1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30
31 struct mempolicy;
32 struct anon_vma;
33 struct anon_vma_chain;
34 struct file_ra_state;
35 struct user_struct;
36 struct writeback_control;
37 struct bdi_writeback;
38
39 void init_mm_internals(void);
40
41 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
42 extern unsigned long max_mapnr;
43
set_max_mapnr(unsigned long limit)44 static inline void set_max_mapnr(unsigned long limit)
45 {
46 max_mapnr = limit;
47 }
48 #else
set_max_mapnr(unsigned long limit)49 static inline void set_max_mapnr(unsigned long limit) { }
50 #endif
51
52 extern atomic_long_t _totalram_pages;
totalram_pages(void)53 static inline unsigned long totalram_pages(void)
54 {
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56 }
57
totalram_pages_inc(void)58 static inline void totalram_pages_inc(void)
59 {
60 atomic_long_inc(&_totalram_pages);
61 }
62
totalram_pages_dec(void)63 static inline void totalram_pages_dec(void)
64 {
65 atomic_long_dec(&_totalram_pages);
66 }
67
totalram_pages_add(long count)68 static inline void totalram_pages_add(long count)
69 {
70 atomic_long_add(count, &_totalram_pages);
71 }
72
totalram_pages_set(long val)73 static inline void totalram_pages_set(long val)
74 {
75 atomic_long_set(&_totalram_pages, val);
76 }
77
78 extern void * high_memory;
79 extern int page_cluster;
80
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97
98 #include <asm/page.h>
99 #include <asm/pgtable.h>
100 #include <asm/processor.h>
101
102 /*
103 * Architectures that support memory tagging (assigning tags to memory regions,
104 * embedding these tags into addresses that point to these memory regions, and
105 * checking that the memory and the pointer tags match on memory accesses)
106 * redefine this macro to strip tags from pointers.
107 * It's defined as noop for arcitectures that don't support memory tagging.
108 */
109 #ifndef untagged_addr
110 #define untagged_addr(addr) (addr)
111 #endif
112
113 #ifndef __pa_symbol
114 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
115 #endif
116
117 #ifndef page_to_virt
118 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
119 #endif
120
121 #ifndef lm_alias
122 #define lm_alias(x) __va(__pa_symbol(x))
123 #endif
124
125 /*
126 * To prevent common memory management code establishing
127 * a zero page mapping on a read fault.
128 * This macro should be defined within <asm/pgtable.h>.
129 * s390 does this to prevent multiplexing of hardware bits
130 * related to the physical page in case of virtualization.
131 */
132 #ifndef mm_forbids_zeropage
133 #define mm_forbids_zeropage(X) (0)
134 #endif
135
136 /*
137 * On some architectures it is expensive to call memset() for small sizes.
138 * If an architecture decides to implement their own version of
139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140 * define their own version of this macro in <asm/pgtable.h>
141 */
142 #if BITS_PER_LONG == 64
143 /* This function must be updated when the size of struct page grows above 80
144 * or reduces below 56. The idea that compiler optimizes out switch()
145 * statement, and only leaves move/store instructions. Also the compiler can
146 * combine write statments if they are both assignments and can be reordered,
147 * this can result in several of the writes here being dropped.
148 */
149 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)150 static inline void __mm_zero_struct_page(struct page *page)
151 {
152 unsigned long *_pp = (void *)page;
153
154 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 BUILD_BUG_ON(sizeof(struct page) & 7);
156 BUILD_BUG_ON(sizeof(struct page) < 56);
157 BUILD_BUG_ON(sizeof(struct page) > 80);
158
159 switch (sizeof(struct page)) {
160 case 80:
161 _pp[9] = 0; /* fallthrough */
162 case 72:
163 _pp[8] = 0; /* fallthrough */
164 case 64:
165 _pp[7] = 0; /* fallthrough */
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175 }
176 #else
177 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178 #endif
179
180 /*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196 #define MAPCOUNT_ELF_CORE_MARGIN (5)
197 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199 extern int sysctl_max_map_count;
200
201 extern unsigned long sysctl_user_reserve_kbytes;
202 extern unsigned long sysctl_admin_reserve_kbytes;
203
204 extern int sysctl_overcommit_memory;
205 extern int sysctl_overcommit_ratio;
206 extern unsigned long sysctl_overcommit_kbytes;
207
208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 size_t *, loff_t *);
210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 size_t *, loff_t *);
212
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214
215 /* to align the pointer to the (next) page boundary */
216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217
218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220
221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222
223 /*
224 * Linux kernel virtual memory manager primitives.
225 * The idea being to have a "virtual" mm in the same way
226 * we have a virtual fs - giving a cleaner interface to the
227 * mm details, and allowing different kinds of memory mappings
228 * (from shared memory to executable loading to arbitrary
229 * mmap() functions).
230 */
231
232 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234 void vm_area_free(struct vm_area_struct *);
235
236 #ifndef CONFIG_MMU
237 extern struct rb_root nommu_region_tree;
238 extern struct rw_semaphore nommu_region_sem;
239
240 extern unsigned int kobjsize(const void *objp);
241 #endif
242
243 /*
244 * vm_flags in vm_area_struct, see mm_types.h.
245 * When changing, update also include/trace/events/mmflags.h
246 */
247 #define VM_NONE 0x00000000
248
249 #define VM_READ 0x00000001 /* currently active flags */
250 #define VM_WRITE 0x00000002
251 #define VM_EXEC 0x00000004
252 #define VM_SHARED 0x00000008
253
254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
256 #define VM_MAYWRITE 0x00000020
257 #define VM_MAYEXEC 0x00000040
258 #define VM_MAYSHARE 0x00000080
259
260 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
261 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
262 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
263 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
264 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
265
266 #define VM_LOCKED 0x00002000
267 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
268
269 /* Used by sys_madvise() */
270 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
271 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
272
273 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
274 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
275 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
276 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
277 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
278 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
279 #define VM_SYNC 0x00800000 /* Synchronous page faults */
280 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
281 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
282 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
283
284 #ifdef CONFIG_MEM_SOFT_DIRTY
285 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
286 #else
287 # define VM_SOFTDIRTY 0
288 #endif
289
290 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
291 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
292 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
293 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
294
295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
298 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
299 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
300 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
301 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
302 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
303 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
304 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
305 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307
308 #ifdef CONFIG_ARCH_HAS_PKEYS
309 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
310 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
311 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
312 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
313 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
314 #ifdef CONFIG_PPC
315 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
316 #else
317 # define VM_PKEY_BIT4 0
318 #endif
319 #endif /* CONFIG_ARCH_HAS_PKEYS */
320
321 #if defined(CONFIG_X86)
322 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
323 #elif defined(CONFIG_PPC)
324 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
325 #elif defined(CONFIG_PARISC)
326 # define VM_GROWSUP VM_ARCH_1
327 #elif defined(CONFIG_IA64)
328 # define VM_GROWSUP VM_ARCH_1
329 #elif defined(CONFIG_SPARC64)
330 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
331 # define VM_ARCH_CLEAR VM_SPARC_ADI
332 #elif !defined(CONFIG_MMU)
333 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
334 #endif
335
336 #if defined(CONFIG_X86_INTEL_MPX)
337 /* MPX specific bounds table or bounds directory */
338 # define VM_MPX VM_HIGH_ARCH_4
339 #else
340 # define VM_MPX VM_NONE
341 #endif
342
343 #ifndef VM_GROWSUP
344 # define VM_GROWSUP VM_NONE
345 #endif
346
347 /* Bits set in the VMA until the stack is in its final location */
348 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
349
350 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352 #endif
353
354 #ifdef CONFIG_STACK_GROWSUP
355 #define VM_STACK VM_GROWSUP
356 #else
357 #define VM_STACK VM_GROWSDOWN
358 #endif
359
360 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361
362 /*
363 * Special vmas that are non-mergable, non-mlock()able.
364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365 */
366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367
368 /* This mask defines which mm->def_flags a process can inherit its parent */
369 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
370
371 /* This mask is used to clear all the VMA flags used by mlock */
372 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
373
374 /* Arch-specific flags to clear when updating VM flags on protection change */
375 #ifndef VM_ARCH_CLEAR
376 # define VM_ARCH_CLEAR VM_NONE
377 #endif
378 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379
380 /*
381 * mapping from the currently active vm_flags protection bits (the
382 * low four bits) to a page protection mask..
383 */
384 extern pgprot_t protection_map[16];
385
386 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
387 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
388 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
389 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
390 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
391 #define FAULT_FLAG_TRIED 0x20 /* Second try */
392 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
393 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
394 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
395
396 #define FAULT_FLAG_TRACE \
397 { FAULT_FLAG_WRITE, "WRITE" }, \
398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
402 { FAULT_FLAG_TRIED, "TRIED" }, \
403 { FAULT_FLAG_USER, "USER" }, \
404 { FAULT_FLAG_REMOTE, "REMOTE" }, \
405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
406
407 /*
408 * vm_fault is filled by the the pagefault handler and passed to the vma's
409 * ->fault function. The vma's ->fault is responsible for returning a bitmask
410 * of VM_FAULT_xxx flags that give details about how the fault was handled.
411 *
412 * MM layer fills up gfp_mask for page allocations but fault handler might
413 * alter it if its implementation requires a different allocation context.
414 *
415 * pgoff should be used in favour of virtual_address, if possible.
416 */
417 struct vm_fault {
418 struct vm_area_struct *vma; /* Target VMA */
419 unsigned int flags; /* FAULT_FLAG_xxx flags */
420 gfp_t gfp_mask; /* gfp mask to be used for allocations */
421 pgoff_t pgoff; /* Logical page offset based on vma */
422 unsigned long address; /* Faulting virtual address */
423 pmd_t *pmd; /* Pointer to pmd entry matching
424 * the 'address' */
425 pud_t *pud; /* Pointer to pud entry matching
426 * the 'address'
427 */
428 pte_t orig_pte; /* Value of PTE at the time of fault */
429
430 struct page *cow_page; /* Page handler may use for COW fault */
431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
432 struct page *page; /* ->fault handlers should return a
433 * page here, unless VM_FAULT_NOPAGE
434 * is set (which is also implied by
435 * VM_FAULT_ERROR).
436 */
437 /* These three entries are valid only while holding ptl lock */
438 pte_t *pte; /* Pointer to pte entry matching
439 * the 'address'. NULL if the page
440 * table hasn't been allocated.
441 */
442 spinlock_t *ptl; /* Page table lock.
443 * Protects pte page table if 'pte'
444 * is not NULL, otherwise pmd.
445 */
446 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
447 * vm_ops->map_pages() calls
448 * alloc_set_pte() from atomic context.
