1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Hash: Hash algorithms under the crypto API
4 *
5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8 #ifndef _CRYPTO_HASH_H
9 #define _CRYPTO_HASH_H
10
11 #include <linux/crypto.h>
12 #include <linux/string.h>
13
14 struct crypto_ahash;
15
16 /**
17 * DOC: Message Digest Algorithm Definitions
18 *
19 * These data structures define modular message digest algorithm
20 * implementations, managed via crypto_register_ahash(),
21 * crypto_register_shash(), crypto_unregister_ahash() and
22 * crypto_unregister_shash().
23 */
24
25 /**
26 * struct hash_alg_common - define properties of message digest
27 * @digestsize: Size of the result of the transformation. A buffer of this size
28 * must be available to the @final and @finup calls, so they can
29 * store the resulting hash into it. For various predefined sizes,
30 * search include/crypto/ using
31 * git grep _DIGEST_SIZE include/crypto.
32 * @statesize: Size of the block for partial state of the transformation. A
33 * buffer of this size must be passed to the @export function as it
34 * will save the partial state of the transformation into it. On the
35 * other side, the @import function will load the state from a
36 * buffer of this size as well.
37 * @base: Start of data structure of cipher algorithm. The common data
38 * structure of crypto_alg contains information common to all ciphers.
39 * The hash_alg_common data structure now adds the hash-specific
40 * information.
41 */
42 struct hash_alg_common {
43 unsigned int digestsize;
44 unsigned int statesize;
45
46 struct crypto_alg base;
47 };
48
49 struct ahash_request {
50 struct crypto_async_request base;
51
52 unsigned int nbytes;
53 struct scatterlist *src;
54 u8 *result;
55
56 /* This field may only be used by the ahash API code. */
57 void *priv;
58
59 void *__ctx[] CRYPTO_MINALIGN_ATTR;
60 };
61
62 /**
63 * struct ahash_alg - asynchronous message digest definition
64 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
65 * state of the HASH transformation at the beginning. This shall fill in
66 * the internal structures used during the entire duration of the whole
67 * transformation. No data processing happens at this point. Driver code
68 * implementation must not use req->result.
69 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
70 * function actually pushes blocks of data from upper layers into the
71 * driver, which then passes those to the hardware as seen fit. This
72 * function must not finalize the HASH transformation by calculating the
73 * final message digest as this only adds more data into the
74 * transformation. This function shall not modify the transformation
75 * context, as this function may be called in parallel with the same
76 * transformation object. Data processing can happen synchronously
77 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use
78 * req->result.
79 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
80 * transformation and retrieves the resulting hash from the driver and
81 * pushes it back to upper layers. No data processing happens at this
82 * point unless hardware requires it to finish the transformation
83 * (then the data buffered by the device driver is processed).
84 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
85 * combination of @update and @final calls issued in sequence. As some
86 * hardware cannot do @update and @final separately, this callback was
87 * added to allow such hardware to be used at least by IPsec. Data
88 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
89 * at this point.
90 * @digest: Combination of @init and @update and @final. This function
91 * effectively behaves as the entire chain of operations, @init,
92 * @update and @final issued in sequence. Just like @finup, this was
93 * added for hardware which cannot do even the @finup, but can only do
94 * the whole transformation in one run. Data processing can happen
95 * synchronously [SHASH] or asynchronously [AHASH] at this point.
96 * @setkey: Set optional key used by the hashing algorithm. Intended to push
97 * optional key used by the hashing algorithm from upper layers into
98 * the driver. This function can store the key in the transformation
99 * context or can outright program it into the hardware. In the former
100 * case, one must be careful to program the key into the hardware at
101 * appropriate time and one must be careful that .setkey() can be
102 * called multiple times during the existence of the transformation
103 * object. Not all hashing algorithms do implement this function as it
104 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
105 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
106 * this function. This function must be called before any other of the
107 * @init, @update, @final, @finup, @digest is called. No data
108 * processing happens at this point.
109 * @export: Export partial state of the transformation. This function dumps the
110 * entire state of the ongoing transformation into a provided block of
111 * data so it can be @import 'ed back later on. This is useful in case
112 * you want to save partial result of the transformation after
113 * processing certain amount of data and reload this partial result
114 * multiple times later on for multiple re-use. No data processing
115 * happens at this point. Driver must not use req->result.
