hdrfull;
152 };
153
154 extern struct hfi1_ib_stats hfi1_stats;
155 extern const struct pci_error_handlers hfi1_pci_err_handler;
156
157 /*
158 * First-cut criterion for "device is active" is
159 * two thousand dwords combined Tx, Rx traffic per
160 * 5-second interval. SMA packets are 64 dwords,
161 * and occur "a few per second", presumably each way.
162 */
163 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000)
164
165 /*
166 * Below contains all data related to a single context (formerly called port).
167 */
168
169 struct hfi1_opcode_stats_perctx;
170
171 struct ctxt_eager_bufs {
172 struct eager_buffer {
173 void *addr;
174 dma_addr_t dma;
175 ssize_t len;
176 } *buffers;
177 struct {
178 void *addr;
179 dma_addr_t dma;
180 } *rcvtids;
181 u32 size; /* total size of eager buffers */
182 u32 rcvtid_size; /* size of each eager rcv tid */
183 u16 count; /* size of buffers array */
184 u16 numbufs; /* number of buffers allocated */
185 u16 alloced; /* number of rcvarray entries used */
186 u16 threshold; /* head update threshold */
187 };
188
189 struct exp_tid_set {
190 struct list_head list;
191 u32 count;
192 };
193
194 typedef int (*rhf_rcv_function_ptr)(struct hfi1_packet *packet);
195 struct hfi1_ctxtdata {
196 /* rcvhdrq base, needs mmap before useful */
197 void *rcvhdrq;
198 /* kernel virtual address where hdrqtail is updated */
199 volatile __le64 *rcvhdrtail_kvaddr;
200 /* so functions that need physical port can get it easily */
201 struct hfi1_pportdata *ppd;
202 /* so file ops can get at unit */
203 struct hfi1_devdata *dd;
204 /* this receive context's assigned PIO ACK send context */
205 struct send_context *sc;
206 /* per context recv functions */
207 const rhf_rcv_function_ptr *rhf_rcv_function_map;
208 /*
209 * The interrupt handler for a particular receive context can vary
210 * throughout it's lifetime. This is not a lock protected data member so
211 * it must be updated atomically and the prev and new value must always
212 * be valid. Worst case is we process an extra interrupt and up to 64
213 * packets with the wrong interrupt handler.
214 */
215 int (*do_interrupt)(struct hfi1_ctxtdata *rcd, int threaded);
216 /* verbs rx_stats per rcd */
217 struct hfi1_opcode_stats_perctx *opstats;
218 /* clear interrupt mask */
219 u64 imask;
220 /* ctxt rcvhdrq head offset */
221 u32 head;
222 /* number of rcvhdrq entries */
223 u16 rcvhdrq_cnt;
224 u8 ireg; /* clear interrupt register */
225 /* receive packet sequence counter */
226 u8 seq_cnt;
227 /* size of each of the rcvhdrq entries */
228 u8 rcvhdrqentsize;
229 /* offset of RHF within receive header entry */
230 u8 rhf_offset;
231 /* dynamic receive available interrupt timeout */
232 u8 rcvavail_timeout;
233 /* Indicates that this is vnic context */
234 bool is_vnic;
235 /* vnic queue index this context is mapped to */
236 u8 vnic_q_idx;
237 /* Is ASPM interrupt supported for this context */
238 bool aspm_intr_supported;
239 /* ASPM state (enabled/disabled) for this context */
240 bool aspm_enabled;
241 /* Is ASPM processing enabled for this context (in intr context) */
242 bool aspm_intr_enable;
243 struct ctxt_eager_bufs egrbufs;
244 /* QPs waiting for context processing */
245 struct list_head qp_wait_list;
246 /* tid allocation lists */
247 struct exp_tid_set tid_group_list;
248 struct exp_tid_set tid_used_list;
249 struct exp_tid_set tid_full_list;
250
251 /* Timer for re-enabling ASPM if interrupt activity quiets down */
252 struct timer_list aspm_timer;
253 /* per-context configuration flags */
254 unsigned long flags;
255 /* array of tid_groups */
256 struct tid_group *groups;
257 /* mmap of hdrq, must fit in 44 bits */
258 dma_addr_t rcvhdrq_dma;
259 dma_addr_t rcvhdrqtailaddr_dma;
260 /* Last interrupt timestamp */
261 ktime_t aspm_ts_last_intr;
262 /* Last timestamp at which we scheduled a timer for this context */
263 ktime_t aspm_ts_timer_sched;
264 /* Lock to serialize between intr, timer intr and user threads */
265 spinlock_t aspm_lock;
266 /* Reference count the base context usage */
267 struct kref kref;
268 /* numa node of this context */
269 int numa_id;
270 /* associated msix interrupt. */
271 s16 msix_intr;
272 /* job key */
273 u16 jkey;
274 /* number of RcvArray groups for this context. */
275 u16 rcv_array_groups;
276 /* index of first eager TID entry. */
277 u16 eager_base;
278 /* number of expected TID entries */
279 u16 expected_count;
280 /* index of first expected TID entry. */
281 u16 expected_base;
282 /* Device context index */
283 u8 ctxt;
284
285 /* PSM Specific fields */
286 /* lock protecting all Expected TID data */
287 struct mutex exp_mutex;
288 /* when waiting for rcv or pioavail */
289 wait_queue_head_t wait;
290 /* uuid from PSM */
291 u8 uuid[16];
292 /* same size as task_struct .comm[], command that opened context */
293 char comm[TASK_COMM_LEN];
294 /* Bitmask of in use context(s) */
295 DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS);
296 /* per-context event flags for fileops/intr communication */
297 unsigned long event_flags;
298 /* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */
299 void *subctxt_uregbase;
300 /* An array of pages for the eager receive buffers * N */
301 void *subctxt_rcvegrbuf;
302 /* An array of pages for the eager header queue entries * N */
303 void *subctxt_rcvhdr_base;
304 /* total number of polled urgent packets */
305 u32 urgent;
306 /* saved total number of polled urgent packets for poll edge trigger */
307 u32 urgent_poll;
308 /* Type of packets or conditions we want to poll for */
309 u16 poll_type;
310 /* non-zero if ctxt is being shared. */
311 u16 subctxt_id;
312 /* The version of the library which opened this ctxt */
313 u32 userversion;
314 /*
315 * non-zero if ctxt can be shared, and defines the maximum number of
316 * sub-contexts for this device context.
317 */
318 u8 subctxt_cnt;
319
320 };
321
322 /**
323 * rcvhdrq_size - return total size in bytes for header queue
324 * @rcd: the receive context
325 *
326 * rcvhdrqentsize is in DWs, so we have to convert to bytes
327 *
328 */
rcvhdrq_size(struct hfi1_ctxtdata * rcd)329 static inline u32 rcvhdrq_size(struct hfi1_ctxtdata *rcd)
330 {
331 return PAGE_ALIGN(rcd->rcvhdrq_cnt *
332 rcd->rcvhdrqentsize * sizeof(u32));
333 }
334
335 /*
336 * Represents a single packet at a high level. Put commonly computed things in
337 * here so we do not have to keep doing them over and over. The rule of thumb is
338 * if something is used one time to derive some value, store that something in
339 * here. If it is used multiple times, then store the result of that derivation
340 * in here.
