1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18
19 #include "sfp.h"
20 #include "swphy.h"
21
22 enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
37
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
51
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
59
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
63
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
75 };
76
77 static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
85 };
86
mod_state_to_str(unsigned short mod_state)87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
92 }
93
94 static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
98 };
99
dev_state_to_str(unsigned short dev_state)100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
105 }
106
107 static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
119 };
120
event_to_str(unsigned short event)121 static const char *event_to_str(unsigned short event)
122 {
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
126 }
127
128 static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
140 };
141
sm_state_to_str(unsigned short sm_state)142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
147 }
148
149 static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
156 };
157
158 static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
165 };
166
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172 #define T_WAIT msecs_to_jiffies(50)
173 #define T_START_UP msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
175
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179 #define T_RESET_US 10
180 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
181
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187 #define N_FAULT_INIT 5
188 #define N_FAULT 5
189
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193 #define T_PHY_RETRY msecs_to_jiffies(50)
194 #define R_PHY_RETRY 12
195
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203 #define T_SERIAL msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT 10
207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW 12
209
210 /* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215 #define SFP_PHY_ADDR 22
216 #define SFP_PHY_ADDR_ROLLBALL 17
217
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222 #define SFP_EEPROM_BLOCK_SIZE 16
223
224 struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228
229 struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
239
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
247
248 bool need_poll;
249
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
255 */
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state;
261
262 struct delayed_work poll;
263 struct delayed_work timeout;
264 struct mutex sm_mutex; /* Protects state machine */
265 unsigned char sm_mod_state;
266 unsigned char sm_mod_tries_init;
267 unsigned char sm_mod_tries;
268 unsigned char sm_dev_state;
269 unsigned short sm_state;
270 unsigned char sm_fault_retries;
271 unsigned char sm_phy_retries;
272
273 struct sfp_eeprom_id id;
274 unsigned int module_power_mW;
275 unsigned int module_t_start_up;
276 unsigned int module_t_wait;
277
278 unsigned int rate_kbd;
279 unsigned int rs_threshold_kbd;
280 unsigned int rs_state_mask;
281
282 bool have_a2;
283 bool tx_fault_ignore;
284
285 const struct sfp_quirk *quirk;
286
287 #if IS_ENABLED(CONFIG_HWMON)
288 struct sfp_diag diag;
289 struct delayed_work hwmon_probe;
290 unsigned int hwmon_tries;
291 struct device *hwmon_dev;
292 char *hwmon_name;
293 #endif
294
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 struct dentry *debugfs_dir;
297 #endif
298 };
299
sff_module_supported(const struct sfp_eeprom_id * id)300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305
306 static const struct sff_data sff_data = {
307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 .module_supported = sff_module_supported,
309 };
310
sfp_module_supported(const struct sfp_eeprom_id * id)311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 if (id->base.phys_id == SFF8024_ID_SFP &&
314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 return true;
316
317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 * as supported based on vendor name and pn match.
320 */
321 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
325 return true;
326
327 return false;
328 }
329
330 static const struct sff_data sfp_data = {
331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 .module_supported = sfp_module_supported,
334 };
335
336 static const struct of_device_id sfp_of_match[] = {
337 { .compatible = "sff,sff", .data = &sff_data, },
338 { .compatible = "sff,sfp", .data = &sfp_data, },
339 { },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342
sfp_fixup_long_startup(struct sfp * sfp)343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347
sfp_fixup_ignore_tx_fault(struct sfp * sfp)348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
349 {
350 sfp->tx_fault_ignore = true;
351 }
352
353 // For 10GBASE-T short-reach modules
sfp_fixup_10gbaset_30m(struct sfp * sfp)354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
355 {
356 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
358 }
359
sfp_fixup_rollball_proto(struct sfp * sfp,unsigned int secs)360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
361 {
362 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363 sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
364 }
365
sfp_fixup_fs_10gt(struct sfp * sfp)366 static void sfp_fixup_fs_10gt(struct sfp *sfp)
367 {
368 sfp_fixup_10gbaset_30m(sfp);
369
370 // These SFPs need 4 seconds before the PHY can be accessed
371 sfp_fixup_rollball_proto(sfp, 4);
372 }
373
sfp_fixup_halny_gsfp(struct sfp * sfp)374 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
375 {
376 /* Ignore the TX_FAULT and LOS signals on this module.
