1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _LINUX_MEMBLOCK_H
3 #define _LINUX_MEMBLOCK_H
4 #ifdef __KERNEL__
5 
6 /*
7  * Logical memory blocks.
8  *
9  * Copyright (C) 2001 Peter Bergner, IBM Corp.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <asm/dma.h>
15 
16 extern unsigned long max_low_pfn;
17 extern unsigned long min_low_pfn;
18 
19 /*
20  * highest page
21  */
22 extern unsigned long max_pfn;
23 /*
24  * highest possible page
25  */
26 extern unsigned long long max_possible_pfn;
27 
28 /**
29  * enum memblock_flags - definition of memory region attributes
30  * @MEMBLOCK_NONE: no special request
31  * @MEMBLOCK_HOTPLUG: hotpluggable region
32  * @MEMBLOCK_MIRROR: mirrored region
33  * @MEMBLOCK_NOMAP: don't add to kernel direct mapping
34  */
35 enum memblock_flags {
36 	MEMBLOCK_NONE		= 0x0,	/* No special request */
37 	MEMBLOCK_HOTPLUG	= 0x1,	/* hotpluggable region */
38 	MEMBLOCK_MIRROR		= 0x2,	/* mirrored region */
39 	MEMBLOCK_NOMAP		= 0x4,	/* don't add to kernel direct mapping */
40 };
41 
42 /**
43  * struct memblock_region - represents a memory region
44  * @base: physical address of the region
45  * @size: size of the region
46  * @flags: memory region attributes
47  * @nid: NUMA node id
48  */
49 struct memblock_region {
50 	phys_addr_t base;
51 	phys_addr_t size;
52 	enum memblock_flags flags;
53 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
54 	int nid;
55 #endif
56 };
57 
58 /**
59  * struct memblock_type - collection of memory regions of certain type
60  * @cnt: number of regions
61  * @max: size of the allocated array
62  * @total_size: size of all regions
63  * @regions: array of regions
64  * @name: the memory type symbolic name
65  */
66 struct memblock_type {
67 	unsigned long cnt;
68 	unsigned long max;
69 	phys_addr_t total_size;
70 	struct memblock_region *regions;
71 	char *name;
72 };
73 
74 /**
75  * struct memblock - memblock allocator metadata
76  * @bottom_up: is bottom up direction?
77  * @current_limit: physical address of the current allocation limit
78  * @memory: usabe memory regions
79  * @reserved: reserved memory regions
80  * @physmem: all physical memory
81  */
82 struct memblock {
83 	bool bottom_up;  /* is bottom up direction? */
84 	phys_addr_t current_limit;
85 	struct memblock_type memory;
86 	struct memblock_type reserved;
87 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
88 	struct memblock_type physmem;
89 #endif
90 };
91 
92 extern struct memblock memblock;
93 extern int memblock_debug;
94 
95 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
96 #define __init_memblock __meminit
97 #define __initdata_memblock __meminitdata
98 void memblock_discard(void);
99 #else
100 #define __init_memblock
101 #define __initdata_memblock
memblock_discard(void)102 static inline void memblock_discard(void) {}
103 #endif
104 
105 #define memblock_dbg(fmt, ...) \
106 	if (memblock_debug) printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__)
107 
108 phys_addr_t memblock_find_in_range(phys_addr_t start, phys_addr_t end,
109 				   phys_addr_t size, phys_addr_t align);
110 void memblock_allow_resize(void);
111 int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid);
112 int memblock_add(phys_addr_t base, phys_addr_t size);
113 int memblock_remove(phys_addr_t base, phys_addr_t size);
114 int memblock_free(phys_addr_t base, phys_addr_t size);
115 int memblock_reserve(phys_addr_t base, phys_addr_t size);
116 void memblock_trim_memory(phys_addr_t align);
117 bool memblock_overlaps_region(struct memblock_type *type,
118 			      phys_addr_t base, phys_addr_t size);
119 int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size);
120 int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size);
121 int memblock_mark_mirror(phys_addr_t base, phys_addr_t size);
122 int memblock_mark_nomap(phys_addr_t base, phys_addr_t size);
123 int memblock_clear_nomap(phys_addr_t base, phys_addr_t size);
124 
125 unsigned long memblock_free_all(void);
126 void reset_node_managed_pages(pg_data_t *pgdat);
127 void reset_all_zones_managed_pages(void);
128 
129 /* Low level functions */
130 int memblock_add_range(struct memblock_type *type,
131 		       phys_addr_t base, phys_addr_t size,
132 		       int nid, enum memblock_flags flags);
133 
134 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
135 		      struct memblock_type *type_a,
136 		      struct memblock_type *type_b, phys_addr_t *out_start,
137 		      phys_addr_t *out_end, int *out_nid);
138 
139 void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags,
140 			  struct memblock_type *type_a,
141 			  struct memblock_type *type_b, phys_addr_t *out_start,
142 			  phys_addr_t *out_end, int *out_nid);
143 
144 void __next_reserved_mem_region(u64 *idx, phys_addr_t *out_start,
145 				phys_addr_t *out_end);
146 
147 void __memblock_free_late(phys_addr_t base, phys_addr_t size);
148 
149 /**
150  * for_each_mem_range - iterate through memblock areas from type_a and not
151  * included in type_b. Or just type_a if type_b is NULL.