341 */
342 struct hfi1_packet {
343 void *ebuf;
344 void *hdr;
345 void *payload;
346 struct hfi1_ctxtdata *rcd;
347 __le32 *rhf_addr;
348 struct rvt_qp *qp;
349 struct ib_other_headers *ohdr;
350 struct ib_grh *grh;
351 struct opa_16b_mgmt *mgmt;
352 u64 rhf;
353 u32 maxcnt;
354 u32 rhqoff;
355 u32 dlid;
356 u32 slid;
357 u16 tlen;
358 s16 etail;
359 u16 pkey;
360 u8 hlen;
361 u8 numpkt;
362 u8 rsize;
363 u8 updegr;
364 u8 etype;
365 u8 extra_byte;
366 u8 pad;
367 u8 sc;
368 u8 sl;
369 u8 opcode;
370 bool migrated;
371 };
372
373 /* Packet types */
374 #define HFI1_PKT_TYPE_9B 0
375 #define HFI1_PKT_TYPE_16B 1
376
377 /*
378 * OPA 16B Header
379 */
380 #define OPA_16B_L4_MASK 0xFFull
381 #define OPA_16B_SC_MASK 0x1F00000ull
382 #define OPA_16B_SC_SHIFT 20
383 #define OPA_16B_LID_MASK 0xFFFFFull
384 #define OPA_16B_DLID_MASK 0xF000ull
385 #define OPA_16B_DLID_SHIFT 20
386 #define OPA_16B_DLID_HIGH_SHIFT 12
387 #define OPA_16B_SLID_MASK 0xF00ull
388 #define OPA_16B_SLID_SHIFT 20
389 #define OPA_16B_SLID_HIGH_SHIFT 8
390 #define OPA_16B_BECN_MASK 0x80000000ull
391 #define OPA_16B_BECN_SHIFT 31
392 #define OPA_16B_FECN_MASK 0x10000000ull
393 #define OPA_16B_FECN_SHIFT 28
394 #define OPA_16B_L2_MASK 0x60000000ull
395 #define OPA_16B_L2_SHIFT 29
396 #define OPA_16B_PKEY_MASK 0xFFFF0000ull
397 #define OPA_16B_PKEY_SHIFT 16
398 #define OPA_16B_LEN_MASK 0x7FF00000ull
399 #define OPA_16B_LEN_SHIFT 20
400 #define OPA_16B_RC_MASK 0xE000000ull
401 #define OPA_16B_RC_SHIFT 25
402 #define OPA_16B_AGE_MASK 0xFF0000ull
403 #define OPA_16B_AGE_SHIFT 16
404 #define OPA_16B_ENTROPY_MASK 0xFFFFull
405
406 /*
407 * OPA 16B L2/L4 Encodings
408 */
409 #define OPA_16B_L4_9B 0x00
410 #define OPA_16B_L2_TYPE 0x02
411 #define OPA_16B_L4_FM 0x08
412 #define OPA_16B_L4_IB_LOCAL 0x09
413 #define OPA_16B_L4_IB_GLOBAL 0x0A
414 #define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR
415
416 /*
417 * OPA 16B Management
418 */
419 #define OPA_16B_L4_FM_PAD 3 /* fixed 3B pad */
420 #define OPA_16B_L4_FM_HLEN 24 /* 16B(16) + L4_FM(8) */
421
hfi1_16B_get_l4(struct hfi1_16b_header * hdr)422 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr)
423 {
424 return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK);
425 }
426
hfi1_16B_get_sc(struct hfi1_16b_header * hdr)427 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr)
428 {
429 return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT);
430 }
431
hfi1_16B_get_dlid(struct hfi1_16b_header * hdr)432 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr)
433 {
434 return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) |
435 (((hdr->lrh[2] & OPA_16B_DLID_MASK) >>
436 OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT));
437 }
438
hfi1_16B_get_slid(struct hfi1_16b_header * hdr)439 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr)
440 {
441 return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) |
442 (((hdr->lrh[2] & OPA_16B_SLID_MASK) >>
443 OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT));
444 }
445
hfi1_16B_get_becn(struct hfi1_16b_header * hdr)446 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr)
447 {
448 return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT);
449 }
450
hfi1_16B_get_fecn(struct hfi1_16b_header * hdr)451 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr)
452 {
453 return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT);
454 }
455
hfi1_16B_get_l2(struct hfi1_16b_header * hdr)456 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr)
457 {
458 return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT);
459 }
460
hfi1_16B_get_pkey(struct hfi1_16b_header * hdr)461 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr)
462 {
463 return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT);
464 }
465
hfi1_16B_get_rc(struct hfi1_16b_header * hdr)466 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr)
467 {
468 return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT);
469 }
470
hfi1_16B_get_age(struct hfi1_16b_header * hdr)471 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr)
472 {
473 return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT);
474 }
475
hfi1_16B_get_len(struct hfi1_16b_header * hdr)476 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr)
477 {
478 return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT);
479 }
480
hfi1_16B_get_entropy(struct hfi1_16b_header * hdr)481 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr)
482 {
483 return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK);
484 }
485
486 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw))
487
488 /*
489 * BTH
490 */
491 #define OPA_16B_BTH_PAD_MASK 7
hfi1_16B_bth_get_pad(struct ib_other_headers * ohdr)492 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr)
493 {
494 return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) &
495 OPA_16B_BTH_PAD_MASK);
496 }
497
498 /*
499 * 16B Management
500 */
501 #define OPA_16B_MGMT_QPN_MASK 0xFFFFFF
hfi1_16B_get_dest_qpn(struct opa_16b_mgmt * mgmt)502 static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt)
503 {
504 return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK;
505 }
506
hfi1_16B_get_src_qpn(struct opa_16b_mgmt * mgmt)507 static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt)
508 {
509 return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK;
510 }
511
hfi1_16B_set_qpn(struct opa_16b_mgmt * mgmt,u32 dest_qp,u32 src_qp)512 static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt,
513 u32 dest_qp, u32 src_qp)
514 {
515 mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK);
516 mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK);
517 }
518
519 struct rvt_sge_state;
520
521 /*
522 * Get/Set IB link-level config parameters for f_get/set_ib_cfg()
523 * Mostly for MADs that set or query link parameters, also ipath
524 * config interfaces
525 */
526 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */
527 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */
528 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */
529 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */
530 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */
531 #define HFI1_IB_CFG_SPD 5 /* current Link spd */
532 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */
533 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */
534 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */
535 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */
536 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */
537 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */
538 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */
539 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */
540 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */
541 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */
542 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */
543 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */
544 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19
545 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */
546 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */
547
548 /*
549 * HFI or Host Link States
550 *
551 * These describe the states the driver thinks the logical and physical
552 * states are in. Used as an argument to set_link_state(). Implemented
553 * as bits for easy multi-state checking. The actual state can only be
554 * one.
555 */
556 #define __HLS_UP_INIT_BP 0
557 #define __HLS_UP_ARMED_BP 1
558 #define __HLS_UP_ACTIVE_BP 2
559 #define __HLS_DN_DOWNDEF_BP 3 /* link down default */
560 #define __HLS_DN_POLL_BP 4
561 #define __HLS_DN_DISABLE_BP 5
562 #define __HLS_DN_OFFLINE_BP 6
563 #define __HLS_VERIFY_CAP_BP 7
564 #define __HLS_GOING_UP_BP 8
565 #define __HLS_GOING_OFFLINE_BP 9
566 #define __HLS_LINK_COOLDOWN_BP 10
567
568 #define HLS_UP_INIT BIT(__HLS_UP_INIT_BP)
569 #define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP)
570 #define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP)
571 #define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */
572 #define HLS_DN_POLL BIT(__HLS_DN_POLL_BP)
573 #define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP)
574 #define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP)
575 #define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP)
576 #define HLS_GOING_UP BIT(__HLS_GOING_UP_BP)
577 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP)
578 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP)
579
580 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE)
581 #define HLS_DOWN ~(HLS_UP)
582
583 #define HLS_DEFAULT HLS_DN_POLL
584
585 /* use this MTU size if none other is given */
586 #define HFI1_DEFAULT_ACTIVE_MTU 10240
587 /* use this MTU size as the default maximum */
588 #define HFI1_DEFAULT_MAX_MTU 10240
589 /* default partition key */
590 #define DEFAULT_PKEY 0xffff
591
592 /*
593 * Possible fabric manager config parameters for fm_{get,set}_table()
594 */
595 #define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */
596 #define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */
597 #define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */
598 #define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */
599 #define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */
600 #define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */
601
602 /*
603 * Possible "operations" for f_rcvctrl(ppd, op, ctxt)
604 * these are bits so they can be combined, e.g.
605 * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB
606 */
607 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01
608 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02
609 #define HFI1_RCVCTRL_CTXT_ENB 0x04
610 #define HFI1_RCVCTRL_CTXT_DIS 0x08
611 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10
612 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20
613 #define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */
614 #define HFI1_RCVCTRL_PKEY_DIS 0x80
615 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400
616 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800
617 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000
618 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000
619 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000
620 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000
621 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000
622 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000
623
624 /* partition enforcement flags */
625 #define HFI1_PART_ENFORCE_IN 0x1
626 #define HFI1_PART_ENFORCE_OUT 0x2
627
628 /* how often we check for synthetic counter wrap around */
629 #define SYNTH_CNT_TIME 3
630
631 /* Counter flags */
632 #define CNTR_NORMAL 0x0 /* Normal counters, just read register */
633 #define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */
634 #define CNTR_DISABLED 0x2 /* Disable this counter */
635 #define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */
636 #define CNTR_VL 0x8 /* Per VL counter */
637 #define CNTR_SDMA 0x10
638 #define CNTR_INVALID_VL -1 /* Specifies invalid VL */
639 #define CNTR_MODE_W 0x0
640 #define CNTR_MODE_R 0x1
641
642 /* VLs Supported/Operational */
643 #define HFI1_MIN_VLS_SUPPORTED 1
644 #define HFI1_MAX_VLS_SUPPORTED 8
645
646 #define HFI1_GUIDS_PER_PORT 5
647 #define HFI1_PORT_GUID_INDEX 0
648
incr_cntr64(u64 * cntr)649 static inline void incr_cntr64(u64 *cntr)
650 {
651 if (*cntr < (u64)-1LL)
652 (*cntr)++;
653 }
654
incr_cntr32(u32 * cntr)655 static inline void incr_cntr32(u32 *cntr)
656 {
657 if (*cntr < (u32)-1LL)
658 (*cntr)++;
659 }
660
661 #define MAX_NAME_SIZE 64
662 struct hfi1_msix_entry {
663 enum irq_type type;
664 int irq;
665 void *arg;
666 cpumask_t mask;
667 struct irq_affinity_notify notify;
668 };
669
670 /* per-SL CCA information */
671 struct cca_timer {
672 struct hrtimer hrtimer;
673 struct hfi1_pportdata *ppd; /* read-only */
674 int sl; /* read-only */
675 u16 ccti; /* read/write - current value of CCTI */
676 };
677
678 struct link_down_reason {
679 /*
680 * SMA-facing value. Should be set from .latest when
681 * HLS_UP_* -> HLS_DN_* transition actually occurs.
682 */
683 u8 sma;
684 u8 latest;
685 };
686
687 enum {
688 LO_PRIO_TABLE,
689 HI_PRIO_TABLE,
690 MAX_PRIO_TABLE
691 };
692
693 struct vl_arb_cache {
694 /* protect vl arb cache */
695 spinlock_t lock;
696 struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE];
697 };
698
699 /*
700 * The structure below encapsulates data relevant to a physical IB Port.
701 * Current chips support only one such port, but the separation
702 * clarifies things a bit. Note that to conform to IB conventions,
703 * port-numbers are one-based. The first or only port is port1.
704 */
705 struct hfi1_pportdata {
706 struct hfi1_ibport ibport_data;
707
708 struct hfi1_devdata *dd;
709 struct kobject pport_cc_kobj;
710 struct kobject sc2vl_kobj;
711 struct kobject sl2sc_kobj;
712 struct kobject vl2mtu_kobj;
713
714 /* PHY support */
715 struct qsfp_data qsfp_info;
716 /* Values for SI tuning of SerDes */
717 u32 port_type;
718 u32 tx_preset_eq;
719 u32 tx_preset_noeq;
720 u32 rx_preset;
721 u8 local_atten;
722 u8 remote_atten;
723 u8 default_atten;
724 u8 max_power_class;
725
726 /* did we read platform config from scratch registers? */
727 bool config_from_scratch;
728
729 /* GUIDs for this interface, in host order, guids[0] is a port guid */
730 u64 guids[HFI1_GUIDS_PER_PORT];
731
732 /* GUID for peer interface, in host order */
733 u64 neighbor_guid;
734
735 /* up or down physical link state */
736 u32 linkup;
737
738 /*
739 * this address is mapped read-only into user processes so they can
740 * get status cheaply, whenever they want. One qword of status per port
741 */
742 u64 *statusp;
743
744 /* SendDMA related entries */
745
746 struct workqueue_struct *hfi1_wq;
747 struct workqueue_struct *link_wq;
748
749 /* move out of interrupt context */
750 struct work_struct link_vc_work;
751 struct work_struct link_up_work;
752 struct work_struct link_down_work;
753 struct work_struct sma_message_work;
754 struct work_struct freeze_work;
755 struct work_struct link_downgrade_work;
756 struct work_struct link_bounce_work;
757 struct delayed_work start_link_work;
758 /* host link state variables */
759 struct mutex hls_lock;
760 u32 host_link_state;
761
762 /* these are the "32 bit" regs */
763
764 u32 ibmtu; /* The MTU programmed for this unit */
765 /*
766 * Current max size IB packet (in bytes) including IB headers, that
767 * we can send. Changes when ibmtu changes.