377 * these are possibly used for other purposes on this
378 * module, e.g. a serial port.
379 */
380 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
381 }
382
sfp_fixup_rollball(struct sfp * sfp)383 static void sfp_fixup_rollball(struct sfp *sfp)
384 {
385 // Rollball SFPs need 25 seconds before the PHY can be accessed
386 sfp_fixup_rollball_proto(sfp, 25);
387 }
388
sfp_fixup_rollball_cc(struct sfp * sfp)389 static void sfp_fixup_rollball_cc(struct sfp *sfp)
390 {
391 sfp_fixup_rollball(sfp);
392
393 /* Some RollBall SFPs may have wrong (zero) extended compliance code
394 * burned in EEPROM. For PHY probing we need the correct one.
395 */
396 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
397 }
398
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400 unsigned long *modes,
401 unsigned long *interfaces)
402 {
403 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
405 }
406
sfp_quirk_disable_autoneg(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408 unsigned long *modes,
409 unsigned long *interfaces)
410 {
411 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
412 }
413
sfp_quirk_oem_2_5g(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415 unsigned long *modes,
416 unsigned long *interfaces)
417 {
418 /* Copper 2.5G SFP */
419 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421 sfp_quirk_disable_autoneg(id, modes, interfaces);
422 }
423
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425 unsigned long *modes,
426 unsigned long *interfaces)
427 {
428 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
429 * types including 10G Ethernet which is not truth. So clear all claimed
430 * modes and set only one mode which module supports: 1000baseX_Full.
431 */
432 linkmode_zero(modes);
433 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
434 }
435
436 #define SFP_QUIRK(_v, _p, _m, _f) \
437 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
440
441 static const struct sfp_quirk sfp_quirks[] = {
442 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443 // report 2500MBd NRZ in their EEPROM
444 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
445
446 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
447 // NRZ in their EEPROM
448 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
449 sfp_fixup_long_startup),
450
451 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the
452 // Rollball protocol to talk to the PHY.
453 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
454
455 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
456
457 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
458 // 2600MBd in their EERPOM
459 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
460
461 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
462 // their EEPROM
463 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
464 sfp_fixup_ignore_tx_fault),
465
466 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
467 // 2500MBd NRZ in their EEPROM
468 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
469
470 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
471
472 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
473 // Rollball protocol to talk to the PHY.
474 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
475 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
476
477 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
478 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
479 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
480 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
481 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
482 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
483 };
484
sfp_strlen(const char * str,size_t maxlen)485 static size_t sfp_strlen(const char *str, size_t maxlen)
486 {
487 size_t size, i;
488
489 /* Trailing characters should be filled with space chars, but
490 * some manufacturers can't read SFF-8472 and use NUL.