449 * do_fault_around() pre-allocates
450 * page table to avoid allocation from
451 * atomic context.
452 */
453 };
454
455 /* page entry size for vm->huge_fault() */
456 enum page_entry_size {
457 PE_SIZE_PTE = 0,
458 PE_SIZE_PMD,
459 PE_SIZE_PUD,
460 };
461
462 /*
463 * These are the virtual MM functions - opening of an area, closing and
464 * unmapping it (needed to keep files on disk up-to-date etc), pointer
465 * to the functions called when a no-page or a wp-page exception occurs.
466 */
467 struct vm_operations_struct {
468 void (*open)(struct vm_area_struct * area);
469 void (*close)(struct vm_area_struct * area);
470 int (*split)(struct vm_area_struct * area, unsigned long addr);
471 int (*mremap)(struct vm_area_struct * area);
472 vm_fault_t (*fault)(struct vm_fault *vmf);
473 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 enum page_entry_size pe_size);
475 void (*map_pages)(struct vm_fault *vmf,
476 pgoff_t start_pgoff, pgoff_t end_pgoff);
477 unsigned long (*pagesize)(struct vm_area_struct * area);
478
479 /* notification that a previously read-only page is about to become
480 * writable, if an error is returned it will cause a SIGBUS */
481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482
483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485
486 /* called by access_process_vm when get_user_pages() fails, typically
487 * for use by special VMAs that can switch between memory and hardware
488 */
489 int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 void *buf, int len, int write);
491
492 /* Called by the /proc/PID/maps code to ask the vma whether it
493 * has a special name. Returning non-NULL will also cause this
494 * vma to be dumped unconditionally. */
495 const char *(*name)(struct vm_area_struct *vma);
496
497 #ifdef CONFIG_NUMA
498 /*
499 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 * to hold the policy upon return. Caller should pass NULL @new to
501 * remove a policy and fall back to surrounding context--i.e. do not
502 * install a MPOL_DEFAULT policy, nor the task or system default
503 * mempolicy.
504 */
505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506
507 /*
508 * get_policy() op must add reference [mpol_get()] to any policy at
509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
510 * in mm/mempolicy.c will do this automatically.
511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 * must return NULL--i.e., do not "fallback" to task or system default
515 * policy.
516 */
517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 unsigned long addr);
519 #endif
520 /*
521 * Called by vm_normal_page() for special PTEs to find the
522 * page for @addr. This is useful if the default behavior
523 * (using pte_page()) would not find the correct page.
524 */
525 struct page *(*find_special_page)(struct vm_area_struct *vma,
526 unsigned long addr);
527 };
528
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530 {
531 static const struct vm_operations_struct dummy_vm_ops = {};
532
533 memset(vma, 0, sizeof(*vma));
534 vma->vm_mm = mm;
535 vma->vm_ops = &dummy_vm_ops;
536 INIT_LIST_HEAD(&vma->anon_vma_chain);
537 }
538
vma_set_anonymous(struct vm_area_struct * vma)539 static inline void vma_set_anonymous(struct vm_area_struct *vma)
540 {
541 vma->vm_ops = NULL;
542 }
543
vma_is_anonymous(struct vm_area_struct * vma)544 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
545 {
546 return !vma->vm_ops;
547 }
548
549 #ifdef CONFIG_SHMEM
550 /*
551 * The vma_is_shmem is not inline because it is used only by slow
552 * paths in userfault.
553 */
554 bool vma_is_shmem(struct vm_area_struct *vma);
555 #else
vma_is_shmem(struct vm_area_struct * vma)556 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
557 #endif
558
559 int vma_is_stack_for_current(struct vm_area_struct *vma);
560
561 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
562 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
563
564 struct mmu_gather;
565 struct inode;
566
567 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)568 static inline int pmd_devmap(pmd_t pmd)
569 {
570 return 0;
571 }
pud_devmap(pud_t pud)572 static inline int pud_devmap(pud_t pud)
573 {
574 return 0;
575 }
pgd_devmap(pgd_t pgd)576 static inline int pgd_devmap(pgd_t pgd)
577 {
578 return 0;
579 }
580 #endif
581
582 /*
583 * FIXME: take this include out, include page-flags.h in
584 * files which need it (119 of them)
585 */
586 #include <linux/page-flags.h>
587 #include <linux/huge_mm.h>
588
589 /*
590 * Methods to modify the page usage count.
591 *
592 * What counts for a page usage:
593 * - cache mapping (page->mapping)
594 * - private data (page->private)
595 * - page mapped in a task's page tables, each mapping
596 * is counted separately
597 *
598 * Also, many kernel routines increase the page count before a critical
599 * routine so they can be sure the page doesn't go away from under them.
600 */
601
602 /*
603 * Drop a ref, return true if the refcount fell to zero (the page has no users)
604 */
put_page_testzero(struct page * page)605 static inline int put_page_testzero(struct page *page)
606 {
607 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
608 return page_ref_dec_and_test(page);
609 }
610
611 /*
612 * Try to grab a ref unless the page has a refcount of zero, return false if
613 * that is the case.
614 * This can be called when MMU is off so it must not access
615 * any of the virtual mappings.
616 */
get_page_unless_zero(struct page * page)617 static inline int get_page_unless_zero(struct page *page)
618 {
619 return page_ref_add_unless(page, 1, 0);
620 }
621
622 extern int page_is_ram(unsigned long pfn);
623
624 enum {
625 REGION_INTERSECTS,
626 REGION_DISJOINT,
627 REGION_MIXED,
628 };
629
630 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
631 unsigned long desc);
632
633 /* Support for virtually mapped pages */
634 struct page *vmalloc_to_page(const void *addr);
635 unsigned long vmalloc_to_pfn(const void *addr);
636
637 /*
638 * Determine if an address is within the vmalloc range
639 *
640 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
641 * is no special casing required.
642 */
is_vmalloc_addr(const void * x)643 static inline bool is_vmalloc_addr(const void *x)
644 {
645 #ifdef CONFIG_MMU
646 unsigned long addr = (unsigned long)x;
647
648 return addr >= VMALLOC_START && addr < VMALLOC_END;
649 #else
650 return false;
651 #endif
652 }
653
654 #ifndef is_ioremap_addr
655 #define is_ioremap_addr(x) is_vmalloc_addr(x)
656 #endif
657
658 #ifdef CONFIG_MMU
659 extern int is_vmalloc_or_module_addr(const void *x);
660 #else
is_vmalloc_or_module_addr(const void * x)661 static inline int is_vmalloc_or_module_addr(const void *x)
662 {
663 return 0;
664 }
665 #endif
666
667 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)668 static inline void *kvmalloc(size_t size, gfp_t flags)
669 {
670 return kvmalloc_node(size, flags, NUMA_NO_NODE);
671 }
kvzalloc_node(size_t size,gfp_t flags,int node)672 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
673 {
674 return kvmalloc_node(size, flags | __GFP_ZERO, node);
675 }
kvzalloc(size_t size,gfp_t flags)676 static inline void *kvzalloc(size_t size, gfp_t flags)
677 {
678 return kvmalloc(size, flags | __GFP_ZERO);
679 }
680
kvmalloc_array(size_t n,size_t size,gfp_t flags)681 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
682 {
683 size_t bytes;
684
685 if (unlikely(check_mul_overflow(n, size, &bytes)))
686 return NULL;
687
688 return kvmalloc(bytes, flags);
689 }
690
kvcalloc(size_t n,size_t size,gfp_t flags)691 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
692 {
693 return kvmalloc_array(n, size, flags | __GFP_ZERO);
694 }
695
696 extern void kvfree(const void *addr);
697
compound_mapcount(struct page * page)698 static inline int compound_mapcount(struct page *page)
699 {
700 VM_BUG_ON_PAGE(!PageCompound(page), page);
701 page = compound_head(page);
702 return atomic_read(compound_mapcount_ptr(page)) + 1;
703 }
704
705 /*
706 * The atomic page->_mapcount, starts from -1: so that transitions
707 * both from it and to it can be tracked, using atomic_inc_and_test
708 * and atomic_add_negative(-1).
709 */
page_mapcount_reset(struct page * page)710 static inline void page_mapcount_reset(struct page *page)
711 {
712 atomic_set(&(page)->_mapcount, -1);
713 }
714
715 int __page_mapcount(struct page *page);
716
page_mapcount(struct page * page)717 static inline int page_mapcount(struct page *page)
718 {
719 VM_BUG_ON_PAGE(PageSlab(page), page);
720
721 if (unlikely(PageCompound(page)))
722 return __page_mapcount(page);
723 return atomic_read(&page->_mapcount) + 1;
724 }
725
726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
727 int total_mapcount(struct page *page);
728 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
729 #else
total_mapcount(struct page * page)730 static inline int total_mapcount(struct page *page)
731 {
732 return page_mapcount(page);
733 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)734 static inline int page_trans_huge_mapcount(struct page *page,
735 int *total_mapcount)
736 {
737 int mapcount = page_mapcount(page);
738 if (total_mapcount)
739 *total_mapcount = mapcount;
740 return mapcount;
741 }
742 #endif
743
virt_to_head_page(const void * x)744 static inline struct page *virt_to_head_page(const void *x)
745 {
746 struct page *page = virt_to_page(x);
747
748 return compound_head(page);
749 }
750
751 void __put_page(struct page *page);
752
753 void put_pages_list(struct list_head *pages);
754
755 void split_page(struct page *page, unsigned int order);
756
757 /*
758 * Compound pages have a destructor function. Provide a
759 * prototype for that function and accessor functions.
760 * These are _only_ valid on the head of a compound page.
761 */
762 typedef void compound_page_dtor(struct page *);
763
764 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
765 enum compound_dtor_id {
766 NULL_COMPOUND_DTOR,
767 COMPOUND_PAGE_DTOR,
768 #ifdef CONFIG_HUGETLB_PAGE
769 HUGETLB_PAGE_DTOR,
770 #endif
771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
772 TRANSHUGE_PAGE_DTOR,
773 #endif
774 NR_COMPOUND_DTORS,
775 };
776 extern compound_page_dtor * const compound_page_dtors[];
777
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)778 static inline void set_compound_page_dtor(struct page *page,
779 enum compound_dtor_id compound_dtor)
780 {
781 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
782 page[1].compound_dtor = compound_dtor;
783 }
784
get_compound_page_dtor(struct page * page)785 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
786 {
787 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
788 return compound_page_dtors[page[1].compound_dtor];
789 }
790
compound_order(struct page * page)791 static inline unsigned int compound_order(struct page *page)
792 {
793 if (!PageHead(page))
794 return 0;
795 return page[1].compound_order;
796 }
797
set_compound_order(struct page * page,unsigned int order)798 static inline void set_compound_order(struct page *page, unsigned int order)
799 {
800 page[1].compound_order = order;
801 }
802
803 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)804 static inline unsigned long compound_nr(struct page *page)
805 {
806 return 1UL << compound_order(page);
807 }
808
809 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)810 static inline unsigned long page_size(struct page *page)
811 {
812 return PAGE_SIZE << compound_order(page);
813 }
814
815 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)816 static inline unsigned int page_shift(struct page *page)
817 {
818 return PAGE_SHIFT + compound_order(page);
819 }
820
821 void free_compound_page(struct page *page);
822
823 #ifdef CONFIG_MMU
824 /*
825 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
826 * servicing faults for write access. In the normal case, do always want
827 * pte_mkwrite. But get_user_pages can cause write faults for mappings
828 * that do not have writing enabled, when used by access_process_vm.