768 */
769 u32 ibmaxlen;
770 u32 current_egress_rate; /* units [10^6 bits/sec] */
771 /* LID programmed for this instance */
772 u32 lid;
773 /* list of pkeys programmed; 0 if not set */
774 u16 pkeys[MAX_PKEY_VALUES];
775 u16 link_width_supported;
776 u16 link_width_downgrade_supported;
777 u16 link_speed_supported;
778 u16 link_width_enabled;
779 u16 link_width_downgrade_enabled;
780 u16 link_speed_enabled;
781 u16 link_width_active;
782 u16 link_width_downgrade_tx_active;
783 u16 link_width_downgrade_rx_active;
784 u16 link_speed_active;
785 u8 vls_supported;
786 u8 vls_operational;
787 u8 actual_vls_operational;
788 /* LID mask control */
789 u8 lmc;
790 /* Rx Polarity inversion (compensate for ~tx on partner) */
791 u8 rx_pol_inv;
792
793 u8 hw_pidx; /* physical port index */
794 u8 port; /* IB port number and index into dd->pports - 1 */
795 /* type of neighbor node */
796 u8 neighbor_type;
797 u8 neighbor_normal;
798 u8 neighbor_fm_security; /* 1 if firmware checking is disabled */
799 u8 neighbor_port_number;
800 u8 is_sm_config_started;
801 u8 offline_disabled_reason;
802 u8 is_active_optimize_enabled;
803 u8 driver_link_ready; /* driver ready for active link */
804 u8 link_enabled; /* link enabled? */
805 u8 linkinit_reason;
806 u8 local_tx_rate; /* rate given to 8051 firmware */
807 u8 qsfp_retry_count;
808
809 /* placeholders for IB MAD packet settings */
810 u8 overrun_threshold;
811 u8 phy_error_threshold;
812 unsigned int is_link_down_queued;
813
814 /* Used to override LED behavior for things like maintenance beaconing*/
815 /*
816 * Alternates per phase of blink
817 * [0] holds LED off duration, [1] holds LED on duration
818 */
819 unsigned long led_override_vals[2];
820 u8 led_override_phase; /* LSB picks from vals[] */
821 atomic_t led_override_timer_active;
822 /* Used to flash LEDs in override mode */
823 struct timer_list led_override_timer;
824
825 u32 sm_trap_qp;
826 u32 sa_qp;
827
828 /*
829 * cca_timer_lock protects access to the per-SL cca_timer
830 * structures (specifically the ccti member).
831 */
832 spinlock_t cca_timer_lock ____cacheline_aligned_in_smp;
833 struct cca_timer cca_timer[OPA_MAX_SLS];
834
835 /* List of congestion control table entries */
836 struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX];
837
838 /* congestion entries, each entry corresponding to a SL */
839 struct opa_congestion_setting_entry_shadow
840 congestion_entries[OPA_MAX_SLS];
841
842 /*
843 * cc_state_lock protects (write) access to the per-port
844 * struct cc_state.
845 */
846 spinlock_t cc_state_lock ____cacheline_aligned_in_smp;
847
848 struct cc_state __rcu *cc_state;
849
850 /* Total number of congestion control table entries */
851 u16 total_cct_entry;
852
853 /* Bit map identifying service level */
854 u32 cc_sl_control_map;
855
856 /* CA's max number of 64 entry units in the congestion control table */
857 u8 cc_max_table_entries;
858
859 /*
860 * begin congestion log related entries
861 * cc_log_lock protects all congestion log related data
862 */
863 spinlock_t cc_log_lock ____cacheline_aligned_in_smp;
864 u8 threshold_cong_event_map[OPA_MAX_SLS / 8];
865 u16 threshold_event_counter;
866 struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS];
867 int cc_log_idx; /* index for logging events */
868 int cc_mad_idx; /* index for reporting events */
869 /* end congestion log related entries */
870
871 struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE];
872
873 /* port relative counter buffer */
874 u64 *cntrs;
875 /* port relative synthetic counter buffer */
876 u64 *scntrs;
877 /* port_xmit_discards are synthesized from different egress errors */
878 u64 port_xmit_discards;
879 u64 port_xmit_discards_vl[C_VL_COUNT];
880 u64 port_xmit_constraint_errors;
881 u64 port_rcv_constraint_errors;
882 /* count of 'link_err' interrupts from DC */
883 u64 link_downed;
884 /* number of times link retrained successfully */
885 u64 link_up;
886 /* number of times a link unknown frame was reported */
887 u64 unknown_frame_count;
888 /* port_ltp_crc_mode is returned in 'portinfo' MADs */
889 u16 port_ltp_crc_mode;
890 /* port_crc_mode_enabled is the crc we support */
891 u8 port_crc_mode_enabled;
892 /* mgmt_allowed is also returned in 'portinfo' MADs */
893 u8 mgmt_allowed;
894 u8 part_enforce; /* partition enforcement flags */
895 struct link_down_reason local_link_down_reason;
896 struct link_down_reason neigh_link_down_reason;
897 /* Value to be sent to link peer on LinkDown .*/
898 u8 remote_link_down_reason;
899 /* Error events that will cause a port bounce. */
900 u32 port_error_action;
901 struct work_struct linkstate_active_work;
902 /* Does this port need to prescan for FECNs */
903 bool cc_prescan;
904 /*
905 * Sample sendWaitCnt & sendWaitVlCnt during link transition
906 * and counter request.
907 */
908 u64 port_vl_xmit_wait_last[C_VL_COUNT + 1];
909 u16 prev_link_width;
910 u64 vl_xmit_flit_cnt[C_VL_COUNT + 1];
911 };
912
913 typedef void (*opcode_handler)(struct hfi1_packet *packet);
914 typedef void (*hfi1_make_req)(struct rvt_qp *qp,
915 struct hfi1_pkt_state *ps,
916 struct rvt_swqe *wqe);
917 extern const rhf_rcv_function_ptr normal_rhf_rcv_functions[];
918
919
920 /* return values for the RHF receive functions */
921 #define RHF_RCV_CONTINUE 0 /* keep going */
922 #define RHF_RCV_DONE 1 /* stop, this packet processed */
923 #define RHF_RCV_REPROCESS 2 /* stop. retain this packet */
924
925 struct rcv_array_data {
926 u16 ngroups;
927 u16 nctxt_extra;
928 u8 group_size;
929 };
930
931 struct per_vl_data {
932 u16 mtu;
933 struct send_context *sc;
934 };
935
936 /* 16 to directly index */
937 #define PER_VL_SEND_CONTEXTS 16
938
939 struct err_info_rcvport {
940 u8 status_and_code;
941 u64 packet_flit1;
942 u64 packet_flit2;
943 };
944
945 struct err_info_constraint {
946 u8 status;
947 u16 pkey;
948 u32 slid;
949 };
950
951 struct hfi1_temp {
952 unsigned int curr; /* current temperature */
953 unsigned int lo_lim; /* low temperature limit */
954 unsigned int hi_lim; /* high temperature limit */
955 unsigned int crit_lim; /* critical temperature limit */
956 u8 triggers; /* temperature triggers */
957 };
958
959 struct hfi1_i2c_bus {
960 struct hfi1_devdata *controlling_dd; /* current controlling device */
961 struct i2c_adapter adapter; /* bus details */
962 struct i2c_algo_bit_data algo; /* bus algorithm details */
963 int num; /* bus number, 0 or 1 */
964 };
965
966 /* common data between shared ASIC HFIs */
967 struct hfi1_asic_data {
968 struct hfi1_devdata *dds[2]; /* back pointers */
969 struct mutex asic_resource_mutex;
970 struct hfi1_i2c_bus *i2c_bus0;
971 struct hfi1_i2c_bus *i2c_bus1;
972 };
973
974 /* sizes for both the QP and RSM map tables */
975 #define NUM_MAP_ENTRIES 256
976 #define NUM_MAP_REGS 32
977
978 /*
979 * Number of VNIC contexts used. Ensure it is less than or equal to
980 * max queues supported by VNIC (HFI1_VNIC_MAX_QUEUE).
981 */
982 #define HFI1_NUM_VNIC_CTXT 8
983
984 /* Number of VNIC RSM entries */
985 #define NUM_VNIC_MAP_ENTRIES 8
986
987 /* Virtual NIC information */
988 struct hfi1_vnic_data {
989 struct hfi1_ctxtdata *ctxt[HFI1_NUM_VNIC_CTXT];
990 struct kmem_cache *txreq_cache;
991 u8 num_vports;
992 struct idr vesw_idr;
993 u8 rmt_start;
994 u8 num_ctxt;
995 u32 msix_idx;
996 };
997
998 struct hfi1_vnic_vport_info;
999
1000 /* device data struct now contains only "general per-device" info.
1001 * fields related to a physical IB port are in a hfi1_pportdata struct.