116 * @import: Import partial state of the transformation. This function loads the
117 * entire state of the ongoing transformation from a provided block of
118 * data so the transformation can continue from this point onward. No
119 * data processing happens at this point. Driver must not use
120 * req->result.
121 * @init_tfm: Initialize the cryptographic transformation object.
122 * This function is called only once at the instantiation
123 * time, right after the transformation context was
124 * allocated. In case the cryptographic hardware has
125 * some special requirements which need to be handled
126 * by software, this function shall check for the precise
127 * requirement of the transformation and put any software
128 * fallbacks in place.
129 * @exit_tfm: Deinitialize the cryptographic transformation object.
130 * This is a counterpart to @init_tfm, used to remove
131 * various changes set in @init_tfm.
132 * @halg: see struct hash_alg_common
133 */
134 struct ahash_alg {
135 int (*init)(struct ahash_request *req);
136 int (*update)(struct ahash_request *req);
137 int (*final)(struct ahash_request *req);
138 int (*finup)(struct ahash_request *req);
139 int (*digest)(struct ahash_request *req);
140 int (*export)(struct ahash_request *req, void *out);
141 int (*import)(struct ahash_request *req, const void *in);
142 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
143 unsigned int keylen);
144 int (*init_tfm)(struct crypto_ahash *tfm);
145 void (*exit_tfm)(struct crypto_ahash *tfm);
146
147 struct hash_alg_common halg;
148 };
149
150 struct shash_desc {
151 struct crypto_shash *tfm;
152 void *__ctx[] CRYPTO_MINALIGN_ATTR;
153 };
154
155 #define HASH_MAX_DIGESTSIZE 64
156
157 /*
158 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc'
159 * containing a 'struct sha3_state'.
160 */
161 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360)
162
163 #define HASH_MAX_STATESIZE 512
164
165 #define SHASH_DESC_ON_STACK(shash, ctx) \
166 char __##shash##_desc[sizeof(struct shash_desc) + \
167 HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
168 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
169
170 /**
171 * struct shash_alg - synchronous message digest definition
172 * @init: see struct ahash_alg
173 * @update: see struct ahash_alg
174 * @final: see struct ahash_alg
175 * @finup: see struct ahash_alg
176 * @digest: see struct ahash_alg
177 * @export: see struct ahash_alg
178 * @import: see struct ahash_alg
179 * @setkey: see struct ahash_alg
180 * @init_tfm: Initialize the cryptographic transformation object.
181 * This function is called only once at the instantiation
182 * time, right after the transformation context was
183 * allocated. In case the cryptographic hardware has
184 * some special requirements which need to be handled
185 * by software, this function shall check for the precise
186 * requirement of the transformation and put any software
187 * fallbacks in place.
188 * @exit_tfm: Deinitialize the cryptographic transformation object.
189 * This is a counterpart to @init_tfm, used to remove
190 * various changes set in @init_tfm.