152  * @i: u64 used as loop variable
153  * @type_a: ptr to memblock_type to iterate
154  * @type_b: ptr to memblock_type which excludes from the iteration
155  * @nid: node selector, %NUMA_NO_NODE for all nodes
156  * @flags: pick from blocks based on memory attributes
157  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
158  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
159  * @p_nid: ptr to int for nid of the range, can be %NULL
160  */
161 #define for_each_mem_range(i, type_a, type_b, nid, flags,		\
162 			   p_start, p_end, p_nid)			\
163 	for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b,	\
164 				     p_start, p_end, p_nid);		\
165 	     i != (u64)ULLONG_MAX;					\
166 	     __next_mem_range(&i, nid, flags, type_a, type_b,		\
167 			      p_start, p_end, p_nid))
168 
169 /**
170  * for_each_mem_range_rev - reverse iterate through memblock areas from
171  * type_a and not included in type_b. Or just type_a if type_b is NULL.
172  * @i: u64 used as loop variable
173  * @type_a: ptr to memblock_type to iterate
174  * @type_b: ptr to memblock_type which excludes from the iteration
175  * @nid: node selector, %NUMA_NO_NODE for all nodes
176  * @flags: pick from blocks based on memory attributes
177  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
178  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
179  * @p_nid: ptr to int for nid of the range, can be %NULL
180  */
181 #define for_each_mem_range_rev(i, type_a, type_b, nid, flags,		\
182 			       p_start, p_end, p_nid)			\
183 	for (i = (u64)ULLONG_MAX,					\
184 		     __next_mem_range_rev(&i, nid, flags, type_a, type_b,\
185 					  p_start, p_end, p_nid);	\
186 	     i != (u64)ULLONG_MAX;					\
187 	     __next_mem_range_rev(&i, nid, flags, type_a, type_b,	\
188 				  p_start, p_end, p_nid))
189 
190 /**
191  * for_each_reserved_mem_region - iterate over all reserved memblock areas
192  * @i: u64 used as loop variable
193  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
194  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
195  *
196  * Walks over reserved areas of memblock. Available as soon as memblock
197  * is initialized.
198  */
199 #define for_each_reserved_mem_region(i, p_start, p_end)			\
200 	for (i = 0UL, __next_reserved_mem_region(&i, p_start, p_end);	\
201 	     i != (u64)ULLONG_MAX;					\
202 	     __next_reserved_mem_region(&i, p_start, p_end))
203 
memblock_is_hotpluggable(struct memblock_region * m)204 static inline bool memblock_is_hotpluggable(struct memblock_region *m)
205 {
206 	return m->flags & MEMBLOCK_HOTPLUG;
207 }
208 
memblock_is_mirror(struct memblock_region * m)209 static inline bool memblock_is_mirror(struct memblock_region *m)
210 {
211 	return m->flags & MEMBLOCK_MIRROR;
212 }
213 
memblock_is_nomap(struct memblock_region * m)214 static inline bool memblock_is_nomap(struct memblock_region *m)
215 {
216 	return m->flags & MEMBLOCK_NOMAP;
217 }
218 
219 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
220 int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn,
221 			    unsigned long  *end_pfn);
222 void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
223 			  unsigned long *out_end_pfn, int *out_nid);
224 
225 /**
226  * for_each_mem_pfn_range - early memory pfn range iterator
227  * @i: an integer used as loop variable
228  * @nid: node selector, %MAX_NUMNODES for all nodes
229  * @p_start: ptr to ulong for start pfn of the range, can be %NULL
230  * @p_end: ptr to ulong for end pfn of the range, can be %NULL
231  * @p_nid: ptr to int for nid of the range, can be %NULL
232  *
233  * Walks over configured memory ranges.