1002 */
1003 struct sdma_engine;
1004 struct sdma_vl_map;
1005
1006 #define BOARD_VERS_MAX 96 /* how long the version string can be */
1007 #define SERIAL_MAX 16 /* length of the serial number */
1008
1009 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64);
1010 struct hfi1_devdata {
1011 struct hfi1_ibdev verbs_dev; /* must be first */
1012 struct list_head list;
1013 /* pointers to related structs for this device */
1014 /* pci access data structure */
1015 struct pci_dev *pcidev;
1016 struct cdev user_cdev;
1017 struct cdev diag_cdev;
1018 struct cdev ui_cdev;
1019 struct device *user_device;
1020 struct device *diag_device;
1021 struct device *ui_device;
1022
1023 /* first mapping up to RcvArray */
1024 u8 __iomem *kregbase1;
1025 resource_size_t physaddr;
1026
1027 /* second uncached mapping from RcvArray to pio send buffers */
1028 u8 __iomem *kregbase2;
1029 /* for detecting offset above kregbase2 address */
1030 u32 base2_start;
1031
1032 /* Per VL data. Enough for all VLs but not all elements are set/used. */
1033 struct per_vl_data vld[PER_VL_SEND_CONTEXTS];
1034 /* send context data */
1035 struct send_context_info *send_contexts;
1036 /* map hardware send contexts to software index */
1037 u8 *hw_to_sw;
1038 /* spinlock for allocating and releasing send context resources */
1039 spinlock_t sc_lock;
1040 /* lock for pio_map */
1041 spinlock_t pio_map_lock;
1042 /* Send Context initialization lock. */
1043 spinlock_t sc_init_lock;
1044 /* lock for sdma_map */
1045 spinlock_t sde_map_lock;
1046 /* array of kernel send contexts */
1047 struct send_context **kernel_send_context;
1048 /* array of vl maps */
1049 struct pio_vl_map __rcu *pio_map;
1050 /* default flags to last descriptor */
1051 u64 default_desc1;
1052
1053 /* fields common to all SDMA engines */
1054
1055 volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */
1056 dma_addr_t sdma_heads_phys;
1057 void *sdma_pad_dma; /* DMA'ed by chip */
1058 dma_addr_t sdma_pad_phys;
1059 /* for deallocation */
1060 size_t sdma_heads_size;
1061 /* num used */
1062 u32 num_sdma;
1063 /* array of engines sized by num_sdma */
1064 struct sdma_engine *per_sdma;
1065 /* array of vl maps */
1066 struct sdma_vl_map __rcu *sdma_map;
1067 /* SPC freeze waitqueue and variable */
1068 wait_queue_head_t sdma_unfreeze_wq;
1069 atomic_t sdma_unfreeze_count;
1070
1071 u32 lcb_access_count; /* count of LCB users */
1072
1073 /* common data between shared ASIC HFIs in this OS */
1074 struct hfi1_asic_data *asic_data;
1075
1076 /* mem-mapped pointer to base of PIO buffers */
1077 void __iomem *piobase;
1078 /*
1079 * write-combining mem-mapped pointer to base of RcvArray
1080 * memory.
1081 */
1082 void __iomem *rcvarray_wc;
1083 /*
1084 * credit return base - a per-NUMA range of DMA address that
1085 * the chip will use to update the per-context free counter
1086 */
1087 struct credit_return_base *cr_base;
1088
1089 /* send context numbers and sizes for each type */
1090 struct sc_config_sizes sc_sizes[SC_MAX];
1091
1092 char *boardname; /* human readable board info */
1093
1094 /* reset value */
1095 u64 z_int_counter;
1096 u64 z_rcv_limit;
1097 u64 z_send_schedule;
1098
1099 u64 __percpu *send_schedule;
1100 /* number of reserved contexts for VNIC usage */
1101 u16 num_vnic_contexts;
1102 /* number of receive contexts in use by the driver */
1103 u32 num_rcv_contexts;
1104 /* number of pio send contexts in use by the driver */
1105 u32 num_send_contexts;
1106 /*
1107 * number of ctxts available for PSM open
1108 */
1109 u32 freectxts;
1110 /* total number of available user/PSM contexts */
1111 u32 num_user_contexts;
1112 /* base receive interrupt timeout, in CSR units */
1113 u32 rcv_intr_timeout_csr;
1114
1115 spinlock_t sendctrl_lock; /* protect changes to SendCtrl */
1116 spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */
1117 spinlock_t uctxt_lock; /* protect rcd changes */
1118 struct mutex dc8051_lock; /* exclusive access to 8051 */
1119 struct workqueue_struct *update_cntr_wq;
1120 struct work_struct update_cntr_work;
1121 /* exclusive access to 8051 memory */
1122 spinlock_t dc8051_memlock;
1123 int dc8051_timed_out; /* remember if the 8051 timed out */
1124 /*
1125 * A page that will hold event notification bitmaps for all
1126 * contexts. This page will be mapped into all processes.
1127 */
1128 unsigned long *events;
1129 /*
1130 * per unit status, see also portdata statusp
1131 * mapped read-only into user processes so they can get unit and
1132 * IB link status cheaply
1133 */
1134 struct hfi1_status *status;
1135
1136 /* revision register shadow */
1137 u64 revision;
1138 /* Base GUID for device (network order) */
1139 u64 base_guid;
1140
1141 /* both sides of the PCIe link are gen3 capable */
1142 u8 link_gen3_capable;
1143 u8 dc_shutdown;
1144 /* localbus width (1, 2,4,8,16,32) from config space */
1145 u32 lbus_width;
1146 /* localbus speed in MHz */
1147 u32 lbus_speed;
1148 int unit; /* unit # of this chip */
1149 int node; /* home node of this chip */
1150
1151 /* save these PCI fields to restore after a reset */
1152 u32 pcibar0;
1153 u32 pcibar1;
1154 u32 pci_rom;
1155 u16 pci_command;
1156 u16 pcie_devctl;
1157 u16 pcie_lnkctl;
1158 u16 pcie_devctl2;
1159 u32 pci_msix0;
1160 u32 pci_tph2;
1161
1162 /*
1163 * ASCII serial number, from flash, large enough for original
1164 * all digit strings, and longer serial number format
1165 */
1166 u8 serial[SERIAL_MAX];
1167 /* human readable board version */
1168 u8 boardversion[BOARD_VERS_MAX];
1169 u8 lbus_info[32]; /* human readable localbus info */
1170 /* chip major rev, from CceRevision */
1171 u8 majrev;
1172 /* chip minor rev, from CceRevision */
1173 u8 minrev;
1174 /* hardware ID */
1175 u8 hfi1_id;
1176 /* implementation code */
1177 u8 icode;
1178 /* vAU of this device */
1179 u8 vau;
1180 /* vCU of this device */
1181 u8 vcu;
1182 /* link credits of this device */
1183 u16 link_credits;
1184 /* initial vl15 credits to use */
1185 u16 vl15_init;
1186
1187 /*
1188 * Cached value for vl15buf, read during verify cap interrupt. VL15
1189 * credits are to be kept at 0 and set when handling the link-up
1190 * interrupt. This removes the possibility of receiving VL15 MAD
1191 * packets before this HFI is ready.
1192 */
1193 u16 vl15buf_cached;
1194
1195 /* Misc small ints */
1196 u8 n_krcv_queues;
1197 u8 qos_shift;
1198
1199 u16 irev; /* implementation revision */
1200 u32 dc8051_ver; /* 8051 firmware version */
1201
1202 spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */
1203 struct platform_config platform_config;
1204 struct platform_config_cache pcfg_cache;
1205
1206 struct diag_client *diag_client;
1207
1208 /* MSI-X information */
1209 struct hfi1_msix_entry *msix_entries;
1210 u32 num_msix_entries;
1211 u32 first_dyn_msix_idx;
1212
1213 /* general interrupt: mask of handled interrupts */
1214 u64 gi_mask[CCE_NUM_INT_CSRS];
1215
1216 struct rcv_array_data rcv_entries;
1217
1218 /* cycle length of PS* counters in HW (in picoseconds) */
1219 u16 psxmitwait_check_rate;
1220
1221 /*
1222 * 64 bit synthetic counters
1223 */
1224 struct timer_list synth_stats_timer;
1225
1226 /*
1227 * device counters
1228 */
1229 char *cntrnames;
1230 size_t cntrnameslen;
1231 size_t ndevcntrs;
1232 u64 *cntrs;
1233 u64 *scntrs;
1234
1235 /*
1236 * remembered values for synthetic counters
1237 */
1238 u64 last_tx;
1239 u64 last_rx;
1240
1241 /*
1242 * per-port counters
1243 */
1244 size_t nportcntrs;
1245 char *portcntrnames;
1246 size_t portcntrnameslen;
1247
1248 struct err_info_rcvport err_info_rcvport;
1249 struct err_info_constraint err_info_rcv_constraint;
1250 struct err_info_constraint err_info_xmit_constraint;
1251
1252 atomic_t drop_packet;
1253 u8 do_drop;
1254 u8 err_info_uncorrectable;
1255 u8 err_info_fmconfig;
1256
1257 /*
1258 * Software counters for the status bits defined by the
1259 * associated error status registers
1260 */
1261 u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS];
1262 u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS];
1263 u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS];
1264 u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS];
1265 u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS];
1266 u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS];
1267 u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS];
1268
1269 /* Software counter that spans all contexts */
1270 u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS];
1271 /* Software counter that spans all DMA engines */
1272 u64 sw_send_dma_eng_err_status_cnt[
1273 NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS];
1274 /* Software counter that aggregates all cce_err_status errors */
1275 u64 sw_cce_err_status_aggregate;
1276 /* Software counter that aggregates all bypass packet rcv errors */
1277 u64 sw_rcv_bypass_packet_errors;
1278
1279 /* Save the enabled LCB error bits */
1280 u64 lcb_err_en;
1281 struct cpu_mask_set *comp_vect;
1282 int *comp_vect_mappings;
1283 u32 comp_vect_possible_cpus;
1284
1285 /*
1286 * Capability to have different send engines simply by changing a
1287 * pointer value.