191 * @digestsize: see struct ahash_alg
192 * @statesize: see struct ahash_alg
193 * @descsize: Size of the operational state for the message digest. This state
194 * size is the memory size that needs to be allocated for
195 * shash_desc.__ctx
196 * @base: internally used
197 */
198 struct shash_alg {
199 int (*init)(struct shash_desc *desc);
200 int (*update)(struct shash_desc *desc, const u8 *data,
201 unsigned int len);
202 int (*final)(struct shash_desc *desc, u8 *out);
203 int (*finup)(struct shash_desc *desc, const u8 *data,
204 unsigned int len, u8 *out);
205 int (*digest)(struct shash_desc *desc, const u8 *data,
206 unsigned int len, u8 *out);
207 int (*export)(struct shash_desc *desc, void *out);
208 int (*import)(struct shash_desc *desc, const void *in);
209 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
210 unsigned int keylen);
211 int (*init_tfm)(struct crypto_shash *tfm);
212 void (*exit_tfm)(struct crypto_shash *tfm);
213
214 unsigned int descsize;
215
216 /* These fields must match hash_alg_common. */
217 unsigned int digestsize
218 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
219 unsigned int statesize;
220
221 struct crypto_alg base;
222 };
223
224 struct crypto_ahash {
225 int (*init)(struct ahash_request *req);
226 int (*update)(struct ahash_request *req);
227 int (*final)(struct ahash_request *req);
228 int (*finup)(struct ahash_request *req);
229 int (*digest)(struct ahash_request *req);
230 int (*export)(struct ahash_request *req, void *out);
231 int (*import)(struct ahash_request *req, const void *in);
232 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
233 unsigned int keylen);
234
235 unsigned int reqsize;
236 struct crypto_tfm base;
237 };
238
239 struct crypto_shash {
240 unsigned int descsize;
241 struct crypto_tfm base;
242 };
243
244 /**
245 * DOC: Asynchronous Message Digest API
246 *
247 * The asynchronous message digest API is used with the ciphers of type
248 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
249 *
250 * The asynchronous cipher operation discussion provided for the
251 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
252 */
253
__crypto_ahash_cast(struct crypto_tfm * tfm)254 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
255 {
256 return container_of(tfm, struct crypto_ahash, base);
257 }
258
259 /**
260 * crypto_alloc_ahash() - allocate ahash cipher handle
261 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
262 * ahash cipher
263 * @type: specifies the type of the cipher
264 * @mask: specifies the mask for the cipher
265 *
266 * Allocate a cipher handle for an ahash. The returned struct
267 * crypto_ahash is the cipher handle that is required for any subsequent
268 * API invocation for that ahash.
269 *
270 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
271 * of an error, PTR_ERR() returns the error code.
272 */
273 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
274 u32 mask);
275
crypto_ahash_tfm(struct crypto_ahash * tfm)276 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
277 {
278 return &tfm->base;
279 }
280
281 /**
282 * crypto_free_ahash() - zeroize and free the ahash handle
283 * @tfm: cipher handle to be freed
284 */
crypto_free_ahash(struct crypto_ahash * tfm)285 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
286 {
287 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
288 }
289
290 /**
291 * crypto_has_ahash() - Search for the availability of an ahash.
292 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
293 * ahash
294 * @type: specifies the type of the ahash
295 * @mask: specifies the mask for the ahash
296 *
297 * Return: true when the ahash is known to the kernel crypto API; false
298 * otherwise
299 */
300 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
301
crypto_ahash_alg_name(struct crypto_ahash * tfm)302 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
303 {
304 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
305 }
306
crypto_ahash_driver_name(struct crypto_ahash * tfm)307 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
308 {
309 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
310 }
311
crypto_ahash_alignmask(struct crypto_ahash * tfm)312 static inline unsigned int crypto_ahash_alignmask(
313 struct crypto_ahash *tfm)
314 {
315 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
316 }
317
318 /**
319 * crypto_ahash_blocksize() - obtain block size for cipher
320 * @tfm: cipher handle
321 *
322 * The block size for the message digest cipher referenced with the cipher
323 * handle is returned.
324 *
325 * Return: block size of cipher
326 */
crypto_ahash_blocksize(struct crypto_ahash * tfm)327 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
328 {
329 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
330 }
331
__crypto_hash_alg_common(struct crypto_alg * alg)332 static inline struct hash_alg_common *__crypto_hash_alg_common(
333 struct crypto_alg *alg)
334 {
335 return container_of(alg, struct hash_alg_common, base);
336 }
337
crypto_hash_alg_common(struct crypto_ahash * tfm)338 static inline struct hash_alg_common *crypto_hash_alg_common(
339 struct crypto_ahash *tfm)
340 {
341 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
342 }
343
344 /**
345 * crypto_ahash_digestsize() - obtain message digest size
346 * @tfm: cipher handle
347 *
348 * The size for the message digest created by the message digest cipher
349 * referenced with the cipher handle is returned.