234  */
235 #define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid)		\
236 	for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
237 	     i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
238 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
239 
240 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
241 void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
242 				  unsigned long *out_spfn,
243 				  unsigned long *out_epfn);
244 /**
245  * for_each_free_mem_range_in_zone - iterate through zone specific free
246  * memblock areas
247  * @i: u64 used as loop variable
248  * @zone: zone in which all of the memory blocks reside
249  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
250  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
251  *
252  * Walks over free (memory && !reserved) areas of memblock in a specific
253  * zone. Available once memblock and an empty zone is initialized. The main
254  * assumption is that the zone start, end, and pgdat have been associated.
255  * This way we can use the zone to determine NUMA node, and if a given part
256  * of the memblock is valid for the zone.
257  */
258 #define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end)	\
259 	for (i = 0,							\
260 	     __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end);	\
261 	     i != U64_MAX;					\
262 	     __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
263 
264 /**
265  * for_each_free_mem_range_in_zone_from - iterate through zone specific
266  * free memblock areas from a given point
267  * @i: u64 used as loop variable
268  * @zone: zone in which all of the memory blocks reside
269  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
270  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
271  *
272  * Walks over free (memory && !reserved) areas of memblock in a specific
273  * zone, continuing from current position. Available as soon as memblock is
274  * initialized.
275  */
276 #define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \
277 	for (; i != U64_MAX;					  \
278 	     __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
279 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
280 
281 /**
282  * for_each_free_mem_range - iterate through free memblock areas
283  * @i: u64 used as loop variable
284  * @nid: node selector, %NUMA_NO_NODE for all nodes
285  * @flags: pick from blocks based on memory attributes
286  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
287  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
288  * @p_nid: ptr to int for nid of the range, can be %NULL
289  *
290  * Walks over free (memory && !reserved) areas of memblock.  Available as
291  * soon as memblock is initialized.
292  */
293 #define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid)	\
294 	for_each_mem_range(i, &memblock.memory, &memblock.reserved,	\
295 			   nid, flags, p_start, p_end, p_nid)
296 
297 /**
298  * for_each_free_mem_range_reverse - rev-iterate through free memblock areas
299  * @i: u64 used as loop variable
300  * @nid: node selector, %NUMA_NO_NODE for all nodes
301  * @flags: pick from blocks based on memory attributes
302  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
303  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
304  * @p_nid: ptr to int for nid of the range, can be %NULL
305  *
306  * Walks over free (memory && !reserved) areas of memblock in reverse
307  * order.  Available as soon as memblock is initialized.