1288 */
1289 send_routine process_pio_send ____cacheline_aligned_in_smp;
1290 send_routine process_dma_send;
1291 void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf,
1292 u64 pbc, const void *from, size_t count);
1293 int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx,
1294 struct hfi1_vnic_vport_info *vinfo,
1295 struct sk_buff *skb, u64 pbc, u8 plen);
1296 /* hfi1_pportdata, points to array of (physical) port-specific
1297 * data structs, indexed by pidx (0..n-1)
1298 */
1299 struct hfi1_pportdata *pport;
1300 /* receive context data */
1301 struct hfi1_ctxtdata **rcd;
1302 u64 __percpu *int_counter;
1303 /* verbs tx opcode stats */
1304 struct hfi1_opcode_stats_perctx __percpu *tx_opstats;
1305 /* device (not port) flags, basically device capabilities */
1306 u16 flags;
1307 /* Number of physical ports available */
1308 u8 num_pports;
1309 /* Lowest context number which can be used by user processes or VNIC */
1310 u8 first_dyn_alloc_ctxt;
1311 /* adding a new field here would make it part of this cacheline */
1312
1313 /* seqlock for sc2vl */
1314 seqlock_t sc2vl_lock ____cacheline_aligned_in_smp;
1315 u64 sc2vl[4];
1316 u64 __percpu *rcv_limit;
1317 /* adding a new field here would make it part of this cacheline */
1318
1319 /* OUI comes from the HW. Used everywhere as 3 separate bytes. */
1320 u8 oui1;
1321 u8 oui2;
1322 u8 oui3;
1323
1324 /* Timer and counter used to detect RcvBufOvflCnt changes */
1325 struct timer_list rcverr_timer;
1326
1327 wait_queue_head_t event_queue;
1328
1329 /* receive context tail dummy address */
1330 __le64 *rcvhdrtail_dummy_kvaddr;
1331 dma_addr_t rcvhdrtail_dummy_dma;
1332
1333 u32 rcv_ovfl_cnt;
1334 /* Serialize ASPM enable/disable between multiple verbs contexts */
1335 spinlock_t aspm_lock;
1336 /* Number of verbs contexts which have disabled ASPM */
1337 atomic_t aspm_disabled_cnt;
1338 /* Keeps track of user space clients */
1339 atomic_t user_refcount;
1340 /* Used to wait for outstanding user space clients before dev removal */
1341 struct completion user_comp;
1342
1343 bool eprom_available; /* true if EPROM is available for this device */
1344 bool aspm_supported; /* Does HW support ASPM */
1345 bool aspm_enabled; /* ASPM state: enabled/disabled */
1346 struct rhashtable *sdma_rht;
1347
1348 struct kobject kobj;
1349
1350 /* vnic data */
1351 struct hfi1_vnic_data vnic;
1352 };
1353
hfi1_vnic_is_rsm_full(struct hfi1_devdata * dd,int spare)1354 static inline bool hfi1_vnic_is_rsm_full(struct hfi1_devdata *dd, int spare)
1355 {
1356 return (dd->vnic.rmt_start + spare) > NUM_MAP_ENTRIES;
1357 }
1358
1359 /* 8051 firmware version helper */
1360 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c))
1361 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16)
1362 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8)
1363 #define dc8051_ver_patch(a) ((a) & 0x0000ff)
1364
1365 /* f_put_tid types */
1366 #define PT_EXPECTED 0
1367 #define PT_EAGER 1
1368 #define PT_INVALID_FLUSH 2
1369 #define PT_INVALID 3
1370
1371 struct tid_rb_node;
1372 struct mmu_rb_node;
1373 struct mmu_rb_handler;
1374
1375 /* Private data for file operations */
1376 struct hfi1_filedata {
1377 struct hfi1_devdata *dd;
1378 struct hfi1_ctxtdata *uctxt;
1379 struct hfi1_user_sdma_comp_q *cq;
1380 struct hfi1_user_sdma_pkt_q *pq;
1381 u16 subctxt;
1382 /* for cpu affinity; -1 if none */
1383 int rec_cpu_num;
1384 u32 tid_n_pinned;
1385 struct mmu_rb_handler *handler;
1386 struct tid_rb_node **entry_to_rb;
1387 spinlock_t tid_lock; /* protect tid_[limit,used] counters */
1388 u32 tid_limit;
1389 u32 tid_used;
1390 u32 *invalid_tids;
1391 u32 invalid_tid_idx;
1392 /* protect invalid_tids array and invalid_tid_idx */
1393 spinlock_t invalid_lock;
1394 struct mm_struct *mm;
1395 };
1396
1397 extern struct list_head hfi1_dev_list;
1398 extern spinlock_t hfi1_devs_lock;
1399 struct hfi1_devdata *hfi1_lookup(int unit);
1400
uctxt_offset(struct hfi1_ctxtdata * uctxt)1401 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt)
1402 {
1403 return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
1404 HFI1_MAX_SHARED_CTXTS;
1405 }
1406
1407 int hfi1_init(struct hfi1_devdata *dd, int reinit);
1408 int hfi1_count_active_units(void);
1409
1410 int hfi1_diag_add(struct hfi1_devdata *dd);
1411 void hfi1_diag_remove(struct hfi1_devdata *dd);
1412 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup);
1413
1414 void handle_user_interrupt(struct hfi1_ctxtdata *rcd);
1415
1416 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1417 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd);
1418 int hfi1_create_kctxts(struct hfi1_devdata *dd);
1419 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
1420 struct hfi1_ctxtdata **rcd);
1421 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd);
1422 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
1423 struct hfi1_devdata *dd, u8 hw_pidx, u8 port);
1424 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1425 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd);
1426 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd);
1427 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
1428 u16 ctxt);
1429 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt);
1430 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread);
1431 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1432 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1433 void set_all_slowpath(struct hfi1_devdata *dd);
1434 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd);
1435 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd);
1436 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd);
1437
1438 extern const struct pci_device_id hfi1_pci_tbl[];
1439 void hfi1_make_ud_req_9B(struct rvt_qp *qp,
1440 struct hfi1_pkt_state *ps,
1441 struct rvt_swqe *wqe);
1442
1443 void hfi1_make_ud_req_16B(struct rvt_qp *qp,
1444 struct hfi1_pkt_state *ps,
1445 struct rvt_swqe *wqe);
1446
1447 /* receive packet handler dispositions */
1448 #define RCV_PKT_OK 0x0 /* keep going */
1449 #define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */
1450 #define RCV_PKT_DONE 0x2 /* stop, no more packets detected */
1451
1452 /* calculate the current RHF address */
get_rhf_addr(struct hfi1_ctxtdata * rcd)1453 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd)
1454 {
1455 return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->rhf_offset;
1456 }
1457
1458 int hfi1_reset_device(int);
1459
1460 void receive_interrupt_work(struct work_struct *work);
1461
1462 /* extract service channel from header and rhf */
hfi1_9B_get_sc5(struct ib_header * hdr,u64 rhf)1463 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf)
1464 {
1465 return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4);
1466 }
1467
1468 #define HFI1_JKEY_WIDTH 16
1469 #define HFI1_JKEY_MASK (BIT(16) - 1)
1470 #define HFI1_ADMIN_JKEY_RANGE 32
1471
1472 /*
1473 * J_KEYs are split and allocated in the following groups:
1474 * 0 - 31 - users with administrator privileges
1475 * 32 - 63 - kernel protocols using KDETH packets
1476 * 64 - 65535 - all other users using KDETH packets
1477 */
generate_jkey(kuid_t uid)1478 static inline u16 generate_jkey(kuid_t uid)
1479 {
1480 u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK;
1481
1482 if (capable(CAP_SYS_ADMIN))
1483 jkey &= HFI1_ADMIN_JKEY_RANGE - 1;
1484 else if (jkey < 64)
1485 jkey |= BIT(HFI1_JKEY_WIDTH - 1);
1486
1487 return jkey;
1488 }
1489
1490 /*
1491 * active_egress_rate
1492 *
1493 * returns the active egress rate in units of [10^6 bits/sec]
1494 */
active_egress_rate(struct hfi1_pportdata * ppd)1495 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd)
1496 {
1497 u16 link_speed = ppd->link_speed_active;
1498 u16 link_width = ppd->link_width_active;
1499 u32 egress_rate;
1500
1501 if (link_speed == OPA_LINK_SPEED_25G)
1502 egress_rate = 25000;
1503 else /* assume OPA_LINK_SPEED_12_5G */
1504 egress_rate = 12500;
1505
1506 switch (link_width) {
1507 case OPA_LINK_WIDTH_4X:
1508 egress_rate *= 4;
1509 break;
1510 case OPA_LINK_WIDTH_3X:
1511 egress_rate *= 3;
1512 break;
1513 case OPA_LINK_WIDTH_2X:
1514 egress_rate *= 2;
1515 break;
1516 default:
1517 /* assume IB_WIDTH_1X */
1518 break;
1519 }
1520
1521 return egress_rate;
1522 }
1523
1524 /*
1525 * egress_cycles
1526 *
1527 * Returns the number of 'fabric clock cycles' to egress a packet
1528 * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock
1529 * rate is (approximately) 805 MHz, the units of the returned value
1530 * are (1/805 MHz).
1531 */
egress_cycles(u32 len,u32 rate)1532 static inline u32 egress_cycles(u32 len, u32 rate)
1533 {
1534 u32 cycles;
1535
1536 /*
1537 * cycles is:
1538 *
1539 * (length) [bits] / (rate) [bits/sec]
1540 * ---------------------------------------------------
1541 * fabric_clock_period == 1 /(805 * 10^6) [cycles/sec]
1542 */
1543
1544 cycles = len * 8; /* bits */
1545 cycles *= 805;
1546 cycles /= rate;
1547
1548 return cycles;
1549 }
1550
1551 void set_link_ipg(struct hfi1_pportdata *ppd);
1552 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn,
1553 u32 rqpn, u8 svc_type);
1554 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
1555 u16 pkey, u32 slid, u32 dlid, u8 sc5,
1556 const struct ib_grh *old_grh);
1557 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1558 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1559 u8 sc5, const struct ib_grh *old_grh);
1560 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1561 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1562 u8 sc5, const struct ib_grh *old_grh);
1563
1564 #define PKEY_CHECK_INVALID -1
1565 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1566 u8 sc5, int8_t s_pkey_index);
1567
1568 #define PACKET_EGRESS_TIMEOUT 350
pause_for_credit_return(struct hfi1_devdata * dd)1569 static inline void pause_for_credit_return(struct hfi1_devdata *dd)
1570 {
1571 /* Pause at least 1us, to ensure chip returns all credits */
1572 u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000;
1573
1574 udelay(usec ? usec : 1);
1575 }
1576
1577 /**
1578 * sc_to_vlt() reverse lookup sc to vl
1579 * @dd - devdata
1580 * @sc5 - 5 bit sc
1581 */
sc_to_vlt(struct hfi1_devdata * dd,u8 sc5)1582 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5)
1583 {
1584 unsigned seq;
1585 u8 rval;
1586
1587 if (sc5 >= OPA_MAX_SCS)
1588 return (u8)(0xff);
1589
1590 do {
1591 seq = read_seqbegin(&dd->sc2vl_lock);
1592 rval = *(((u8 *)dd->sc2vl) + sc5);
1593 } while (read_seqretry(&dd->sc2vl_lock, seq));
1594
1595 return rval;
1596 }
1597
1598 #define PKEY_MEMBER_MASK 0x8000
1599 #define PKEY_LOW_15_MASK 0x7fff
1600
1601 /*
1602 * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1603 * being an entry from the ingress partition key table), return 0
1604 * otherwise. Use the matching criteria for ingress partition keys
1605 * specified in the OPAv1 spec., section 9.10.14.