350 *
351 *
352 * Return: message digest size of cipher
353 */
crypto_ahash_digestsize(struct crypto_ahash * tfm)354 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
355 {
356 return crypto_hash_alg_common(tfm)->digestsize;
357 }
358
359 /**
360 * crypto_ahash_statesize() - obtain size of the ahash state
361 * @tfm: cipher handle
362 *
363 * Return the size of the ahash state. With the crypto_ahash_export()
364 * function, the caller can export the state into a buffer whose size is
365 * defined with this function.
366 *
367 * Return: size of the ahash state
368 */
crypto_ahash_statesize(struct crypto_ahash * tfm)369 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
370 {
371 return crypto_hash_alg_common(tfm)->statesize;
372 }
373
crypto_ahash_get_flags(struct crypto_ahash * tfm)374 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
375 {
376 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
377 }
378
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)379 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
380 {
381 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
382 }
383
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)384 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
385 {
386 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
387 }
388
389 /**
390 * crypto_ahash_reqtfm() - obtain cipher handle from request
391 * @req: asynchronous request handle that contains the reference to the ahash
392 * cipher handle
393 *
394 * Return the ahash cipher handle that is registered with the asynchronous
395 * request handle ahash_request.
396 *
397 * Return: ahash cipher handle
398 */
crypto_ahash_reqtfm(struct ahash_request * req)399 static inline struct crypto_ahash *crypto_ahash_reqtfm(
400 struct ahash_request *req)
401 {
402 return __crypto_ahash_cast(req->base.tfm);
403 }
404
405 /**
406 * crypto_ahash_reqsize() - obtain size of the request data structure
407 * @tfm: cipher handle
408 *
409 * Return: size of the request data
410 */
crypto_ahash_reqsize(struct crypto_ahash * tfm)411 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
412 {
413 return tfm->reqsize;
414 }
415
ahash_request_ctx(struct ahash_request * req)416 static inline void *ahash_request_ctx(struct ahash_request *req)
417 {
418 return req->__ctx;
419 }
420
421 /**
422 * crypto_ahash_setkey - set key for cipher handle
423 * @tfm: cipher handle
424 * @key: buffer holding the key
425 * @keylen: length of the key in bytes
426 *
427 * The caller provided key is set for the ahash cipher. The cipher
428 * handle must point to a keyed hash in order for this function to succeed.
429 *
430 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
431 */
432 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
433 unsigned int keylen);
434
435 /**
436 * crypto_ahash_finup() - update and finalize message digest
437 * @req: reference to the ahash_request handle that holds all information
438 * needed to perform the cipher operation
439 *
440 * This function is a "short-hand" for the function calls of
441 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
442 * meaning as discussed for those separate functions.
443 *
444 * Return: see crypto_ahash_final()
445 */
446 int crypto_ahash_finup(struct ahash_request *req);
447
448 /**
449 * crypto_ahash_final() - calculate message digest
450 * @req: reference to the ahash_request handle that holds all information
451 * needed to perform the cipher operation
452 *
453 * Finalize the message digest operation and create the message digest
454 * based on all data added to the cipher handle. The message digest is placed
455 * into the output buffer registered with the ahash_request handle.
456 *
457 * Return:
458 * 0 if the message digest was successfully calculated;
459 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
460 * -EBUSY if queue is full and request should be resubmitted later;
461 * other < 0 if an error occurred
462 */
463 int crypto_ahash_final(struct ahash_request *req);
464
465 /**
466 * crypto_ahash_digest() - calculate message digest for a buffer
467 * @req: reference to the ahash_request handle that holds all information
468 * needed to perform the cipher operation
469 *
470 * This function is a "short-hand" for the function calls of crypto_ahash_init,
471 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
472 * meaning as discussed for those separate three functions.
473 *
474 * Return: see crypto_ahash_final()
475 */
476 int crypto_ahash_digest(struct ahash_request *req);
477
478 /**
479 * crypto_ahash_export() - extract current message digest state
480 * @req: reference to the ahash_request handle whose state is exported
481 * @out: output buffer of sufficient size that can hold the hash state
482 *
483 * This function exports the hash state of the ahash_request handle into the
484 * caller-allocated output buffer out which must have sufficient size (e.g. by
485 * calling crypto_ahash_statesize()).