491 */
492 for (i = 0, size = 0; i < maxlen; i++)
493 if (str[i] != ' ' && str[i] != '\0')
494 size = i + 1;
495
496 return size;
497 }
498
sfp_match(const char * qs,const char * str,size_t len)499 static bool sfp_match(const char *qs, const char *str, size_t len)
500 {
501 if (!qs)
502 return true;
503 if (strlen(qs) != len)
504 return false;
505 return !strncmp(qs, str, len);
506 }
507
sfp_lookup_quirk(const struct sfp_eeprom_id * id)508 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
509 {
510 const struct sfp_quirk *q;
511 unsigned int i;
512 size_t vs, ps;
513
514 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
515 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
516
517 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
518 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
519 sfp_match(q->part, id->base.vendor_pn, ps))
520 return q;
521
522 return NULL;
523 }
524
525 static unsigned long poll_jiffies;
526
sfp_gpio_get_state(struct sfp * sfp)527 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
528 {
529 unsigned int i, state, v;
530
531 for (i = state = 0; i < GPIO_MAX; i++) {
532 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
533 continue;
534
535 v = gpiod_get_value_cansleep(sfp->gpio[i]);
536 if (v)
537 state |= BIT(i);
538 }
539
540 return state;
541 }
542
sff_gpio_get_state(struct sfp * sfp)543 static unsigned int sff_gpio_get_state(struct sfp *sfp)
544 {
545 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
546 }
547
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)548 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
549 {
550 unsigned int drive;
551
552 if (state & SFP_F_PRESENT)
553 /* If the module is present, drive the requested signals */
554 drive = sfp->state_hw_drive;
555 else
556 /* Otherwise, let them float to the pull-ups */
557 drive = 0;
558
559 if (sfp->gpio[GPIO_TX_DISABLE]) {
560 if (drive & SFP_F_TX_DISABLE)
561 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
562 state & SFP_F_TX_DISABLE);
563 else
564 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
565 }
566
567 if (sfp->gpio[GPIO_RS0]) {
568 if (drive & SFP_F_RS0)
569 gpiod_direction_output(sfp->gpio[GPIO_RS0],
570 state & SFP_F_RS0);
571 else
572 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
573 }
574
575 if (sfp->gpio[GPIO_RS1]) {
576 if (drive & SFP_F_RS1)
577 gpiod_direction_output(sfp->gpio[GPIO_RS1],
578 state & SFP_F_RS1);
579 else
580 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
581 }
582 }
583
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)584 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
585 size_t len)
586 {
587 struct i2c_msg msgs[2];
588 u8 bus_addr = a2 ? 0x51 : 0x50;
589 size_t block_size = sfp->i2c_block_size;
590 size_t this_len;
591 int ret;
592
593 msgs[0].addr = bus_addr;
594 msgs[0].flags = 0;
595 msgs[0].len = 1;
596 msgs[0].buf = &dev_addr;
597 msgs[1].addr = bus_addr;
598 msgs[1].flags = I2C_M_RD;
599 msgs[1].len = len;
600 msgs[1].buf = buf;
601
602 while (len) {
603 this_len = len;
604 if (this_len > block_size)
605 this_len = block_size;
606
607 msgs[1].len = this_len;
608
609 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
610 if (ret < 0)
611 return ret;
612
613 if (ret != ARRAY_SIZE(msgs))
614 break;
615
616 msgs[1].buf += this_len;
617 dev_addr += this_len;
618 len -= this_len;
619 }
620
621 return msgs[1].buf - (u8 *)buf;
622 }
623
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)624 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
625 size_t len)
626 {
627 struct i2c_msg msgs[1];
628 u8 bus_addr = a2 ? 0x51 : 0x50;
629 int ret;
630
631 msgs[0].addr = bus_addr;
632 msgs[0].flags = 0;
633 msgs[0].len = 1 + len;
634 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
635 if (!msgs[0].buf)
636 return -ENOMEM;
637
638 msgs[0].buf[0] = dev_addr;
639 memcpy(&msgs[0].buf[1], buf, len);
640
641 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
642
643 kfree(msgs[0].buf);
644
645 if (ret < 0)
646 return ret;
647
648 return ret == ARRAY_SIZE(msgs) ? len : 0;
649 }
650
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)651 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
652 {
653 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
654 return -EINVAL;
655
656 sfp->i2c = i2c;
657 sfp->read = sfp_i2c_read;
658 sfp->write = sfp_i2c_write;
659
660 return 0;
661 }
662