1606 */
ingress_pkey_matches_entry(u16 pkey,u16 ent)1607 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent)
1608 {
1609 u16 mkey = pkey & PKEY_LOW_15_MASK;
1610 u16 ment = ent & PKEY_LOW_15_MASK;
1611
1612 if (mkey == ment) {
1613 /*
1614 * If pkey[15] is clear (limited partition member),
1615 * is bit 15 in the corresponding table element
1616 * clear (limited member)?
1617 */
1618 if (!(pkey & PKEY_MEMBER_MASK))
1619 return !!(ent & PKEY_MEMBER_MASK);
1620 return 1;
1621 }
1622 return 0;
1623 }
1624
1625 /*
1626 * ingress_pkey_table_search - search the entire pkey table for
1627 * an entry which matches 'pkey'. return 0 if a match is found,
1628 * and 1 otherwise.
1629 */
ingress_pkey_table_search(struct hfi1_pportdata * ppd,u16 pkey)1630 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey)
1631 {
1632 int i;
1633
1634 for (i = 0; i < MAX_PKEY_VALUES; i++) {
1635 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1636 return 0;
1637 }
1638 return 1;
1639 }
1640
1641 /*
1642 * ingress_pkey_table_fail - record a failure of ingress pkey validation,
1643 * i.e., increment port_rcv_constraint_errors for the port, and record
1644 * the 'error info' for this failure.
1645 */
ingress_pkey_table_fail(struct hfi1_pportdata * ppd,u16 pkey,u32 slid)1646 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey,
1647 u32 slid)
1648 {
1649 struct hfi1_devdata *dd = ppd->dd;
1650
1651 incr_cntr64(&ppd->port_rcv_constraint_errors);
1652 if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) {
1653 dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK;
1654 dd->err_info_rcv_constraint.slid = slid;
1655 dd->err_info_rcv_constraint.pkey = pkey;
1656 }
1657 }
1658
1659 /*
1660 * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1
1661 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx
1662 * is a hint as to the best place in the partition key table to begin
1663 * searching. This function should not be called on the data path because
1664 * of performance reasons. On datapath pkey check is expected to be done
1665 * by HW and rcv_pkey_check function should be called instead.
1666 */
ingress_pkey_check(struct hfi1_pportdata * ppd,u16 pkey,u8 sc5,u8 idx,u32 slid,bool force)1667 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1668 u8 sc5, u8 idx, u32 slid, bool force)
1669 {
1670 if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1671 return 0;
1672
1673 /* If SC15, pkey[0:14] must be 0x7fff */
1674 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1675 goto bad;
1676
1677 /* Is the pkey = 0x0, or 0x8000? */
1678 if ((pkey & PKEY_LOW_15_MASK) == 0)
1679 goto bad;
1680
1681 /* The most likely matching pkey has index 'idx' */
1682 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx]))
1683 return 0;
1684
1685 /* no match - try the whole table */
1686 if (!ingress_pkey_table_search(ppd, pkey))
1687 return 0;
1688
1689 bad:
1690 ingress_pkey_table_fail(ppd, pkey, slid);
1691 return 1;
1692 }
1693
1694 /*
1695 * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1
1696 * otherwise. It only ensures pkey is vlid for QP0. This function
1697 * should be called on the data path instead of ingress_pkey_check
1698 * as on data path, pkey check is done by HW (except for QP0).
1699 */
rcv_pkey_check(struct hfi1_pportdata * ppd,u16 pkey,u8 sc5,u16 slid)1700 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1701 u8 sc5, u16 slid)
1702 {
1703 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1704 return 0;
1705
1706 /* If SC15, pkey[0:14] must be 0x7fff */
1707 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1708 goto bad;
1709
1710 return 0;
1711 bad:
1712 ingress_pkey_table_fail(ppd, pkey, slid);
1713 return 1;
1714 }
1715
1716 /* MTU handling */
1717
1718 /* MTU enumeration, 256-4k match IB */
1719 #define OPA_MTU_0 0
1720 #define OPA_MTU_256 1
1721 #define OPA_MTU_512 2
1722 #define OPA_MTU_1024 3
1723 #define OPA_MTU_2048 4
1724 #define OPA_MTU_4096 5
1725
1726 u32 lrh_max_header_bytes(struct hfi1_devdata *dd);
1727 int mtu_to_enum(u32 mtu, int default_if_bad);
1728 u16 enum_to_mtu(int mtu);
valid_ib_mtu(unsigned int mtu)1729 static inline int valid_ib_mtu(unsigned int mtu)
1730 {
1731 return mtu == 256 || mtu == 512 ||
1732 mtu == 1024 || mtu == 2048 ||
1733 mtu == 4096;
1734 }
1735
valid_opa_max_mtu(unsigned int mtu)1736 static inline int valid_opa_max_mtu(unsigned int mtu)
1737 {
1738 return mtu >= 2048 &&
1739 (valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240);
1740 }
1741
1742 int set_mtu(struct hfi1_pportdata *ppd);
1743
1744 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc);
1745 void hfi1_disable_after_error(struct hfi1_devdata *dd);
1746 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit);
1747 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode);
1748
1749 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t);
1750 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t);
1751
1752 void set_up_vau(struct hfi1_devdata *dd, u8 vau);
1753 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf);
1754 void reset_link_credits(struct hfi1_devdata *dd);
1755 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu);
1756
1757 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc);
1758
dd_from_ppd(struct hfi1_pportdata * ppd)1759 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd)
1760 {
1761 return ppd->dd;
1762 }
1763
dd_from_dev(struct hfi1_ibdev * dev)1764 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev)
1765 {
1766 return container_of(dev, struct hfi1_devdata, verbs_dev);
1767 }
1768
dd_from_ibdev(struct ib_device * ibdev)1769 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev)
1770 {
1771 return dd_from_dev(to_idev(ibdev));
1772 }
1773
ppd_from_ibp(struct hfi1_ibport * ibp)1774 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp)
1775 {
1776 return container_of(ibp, struct hfi1_pportdata, ibport_data);
1777 }
1778
dev_from_rdi(struct rvt_dev_info * rdi)1779 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi)
1780 {
1781 return container_of(rdi, struct hfi1_ibdev, rdi);
1782 }
1783
to_iport(struct ib_device * ibdev,u8 port)1784 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port)
1785 {
1786 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1787 unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */
1788
1789 WARN_ON(pidx >= dd->num_pports);
1790 return &dd->pport[pidx].ibport_data;
1791 }
1792
rcd_to_iport(struct hfi1_ctxtdata * rcd)1793 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd)
1794 {
1795 return &rcd->ppd->ibport_data;
1796 }
1797
1798 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
1799 bool do_cnp);
process_ecn(struct rvt_qp * qp,struct hfi1_packet * pkt,bool do_cnp)1800 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt,
1801 bool do_cnp)
1802 {
1803 bool becn;
1804 bool fecn;
1805
1806 if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
1807 fecn = hfi1_16B_get_fecn(pkt->hdr);
1808 becn = hfi1_16B_get_becn(pkt->hdr);
1809 } else {
1810 fecn = ib_bth_get_fecn(pkt->ohdr);
1811 becn = ib_bth_get_becn(pkt->ohdr);
1812 }
1813 if (unlikely(fecn || becn)) {
1814 hfi1_process_ecn_slowpath(qp, pkt, do_cnp);
1815 return fecn;
1816 }
1817 return false;
1818 }
1819
1820 /*
1821 * Return the indexed PKEY from the port PKEY table.
1822 */
hfi1_get_pkey(struct hfi1_ibport * ibp,unsigned index)1823 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index)
1824 {
1825 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1826 u16 ret;
1827
1828 if (index >= ARRAY_SIZE(ppd->pkeys))
1829 ret = 0;
1830 else
1831 ret = ppd->pkeys[index];
1832
1833 return ret;
1834 }
1835
1836 /*
1837 * Return the indexed GUID from the port GUIDs table.
1838 */
get_sguid(struct hfi1_ibport * ibp,unsigned int index)1839 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index)
1840 {
1841 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1842
1843 WARN_ON(index >= HFI1_GUIDS_PER_PORT);
1844 return cpu_to_be64(ppd->guids[index]);
1845 }
1846
1847 /*
1848 * Called by readers of cc_state only, must call under rcu_read_lock().
1849 */
get_cc_state(struct hfi1_pportdata * ppd)1850 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd)
1851 {
1852 return rcu_dereference(ppd->cc_state);
1853 }
1854
1855 /*
1856 * Called by writers of cc_state only, must call under cc_state_lock.