486 *
487 * Return: 0 if the export was successful; < 0 if an error occurred
488 */
crypto_ahash_export(struct ahash_request * req,void * out)489 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
490 {
491 return crypto_ahash_reqtfm(req)->export(req, out);
492 }
493
494 /**
495 * crypto_ahash_import() - import message digest state
496 * @req: reference to ahash_request handle the state is imported into
497 * @in: buffer holding the state
498 *
499 * This function imports the hash state into the ahash_request handle from the
500 * input buffer. That buffer should have been generated with the
501 * crypto_ahash_export function.
502 *
503 * Return: 0 if the import was successful; < 0 if an error occurred
504 */
crypto_ahash_import(struct ahash_request * req,const void * in)505 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
506 {
507 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
508
509 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
510 return -ENOKEY;
511
512 return tfm->import(req, in);
513 }
514
515 /**
516 * crypto_ahash_init() - (re)initialize message digest handle
517 * @req: ahash_request handle that already is initialized with all necessary
518 * data using the ahash_request_* API functions
519 *
520 * The call (re-)initializes the message digest referenced by the ahash_request
521 * handle. Any potentially existing state created by previous operations is
522 * discarded.
523 *
524 * Return: see crypto_ahash_final()
525 */
crypto_ahash_init(struct ahash_request * req)526 static inline int crypto_ahash_init(struct ahash_request *req)
527 {
528 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
529
530 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
531 return -ENOKEY;
532
533 return tfm->init(req);
534 }
535
536 /**
537 * crypto_ahash_update() - add data to message digest for processing
538 * @req: ahash_request handle that was previously initialized with the
539 * crypto_ahash_init call.
540 *
541 * Updates the message digest state of the &ahash_request handle. The input data
542 * is pointed to by the scatter/gather list registered in the &ahash_request
543 * handle
544 *
545 * Return: see crypto_ahash_final()
546 */
crypto_ahash_update(struct ahash_request * req)547 static inline int crypto_ahash_update(struct ahash_request *req)
548 {
549 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
550 struct crypto_alg *alg = tfm->base.__crt_alg;
551 unsigned int nbytes = req->nbytes;
552 int ret;
553
554 crypto_stats_get(alg);
555 ret = crypto_ahash_reqtfm(req)->update(req);
556 crypto_stats_ahash_update(nbytes, ret, alg);
557 return ret;
558 }
559
560 /**
561 * DOC: Asynchronous Hash Request Handle
562 *
563 * The &ahash_request data structure contains all pointers to data
564 * required for the asynchronous cipher operation. This includes the cipher
565 * handle (which can be used by multiple &ahash_request instances), pointer
566 * to plaintext and the message digest output buffer, asynchronous callback
567 * function, etc. It acts as a handle to the ahash_request_* API calls in a
568 * similar way as ahash handle to the crypto_ahash_* API calls.
569 */
570
571 /**
572 * ahash_request_set_tfm() - update cipher handle reference in request
573 * @req: request handle to be modified
574 * @tfm: cipher handle that shall be added to the request handle
575 *
576 * Allow the caller to replace the existing ahash handle in the request
577 * data structure with a different one.
578 */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)579 static inline void ahash_request_set_tfm(struct ahash_request *req,
580 struct crypto_ahash *tfm)
581 {
582 req->base.tfm = crypto_ahash_tfm(tfm);
583 }
584
585 /**
586 * ahash_request_alloc() - allocate request data structure
587 * @tfm: cipher handle to be registered with the request
588 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
589 *
590 * Allocate the request data structure that must be used with the ahash
591 * message digest API calls. During
592 * the allocation, the provided ahash handle
593 * is registered in the request data structure.