sfp_i2c_mdiobus_create(struct sfp * sfp)663 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
664 {
665 struct mii_bus *i2c_mii;
666 int ret;
667
668 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
669 if (IS_ERR(i2c_mii))
670 return PTR_ERR(i2c_mii);
671
672 i2c_mii->name = "SFP I2C Bus";
673 i2c_mii->phy_mask = ~0;
674
675 ret = mdiobus_register(i2c_mii);
676 if (ret < 0) {
677 mdiobus_free(i2c_mii);
678 return ret;
679 }
680
681 sfp->i2c_mii = i2c_mii;
682
683 return 0;
684 }
685
sfp_i2c_mdiobus_destroy(struct sfp * sfp)686 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
687 {
688 mdiobus_unregister(sfp->i2c_mii);
689 sfp->i2c_mii = NULL;
690 }
691
692 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)693 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
694 {
695 return sfp->read(sfp, a2, addr, buf, len);
696 }
697
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)698 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
699 {
700 return sfp->write(sfp, a2, addr, buf, len);
701 }
702
sfp_modify_u8(struct sfp * sfp,bool a2,u8 addr,u8 mask,u8 val)703 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
704 {
705 int ret;
706 u8 old, v;
707
708 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
709 if (ret != sizeof(old))
710 return ret;
711
712 v = (old & ~mask) | (val & mask);
713 if (v == old)
714 return sizeof(v);
715
716 return sfp_write(sfp, a2, addr, &v, sizeof(v));
717 }
718
sfp_soft_get_state(struct sfp * sfp)719 static unsigned int sfp_soft_get_state(struct sfp *sfp)
720 {
721 unsigned int state = 0;
722 u8 status;
723 int ret;
724
725 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
726 if (ret == sizeof(status)) {
727 if (status & SFP_STATUS_RX_LOS)
728 state |= SFP_F_LOS;
729 if (status & SFP_STATUS_TX_FAULT)
730 state |= SFP_F_TX_FAULT;
731 } else {
732 dev_err_ratelimited(sfp->dev,
733 "failed to read SFP soft status: %pe\n",
734 ERR_PTR(ret));
735 /* Preserve the current state */
736 state = sfp->state;
737 }
738
739 return state & sfp->state_soft_mask;
740 }
741
sfp_soft_set_state(struct sfp * sfp,unsigned int state,unsigned int soft)742 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
743 unsigned int soft)
744 {
745 u8 mask = 0;
746 u8 val = 0;
747
748 if (soft & SFP_F_TX_DISABLE)
749 mask |= SFP_STATUS_TX_DISABLE_FORCE;
750 if (state & SFP_F_TX_DISABLE)
751 val |= SFP_STATUS_TX_DISABLE_FORCE;
752
753 if (soft & SFP_F_RS0)
754 mask |= SFP_STATUS_RS0_SELECT;
755 if (state & SFP_F_RS0)
756 val |= SFP_STATUS_RS0_SELECT;
757
758 if (mask)
759 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
760
761 val = mask = 0;
762 if (soft & SFP_F_RS1)
763 mask |= SFP_EXT_STATUS_RS1_SELECT;
764 if (state & SFP_F_RS1)
765 val |= SFP_EXT_STATUS_RS1_SELECT;
766
767 if (mask)
768 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
769 }
770
sfp_soft_start_poll(struct sfp * sfp)771 static void sfp_soft_start_poll(struct sfp *sfp)
772 {
773 const struct sfp_eeprom_id *id = &sfp->id;
774 unsigned int mask = 0;
775
776 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
777 mask |= SFP_F_TX_DISABLE;
778 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
779 mask |= SFP_F_TX_FAULT;
780 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
781 mask |= SFP_F_LOS;
782 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
783 mask |= sfp->rs_state_mask;
784
785 mutex_lock(&sfp->st_mutex);
786 // Poll the soft state for hardware pins we want to ignore
787 sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
788
789 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
790 !sfp->need_poll)
791 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
792 mutex_unlock(&sfp->st_mutex);
793 }
794
sfp_soft_stop_poll(struct sfp * sfp)795 static void sfp_soft_stop_poll(struct sfp *sfp)
796 {
797 mutex_lock(&sfp->st_mutex);
798 sfp->state_soft_mask = 0;
799 mutex_unlock(&sfp->st_mutex);
800 }
801
802 /* sfp_get_state() - must be called with st_mutex held, or in the
803 * initialisation path.
804 */
sfp_get_state(struct sfp * sfp)805 static unsigned int sfp_get_state(struct sfp *sfp)
806 {
807 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
808 unsigned int state;
809
810 state = sfp->get_state(sfp) & sfp->state_hw_mask;
811 if (state & SFP_F_PRESENT && soft)
812 state |= sfp_soft_get_state(sfp);
813
814 return state;
815 }
816
817 /* sfp_set_state() - must be called with st_mutex held, or in the
818 * initialisation path.