829 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)830 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
831 {
832 if (likely(vma->vm_flags & VM_WRITE))
833 pte = pte_mkwrite(pte);
834 return pte;
835 }
836
837 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
838 struct page *page);
839 vm_fault_t finish_fault(struct vm_fault *vmf);
840 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
841 #endif
842
843 /*
844 * Multiple processes may "see" the same page. E.g. for untouched
845 * mappings of /dev/null, all processes see the same page full of
846 * zeroes, and text pages of executables and shared libraries have
847 * only one copy in memory, at most, normally.
848 *
849 * For the non-reserved pages, page_count(page) denotes a reference count.
850 * page_count() == 0 means the page is free. page->lru is then used for
851 * freelist management in the buddy allocator.
852 * page_count() > 0 means the page has been allocated.
853 *
854 * Pages are allocated by the slab allocator in order to provide memory
855 * to kmalloc and kmem_cache_alloc. In this case, the management of the
856 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
857 * unless a particular usage is carefully commented. (the responsibility of
858 * freeing the kmalloc memory is the caller's, of course).
859 *
860 * A page may be used by anyone else who does a __get_free_page().
861 * In this case, page_count still tracks the references, and should only
862 * be used through the normal accessor functions. The top bits of page->flags
863 * and page->virtual store page management information, but all other fields
864 * are unused and could be used privately, carefully. The management of this
865 * page is the responsibility of the one who allocated it, and those who have
866 * subsequently been given references to it.
867 *
868 * The other pages (we may call them "pagecache pages") are completely
869 * managed by the Linux memory manager: I/O, buffers, swapping etc.
870 * The following discussion applies only to them.
871 *
872 * A pagecache page contains an opaque `private' member, which belongs to the
873 * page's address_space. Usually, this is the address of a circular list of
874 * the page's disk buffers. PG_private must be set to tell the VM to call
875 * into the filesystem to release these pages.
876 *
877 * A page may belong to an inode's memory mapping. In this case, page->mapping
878 * is the pointer to the inode, and page->index is the file offset of the page,
879 * in units of PAGE_SIZE.
880 *
881 * If pagecache pages are not associated with an inode, they are said to be
882 * anonymous pages. These may become associated with the swapcache, and in that
883 * case PG_swapcache is set, and page->private is an offset into the swapcache.
884 *
885 * In either case (swapcache or inode backed), the pagecache itself holds one
886 * reference to the page. Setting PG_private should also increment the
887 * refcount. The each user mapping also has a reference to the page.
888 *
889 * The pagecache pages are stored in a per-mapping radix tree, which is
890 * rooted at mapping->i_pages, and indexed by offset.
891 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
892 * lists, we instead now tag pages as dirty/writeback in the radix tree.
893 *
894 * All pagecache pages may be subject to I/O:
895 * - inode pages may need to be read from disk,
896 * - inode pages which have been modified and are MAP_SHARED may need
897 * to be written back to the inode on disk,
898 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
899 * modified may need to be swapped out to swap space and (later) to be read
900 * back into memory.
901 */
902
903 /*
904 * The zone field is never updated after free_area_init_core()
905 * sets it, so none of the operations on it need to be atomic.
906 */
907
908 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
909 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
910 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
911 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
912 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
913 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
914
915 /*
916 * Define the bit shifts to access each section. For non-existent
917 * sections we define the shift as 0; that plus a 0 mask ensures
918 * the compiler will optimise away reference to them.
919 */
920 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
921 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
922 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
923 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
924 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
925
926 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
927 #ifdef NODE_NOT_IN_PAGE_FLAGS
928 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
929 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
930 SECTIONS_PGOFF : ZONES_PGOFF)
931 #else
932 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
933 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
934 NODES_PGOFF : ZONES_PGOFF)
935 #endif
936
937 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
938
939 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
940 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
941 #endif
942
943 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
944 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
945 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
946 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
947 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
948 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
949
page_zonenum(const struct page * page)950 static inline enum zone_type page_zonenum(const struct page *page)
951 {
952 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
953 }
954
955 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)956 static inline bool is_zone_device_page(const struct page *page)
957 {
958 return page_zonenum(page) == ZONE_DEVICE;
959 }
960 extern void memmap_init_zone_device(struct zone *, unsigned long,
961 unsigned long, struct dev_pagemap *);
962 #else
is_zone_device_page(const struct page * page)963 static inline bool is_zone_device_page(const struct page *page)
964 {
965 return false;
966 }
967 #endif
968
969 #ifdef CONFIG_DEV_PAGEMAP_OPS
970 void __put_devmap_managed_page(struct page *page);
971 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
put_devmap_managed_page(struct page * page)972 static inline bool put_devmap_managed_page(struct page *page)
973 {
974 if (!static_branch_unlikely(&devmap_managed_key))
975 return false;
976 if (!is_zone_device_page(page))
977 return false;
978 switch (page->pgmap->type) {
979 case MEMORY_DEVICE_PRIVATE:
980 case MEMORY_DEVICE_FS_DAX:
981 __put_devmap_managed_page(page);
982 return true;
983 default:
984 break;
985 }
986 return false;
987 }
988
989 #else /* CONFIG_DEV_PAGEMAP_OPS */
put_devmap_managed_page(struct page * page)990 static inline bool put_devmap_managed_page(struct page *page)
991 {
992 return false;
993 }
994 #endif /* CONFIG_DEV_PAGEMAP_OPS */
995
is_device_private_page(const struct page * page)996 static inline bool is_device_private_page(const struct page *page)
997 {
998 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
999 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1000 is_zone_device_page(page) &&
1001 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1002 }
1003
is_pci_p2pdma_page(const struct page * page)1004 static inline bool is_pci_p2pdma_page(const struct page *page)
1005 {
1006 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1007 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1008 is_zone_device_page(page) &&
1009 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1010 }
1011
1012 /* 127: arbitrary random number, small enough to assemble well */
1013 #define page_ref_zero_or_close_to_overflow(page) \
1014 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1015
get_page(struct page * page)1016 static inline void get_page(struct page *page)
1017 {
1018 page = compound_head(page);
1019 /*
1020 * Getting a normal page or the head of a compound page
1021 * requires to already have an elevated page->_refcount.
1022 */
1023 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1024 page_ref_inc(page);
1025 }
1026
try_get_page(struct page * page)1027 static inline __must_check bool try_get_page(struct page *page)
1028 {
1029 page = compound_head(page);
1030 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1031 return false;
1032 page_ref_inc(page);
1033 return true;
1034 }
1035
put_page(struct page * page)1036 static inline void put_page(struct page *page)
1037 {
1038 page = compound_head(page);
1039
1040 /*
1041 * For devmap managed pages we need to catch refcount transition from
1042 * 2 to 1, when refcount reach one it means the page is free and we
1043 * need to inform the device driver through callback. See
1044 * include/linux/memremap.h and HMM for details.
1045 */
1046 if (put_devmap_managed_page(page))
1047 return;
1048
1049 if (put_page_testzero(page))
1050 __put_page(page);
1051 }
1052
1053 /**
1054 * put_user_page() - release a gup-pinned page
1055 * @page: pointer to page to be released
1056 *
1057 * Pages that were pinned via get_user_pages*() must be released via
1058 * either put_user_page(), or one of the put_user_pages*() routines
1059 * below. This is so that eventually, pages that are pinned via
1060 * get_user_pages*() can be separately tracked and uniquely handled. In
1061 * particular, interactions with RDMA and filesystems need special
1062 * handling.
1063 *
1064 * put_user_page() and put_page() are not interchangeable, despite this early
1065 * implementation that makes them look the same. put_user_page() calls must
1066 * be perfectly matched up with get_user_page() calls.
1067 */
put_user_page(struct page * page)1068 static inline void put_user_page(struct page *page)
1069 {
1070 put_page(page);
1071 }
1072
1073 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1074 bool make_dirty);
1075
1076 void put_user_pages(struct page **pages, unsigned long npages);
1077
1078 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1079 #define SECTION_IN_PAGE_FLAGS
1080 #endif
1081
1082 /*
1083 * The identification function is mainly used by the buddy allocator for
1084 * determining if two pages could be buddies. We are not really identifying
1085 * the zone since we could be using the section number id if we do not have
1086 * node id available in page flags.
1087 * We only guarantee that it will return the same value for two combinable
1088 * pages in a zone.