308  */
309 #define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end,	\
310 					p_nid)				\
311 	for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved,	\
312 			       nid, flags, p_start, p_end, p_nid)
313 
314 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
315 int memblock_set_node(phys_addr_t base, phys_addr_t size,
316 		      struct memblock_type *type, int nid);
317 
memblock_set_region_node(struct memblock_region * r,int nid)318 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
319 {
320 	r->nid = nid;
321 }
322 
memblock_get_region_node(const struct memblock_region * r)323 static inline int memblock_get_region_node(const struct memblock_region *r)
324 {
325 	return r->nid;
326 }
327 #else
memblock_set_region_node(struct memblock_region * r,int nid)328 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
329 {
330 }
331 
memblock_get_region_node(const struct memblock_region * r)332 static inline int memblock_get_region_node(const struct memblock_region *r)
333 {
334 	return 0;
335 }
336 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
337 
338 /* Flags for memblock allocation APIs */
339 #define MEMBLOCK_ALLOC_ANYWHERE	(~(phys_addr_t)0)
340 #define MEMBLOCK_ALLOC_ACCESSIBLE	0
341 #define MEMBLOCK_ALLOC_KASAN		1
342 
343 /* We are using top down, so it is safe to use 0 here */
344 #define MEMBLOCK_LOW_LIMIT 0
345 
346 #ifndef ARCH_LOW_ADDRESS_LIMIT
347 #define ARCH_LOW_ADDRESS_LIMIT  0xffffffffUL
348 #endif
349 
350 phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align,
351 				      phys_addr_t start, phys_addr_t end);
352 phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
353 
memblock_phys_alloc(phys_addr_t size,phys_addr_t align)354 static inline phys_addr_t memblock_phys_alloc(phys_addr_t size,
355 					      phys_addr_t align)
356 {
357 	return memblock_phys_alloc_range(size, align, 0,
358 					 MEMBLOCK_ALLOC_ACCESSIBLE);
359 }
360 
361 void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
362 				 phys_addr_t min_addr, phys_addr_t max_addr,
363 				 int nid);
364 void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align,
365 			     phys_addr_t min_addr, phys_addr_t max_addr,
366 			     int nid);
367 
memblock_alloc(phys_addr_t size,phys_addr_t align)368 static inline void * __init memblock_alloc(phys_addr_t size,  phys_addr_t align)
369 {
370 	return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
371 				      MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
372 }
373 
memblock_alloc_raw(phys_addr_t size,phys_addr_t align)374 static inline void * __init memblock_alloc_raw(phys_addr_t size,
375 					       phys_addr_t align)
376 {
377 	return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT,
378 					  MEMBLOCK_ALLOC_ACCESSIBLE,
379 					  NUMA_NO_NODE);
380 }
381 
memblock_alloc_from(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr)382 static inline void * __init memblock_alloc_from(phys_addr_t size,
383 						phys_addr_t align,
384 						phys_addr_t min_addr)
385 {
386 	return memblock_alloc_try_nid(size, align, min_addr,
387 				      MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
388 }
389 
memblock_alloc_low(phys_addr_t size,phys_addr_t align)390 static inline void * __init memblock_alloc_low(phys_addr_t size,
391 					       phys_addr_t align)
392 {
393 	return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
394 				      ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE);
395 }
396 
memblock_alloc_node(phys_addr_t size,phys_addr_t align,int nid)397 static inline void * __init memblock_alloc_node(phys_addr_t size,
398 						phys_addr_t align, int nid)
399 {
400 	return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
401 				      MEMBLOCK_ALLOC_ACCESSIBLE, nid);
402 }
403 
memblock_free_early(phys_addr_t base,phys_addr_t size)404 static inline void __init memblock_free_early(phys_addr_t base,
405 					      phys_addr_t size)
406 {
407 	memblock_free(base, size);
408 }
409 
memblock_free_early_nid(phys_addr_t base,phys_addr_t size,int nid)410 static inline void __init memblock_free_early_nid(phys_addr_t base,
411 						  phys_addr_t size, int nid)
412 {
413 	memblock_free(base, size);
414 }
415 
memblock_free_late(phys_addr_t base,phys_addr_t size)416 static inline void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
417 {
418 	__memblock_free_late(base, size);
419 }
420 
421 /*
422  * Set the allocation direction to bottom-up or top-down.
423  */
memblock_set_bottom_up(bool enable)424 static inline void __init memblock_set_bottom_up(bool enable)
425 {
426 	memblock.bottom_up = enable;
427 }
428 
429 /*
430  * Check if the allocation direction is bottom-up or not.
431  * if this is true, that said, memblock will allocate memory
432  * in bottom-up direction.