819 */
sfp_set_state(struct sfp * sfp,unsigned int state)820 static void sfp_set_state(struct sfp *sfp, unsigned int state)
821 {
822 unsigned int soft;
823
824 sfp->set_state(sfp, state);
825
826 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
827 if (state & SFP_F_PRESENT && soft)
828 sfp_soft_set_state(sfp, state, soft);
829 }
830
sfp_mod_state(struct sfp * sfp,unsigned int mask,unsigned int set)831 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
832 {
833 mutex_lock(&sfp->st_mutex);
834 sfp->state = (sfp->state & ~mask) | set;
835 sfp_set_state(sfp, sfp->state);
836 mutex_unlock(&sfp->st_mutex);
837 }
838
sfp_check(void * buf,size_t len)839 static unsigned int sfp_check(void *buf, size_t len)
840 {
841 u8 *p, check;
842
843 for (p = buf, check = 0; len; p++, len--)
844 check += *p;
845
846 return check;
847 }
848
849 /* hwmon */
850 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)851 static umode_t sfp_hwmon_is_visible(const void *data,
852 enum hwmon_sensor_types type,
853 u32 attr, int channel)
854 {
855 const struct sfp *sfp = data;
856
857 switch (type) {
858 case hwmon_temp:
859 switch (attr) {
860 case hwmon_temp_min_alarm:
861 case hwmon_temp_max_alarm:
862 case hwmon_temp_lcrit_alarm:
863 case hwmon_temp_crit_alarm:
864 case hwmon_temp_min:
865 case hwmon_temp_max:
866 case hwmon_temp_lcrit:
867 case hwmon_temp_crit:
868 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
869 return 0;
870 fallthrough;
871 case hwmon_temp_input:
872 case hwmon_temp_label:
873 return 0444;
874 default:
875 return 0;
876 }
877 case hwmon_in:
878 switch (attr) {
879 case hwmon_in_min_alarm:
880 case hwmon_in_max_alarm:
881 case hwmon_in_lcrit_alarm:
882 case hwmon_in_crit_alarm:
883 case hwmon_in_min:
884 case hwmon_in_max:
885 case hwmon_in_lcrit:
886 case hwmon_in_crit:
887 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
888 return 0;
889 fallthrough;
890 case hwmon_in_input:
891 case hwmon_in_label:
892 return 0444;
893 default:
894 return 0;
895 }
896 case hwmon_curr:
897 switch (attr) {
898 case hwmon_curr_min_alarm:
899 case hwmon_curr_max_alarm:
900 case hwmon_curr_lcrit_alarm:
901 case hwmon_curr_crit_alarm:
902 case hwmon_curr_min:
903 case hwmon_curr_max:
904 case hwmon_curr_lcrit:
905 case hwmon_curr_crit:
906 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
907 return 0;
908 fallthrough;
909 case hwmon_curr_input:
910 case hwmon_curr_label:
911 return 0444;
912 default:
913 return 0;
914 }
915 case hwmon_power:
916 /* External calibration of receive power requires
917 * floating point arithmetic. Doing that in the kernel
918 * is not easy, so just skip it. If the module does
919 * not require external calibration, we can however
920 * show receiver power, since FP is then not needed.