1089 */
page_zone_id(struct page * page)1090 static inline int page_zone_id(struct page *page)
1091 {
1092 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1093 }
1094
1095 #ifdef NODE_NOT_IN_PAGE_FLAGS
1096 extern int page_to_nid(const struct page *page);
1097 #else
page_to_nid(const struct page * page)1098 static inline int page_to_nid(const struct page *page)
1099 {
1100 struct page *p = (struct page *)page;
1101
1102 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1103 }
1104 #endif
1105
1106 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1107 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1108 {
1109 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1110 }
1111
cpupid_to_pid(int cpupid)1112 static inline int cpupid_to_pid(int cpupid)
1113 {
1114 return cpupid & LAST__PID_MASK;
1115 }
1116
cpupid_to_cpu(int cpupid)1117 static inline int cpupid_to_cpu(int cpupid)
1118 {
1119 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1120 }
1121
cpupid_to_nid(int cpupid)1122 static inline int cpupid_to_nid(int cpupid)
1123 {
1124 return cpu_to_node(cpupid_to_cpu(cpupid));
1125 }
1126
cpupid_pid_unset(int cpupid)1127 static inline bool cpupid_pid_unset(int cpupid)
1128 {
1129 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1130 }
1131
cpupid_cpu_unset(int cpupid)1132 static inline bool cpupid_cpu_unset(int cpupid)
1133 {
1134 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1135 }
1136
__cpupid_match_pid(pid_t task_pid,int cpupid)1137 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1138 {
1139 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1140 }
1141
1142 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1143 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1144 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1145 {
1146 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1147 }
1148
page_cpupid_last(struct page * page)1149 static inline int page_cpupid_last(struct page *page)
1150 {
1151 return page->_last_cpupid;
1152 }
page_cpupid_reset_last(struct page * page)1153 static inline void page_cpupid_reset_last(struct page *page)
1154 {
1155 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1156 }
1157 #else
page_cpupid_last(struct page * page)1158 static inline int page_cpupid_last(struct page *page)
1159 {
1160 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1161 }
1162
1163 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1164
page_cpupid_reset_last(struct page * page)1165 static inline void page_cpupid_reset_last(struct page *page)
1166 {
1167 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1168 }
1169 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1170 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1171 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1172 {
1173 return page_to_nid(page); /* XXX */
1174 }
1175
page_cpupid_last(struct page * page)1176 static inline int page_cpupid_last(struct page *page)
1177 {
1178 return page_to_nid(page); /* XXX */
1179 }
1180
cpupid_to_nid(int cpupid)1181 static inline int cpupid_to_nid(int cpupid)
1182 {
1183 return -1;
1184 }
1185
cpupid_to_pid(int cpupid)1186 static inline int cpupid_to_pid(int cpupid)
1187 {
1188 return -1;
1189 }
1190
cpupid_to_cpu(int cpupid)1191 static inline int cpupid_to_cpu(int cpupid)
1192 {
1193 return -1;
1194 }
1195
cpu_pid_to_cpupid(int nid,int pid)1196 static inline int cpu_pid_to_cpupid(int nid, int pid)
1197 {
1198 return -1;
1199 }
1200
cpupid_pid_unset(int cpupid)1201 static inline bool cpupid_pid_unset(int cpupid)
1202 {
1203 return 1;
1204 }
1205
page_cpupid_reset_last(struct page * page)1206 static inline void page_cpupid_reset_last(struct page *page)
1207 {
1208 }
1209
cpupid_match_pid(struct task_struct * task,int cpupid)1210 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1211 {
1212 return false;
1213 }
1214 #endif /* CONFIG_NUMA_BALANCING */
1215
1216 #ifdef CONFIG_KASAN_SW_TAGS
page_kasan_tag(const struct page * page)1217 static inline u8 page_kasan_tag(const struct page *page)
1218 {
1219 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1220 }
1221
page_kasan_tag_set(struct page * page,u8 tag)1222 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1223 {
1224 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1225 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1226 }
1227
page_kasan_tag_reset(struct page * page)1228 static inline void page_kasan_tag_reset(struct page *page)
1229 {
1230 page_kasan_tag_set(page, 0xff);
1231 }
1232 #else
page_kasan_tag(const struct page * page)1233 static inline u8 page_kasan_tag(const struct page *page)
1234 {
1235 return 0xff;
1236 }
1237
page_kasan_tag_set(struct page * page,u8 tag)1238 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1239 static inline void page_kasan_tag_reset(struct page *page) { }
1240 #endif
1241
page_zone(const struct page * page)1242 static inline struct zone *page_zone(const struct page *page)
1243 {
1244 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1245 }
1246
page_pgdat(const struct page * page)1247 static inline pg_data_t *page_pgdat(const struct page *page)
1248 {
1249 return NODE_DATA(page_to_nid(page));
1250 }
1251
1252 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1253 static inline void set_page_section(struct page *page, unsigned long section)
1254 {
1255 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1256 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1257 }
1258
page_to_section(const struct page * page)1259 static inline unsigned long page_to_section(const struct page *page)
1260 {
1261 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1262 }
1263 #endif
1264
set_page_zone(struct page * page,enum zone_type zone)1265 static inline void set_page_zone(struct page *page, enum zone_type zone)
1266 {
1267 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1268 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1269 }
1270
set_page_node(struct page * page,unsigned long node)1271 static inline void set_page_node(struct page *page, unsigned long node)
1272 {
1273 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1274 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1275 }
1276
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1277 static inline void set_page_links(struct page *page, enum zone_type zone,
1278 unsigned long node, unsigned long pfn)
1279 {
1280 set_page_zone(page, zone);
1281 set_page_node(page, node);
1282 #ifdef SECTION_IN_PAGE_FLAGS
1283 set_page_section(page, pfn_to_section_nr(pfn));
1284 #endif
1285 }
1286
1287 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)1288 static inline struct mem_cgroup *page_memcg(struct page *page)
1289 {
1290 return page->mem_cgroup;
1291 }
page_memcg_rcu(struct page * page)1292 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1293 {
1294 WARN_ON_ONCE(!rcu_read_lock_held());
1295 return READ_ONCE(page->mem_cgroup);
1296 }
1297 #else
page_memcg(struct page * page)1298 static inline struct mem_cgroup *page_memcg(struct page *page)
1299 {
1300 return NULL;
1301 }
page_memcg_rcu(struct page * page)1302 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1303 {
1304 WARN_ON_ONCE(!rcu_read_lock_held());
1305 return NULL;
1306 }
1307 #endif
1308
1309 /*
1310 * Some inline functions in vmstat.h depend on page_zone()
1311 */
1312 #include <linux/vmstat.h>
1313
lowmem_page_address(const struct page * page)1314 static __always_inline void *lowmem_page_address(const struct page *page)
1315 {
1316 return page_to_virt(page);
1317 }
1318
1319 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1320 #define HASHED_PAGE_VIRTUAL
1321 #endif
1322
1323 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1324 static inline void *page_address(const struct page *page)
1325 {
1326 return page->virtual;
1327 }
set_page_address(struct page * page,void * address)1328 static inline void set_page_address(struct page *page, void *address)
1329 {
1330 page->virtual = address;
1331 }
1332 #define page_address_init() do { } while(0)
1333 #endif
1334
1335 #if defined(HASHED_PAGE_VIRTUAL)
1336 void *page_address(const struct page *page);
1337 void set_page_address(struct page *page, void *virtual);
1338 void page_address_init(void);
1339 #endif
1340
1341 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1342 #define page_address(page) lowmem_page_address(page)
1343 #define set_page_address(page, address) do { } while(0)
1344 #define page_address_init() do { } while(0)
1345 #endif
1346
1347 extern void *page_rmapping(struct page *page);
1348 extern struct anon_vma *page_anon_vma(struct page *page);
1349 extern struct address_space *page_mapping(struct page *page);
1350
1351 extern struct address_space *__page_file_mapping(struct page *);
1352
1353 static inline
page_file_mapping(struct page * page)1354 struct address_space *page_file_mapping(struct page *page)
1355 {
1356 if (unlikely(PageSwapCache(page)))
1357 return __page_file_mapping(page);
1358
1359 return page->mapping;
1360 }
1361
1362 extern pgoff_t __page_file_index(struct page *page);
1363
1364 /*
1365 * Return the pagecache index of the passed page. Regular pagecache pages
1366 * use ->index whereas swapcache pages use swp_offset(->private)
1367 */
page_index(struct page * page)1368 static inline pgoff_t page_index(struct page *page)
1369 {
1370 if (unlikely(PageSwapCache(page)))
1371 return __page_file_index(page);
1372 return page->index;
1373 }
1374
1375 bool page_mapped(struct page *page);
1376 struct address_space *page_mapping(struct page *page);
1377 struct address_space *page_mapping_file(struct page *page);
1378
1379 /*
1380 * Return true only if the page has been allocated with
1381 * ALLOC_NO_WATERMARKS and the low watermark was not
1382 * met implying that the system is under some pressure.
1383 */
page_is_pfmemalloc(struct page * page)1384 static inline bool page_is_pfmemalloc(struct page *page)
1385 {
1386 /*
1387 * Page index cannot be this large so this must be
1388 * a pfmemalloc page.
1389 */
1390 return page->index == -1UL;
1391 }
1392
1393 /*
1394 * Only to be called by the page allocator on a freshly allocated
1395 * page.
1396 */
set_page_pfmemalloc(struct page * page)1397 static inline void set_page_pfmemalloc(struct page *page)
1398 {
1399 page->index = -1UL;
1400 }
1401
clear_page_pfmemalloc(struct page * page)1402 static inline void clear_page_pfmemalloc(struct page *page)
1403 {
1404 page->index = 0;
1405 }
1406
1407 /*
1408 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1409 */
1410 extern void pagefault_out_of_memory(void);
1411
1412 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1413
1414 /*
1415 * Flags passed to show_mem() and show_free_areas() to suppress output in
1416 * various contexts.
1417 */
1418 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1419
1420 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1421
1422 #ifdef CONFIG_MMU
1423 extern bool can_do_mlock(void);
1424 #else
can_do_mlock(void)1425 static inline bool can_do_mlock(void) { return false; }
1426 #endif
1427 extern int user_shm_lock(size_t, struct user_struct *);
1428 extern void user_shm_unlock(size_t, struct user_struct *);
1429
1430 /*
1431 * Parameter block passed down to zap_pte_range in exceptional cases.