433  */
memblock_bottom_up(void)434 static inline bool memblock_bottom_up(void)
435 {
436 	return memblock.bottom_up;
437 }
438 
439 phys_addr_t memblock_phys_mem_size(void);
440 phys_addr_t memblock_reserved_size(void);
441 phys_addr_t memblock_mem_size(unsigned long limit_pfn);
442 phys_addr_t memblock_start_of_DRAM(void);
443 phys_addr_t memblock_end_of_DRAM(void);
444 void memblock_enforce_memory_limit(phys_addr_t memory_limit);
445 void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size);
446 void memblock_mem_limit_remove_map(phys_addr_t limit);
447 bool memblock_is_memory(phys_addr_t addr);
448 bool memblock_is_map_memory(phys_addr_t addr);
449 bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size);
450 bool memblock_is_reserved(phys_addr_t addr);
451 bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size);
452 
453 extern void __memblock_dump_all(void);
454 
memblock_dump_all(void)455 static inline void memblock_dump_all(void)
456 {
457 	if (memblock_debug)
458 		__memblock_dump_all();
459 }
460 
461 /**
462  * memblock_set_current_limit - Set the current allocation limit to allow
463  *                         limiting allocations to what is currently
464  *                         accessible during boot
465  * @limit: New limit value (physical address)
466  */
467 void memblock_set_current_limit(phys_addr_t limit);
468 
469 
470 phys_addr_t memblock_get_current_limit(void);
471 
472 /*
473  * pfn conversion functions
474  *
475  * While the memory MEMBLOCKs should always be page aligned, the reserved
476  * MEMBLOCKs may not be. This accessor attempt to provide a very clear
477  * idea of what they return for such non aligned MEMBLOCKs.
478  */
479 
480 /**
481  * memblock_region_memory_base_pfn - get the lowest pfn of the memory region
482  * @reg: memblock_region structure
483  *
484  * Return: the lowest pfn intersecting with the memory region
485  */
memblock_region_memory_base_pfn(const struct memblock_region * reg)486 static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg)
487 {
488 	return PFN_UP(reg->base);
489 }
490 
491 /**
492  * memblock_region_memory_end_pfn - get the end pfn of the memory region
493  * @reg: memblock_region structure
494  *
495  * Return: the end_pfn of the reserved region
496  */
memblock_region_memory_end_pfn(const struct memblock_region * reg)497 static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg)
498 {
499 	return PFN_DOWN(reg->base + reg->size);
500 }
501 
502 /**
503  * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region
504  * @reg: memblock_region structure
505  *
506  * Return: the lowest pfn intersecting with the reserved region
507  */
memblock_region_reserved_base_pfn(const struct memblock_region * reg)508 static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg)
509 {
510 	return PFN_DOWN(reg->base);
511 }
512 
513 /**
514  * memblock_region_reserved_end_pfn - get the end pfn of the reserved region
515  * @reg: memblock_region structure
516  *
517  * Return: the end_pfn of the reserved region
518  */
memblock_region_reserved_end_pfn(const struct memblock_region * reg)519 static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg)
520 {
521 	return PFN_UP(reg->base + reg->size);
522 }
523 
524 #define for_each_memblock(memblock_type, region)					\
525 	for (region = memblock.memblock_type.regions;					\
526 	     region < (memblock.memblock_type.regions + memblock.memblock_type.cnt);	\
527 	     region++)
528 
529 #define for_each_memblock_type(i, memblock_type, rgn)			\
530 	for (i = 0, rgn = &memblock_type->regions[0];			\
531 	     i < memblock_type->cnt;					\
532 	     i++, rgn = &memblock_type->regions[i])
533 
534 extern void *alloc_large_system_hash(const char *tablename,
535 				     unsigned long bucketsize,
536 				     unsigned long numentries,
537 				     int scale,
538 				     int flags,
539 				     unsigned int *_hash_shift,
540 				     unsigned int *_hash_mask,
541 				     unsigned long low_limit,
542 				     unsigned long high_limit);
543 
544 #define HASH_EARLY	0x00000001	/* Allocating during early boot? */
545 #define HASH_SMALL	0x00000002	/* sub-page allocation allowed, min
546 					 * shift passed via *_hash_shift */
547 #define HASH_ZERO	0x00000004	/* Zero allocated hash table */
548 
549 /* Only NUMA needs hash distribution. 64bit NUMA architectures have
550  * sufficient vmalloc space.
551  */
552 #ifdef CONFIG_NUMA
553 #define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT)
554 extern int hashdist;		/* Distribute hashes across NUMA nodes? */
555 #else
556 #define hashdist (0)
557 #endif
558 
559 #ifdef CONFIG_MEMTEST
560 extern void early_memtest(phys_addr_t start, phys_addr_t end);
561 #else
early_memtest(phys_addr_t start,phys_addr_t end)562 static inline void early_memtest(phys_addr_t start, phys_addr_t end)
563 {
564 }
565 #endif
566 
567 #endif /* __KERNEL__ */
568 
569 #endif /* _LINUX_MEMBLOCK_H */
570