1857 */
1858 static inline
get_cc_state_protected(struct hfi1_pportdata * ppd)1859 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd)
1860 {
1861 return rcu_dereference_protected(ppd->cc_state,
1862 lockdep_is_held(&ppd->cc_state_lock));
1863 }
1864
1865 /*
1866 * values for dd->flags (_device_ related flags)
1867 */
1868 #define HFI1_INITTED 0x1 /* chip and driver up and initted */
1869 #define HFI1_PRESENT 0x2 /* chip accesses can be done */
1870 #define HFI1_FROZEN 0x4 /* chip in SPC freeze */
1871 #define HFI1_HAS_SDMA_TIMEOUT 0x8
1872 #define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */
1873 #define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */
1874 #define HFI1_SHUTDOWN 0x100 /* device is shutting down */
1875
1876 /* IB dword length mask in PBC (lower 11 bits); same for all chips */
1877 #define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1)
1878
1879 /* ctxt_flag bit offsets */
1880 /* base context has not finished initializing */
1881 #define HFI1_CTXT_BASE_UNINIT 1
1882 /* base context initaliation failed */
1883 #define HFI1_CTXT_BASE_FAILED 2
1884 /* waiting for a packet to arrive */
1885 #define HFI1_CTXT_WAITING_RCV 3
1886 /* waiting for an urgent packet to arrive */
1887 #define HFI1_CTXT_WAITING_URG 4
1888
1889 /* free up any allocated data at closes */
1890 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
1891 const struct pci_device_id *ent);
1892 void hfi1_free_devdata(struct hfi1_devdata *dd);
1893 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra);
1894
1895 /* LED beaconing functions */
1896 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1897 unsigned int timeoff);
1898 void shutdown_led_override(struct hfi1_pportdata *ppd);
1899
1900 #define HFI1_CREDIT_RETURN_RATE (100)
1901
1902 /*
1903 * The number of words for the KDETH protocol field. If this is
1904 * larger then the actual field used, then part of the payload
1905 * will be in the header.
1906 *
1907 * Optimally, we want this sized so that a typical case will
1908 * use full cache lines. The typical local KDETH header would
1909 * be:
1910 *
1911 * Bytes Field
1912 * 8 LRH
1913 * 12 BHT
1914 * ?? KDETH
1915 * 8 RHF
1916 * ---
1917 * 28 + KDETH
1918 *
1919 * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS
1920 */
1921 #define DEFAULT_RCVHDRSIZE 9
1922
1923 /*
1924 * Maximal header byte count:
1925 *
1926 * Bytes Field
1927 * 8 LRH
1928 * 40 GRH (optional)
1929 * 12 BTH
1930 * ?? KDETH
1931 * 8 RHF
1932 * ---
1933 * 68 + KDETH
1934 *
1935 * We also want to maintain a cache line alignment to assist DMA'ing
1936 * of the header bytes. Round up to a good size.
1937 */
1938 #define DEFAULT_RCVHDR_ENTSIZE 32
1939
1940 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm,
1941 u32 nlocked, u32 npages);
1942 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr,
1943 size_t npages, bool writable, struct page **pages);
1944 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
1945 size_t npages, bool dirty);
1946
clear_rcvhdrtail(const struct hfi1_ctxtdata * rcd)1947 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
1948 {
1949 *((u64 *)rcd->rcvhdrtail_kvaddr) = 0ULL;
1950 }
1951
get_rcvhdrtail(const struct hfi1_ctxtdata * rcd)1952 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
1953 {
1954 /*
1955 * volatile because it's a DMA target from the chip, routine is
1956 * inlined, and don't want register caching or reordering.
1957 */
1958 return (u32)le64_to_cpu(*rcd->rcvhdrtail_kvaddr);
1959 }
1960
1961 /*
1962 * sysfs interface.
1963 */
1964
1965 extern const char ib_hfi1_version[];
1966
1967 int hfi1_device_create(struct hfi1_devdata *dd);
1968 void hfi1_device_remove(struct hfi1_devdata *dd);
1969
1970 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num,
1971 struct kobject *kobj);
1972 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd);
1973 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd);
1974 /* Hook for sysfs read of QSFP */
1975 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len);
1976
1977 int hfi1_pcie_init(struct pci_dev *pdev, const struct pci_device_id *ent);
1978 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd);
1979 void hfi1_pcie_cleanup(struct pci_dev *pdev);
1980 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev);
1981 void hfi1_pcie_ddcleanup(struct hfi1_devdata *);
1982 int pcie_speeds(struct hfi1_devdata *dd);
1983 int request_msix(struct hfi1_devdata *dd, u32 msireq);
1984 int restore_pci_variables(struct hfi1_devdata *dd);
1985 int save_pci_variables(struct hfi1_devdata *dd);
1986 int do_pcie_gen3_transition(struct hfi1_devdata *dd);
1987 int parse_platform_config(struct hfi1_devdata *dd);
1988 int get_platform_config_field(struct hfi1_devdata *dd,
1989 enum platform_config_table_type_encoding
1990 table_type, int table_index, int field_index,
1991 u32 *data, u32 len);
1992
1993 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi);
1994
1995 /*
1996 * Flush write combining store buffers (if present) and perform a write
1997 * barrier.
1998 */
flush_wc(void)1999 static inline void flush_wc(void)
2000 {
2001 asm volatile("sfence" : : : "memory");
2002 }
2003
2004 void handle_eflags(struct hfi1_packet *packet);
2005 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd);
2006
2007 /* global module parameter variables */
2008 extern unsigned int hfi1_max_mtu;
2009 extern unsigned int hfi1_cu;
2010 extern unsigned int user_credit_return_threshold;
2011 extern int num_user_contexts;
2012 extern unsigned long n_krcvqs;
2013 extern uint krcvqs[];
2014 extern int krcvqsset;
2015 extern uint kdeth_qp;
2016 extern uint loopback;
2017 extern uint quick_linkup;
2018 extern uint rcv_intr_timeout;
2019 extern uint rcv_intr_count;
2020 extern uint rcv_intr_dynamic;
2021 extern ushort link_crc_mask;
2022
2023 extern struct mutex hfi1_mutex;
2024
2025 /* Number of seconds before our card status check... */
2026 #define STATUS_TIMEOUT 60
2027
2028 #define DRIVER_NAME "hfi1"
2029 #define HFI1_USER_MINOR_BASE 0
2030 #define HFI1_TRACE_MINOR 127
2031 #define HFI1_NMINORS 255
2032
2033 #define PCI_VENDOR_ID_INTEL 0x8086
2034 #define PCI_DEVICE_ID_INTEL0 0x24f0
2035 #define PCI_DEVICE_ID_INTEL1 0x24f1
2036
2037 #define HFI1_PKT_USER_SC_INTEGRITY \
2038 (SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \
2039 | SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \
2040 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \
2041 | SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK)
2042
2043 #define HFI1_PKT_KERNEL_SC_INTEGRITY \
2044 (SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK)
2045
hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata * dd,u16 ctxt_type)2046 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd,
2047 u16 ctxt_type)
2048 {
2049 u64 base_sc_integrity;
2050
2051 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2052 if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2053 return 0;
2054
2055 base_sc_integrity =
2056 SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2057 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
2058 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2059 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2060 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2061 #ifndef CONFIG_FAULT_INJECTION
2062 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK
2063 #endif
2064 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2065 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2066 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2067 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK
2068 | SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2069 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2070 | SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK
2071 | SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK
2072 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK
2073 | SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2074
2075 if (ctxt_type == SC_USER)
2076 base_sc_integrity |=
2077 #ifndef CONFIG_FAULT_INJECTION
2078 SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK |
2079 #endif
2080 HFI1_PKT_USER_SC_INTEGRITY;
2081 else
2082 base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY;
2083
2084 /* turn on send-side job key checks if !A0 */
2085 if (!is_ax(dd))
2086 base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2087
2088 return base_sc_integrity;
2089 }
2090
hfi1_pkt_base_sdma_integrity(struct hfi1_devdata * dd)2091 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd)
2092 {
2093 u64 base_sdma_integrity;
2094
2095 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2096 if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2097 return 0;
2098
2099 base_sdma_integrity =
2100 SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2101 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2102 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2103 | SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2104 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2105 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2106 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2107 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK
2108 | SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2109 | SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2110 | SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK
2111 | SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK
2112 | SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK
2113 | SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2114
2115 if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
2116 base_sdma_integrity |=
2117 SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK;
2118
2119 /* turn on send-side job key checks if !A0 */
2120 if (!is_ax(dd))
2121 base_sdma_integrity |=
2122 SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2123
2124 return base_sdma_integrity;
2125 }
2126
2127 /*
2128 * hfi1_early_err is used (only!) to print early errors before devdata is
2129 * allocated, or when dd->pcidev may not be valid, and at the tail end of
2130 * cleanup when devdata may have been freed, etc. hfi1_dev_porterr is
2131 * the same as dd_dev_err, but is used when the message really needs
2132 * the IB port# to be definitive as to what's happening..
2133 */
2134 #define hfi1_early_err(dev, fmt, ...) \
2135 dev_err(dev, fmt, ##__VA_ARGS__)
2136
2137 #define hfi1_early_info(dev, fmt, ...) \
2138 dev_info(dev, fmt, ##__VA_ARGS__)
2139
2140 #define dd_dev_emerg(dd, fmt, ...) \
2141 dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \
2142 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2143
2144 #define dd_dev_err(dd, fmt, ...) \
2145 dev_err(&(dd)->pcidev->dev, "%s: " fmt, \
2146 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2147
2148 #define dd_dev_err_ratelimited(dd, fmt, ...) \
2149 dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2150 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2151 ##__VA_ARGS__)
2152
2153 #define dd_dev_warn(dd, fmt, ...) \
2154 dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \
2155 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2156
2157 #define dd_dev_warn_ratelimited(dd, fmt, ...) \
2158 dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2159 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2160 ##__VA_ARGS__)
2161
2162 #define dd_dev_info(dd, fmt, ...) \
2163 dev_info(&(dd)->pcidev->dev, "%s: " fmt, \
2164 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2165
2166 #define dd_dev_info_ratelimited(dd, fmt, ...) \
2167 dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2168 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2169 ##__VA_ARGS__)
2170
2171 #define dd_dev_dbg(dd, fmt, ...) \
2172 dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \
2173 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2174
2175 #define hfi1_dev_porterr(dd, port, fmt, ...) \
2176 dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \
2177 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__)
2178
2179 /*
2180 * this is used for formatting hw error messages...