1432 */
1433 struct zap_details {
1434 struct address_space *check_mapping; /* Check page->mapping if set */
1435 pgoff_t first_index; /* Lowest page->index to unmap */
1436 pgoff_t last_index; /* Highest page->index to unmap */
1437 };
1438
1439 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1440 pte_t pte);
1441 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1442 pmd_t pmd);
1443
1444 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1445 unsigned long size);
1446 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1447 unsigned long size);
1448 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1449 unsigned long start, unsigned long end);
1450
1451 struct mmu_notifier_range;
1452
1453 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1454 unsigned long end, unsigned long floor, unsigned long ceiling);
1455 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1456 struct vm_area_struct *vma);
1457 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1458 struct mmu_notifier_range *range,
1459 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1460 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1461 unsigned long *pfn);
1462 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1463 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1464 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1465 void *buf, int len, int write);
1466
1467 extern void truncate_pagecache(struct inode *inode, loff_t new);
1468 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1469 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1470 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1471 int truncate_inode_page(struct address_space *mapping, struct page *page);
1472 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1473 int invalidate_inode_page(struct page *page);
1474
1475 #ifdef CONFIG_MMU
1476 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1477 unsigned long address, unsigned int flags);
1478 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1479 unsigned long address, unsigned int fault_flags,
1480 bool *unlocked);
1481 void unmap_mapping_pages(struct address_space *mapping,
1482 pgoff_t start, pgoff_t nr, bool even_cows);
1483 void unmap_mapping_range(struct address_space *mapping,
1484 loff_t const holebegin, loff_t const holelen, int even_cows);
1485 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)1486 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1487 unsigned long address, unsigned int flags)
1488 {
1489 /* should never happen if there's no MMU */
1490 BUG();
1491 return VM_FAULT_SIGBUS;
1492 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1493 static inline int fixup_user_fault(struct task_struct *tsk,
1494 struct mm_struct *mm, unsigned long address,
1495 unsigned int fault_flags, bool *unlocked)
1496 {
1497 /* should never happen if there's no MMU */
1498 BUG();
1499 return -EFAULT;
1500 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1501 static inline void unmap_mapping_pages(struct address_space *mapping,
1502 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1503 static inline void unmap_mapping_range(struct address_space *mapping,
1504 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1505 #endif
1506
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1507 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1508 loff_t const holebegin, loff_t const holelen)
1509 {
1510 unmap_mapping_range(mapping, holebegin, holelen, 0);
1511 }
1512
1513 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1514 void *buf, int len, unsigned int gup_flags);
1515 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1516 void *buf, int len, unsigned int gup_flags);
1517 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1518 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1519
1520 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1521 unsigned long start, unsigned long nr_pages,
1522 unsigned int gup_flags, struct page **pages,
1523 struct vm_area_struct **vmas, int *locked);
1524 long get_user_pages(unsigned long start, unsigned long nr_pages,
1525 unsigned int gup_flags, struct page **pages,
1526 struct vm_area_struct **vmas);
1527 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1528 unsigned int gup_flags, struct page **pages, int *locked);
1529 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1530 struct page **pages, unsigned int gup_flags);
1531
1532 int get_user_pages_fast(unsigned long start, int nr_pages,
1533 unsigned int gup_flags, struct page **pages);
1534
1535 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1536 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1537 struct task_struct *task, bool bypass_rlim);
1538
1539 /* Container for pinned pfns / pages */
1540 struct frame_vector {
1541 unsigned int nr_allocated; /* Number of frames we have space for */
1542 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1543 bool got_ref; /* Did we pin pages by getting page ref? */
1544 bool is_pfns; /* Does array contain pages or pfns? */
1545 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1546 * pfns_vector_pages() or pfns_vector_pfns()
1547 * for access */
1548 };
1549
1550 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1551 void frame_vector_destroy(struct frame_vector *vec);
1552 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1553 unsigned int gup_flags, struct frame_vector *vec);
1554 void put_vaddr_frames(struct frame_vector *vec);
1555 int frame_vector_to_pages(struct frame_vector *vec);
1556 void frame_vector_to_pfns(struct frame_vector *vec);
1557
frame_vector_count(struct frame_vector * vec)1558 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1559 {
1560 return vec->nr_frames;
1561 }
1562
frame_vector_pages(struct frame_vector * vec)1563 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1564 {
1565 if (vec->is_pfns) {
1566 int err = frame_vector_to_pages(vec);
1567
1568 if (err)
1569 return ERR_PTR(err);
1570 }
1571 return (struct page **)(vec->ptrs);
1572 }
1573
frame_vector_pfns(struct frame_vector * vec)1574 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1575 {
1576 if (!vec->is_pfns)
1577 frame_vector_to_pfns(vec);
1578 return (unsigned long *)(vec->ptrs);
1579 }
1580
1581 struct kvec;
1582 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1583 struct page **pages);
1584 int get_kernel_page(unsigned long start, int write, struct page **pages);
1585 struct page *get_dump_page(unsigned long addr);
1586
1587 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1588 extern void do_invalidatepage(struct page *page, unsigned int offset,
1589 unsigned int length);
1590
1591 void __set_page_dirty(struct page *, struct address_space *, int warn);
1592 int __set_page_dirty_nobuffers(struct page *page);
1593 int __set_page_dirty_no_writeback(struct page *page);
1594 int redirty_page_for_writepage(struct writeback_control *wbc,
1595 struct page *page);
1596 void account_page_dirtied(struct page *page, struct address_space *mapping);
1597 void account_page_cleaned(struct page *page, struct address_space *mapping,
1598 struct bdi_writeback *wb);
1599 int set_page_dirty(struct page *page);
1600 int set_page_dirty_lock(struct page *page);
1601 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1602 static inline void cancel_dirty_page(struct page *page)
1603 {
1604 /* Avoid atomic ops, locking, etc. when not actually needed. */
1605 if (PageDirty(page))
1606 __cancel_dirty_page(page);
1607 }
1608 int clear_page_dirty_for_io(struct page *page);
1609
1610 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1611
1612 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1613 unsigned long old_addr, struct vm_area_struct *new_vma,
1614 unsigned long new_addr, unsigned long len,
1615 bool need_rmap_locks);
1616 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1617 unsigned long end, pgprot_t newprot,
1618 int dirty_accountable, int prot_numa);
1619 extern int mprotect_fixup(struct vm_area_struct *vma,
1620 struct vm_area_struct **pprev, unsigned long start,
1621 unsigned long end, unsigned long newflags);
1622
1623 /*
1624 * doesn't attempt to fault and will return short.
1625 */
1626 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1627 struct page **pages);
1628 /*
1629 * per-process(per-mm_struct) statistics.
1630 */
get_mm_counter(struct mm_struct * mm,int member)1631 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1632 {
1633 long val = atomic_long_read(&mm->rss_stat.count[member]);
1634
1635 #ifdef SPLIT_RSS_COUNTING
1636 /*
1637 * counter is updated in asynchronous manner and may go to minus.
1638 * But it's never be expected number for users.
1639 */
1640 if (val < 0)
1641 val = 0;
1642 #endif
1643 return (unsigned long)val;
1644 }
1645
add_mm_counter(struct mm_struct * mm,int member,long value)1646 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1647 {
1648 atomic_long_add(value, &mm->rss_stat.count[member]);
1649 }
1650
inc_mm_counter(struct mm_struct * mm,int member)1651 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1652 {
1653 atomic_long_inc(&mm->rss_stat.count[member]);
1654 }
1655
dec_mm_counter(struct mm_struct * mm,int member)1656 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1657 {
1658 atomic_long_dec(&mm->rss_stat.count[member]);
1659 }
1660
1661 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1662 static inline int mm_counter_file(struct page *page)
1663 {
1664 if (PageSwapBacked(page))
1665 return MM_SHMEMPAGES;
1666 return MM_FILEPAGES;
1667 }
1668
mm_counter(struct page * page)1669 static inline int mm_counter(struct page *page)
1670 {
1671 if (PageAnon(page))
1672 return MM_ANONPAGES;
1673 return mm_counter_file(page);
1674 }
1675
get_mm_rss(struct mm_struct * mm)1676 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1677 {
1678 return get_mm_counter(mm, MM_FILEPAGES) +
1679 get_mm_counter(mm, MM_ANONPAGES) +
1680 get_mm_counter(mm, MM_SHMEMPAGES);
1681 }
1682
get_mm_hiwater_rss(struct mm_struct * mm)1683 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1684 {
1685 return max(mm->hiwater_rss, get_mm_rss(mm));
1686 }
1687
get_mm_hiwater_vm(struct mm_struct * mm)1688 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1689 {
1690 return max(mm->hiwater_vm, mm->total_vm);
1691 }
1692
update_hiwater_rss(struct mm_struct * mm)1693 static inline void update_hiwater_rss(struct mm_struct *mm)
1694 {
1695 unsigned long _rss = get_mm_rss(mm);
1696
1697 if ((mm)->hiwater_rss < _rss)
1698 (mm)->hiwater_rss = _rss;
1699 }
1700
update_hiwater_vm(struct mm_struct * mm)1701 static inline void update_hiwater_vm(struct mm_struct *mm)
1702 {
1703 if (mm->hiwater_vm < mm->total_vm)
1704 mm->hiwater_vm = mm->total_vm;
1705 }
1706
reset_mm_hiwater_rss(struct mm_struct * mm)1707 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1708 {
1709 mm->hiwater_rss = get_mm_rss(mm);
1710 }
1711
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1712 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1713 struct mm_struct *mm)
1714 {
1715 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1716
1717 if (*maxrss < hiwater_rss)
1718 *maxrss = hiwater_rss;
1719 }
1720
1721 #if defined(SPLIT_RSS_COUNTING)
1722 void sync_mm_rss(struct mm_struct *mm);
1723 #else
sync_mm_rss(struct mm_struct * mm)1724 static inline void sync_mm_rss(struct mm_struct *mm)
1725 {
1726 }
1727 #endif
1728
1729 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)1730 static inline int pte_devmap(pte_t pte)
1731 {
1732 return 0;
1733 }
1734 #endif
1735
1736 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1737
1738 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1739 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1740 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1741 spinlock_t **ptl)
1742 {
1743 pte_t *ptep;
1744 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1745 return ptep;
1746 }
1747
1748 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1749 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1750 unsigned long address)
1751 {
1752 return 0;
1753 }
1754 #else
1755 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1756 #endif
1757
1758 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1759 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1760 unsigned long address)
1761 {
1762 return 0;
1763 }
mm_inc_nr_puds(struct mm_struct * mm)1764 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)1765 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1766
1767 #else
1768 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1769
mm_inc_nr_puds(struct mm_struct * mm)1770 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1771 {
1772 if (mm_pud_folded(mm))
1773 return;
1774 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1775 }
1776
mm_dec_nr_puds(struct mm_struct * mm)1777 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1778 {
1779 if (mm_pud_folded(mm))
1780 return;
1781 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1782 }
1783 #endif
1784
1785 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1786 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1787 unsigned long address)
1788 {
1789 return 0;
1790 }
1791
mm_inc_nr_pmds(struct mm_struct * mm)1792 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)1793 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1794
1795 #else
1796 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1797
mm_inc_nr_pmds(struct mm_struct * mm)1798 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1799 {
1800 if (mm_pmd_folded(mm))
1801 return;
1802 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1803 }
1804
mm_dec_nr_pmds(struct mm_struct * mm)1805 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1806 {
1807 if (mm_pmd_folded(mm))
1808 return;
1809 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1810 }
1811 #endif
1812
1813 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)1814 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1815 {
1816 atomic_long_set(&mm->pgtables_bytes, 0);
1817 }
1818
mm_pgtables_bytes(const struct mm_struct * mm)1819 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1820 {
1821 return atomic_long_read(&mm->pgtables_bytes);
1822 }
1823
mm_inc_nr_ptes(struct mm_struct * mm)1824 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1825 {
1826 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1827 }
1828
mm_dec_nr_ptes(struct mm_struct * mm)1829 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1830 {
1831 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1832 }
1833 #else
1834
mm_pgtables_bytes_init(struct mm_struct * mm)1835 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)1836 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1837 {
1838 return 0;
1839 }
1840
mm_inc_nr_ptes(struct mm_struct * mm)1841 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)1842 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1843 #endif
1844
1845 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1846 int __pte_alloc_kernel(pmd_t *pmd);
1847
1848 /*
1849 * The following ifdef needed to get the 4level-fixup.h header to work.