921 */
922 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
923 channel == 1)
924 return 0;
925 switch (attr) {
926 case hwmon_power_min_alarm:
927 case hwmon_power_max_alarm:
928 case hwmon_power_lcrit_alarm:
929 case hwmon_power_crit_alarm:
930 case hwmon_power_min:
931 case hwmon_power_max:
932 case hwmon_power_lcrit:
933 case hwmon_power_crit:
934 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
935 return 0;
936 fallthrough;
937 case hwmon_power_input:
938 case hwmon_power_label:
939 return 0444;
940 default:
941 return 0;
942 }
943 default:
944 return 0;
945 }
946 }
947
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)948 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
949 {
950 __be16 val;
951 int err;
952
953 err = sfp_read(sfp, true, reg, &val, sizeof(val));
954 if (err < 0)
955 return err;
956
957 *value = be16_to_cpu(val);
958
959 return 0;
960 }
961
sfp_hwmon_to_rx_power(long * value)962 static void sfp_hwmon_to_rx_power(long *value)
963 {
964 *value = DIV_ROUND_CLOSEST(*value, 10);
965 }
966
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)967 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
968 long *value)
969 {
970 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
971 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
972 }
973
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)974 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
975 {
976 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
977 be16_to_cpu(sfp->diag.cal_t_offset), value);
978
979 if (*value >= 0x8000)
980 *value -= 0x10000;
981
982 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
983 }
984
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)985 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
986 {
987 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
988 be16_to_cpu(sfp->diag.cal_v_offset), value);
989
990 *value = DIV_ROUND_CLOSEST(*value, 10);
991 }
992
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)993 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
994 {
995 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
996 be16_to_cpu(sfp->diag.cal_txi_offset), value);
997
998 *value = DIV_ROUND_CLOSEST(*value, 500);
999 }
1000
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)1001 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1002 {
1003 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1004 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1005
1006 *value = DIV_ROUND_CLOSEST(*value, 10);
1007 }
1008
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)1009 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1010 {
1011 int err;
1012
1013 err = sfp_hwmon_read_sensor(sfp, reg, value);
1014 if (err < 0)
1015 return err;
1016
1017 sfp_hwmon_calibrate_temp(sfp, value);
1018
1019 return 0;
1020 }
1021
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)1022 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1023 {
1024 int err;
1025
1026 err = sfp_hwmon_read_sensor(sfp, reg, value);
1027 if (err < 0)
1028 return err;
1029
1030 sfp_hwmon_calibrate_vcc(sfp, value);
1031
1032 return 0;
1033 }
1034
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)1035 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1036 {
1037 int err;
1038
1039 err = sfp_hwmon_read_sensor(sfp, reg, value);
1040 if (err < 0)
1041 return err;
1042
1043 sfp_hwmon_calibrate_bias(sfp, value);
1044
1045 return 0;
1046 }
1047
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)1048 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1049 {
1050 int err;
1051
1052 err = sfp_hwmon_read_sensor(sfp, reg, value);
1053 if (err < 0)
1054 return err;
1055
1056 sfp_hwmon_calibrate_tx_power(sfp, value);
1057
1058 return 0;
1059 }
1060
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)1061 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1062 {
1063 int err;
1064
1065 err = sfp_hwmon_read_sensor(sfp, reg, value);
1066 if (err < 0)
1067 return err;
1068
1069 sfp_hwmon_to_rx_power(value);
1070
1071 return 0;
1072 }
1073
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)1074 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1075 {
1076 u8 status;
1077 int err;
1078
1079 switch (attr) {
1080 case hwmon_temp_input:
1081 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1082
1083 case hwmon_temp_lcrit:
1084 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1085 sfp_hwmon_calibrate_temp(sfp, value);
1086 return 0;
1087
1088 case hwmon_temp_min:
1089 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1090 sfp_hwmon_calibrate_temp(sfp, value);
1091 return 0;
1092 case hwmon_temp_max:
1093 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1094 sfp_hwmon_calibrate_temp(sfp, value);
1095 return 0;
1096
1097 case hwmon_temp_crit:
1098 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1099 sfp_hwmon_calibrate_temp(sfp, value);
1100 return 0;
1101
1102 case hwmon_temp_lcrit_alarm:
1103 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1104 if (err < 0)
1105 return err;
1106