2181 */
2182 struct hfi1_hwerror_msgs {
2183 u64 mask;
2184 const char *msg;
2185 size_t sz;
2186 };
2187
2188 /* in intr.c... */
2189 void hfi1_format_hwerrors(u64 hwerrs,
2190 const struct hfi1_hwerror_msgs *hwerrmsgs,
2191 size_t nhwerrmsgs, char *msg, size_t lmsg);
2192
2193 #define USER_OPCODE_CHECK_VAL 0xC0
2194 #define USER_OPCODE_CHECK_MASK 0xC0
2195 #define OPCODE_CHECK_VAL_DISABLED 0x0
2196 #define OPCODE_CHECK_MASK_DISABLED 0x0
2197
hfi1_reset_cpu_counters(struct hfi1_devdata * dd)2198 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd)
2199 {
2200 struct hfi1_pportdata *ppd;
2201 int i;
2202
2203 dd->z_int_counter = get_all_cpu_total(dd->int_counter);
2204 dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit);
2205 dd->z_send_schedule = get_all_cpu_total(dd->send_schedule);
2206
2207 ppd = (struct hfi1_pportdata *)(dd + 1);
2208 for (i = 0; i < dd->num_pports; i++, ppd++) {
2209 ppd->ibport_data.rvp.z_rc_acks =
2210 get_all_cpu_total(ppd->ibport_data.rvp.rc_acks);
2211 ppd->ibport_data.rvp.z_rc_qacks =
2212 get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks);
2213 }
2214 }
2215
2216 /* Control LED state */
setextled(struct hfi1_devdata * dd,u32 on)2217 static inline void setextled(struct hfi1_devdata *dd, u32 on)
2218 {
2219 if (on)
2220 write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F);
2221 else
2222 write_csr(dd, DCC_CFG_LED_CNTRL, 0x10);
2223 }
2224
2225 /* return the i2c resource given the target */
i2c_target(u32 target)2226 static inline u32 i2c_target(u32 target)
2227 {
2228 return target ? CR_I2C2 : CR_I2C1;
2229 }
2230
2231 /* return the i2c chain chip resource that this HFI uses for QSFP */
qsfp_resource(struct hfi1_devdata * dd)2232 static inline u32 qsfp_resource(struct hfi1_devdata *dd)
2233 {
2234 return i2c_target(dd->hfi1_id);
2235 }
2236
2237 /* Is this device integrated or discrete? */
is_integrated(struct hfi1_devdata * dd)2238 static inline bool is_integrated(struct hfi1_devdata *dd)
2239 {
2240 return dd->pcidev->device == PCI_DEVICE_ID_INTEL1;
2241 }
2242
2243 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp);
2244
2245 #define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev))
2246 #define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev))
2247
hfi1_update_ah_attr(struct ib_device * ibdev,struct rdma_ah_attr * attr)2248 static inline void hfi1_update_ah_attr(struct ib_device *ibdev,
2249 struct rdma_ah_attr *attr)
2250 {
2251 struct hfi1_pportdata *ppd;
2252 struct hfi1_ibport *ibp;
2253 u32 dlid = rdma_ah_get_dlid(attr);
2254
2255 /*
2256 * Kernel clients may not have setup GRH information
2257 * Set that here.
2258 */
2259 ibp = to_iport(ibdev, rdma_ah_get_port_num(attr));
2260 ppd = ppd_from_ibp(ibp);
2261 if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ||
2262 (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) &&
2263 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) &&
2264 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2265 (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) ||
2266 (rdma_ah_get_make_grd(attr))) {
2267 rdma_ah_set_ah_flags(attr, IB_AH_GRH);
2268 rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid));
2269 rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix);
2270 }
2271 }
2272
2273 /*
2274 * hfi1_check_mcast- Check if the given lid is
2275 * in the OPA multicast range.
2276 *
2277 * The LID might either reside in ah.dlid or might be
2278 * in the GRH of the address handle as DGID if extended
2279 * addresses are in use.
2280 */
hfi1_check_mcast(u32 lid)2281 static inline bool hfi1_check_mcast(u32 lid)
2282 {
2283 return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) &&
2284 (lid != be32_to_cpu(OPA_LID_PERMISSIVE)));
2285 }
2286
2287 #define opa_get_lid(lid, format) \
2288 __opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format)
2289
2290 /* Convert a lid to a specific lid space */
__opa_get_lid(u32 lid,u8 format)2291 static inline u32 __opa_get_lid(u32 lid, u8 format)
2292 {
2293 bool is_mcast = hfi1_check_mcast(lid);
2294
2295 switch (format) {
2296 case OPA_PORT_PACKET_FORMAT_8B:
2297 case OPA_PORT_PACKET_FORMAT_10B:
2298 if (is_mcast)
2299 return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2300 0xF0000);
2301 return lid & 0xFFFFF;
2302 case OPA_PORT_PACKET_FORMAT_16B:
2303 if (is_mcast)
2304 return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2305 0xF00000);
2306 return lid & 0xFFFFFF;
2307 case OPA_PORT_PACKET_FORMAT_9B:
2308 if (is_mcast)
2309 return (lid -
2310 opa_get_mcast_base(OPA_MCAST_NR) +
2311 be16_to_cpu(IB_MULTICAST_LID_BASE));
2312 else
2313 return lid & 0xFFFF;
2314 default:
2315 return lid;
2316 }
2317 }
2318
2319 /* Return true if the given lid is the OPA 16B multicast range */
hfi1_is_16B_mcast(u32 lid)2320 static inline bool hfi1_is_16B_mcast(u32 lid)
2321 {
2322 return ((lid >=
2323 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) &&
2324 (lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)));
2325 }
2326
hfi1_make_opa_lid(struct rdma_ah_attr * attr)2327 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr)
2328 {
2329 const struct ib_global_route *grh = rdma_ah_read_grh(attr);
2330 u32 dlid = rdma_ah_get_dlid(attr);
2331
2332 /* Modify ah_attr.dlid to be in the 32 bit LID space.
2333 * This is how the address will be laid out:
2334 * Assuming MCAST_NR to be 4,
2335 * 32 bit permissive LID = 0xFFFFFFFF
2336 * Multicast LID range = 0xFFFFFFFE to 0xF0000000
2337 * Unicast LID range = 0xEFFFFFFF to 1
2338 * Invalid LID = 0
2339 */
2340 if (ib_is_opa_gid(&grh->dgid))
2341 dlid = opa_get_lid_from_gid(&grh->dgid);
2342 else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
2343 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2344 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)))
2345 dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) +
2346 opa_get_mcast_base(OPA_MCAST_NR);
2347 else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE))
2348 dlid = be32_to_cpu(OPA_LID_PERMISSIVE);
2349
2350 rdma_ah_set_dlid(attr, dlid);
2351 }
2352
hfi1_get_packet_type(u32 lid)2353 static inline u8 hfi1_get_packet_type(u32 lid)
2354 {
2355 /* 9B if lid > 0xF0000000 */
2356 if (lid >= opa_get_mcast_base(OPA_MCAST_NR))
2357 return HFI1_PKT_TYPE_9B;
2358
2359 /* 16B if lid > 0xC000 */
2360 if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B))
2361 return HFI1_PKT_TYPE_16B;
2362
2363 return HFI1_PKT_TYPE_9B;
2364 }
2365
hfi1_get_hdr_type(u32 lid,struct rdma_ah_attr * attr)2366 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr)
2367 {
2368 /*
2369 * If there was an incoming 16B packet with permissive
2370 * LIDs, OPA GIDs would have been programmed when those
2371 * packets were received. A 16B packet will have to
2372 * be sent in response to that packet. Return a 16B
2373 * header type if that's the case.
2374 */
2375 if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE))
2376 return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ?
2377 HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B;
2378
2379 /*
2380 * Return a 16B header type if either the the destination
2381 * or source lid is extended.
2382 */
2383 if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B)
2384 return HFI1_PKT_TYPE_16B;
2385
2386 return hfi1_get_packet_type(lid);
2387 }
2388
hfi1_make_ext_grh(struct hfi1_packet * packet,struct ib_grh * grh,u32 slid,u32 dlid)2389 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet,
2390 struct ib_grh *grh, u32 slid,
2391 u32 dlid)
2392 {
2393 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2394 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2395
2396 if (!ibp)
2397 return;
2398
2399 grh->hop_limit = 1;
2400 grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2401 if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))
2402 grh->sgid.global.interface_id =
2403 OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE));
2404 else
2405 grh->sgid.global.interface_id = OPA_MAKE_ID(slid);
2406
2407 /*
2408 * Upper layers (like mad) may compare the dgid in the
2409 * wc that is obtained here with the sgid_index in
2410 * the wr. Since sgid_index in wr is always 0 for
2411 * extended lids, set the dgid here to the default
2412 * IB gid.
2413 */
2414 grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2415 grh->dgid.global.interface_id =
2416 cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]);
2417 }
2418
hfi1_get_16b_padding(u32 hdr_size,u32 payload)2419 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload)
2420 {
2421 return -(hdr_size + payload + (SIZE_OF_CRC << 2) +
2422 SIZE_OF_LT) & 0x7;
2423 }
2424
hfi1_make_ib_hdr(struct ib_header * hdr,u16 lrh0,u16 len,u16 dlid,u16 slid)2425 static inline void hfi1_make_ib_hdr(struct ib_header *hdr,
2426 u16 lrh0, u16 len,
2427 u16 dlid, u16 slid)
2428 {
2429 hdr->lrh[0] = cpu_to_be16(lrh0);
2430 hdr->lrh[1] = cpu_to_be16(dlid);
2431 hdr->lrh[2] = cpu_to_be16(len);
2432 hdr->lrh[3] = cpu_to_be16(slid);
2433 }
2434
hfi1_make_16b_hdr(struct hfi1_16b_header * hdr,u32 slid,u32 dlid,u16 len,u16 pkey,bool becn,bool fecn,u8 l4,u8 sc)2435 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr,
2436 u32 slid, u32 dlid,
2437 u16 len, u16 pkey,
2438 bool becn, bool fecn, u8 l4,
2439 u8 sc)
2440 {
2441 u32 lrh0 = 0;
2442 u32 lrh1 = 0x40000000;
2443 u32 lrh2 = 0;
2444 u32 lrh3 = 0;
2445
2446 lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT);
2447 lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT);
2448 lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK);
2449 lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT);
2450 lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT);
2451 lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK);
2452 lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) |
2453 ((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT);
2454 lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) |
2455 ((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT);
2456 lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT);
2457 lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4;
2458
2459 hdr->lrh[0] = lrh0;
2460 hdr->lrh[1] = lrh1;
2461 hdr->lrh[2] = lrh2;
2462 hdr->lrh[3] = lrh3;
2463 }
2464 #endif /* _HFI1_KERNEL_H */
2465