1850 * Remove it when 4level-fixup.h has been removed.
1851 */
1852 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1853
1854 #ifndef __ARCH_HAS_5LEVEL_HACK
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1855 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1856 unsigned long address)
1857 {
1858 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1859 NULL : p4d_offset(pgd, address);
1860 }
1861
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1862 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1863 unsigned long address)
1864 {
1865 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1866 NULL : pud_offset(p4d, address);
1867 }
1868 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1869
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1870 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1871 {
1872 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1873 NULL: pmd_offset(pud, address);
1874 }
1875 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1876
1877 #if USE_SPLIT_PTE_PTLOCKS
1878 #if ALLOC_SPLIT_PTLOCKS
1879 void __init ptlock_cache_init(void);
1880 extern bool ptlock_alloc(struct page *page);
1881 extern void ptlock_free(struct page *page);
1882
ptlock_ptr(struct page * page)1883 static inline spinlock_t *ptlock_ptr(struct page *page)
1884 {
1885 return page->ptl;
1886 }
1887 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)1888 static inline void ptlock_cache_init(void)
1889 {
1890 }
1891
ptlock_alloc(struct page * page)1892 static inline bool ptlock_alloc(struct page *page)
1893 {
1894 return true;
1895 }
1896
ptlock_free(struct page * page)1897 static inline void ptlock_free(struct page *page)
1898 {
1899 }
1900
ptlock_ptr(struct page * page)1901 static inline spinlock_t *ptlock_ptr(struct page *page)
1902 {
1903 return &page->ptl;
1904 }
1905 #endif /* ALLOC_SPLIT_PTLOCKS */
1906
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1907 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1908 {
1909 return ptlock_ptr(pmd_page(*pmd));
1910 }
1911
ptlock_init(struct page * page)1912 static inline bool ptlock_init(struct page *page)
1913 {
1914 /*
1915 * prep_new_page() initialize page->private (and therefore page->ptl)
1916 * with 0. Make sure nobody took it in use in between.
1917 *
1918 * It can happen if arch try to use slab for page table allocation:
1919 * slab code uses page->slab_cache, which share storage with page->ptl.
1920 */
1921 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1922 if (!ptlock_alloc(page))
1923 return false;
1924 spin_lock_init(ptlock_ptr(page));
1925 return true;
1926 }
1927
1928 #else /* !USE_SPLIT_PTE_PTLOCKS */
1929 /*
1930 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1931 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1932 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1933 {
1934 return &mm->page_table_lock;
1935 }
ptlock_cache_init(void)1936 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)1937 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)1938 static inline void ptlock_free(struct page *page) {}
1939 #endif /* USE_SPLIT_PTE_PTLOCKS */
1940
pgtable_init(void)1941 static inline void pgtable_init(void)
1942 {
1943 ptlock_cache_init();
1944 pgtable_cache_init();
1945 }
1946
pgtable_pte_page_ctor(struct page * page)1947 static inline bool pgtable_pte_page_ctor(struct page *page)
1948 {
1949 if (!ptlock_init(page))
1950 return false;
1951 __SetPageTable(page);
1952 inc_zone_page_state(page, NR_PAGETABLE);
1953 return true;
1954 }
1955
pgtable_pte_page_dtor(struct page * page)1956 static inline void pgtable_pte_page_dtor(struct page *page)
1957 {
1958 ptlock_free(page);
1959 __ClearPageTable(page);
1960 dec_zone_page_state(page, NR_PAGETABLE);
1961 }
1962
1963 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1964 ({ \
1965 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1966 pte_t *__pte = pte_offset_map(pmd, address); \
1967 *(ptlp) = __ptl; \
1968 spin_lock(__ptl); \
1969 __pte; \
1970 })
1971
1972 #define pte_unmap_unlock(pte, ptl) do { \
1973 spin_unlock(ptl); \
1974 pte_unmap(pte); \
1975 } while (0)
1976
1977 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
1978
1979 #define pte_alloc_map(mm, pmd, address) \
1980 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1981
1982 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1983 (pte_alloc(mm, pmd) ? \
1984 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1985
1986 #define pte_alloc_kernel(pmd, address) \
1987 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1988 NULL: pte_offset_kernel(pmd, address))
1989
1990 #if USE_SPLIT_PMD_PTLOCKS
1991
pmd_to_page(pmd_t * pmd)1992 static struct page *pmd_to_page(pmd_t *pmd)
1993 {
1994 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1995 return virt_to_page((void *)((unsigned long) pmd & mask));
1996 }
1997
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)1998 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1999 {
2000 return ptlock_ptr(pmd_to_page(pmd));
2001 }
2002
pgtable_pmd_page_ctor(struct page * page)2003 static inline bool pgtable_pmd_page_ctor(struct page *page)
2004 {
2005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2006 page->pmd_huge_pte = NULL;
2007 #endif
2008 return ptlock_init(page);
2009 }
2010
pgtable_pmd_page_dtor(struct page * page)2011 static inline void pgtable_pmd_page_dtor(struct page *page)
2012 {
2013 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2014 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2015 #endif
2016 ptlock_free(page);
2017 }
2018
2019 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2020
2021 #else
2022
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2023 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2024 {
2025 return &mm->page_table_lock;
2026 }
2027
pgtable_pmd_page_ctor(struct page * page)2028 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
pgtable_pmd_page_dtor(struct page * page)2029 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2030
2031 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2032
2033 #endif
2034
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2035 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2036 {
2037 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2038 spin_lock(ptl);
2039 return ptl;
2040 }
2041
2042 /*
2043 * No scalability reason to split PUD locks yet, but follow the same pattern
2044 * as the PMD locks to make it easier if we decide to. The VM should not be
2045 * considered ready to switch to split PUD locks yet; there may be places
2046 * which need to be converted from page_table_lock.
2047 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2048 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2049 {
2050 return &mm->page_table_lock;
2051 }
2052
pud_lock(struct mm_struct * mm,pud_t * pud)2053 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2054 {
2055 spinlock_t *ptl = pud_lockptr(mm, pud);
2056
2057 spin_lock(ptl);
2058 return ptl;
2059 }
2060
2061 extern void __init pagecache_init(void);
2062 extern void free_area_init(unsigned long * zones_size);
2063 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2064 unsigned long zone_start_pfn, unsigned long *zholes_size);
2065 extern void free_initmem(void);
2066
2067 /*
2068 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2069 * into the buddy system. The freed pages will be poisoned with pattern
2070 * "poison" if it's within range [0, UCHAR_MAX].
2071 * Return pages freed into the buddy system.
2072 */
2073 extern unsigned long free_reserved_area(void *start, void *end,
2074 int poison, const char *s);
2075
2076 #ifdef CONFIG_HIGHMEM
2077 /*
2078 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2079 * and totalram_pages.
2080 */
2081 extern void free_highmem_page(struct page *page);
2082 #endif
2083
2084 extern void adjust_managed_page_count(struct page *page, long count);
2085 extern void mem_init_print_info(const char *str);
2086
2087 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2088
2089 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)2090 static inline void __free_reserved_page(struct page *page)
2091 {
2092 ClearPageReserved(page);
2093 init_page_count(page);
2094 __free_page(page);
2095 }
2096
free_reserved_page(struct page * page)2097 static inline void free_reserved_page(struct page *page)
2098 {
2099 __free_reserved_page(page);
2100 adjust_managed_page_count(page, 1);
2101 }
2102
mark_page_reserved(struct page * page)2103 static inline void mark_page_reserved(struct page *page)
2104 {
2105 SetPageReserved(page);
2106 adjust_managed_page_count(page, -1);
2107 }
2108
2109 /*
2110 * Default method to free all the __init memory into the buddy system.
2111 * The freed pages will be poisoned with pattern "poison" if it's within
2112 * range [0, UCHAR_MAX].
2113 * Return pages freed into the buddy system.
2114 */
free_initmem_default(int poison)2115 static inline unsigned long free_initmem_default(int poison)
2116 {
2117 extern char __init_begin[], __init_end[];
2118
2119 return free_reserved_area(&__init_begin, &__init_end,
2120 poison, "unused kernel");
2121 }
2122
get_num_physpages(void)2123 static inline unsigned long get_num_physpages(void)
2124 {
2125 int nid;
2126 unsigned long phys_pages = 0;
2127
2128 for_each_online_node(nid)
2129 phys_pages += node_present_pages(nid);
2130
2131 return phys_pages;
2132 }
2133
2134 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2135 /*
2136 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2137 * zones, allocate the backing mem_map and account for memory holes in a more
2138 * architecture independent manner. This is a substitute for creating the
2139 * zone_sizes[] and zholes_size[] arrays and passing them to
2140 * free_area_init_node()
2141 *
2142 * An architecture is expected to register range of page frames backed by
2143 * physical memory with memblock_add[_node]() before calling
2144 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2145 * usage, an architecture is expected to do something like
2146 *
2147 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2148 * max_highmem_pfn};
2149 * for_each_valid_physical_page_range()
2150 * memblock_add_node(base, size, nid)
2151 * free_area_init_nodes(max_zone_pfns);
2152 *
2153 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2154 * registered physical page range. Similarly
2155 * sparse_memory_present_with_active_regions() calls memory_present() for
2156 * each range when SPARSEMEM is enabled.