594 *
595 * Return: allocated request handle in case of success, or NULL if out of memory
596 */
ahash_request_alloc(struct crypto_ahash * tfm,gfp_t gfp)597 static inline struct ahash_request *ahash_request_alloc(
598 struct crypto_ahash *tfm, gfp_t gfp)
599 {
600 struct ahash_request *req;
601
602 req = kmalloc(sizeof(struct ahash_request) +
603 crypto_ahash_reqsize(tfm), gfp);
604
605 if (likely(req))
606 ahash_request_set_tfm(req, tfm);
607
608 return req;
609 }
610
611 /**
612 * ahash_request_free() - zeroize and free the request data structure
613 * @req: request data structure cipher handle to be freed
614 */
ahash_request_free(struct ahash_request * req)615 static inline void ahash_request_free(struct ahash_request *req)
616 {
617 kfree_sensitive(req);
618 }
619
ahash_request_zero(struct ahash_request * req)620 static inline void ahash_request_zero(struct ahash_request *req)
621 {
622 memzero_explicit(req, sizeof(*req) +
623 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
624 }
625
ahash_request_cast(struct crypto_async_request * req)626 static inline struct ahash_request *ahash_request_cast(
627 struct crypto_async_request *req)
628 {
629 return container_of(req, struct ahash_request, base);
630 }
631
632 /**
633 * ahash_request_set_callback() - set asynchronous callback function
634 * @req: request handle
635 * @flags: specify zero or an ORing of the flags
636 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
637 * increase the wait queue beyond the initial maximum size;
638 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
639 * @compl: callback function pointer to be registered with the request handle
640 * @data: The data pointer refers to memory that is not used by the kernel
641 * crypto API, but provided to the callback function for it to use. Here,
642 * the caller can provide a reference to memory the callback function can
643 * operate on. As the callback function is invoked asynchronously to the
644 * related functionality, it may need to access data structures of the
645 * related functionality which can be referenced using this pointer. The
646 * callback function can access the memory via the "data" field in the
647 * &crypto_async_request data structure provided to the callback function.
648 *
649 * This function allows setting the callback function that is triggered once
650 * the cipher operation completes.
651 *
652 * The callback function is registered with the &ahash_request handle and
653 * must comply with the following template::
654 *
655 * void callback_function(struct crypto_async_request *req, int error)
656 */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)657 static inline void ahash_request_set_callback(struct ahash_request *req,
658 u32 flags,
659 crypto_completion_t compl,
660 void *data)
661 {
662 req->base.complete = compl;
663 req->base.data = data;
664 req->base.flags = flags;
665 }
666
667 /**
668 * ahash_request_set_crypt() - set data buffers
669 * @req: ahash_request handle to be updated
670 * @src: source scatter/gather list
671 * @result: buffer that is filled with the message digest -- the caller must
672 * ensure that the buffer has sufficient space by, for example, calling
673 * crypto_ahash_digestsize()
674 * @nbytes: number of bytes to process from the source scatter/gather list
675 *
676 * By using this call, the caller references the source scatter/gather list.
677 * The source scatter/gather list points to the data the message digest is to
678 * be calculated for.
679 */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)680 static inline void ahash_request_set_crypt(struct ahash_request *req,
681 struct scatterlist *src, u8 *result,
682 unsigned int nbytes)
683 {
684 req->src = src;
685 req->nbytes = nbytes;
686 req->result = result;
687 }
688
689 /**
690 * DOC: Synchronous Message Digest API
691 *
692 * The synchronous message digest API is used with the ciphers of type
693 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
694 *
695 * The message digest API is able to maintain state information for the
696 * caller.
697 *
698 * The synchronous message digest API can store user-related context in its
699 * shash_desc request data structure.
700 */
701
702 /**
703 * crypto_alloc_shash() - allocate message digest handle
704 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
705 * message digest cipher
706 * @type: specifies the type of the cipher
707 * @mask: specifies the mask for the cipher
708 *
709 * Allocate a cipher handle for a message digest. The returned &struct
710 * crypto_shash is the cipher handle that is required for any subsequent
711 * API invocation for that message digest.
712 *
713 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
714 * of an error, PTR_ERR() returns the error code.
715 */
716 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
717 u32 mask);
718
crypto_shash_tfm(struct crypto_shash * tfm)719 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
720 {
721 return &tfm->base;
722 }
723
724 /**
725 * crypto_free_shash() - zeroize and free the message digest handle
726 * @tfm: cipher handle to be freed
727 */
crypto_free_shash(struct crypto_shash * tfm)728 static inline void crypto_free_shash(struct crypto_shash *tfm)
729 {
730 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
731 }
732
crypto_shash_alg_name(struct crypto_shash * tfm)733 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
734 {
735 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
736 }
737
crypto_shash_driver_name(struct crypto_shash * tfm)738 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
739 {
740 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
741 }
742
crypto_shash_alignmask(struct crypto_shash * tfm)743 static inline unsigned int crypto_shash_alignmask(
744 struct crypto_shash *tfm)
745 {
746 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
747 }
748
749 /**
750 * crypto_shash_blocksize() - obtain block size for cipher
751 * @tfm: cipher handle
752 *
753 * The block size for the message digest cipher referenced with the cipher
754 * handle is returned.