2157 *
2158 * See mm/page_alloc.c for more information on each function exposed by
2159 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2160 */
2161 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2162 unsigned long node_map_pfn_alignment(void);
2163 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2164 unsigned long end_pfn);
2165 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2166 unsigned long end_pfn);
2167 extern void get_pfn_range_for_nid(unsigned int nid,
2168 unsigned long *start_pfn, unsigned long *end_pfn);
2169 extern unsigned long find_min_pfn_with_active_regions(void);
2170 extern void free_bootmem_with_active_regions(int nid,
2171 unsigned long max_low_pfn);
2172 extern void sparse_memory_present_with_active_regions(int nid);
2173
2174 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2175
2176 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2177 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)2178 static inline int __early_pfn_to_nid(unsigned long pfn,
2179 struct mminit_pfnnid_cache *state)
2180 {
2181 return 0;
2182 }
2183 #else
2184 /* please see mm/page_alloc.c */
2185 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2186 /* there is a per-arch backend function. */
2187 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2188 struct mminit_pfnnid_cache *state);
2189 #endif
2190
2191 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2192 void zero_resv_unavail(void);
2193 #else
zero_resv_unavail(void)2194 static inline void zero_resv_unavail(void) {}
2195 #endif
2196
2197 extern void set_dma_reserve(unsigned long new_dma_reserve);
2198 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2199 enum memmap_context, struct vmem_altmap *);
2200 extern void setup_per_zone_wmarks(void);
2201 extern int __meminit init_per_zone_wmark_min(void);
2202 extern void mem_init(void);
2203 extern void __init mmap_init(void);
2204 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2205 extern long si_mem_available(void);
2206 extern void si_meminfo(struct sysinfo * val);
2207 extern void si_meminfo_node(struct sysinfo *val, int nid);
2208 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2209 extern unsigned long arch_reserved_kernel_pages(void);
2210 #endif
2211
2212 extern __printf(3, 4)
2213 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2214
2215 extern void setup_per_cpu_pageset(void);
2216
2217 extern void zone_pcp_update(struct zone *zone);
2218 extern void zone_pcp_reset(struct zone *zone);
2219
2220 /* page_alloc.c */
2221 extern int min_free_kbytes;
2222 extern int watermark_boost_factor;
2223 extern int watermark_scale_factor;
2224
2225 /* nommu.c */
2226 extern atomic_long_t mmap_pages_allocated;
2227 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2228
2229 /* interval_tree.c */
2230 void vma_interval_tree_insert(struct vm_area_struct *node,
2231 struct rb_root_cached *root);
2232 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2233 struct vm_area_struct *prev,
2234 struct rb_root_cached *root);
2235 void vma_interval_tree_remove(struct vm_area_struct *node,
2236 struct rb_root_cached *root);
2237 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2238 unsigned long start, unsigned long last);
2239 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2240 unsigned long start, unsigned long last);
2241
2242 #define vma_interval_tree_foreach(vma, root, start, last) \
2243 for (vma = vma_interval_tree_iter_first(root, start, last); \
2244 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2245
2246 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2247 struct rb_root_cached *root);
2248 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2249 struct rb_root_cached *root);
2250 struct anon_vma_chain *
2251 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2252 unsigned long start, unsigned long last);
2253 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2254 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2255 #ifdef CONFIG_DEBUG_VM_RB
2256 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2257 #endif
2258
2259 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2260 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2261 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2262
2263 /* mmap.c */
2264 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2265 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2266 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2267 struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2268 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2269 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2270 {
2271 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2272 }
2273 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2274 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2275 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2276 struct mempolicy *, struct vm_userfaultfd_ctx);
2277 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2278 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2279 unsigned long addr, int new_below);
2280 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2281 unsigned long addr, int new_below);
2282 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2283 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2284 struct rb_node **, struct rb_node *);
2285 extern void unlink_file_vma(struct vm_area_struct *);
2286 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2287 unsigned long addr, unsigned long len, pgoff_t pgoff,
2288 bool *need_rmap_locks);
2289 extern void exit_mmap(struct mm_struct *);
2290
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2291 static inline int check_data_rlimit(unsigned long rlim,
2292 unsigned long new,
2293 unsigned long start,
2294 unsigned long end_data,
2295 unsigned long start_data)
2296 {
2297 if (rlim < RLIM_INFINITY) {
2298 if (((new - start) + (end_data - start_data)) > rlim)
2299 return -ENOSPC;
2300 }
2301
2302 return 0;
2303 }
2304
2305 extern int mm_take_all_locks(struct mm_struct *mm);
2306 extern void mm_drop_all_locks(struct mm_struct *mm);
2307
2308 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2309 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2310 extern struct file *get_task_exe_file(struct task_struct *task);
2311
2312 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2313 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2314
2315 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2316 const struct vm_special_mapping *sm);
2317 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2318 unsigned long addr, unsigned long len,
2319 unsigned long flags,
2320 const struct vm_special_mapping *spec);
2321 /* This is an obsolete alternative to _install_special_mapping. */
2322 extern int install_special_mapping(struct mm_struct *mm,
2323 unsigned long addr, unsigned long len,
2324 unsigned long flags, struct page **pages);
2325
2326 unsigned long randomize_stack_top(unsigned long stack_top);
2327
2328 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2329
2330 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2331 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2332 struct list_head *uf);
2333 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2334 unsigned long len, unsigned long prot, unsigned long flags,
2335 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2336 struct list_head *uf);
2337 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2338 struct list_head *uf, bool downgrade);
2339 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2340 struct list_head *uf);
2341
2342 static inline unsigned long
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)2343 do_mmap_pgoff(struct file *file, unsigned long addr,
2344 unsigned long len, unsigned long prot, unsigned long flags,
2345 unsigned long pgoff, unsigned long *populate,
2346 struct list_head *uf)
2347 {
2348 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2349 }
2350
2351 #ifdef CONFIG_MMU
2352 extern int __mm_populate(unsigned long addr, unsigned long len,
2353 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2354 static inline void mm_populate(unsigned long addr, unsigned long len)
2355 {
2356 /* Ignore errors */
2357 (void) __mm_populate(addr, len, 1);
2358 }
2359 #else
mm_populate(unsigned long addr,unsigned long len)2360 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2361 #endif
2362
2363 /* These take the mm semaphore themselves */
2364 extern int __must_check vm_brk(unsigned long, unsigned long);
2365 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2366 extern int vm_munmap(unsigned long, size_t);
2367 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2368 unsigned long, unsigned long,
2369 unsigned long, unsigned long);
2370
2371 struct vm_unmapped_area_info {
2372 #define VM_UNMAPPED_AREA_TOPDOWN 1
2373 unsigned long flags;
2374 unsigned long length;
2375 unsigned long low_limit;
2376 unsigned long high_limit;
2377 unsigned long align_mask;
2378 unsigned long align_offset;
2379 };
2380
2381 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2382 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2383
2384 /*
2385 * Search for an unmapped address range.
2386 *
2387 * We are looking for a range that:
2388 * - does not intersect with any VMA;
2389 * - is contained within the [low_limit, high_limit) interval;
2390 * - is at least the desired size.
2391 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2392 */
2393 static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info * info)2394 vm_unmapped_area(struct vm_unmapped_area_info *info)
2395 {
2396 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2397 return unmapped_area_topdown(info);
2398 else
2399 return unmapped_area(info);
2400 }
2401
2402 /* truncate.c */
2403 extern void truncate_inode_pages(struct address_space *, loff_t);
2404 extern void truncate_inode_pages_range(struct address_space *,
2405 loff_t lstart, loff_t lend);
2406 extern void truncate_inode_pages_final(struct address_space *);
2407
2408 /* generic vm_area_ops exported for stackable file systems */
2409 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2410 extern void filemap_map_pages(struct vm_fault *vmf,
2411 pgoff_t start_pgoff, pgoff_t end_pgoff);
2412 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2413
2414 /* mm/page-writeback.c */
2415 int __must_check write_one_page(struct page *page);
2416 void task_dirty_inc(struct task_struct *tsk);
2417
2418 /* readahead.c */
2419 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
2420
2421 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2422 pgoff_t offset, unsigned long nr_to_read);
2423
2424 void page_cache_sync_readahead(struct address_space *mapping,
2425 struct file_ra_state *ra,
2426 struct file *filp,
2427 pgoff_t offset,
2428 unsigned long size);
2429
2430 void page_cache_async_readahead(struct address_space *mapping,
2431 struct file_ra_state *ra,
2432 struct file *filp,
2433 struct page *pg,
2434 pgoff_t offset,
2435 unsigned long size);
2436
2437 extern unsigned long stack_guard_gap;
2438 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2439 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2440
2441 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2442 extern int expand_downwards(struct vm_area_struct *vma,
2443 unsigned long address);
2444 #if VM_GROWSUP
2445 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2446 #else
2447 #define expand_upwards(vma, address) (0)
2448 #endif
2449
2450 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2451 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2452 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2453 struct vm_area_struct **pprev);
2454
2455 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2456 NULL if none. Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2457 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2458 {
2459 struct vm_area_struct * vma = find_vma(mm,start_addr);
2460
2461 if (vma && end_addr <= vma->vm_start)
2462 vma = NULL;
2463 return vma;
2464 }
2465
vm_start_gap(struct vm_area_struct * vma)2466 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2467 {
2468 unsigned long vm_start = vma->vm_start;
2469
2470 if (vma->vm_flags & VM_GROWSDOWN) {
2471 vm_start -= stack_guard_gap;
2472 if (vm_start > vma->vm_start)
2473 vm_start = 0;
2474 }
2475 return vm_start;
2476 }
2477
vm_end_gap(struct vm_area_struct * vma)2478 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2479 {
2480 unsigned long vm_end = vma->vm_end;
2481
2482 if (vma->vm_flags & VM_GROWSUP) {
2483 vm_end += stack_guard_gap;
2484 if (vm_end < vma->vm_end)
2485 vm_end = -PAGE_SIZE;
2486 }
2487 return vm_end;
2488 }
2489
vma_pages(struct vm_area_struct * vma)2490 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2491 {
2492 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2493 }
2494
2495 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2496 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2497 unsigned long vm_start, unsigned long vm_end)
2498 {
2499 struct vm_area_struct *vma = find_vma(mm, vm_start);
2500
2501 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2502 vma = NULL;
2503
2504 return vma;
2505 }
2506
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2507 static inline bool range_in_vma(struct vm_area_struct *vma,
2508 unsigned long start, unsigned long end)
2509 {
2510 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2511 }
2512
2513 #ifdef CONFIG_MMU
2514 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2515 void vma_set_page_prot(struct vm_area_struct *vma);
2516 #else
vm_get_page_prot(unsigned long vm_flags)2517 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2518 {
2519 return __pgprot(0);
2520 }
vma_set_page_prot(struct vm_area_struct * vma)2521 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2522 {
2523 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2524 }
2525 #endif
2526
2527 #ifdef CONFIG_NUMA_BALANCING
2528 unsigned long change_prot_numa(struct vm_area_struct *vma,
2529 unsigned long start, unsigned long end);
2530 #endif
2531
2532 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2533 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2534 unsigned long pfn, unsigned long size, pgprot_t);
2535 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2536 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2537 unsigned long num);
2538 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2539 unsigned long num);
2540 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2541 unsigned long pfn);
2542 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2543 unsigned long pfn, pgprot_t pgprot);
2544 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2545 pfn_t pfn);
2546 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2547 unsigned long addr, pfn_t pfn);
2548 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2549
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2550 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2551 unsigned long addr, struct page *page)
2552 {
2553 int err = vm_insert_page(vma, addr, page);
2554
2555 if (err == -ENOMEM)
2556 return VM_FAULT_OOM;
2557 if (err < 0 && err != -EBUSY)
2558 return VM_FAULT_SIGBUS;
2559
2560 return VM_FAULT_NOPAGE;
2561 }
2562
vmf_error(int err)2563 static inline vm_fault_t vmf_error(int err)
2564 {
2565 if (err == -ENOMEM)
2566 return VM_FAULT_OOM;
2567 return VM_FAULT_SIGBUS;
2568 }
2569
2570 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2571 unsigned int foll_flags);
2572
2573 #define FOLL_WRITE 0x01 /* check pte is writable */
2574 #define FOLL_TOUCH 0x02 /* mark page accessed */
2575 #define FOLL_GET 0x04 /* do get_page on page */
2576 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2577 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2578 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2579 * and return without waiting upon it */
2580 #define FOLL_POPULATE 0x40 /* fault in page */
2581 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2582 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2583 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2584 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2585 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2586 #define FOLL_MLOCK 0x1000 /* lock present pages */
2587 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2588 #define FOLL_COW 0x4000 /* internal GUP flag */
2589 #define FOLL_ANON 0x8000 /* don't do file mappings */
2590 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2591 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2592
2593 /*
2594 * NOTE on FOLL_LONGTERM:
2595 *
2596 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2597 * period _often_ under userspace control. This is contrasted with
2598 * iov_iter_get_pages() where usages which are transient.
2599 *
2600 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2601 * lifetime enforced by the filesystem and we need guarantees that longterm
2602 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2603 * the filesystem. Ideas for this coordination include revoking the longterm
2604 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2605 * added after the problem with filesystems was found FS DAX VMAs are
2606 * specifically failed. Filesystem pages are still subject to bugs and use of
2607 * FOLL_LONGTERM should be avoided on those pages.
2608 *
2609 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2610 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2611 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2612 * is due to an incompatibility with the FS DAX check and
2613 * FAULT_FLAG_ALLOW_RETRY
2614 *
2615 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2616 * that region. And so CMA attempts to migrate the page before pinning when
2617 * FOLL_LONGTERM is specified.
2618 */
2619
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)2620 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2621 {
2622 if (vm_fault & VM_FAULT_OOM)
2623 return -ENOMEM;
2624 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2625 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2626 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2627 return -EFAULT;
2628 return 0;
2629 }
2630
2631 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2632 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2633 unsigned long size, pte_fn_t fn, void *data);
2634
2635
2636 #ifdef CONFIG_PAGE_POISONING
2637 extern bool page_poisoning_enabled(void);
2638 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2639 #else
page_poisoning_enabled(void)2640 static inline bool page_poisoning_enabled(void) { return false; }
kernel_poison_pages(struct page * page,int numpages,int enable)2641 static inline void kernel_poison_pages(struct page *page, int numpages,
2642 int enable) { }
2643 #endif
2644
2645 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2646 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2647 #else
2648 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2649 #endif
want_init_on_alloc(gfp_t flags)2650 static inline bool want_init_on_alloc(gfp_t flags)
2651 {
2652 if (static_branch_unlikely(&init_on_alloc) &&
2653 !page_poisoning_enabled())
2654 return true;
2655 return flags & __GFP_ZERO;
2656 }
2657
2658 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2659 DECLARE_STATIC_KEY_TRUE(init_on_free);
2660 #else
2661 DECLARE_STATIC_KEY_FALSE(init_on_free);
2662 #endif
want_init_on_free(void)2663 static inline bool want_init_on_free(void)
2664 {
2665 return static_branch_unlikely(&init_on_free) &&
2666 !page_poisoning_enabled();
2667 }
2668
2669 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
2670 DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
2671 #else
2672 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2673 #endif
2674
debug_pagealloc_enabled(void)2675 static inline bool debug_pagealloc_enabled(void)
2676 {
2677 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2678 return false;
2679
2680 return static_branch_unlikely(&_debug_pagealloc_enabled);
2681 }
2682
2683 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2684 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2685
2686 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2687 kernel_map_pages(struct page *page, int numpages, int enable)
2688 {
2689 __kernel_map_pages(page, numpages, enable);
2690 }
2691 #ifdef CONFIG_HIBERNATION
2692 extern bool kernel_page_present(struct page *page);
2693 #endif /* CONFIG_HIBERNATION */
2694 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2695 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2696 kernel_map_pages(struct page *page, int numpages, int enable) {}
2697 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2698 static inline bool kernel_page_present(struct page *page) { return true; }
2699 #endif /* CONFIG_HIBERNATION */
2700 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2701
2702 #ifdef __HAVE_ARCH_GATE_AREA
2703 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2704 extern int in_gate_area_no_mm(unsigned long addr);
2705 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2706 #else
get_gate_vma(struct mm_struct * mm)2707 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2708 {
2709 return NULL;
2710 }
in_gate_area_no_mm(unsigned long addr)2711 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)2712 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2713 {
2714 return 0;
2715 }
2716 #endif /* __HAVE_ARCH_GATE_AREA */
2717
2718 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2719
2720 #ifdef CONFIG_SYSCTL
2721 extern int sysctl_drop_caches;
2722 int drop_caches_sysctl_handler(struct ctl_table *, int,
2723 void __user *, size_t *, loff_t *);
2724 #endif
2725
2726 void drop_slab(void);
2727 void drop_slab_node(int nid);
2728
2729 #ifndef CONFIG_MMU
2730 #define randomize_va_space 0
2731 #else
2732 extern int randomize_va_space;
2733 #endif
2734
2735 const char * arch_vma_name(struct vm_area_struct *vma);
2736 #ifdef CONFIG_MMU
2737 void print_vma_addr(char *prefix, unsigned long rip);
2738 #else
print_vma_addr(char * prefix,unsigned long rip)2739 static inline void print_vma_addr(char *prefix, unsigned long rip)
2740 {
2741 }
2742 #endif
2743
2744 void *sparse_buffer_alloc(unsigned long size);
2745 struct page * __populate_section_memmap(unsigned long pfn,
2746 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2747 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2748 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2749 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2750 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2751 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2752 void *vmemmap_alloc_block(unsigned long size, int node);
2753 struct vmem_altmap;
2754 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2755 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2756 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2757 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2758 int node);
2759 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2760 struct vmem_altmap *altmap);
2761 void vmemmap_populate_print_last(void);
2762 #ifdef CONFIG_MEMORY_HOTPLUG
2763 void vmemmap_free(unsigned long start, unsigned long end,
2764 struct vmem_altmap *altmap);
2765 #endif
2766 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2767 unsigned long nr_pages);
2768
2769 enum mf_flags {
2770 MF_COUNT_INCREASED = 1 << 0,
2771 MF_ACTION_REQUIRED = 1 << 1,
2772 MF_MUST_KILL = 1 << 2,
2773 MF_SOFT_OFFLINE = 1 << 3,
2774 };
2775 extern int memory_failure(unsigned long pfn, int flags);
2776 extern void memory_failure_queue(unsigned long pfn, int flags);
2777 extern int unpoison_memory(unsigned long pfn);
2778 extern int get_hwpoison_page(struct page *page);
2779 #define put_hwpoison_page(page) put_page(page)
2780 extern int sysctl_memory_failure_early_kill;
2781 extern int sysctl_memory_failure_recovery;
2782 extern void shake_page(struct page *p, int access);
2783 extern atomic_long_t num_poisoned_pages __read_mostly;
2784 extern int soft_offline_page(struct page *page, int flags);
2785
2786
2787 /*
2788 * Error handlers for various types of pages.
2789 */
2790 enum mf_result {
2791 MF_IGNORED, /* Error: cannot be handled */
2792 MF_FAILED, /* Error: handling failed */
2793 MF_DELAYED, /* Will be handled later */
2794 MF_RECOVERED, /* Successfully recovered */
2795 };
2796
2797 enum mf_action_page_type {
2798 MF_MSG_KERNEL,
2799 MF_MSG_KERNEL_HIGH_ORDER,
2800 MF_MSG_SLAB,
2801 MF_MSG_DIFFERENT_COMPOUND,
2802 MF_MSG_POISONED_HUGE,
2803 MF_MSG_HUGE,
2804 MF_MSG_FREE_HUGE,
2805 MF_MSG_NON_PMD_HUGE,
2806 MF_MSG_UNMAP_FAILED,
2807 MF_MSG_DIRTY_SWAPCACHE,
2808 MF_MSG_CLEAN_SWAPCACHE,
2809 MF_MSG_DIRTY_MLOCKED_LRU,
2810 MF_MSG_CLEAN_MLOCKED_LRU,
2811 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2812 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2813 MF_MSG_DIRTY_LRU,
2814 MF_MSG_CLEAN_LRU,
2815 MF_MSG_TRUNCATED_LRU,
2816 MF_MSG_BUDDY,
2817 MF_MSG_BUDDY_2ND,
2818 MF_MSG_DAX,
2819 MF_MSG_UNKNOWN,
2820 };
2821
2822 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2823 extern void clear_huge_page(struct page *page,
2824 unsigned long addr_hint,
2825 unsigned int pages_per_huge_page);
2826 extern void copy_user_huge_page(struct page *dst, struct page *src,
2827 unsigned long addr_hint,
2828 struct vm_area_struct *vma,
2829 unsigned int pages_per_huge_page);
2830 extern long copy_huge_page_from_user(struct page *dst_page,
2831 const void __user *usr_src,
2832 unsigned int pages_per_huge_page,
2833 bool allow_pagefault);
2834 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2835
2836 #ifdef CONFIG_DEBUG_PAGEALLOC
2837 extern unsigned int _debug_guardpage_minorder;
2838 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2839
debug_guardpage_minorder(void)2840 static inline unsigned int debug_guardpage_minorder(void)
2841 {
2842 return _debug_guardpage_minorder;
2843 }
2844
debug_guardpage_enabled(void)2845 static inline bool debug_guardpage_enabled(void)
2846 {
2847 return static_branch_unlikely(&_debug_guardpage_enabled);
2848 }
2849
page_is_guard(struct page * page)2850 static inline bool page_is_guard(struct page *page)
2851 {
2852 if (!debug_guardpage_enabled())
2853 return false;
2854
2855 return PageGuard(page);
2856 }
2857 #else
debug_guardpage_minorder(void)2858 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)2859 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)2860 static inline bool page_is_guard(struct page *page) { return false; }
2861 #endif /* CONFIG_DEBUG_PAGEALLOC */
2862
2863 #if MAX_NUMNODES > 1
2864 void __init setup_nr_node_ids(void);
2865 #else
setup_nr_node_ids(void)2866 static inline void setup_nr_node_ids(void) {}
2867 #endif
2868
2869 extern int memcmp_pages(struct page *page1, struct page *page2);
2870
pages_identical(struct page * page1,struct page * page2)2871 static inline int pages_identical(struct page *page1, struct page *page2)
2872 {
2873 return !memcmp_pages(page1, page2);
2874 }
2875
2876 #endif /* __KERNEL__ */
2877 #endif /* _LINUX_MM_H */
2878