755 *
756 * Return: block size of cipher
757 */
crypto_shash_blocksize(struct crypto_shash * tfm)758 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
759 {
760 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
761 }
762
__crypto_shash_alg(struct crypto_alg * alg)763 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
764 {
765 return container_of(alg, struct shash_alg, base);
766 }
767
crypto_shash_alg(struct crypto_shash * tfm)768 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
769 {
770 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
771 }
772
773 /**
774 * crypto_shash_digestsize() - obtain message digest size
775 * @tfm: cipher handle
776 *
777 * The size for the message digest created by the message digest cipher
778 * referenced with the cipher handle is returned.
779 *
780 * Return: digest size of cipher
781 */
crypto_shash_digestsize(struct crypto_shash * tfm)782 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
783 {
784 return crypto_shash_alg(tfm)->digestsize;
785 }
786
crypto_shash_statesize(struct crypto_shash * tfm)787 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
788 {
789 return crypto_shash_alg(tfm)->statesize;
790 }
791
crypto_shash_get_flags(struct crypto_shash * tfm)792 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
793 {
794 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
795 }
796
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)797 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
798 {
799 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
800 }
801
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)802 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
803 {
804 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
805 }
806
807 /**
808 * crypto_shash_descsize() - obtain the operational state size
809 * @tfm: cipher handle
810 *
811 * The size of the operational state the cipher needs during operation is
812 * returned for the hash referenced with the cipher handle. This size is
813 * required to calculate the memory requirements to allow the caller allocating
814 * sufficient memory for operational state.
815 *
816 * The operational state is defined with struct shash_desc where the size of
817 * that data structure is to be calculated as
818 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
819 *
820 * Return: size of the operational state
821 */
crypto_shash_descsize(struct crypto_shash * tfm)822 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
823 {
824 return tfm->descsize;
825 }
826
shash_desc_ctx(struct shash_desc * desc)827 static inline void *shash_desc_ctx(struct shash_desc *desc)
828 {
829 return desc->__ctx;
830 }
831
832 /**
833 * crypto_shash_setkey() - set key for message digest
834 * @tfm: cipher handle
835 * @key: buffer holding the key
836 * @keylen: length of the key in bytes
837 *
838 * The caller provided key is set for the keyed message digest cipher. The
839 * cipher handle must point to a keyed message digest cipher in order for this
840 * function to succeed.
841 *
842 * Context: Any context.
843 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
844 */
845 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
846 unsigned int keylen);
847
848 /**
849 * crypto_shash_digest() - calculate message digest for buffer
850 * @desc: see crypto_shash_final()
851 * @data: see crypto_shash_update()
852 * @len: see crypto_shash_update()
853 * @out: see crypto_shash_final()
854 *
855 * This function is a "short-hand" for the function calls of crypto_shash_init,
856 * crypto_shash_update and crypto_shash_final. The parameters have the same
857 * meaning as discussed for those separate three functions.
858 *
859 * Context: Any context.
860 * Return: 0 if the message digest creation was successful; < 0 if an error
861 * occurred
862 */
863 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
864 unsigned int len, u8 *out);
865
866 /**
867 * crypto_shash_tfm_digest() - calculate message digest for buffer
868 * @tfm: hash transformation object
869 * @data: see crypto_shash_update()
870 * @len: see crypto_shash_update()
871 * @out: see crypto_shash_final()
872 *
873 * This is a simplified version of crypto_shash_digest() for users who don't
874 * want to allocate their own hash descriptor (shash_desc). Instead,
875 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
876 * directly, and it allocates a hash descriptor on the stack internally.
877 * Note that this stack allocation may be fairly large.
878 *
879 * Context: Any context.
880 * Return: 0 on success; < 0 if an error occurred.
881 */
882 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
883 unsigned int len, u8 *out);
884
885 /**
886 * crypto_shash_export() - extract operational state for message digest
887 * @desc: reference to the operational state handle whose state is exported
888 * @out: output buffer of sufficient size that can hold the hash state
889 *
890 * This function exports the hash state of the operational state handle into the
891 * caller-allocated output buffer out which must have sufficient size (e.g. by
892 * calling crypto_shash_descsize).
893 *
894 * Context: Any context.
895 * Return: 0 if the export creation was successful; < 0 if an error occurred
896 */
crypto_shash_export(struct shash_desc * desc,void * out)897 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
898 {
899 return crypto_shash_alg(desc->tfm)->export(desc, out);
900 }
901
902 /**
903 * crypto_shash_import() - import operational state
904 * @desc: reference to the operational state handle the state imported into
905 * @in: buffer holding the state
906 *
907 * This function imports the hash state into the operational state handle from
908 * the input buffer. That buffer should have been generated with the
909 * crypto_ahash_export function.
910 *
911 * Context: Any context.
912 * Return: 0 if the import was successful; < 0 if an error occurred
913 */
crypto_shash_import(struct shash_desc * desc,const void * in)914 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
915 {
916 struct crypto_shash *tfm = desc->tfm;
917
918 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
919 return -ENOKEY;
920
921 return crypto_shash_alg(tfm)->import(desc, in);
922 }
923
924 /**
925 * crypto_shash_init() - (re)initialize message digest
926 * @desc: operational state handle that is already filled
927 *
928 * The call (re-)initializes the message digest referenced by the
929 * operational state handle. Any potentially existing state created by
930 * previous operations is discarded.
931 *
932 * Context: Any context.
933 * Return: 0 if the message digest initialization was successful; < 0 if an
934 * error occurred
935 */
crypto_shash_init(struct shash_desc * desc)936 static inline int crypto_shash_init(struct shash_desc *desc)
937 {
938 struct crypto_shash *tfm = desc->tfm;
939
940 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
941 return -ENOKEY;
942
943 return crypto_shash_alg(tfm)->init(desc);
944 }
945
946 /**
947 * crypto_shash_update() - add data to message digest for processing
948 * @desc: operational state handle that is already initialized
949 * @data: input data to be added to the message digest
950 * @len: length of the input data
951 *
952 * Updates the message digest state of the operational state handle.
953 *
954 * Context: Any context.
955 * Return: 0 if the message digest update was successful; < 0 if an error
956 * occurred
957 */
958 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
959 unsigned int len);
960
961 /**
962 * crypto_shash_final() - calculate message digest
963 * @desc: operational state handle that is already filled with data
964 * @out: output buffer filled with the message digest
965 *
966 * Finalize the message digest operation and create the message digest
967 * based on all data added to the cipher handle. The message digest is placed
968 * into the output buffer. The caller must ensure that the output buffer is
969 * large enough by using crypto_shash_digestsize.
970 *
971 * Context: Any context.
972 * Return: 0 if the message digest creation was successful; < 0 if an error
973 * occurred
974 */
975 int crypto_shash_final(struct shash_desc *desc, u8 *out);
976
977 /**
978 * crypto_shash_finup() - calculate message digest of buffer
979 * @desc: see crypto_shash_final()
980 * @data: see crypto_shash_update()
981 * @len: see crypto_shash_update()
982 * @out: see crypto_shash_final()
983 *
984 * This function is a "short-hand" for the function calls of
985 * crypto_shash_update and crypto_shash_final. The parameters have the same
986 * meaning as discussed for those separate functions.
987 *
988 * Context: Any context.
989 * Return: 0 if the message digest creation was successful; < 0 if an error
990 * occurred
991 */
992 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
993 unsigned int len, u8 *out);
994
shash_desc_zero(struct shash_desc * desc)995 static inline void shash_desc_zero(struct shash_desc *desc)
996 {
997 memzero_explicit(desc,
998 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
999 }
1000
1001 #endif /* _CRYPTO_HASH_H */
1002