1107 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1108 return 0;
1109
1110 case hwmon_temp_min_alarm:
1111 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1112 if (err < 0)
1113 return err;
1114
1115 *value = !!(status & SFP_WARN0_TEMP_LOW);
1116 return 0;
1117
1118 case hwmon_temp_max_alarm:
1119 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1120 if (err < 0)
1121 return err;
1122
1123 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1124 return 0;
1125
1126 case hwmon_temp_crit_alarm:
1127 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1128 if (err < 0)
1129 return err;
1130
1131 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1132 return 0;
1133 default:
1134 return -EOPNOTSUPP;
1135 }
1136
1137 return -EOPNOTSUPP;
1138 }
1139
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)1140 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1141 {
1142 u8 status;
1143 int err;
1144
1145 switch (attr) {
1146 case hwmon_in_input:
1147 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1148
1149 case hwmon_in_lcrit:
1150 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1151 sfp_hwmon_calibrate_vcc(sfp, value);
1152 return 0;
1153
1154 case hwmon_in_min:
1155 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1156 sfp_hwmon_calibrate_vcc(sfp, value);
1157 return 0;
1158
1159 case hwmon_in_max:
1160 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1161 sfp_hwmon_calibrate_vcc(sfp, value);
1162 return 0;
1163
1164 case hwmon_in_crit:
1165 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1166 sfp_hwmon_calibrate_vcc(sfp, value);
1167 return 0;
1168
1169 case hwmon_in_lcrit_alarm:
1170 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1171 if (err < 0)
1172 return err;
1173
1174 *value = !!(status & SFP_ALARM0_VCC_LOW);
1175 return 0;
1176
1177 case hwmon_in_min_alarm:
1178 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1179 if (err < 0)
1180 return err;
1181
1182 *value = !!(status & SFP_WARN0_VCC_LOW);
1183 return 0;
1184
1185 case hwmon_in_max_alarm:
1186 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1187 if (err < 0)
1188 return err;
1189
1190 *value = !!(status & SFP_WARN0_VCC_HIGH);
1191 return 0;
1192
1193 case hwmon_in_crit_alarm:
1194 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1195 if (err < 0)
1196 return err;
1197
1198 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1199 return 0;
1200 default:
1201 return -EOPNOTSUPP;
1202 }
1203
1204 return -EOPNOTSUPP;
1205 }
1206
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)1207 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1208 {
1209 u8 status;
1210 int err;
1211
1212 switch (attr) {
1213 case hwmon_curr_input:
1214 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1215
1216 case hwmon_curr_lcrit:
1217 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1218 sfp_hwmon_calibrate_bias(sfp, value);
1219 return 0;
1220
1221 case hwmon_curr_min:
1222 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1223 sfp_hwmon_calibrate_bias(sfp, value);
1224 return 0;
1225
1226 case hwmon_curr_max:
1227 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1228 sfp_hwmon_calibrate_bias(sfp, value);
1229 return 0;
1230
1231 case hwmon_curr_crit:
1232 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1233 sfp_hwmon_calibrate_bias(sfp, value);
1234 return 0;
1235
1236 case hwmon_curr_lcrit_alarm:
1237 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1238 if (err < 0)
1239 return err;
1240
1241 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1242 return 0;
1243
1244 case hwmon_curr_min_alarm:
1245 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1246 if (err < 0)
1247 return err;
1248
1249 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1250 return 0;
1251
1252 case hwmon_curr_max_alarm:
1253 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1254 if (err < 0)
1255 return err;
1256
1257 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1258 return 0;
1259
1260 case hwmon_curr_crit_alarm:
1261 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1262 if (err < 0)
1263 return err;
1264
1265 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1266 return 0;
1267 default:
1268 return -EOPNOTSUPP;
1269 }
1270
1271 return -EOPNOTSUPP;
1272 }
1273
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)1274 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1275 {
1276 u8 status;
1277 int err;
1278
1279 switch (attr) {
1280 case hwmon_power_input:
1281 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1282
1283 case hwmon_power_lcrit:
1284 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1285 sfp_hwmon_calibrate_tx_power(sfp, value);
1286 return 0;
1287
1288 case hwmon_power_min:
1289 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1290 sfp_hwmon_calibrate_tx_power(sfp, value);
1291 return 0;
1292
1293 case hwmon_power_max:
1294 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1295 sfp_hwmon_calibrate_tx_power(sfp, value);
1296 return 0;
1297
1298 case hwmon_power_crit:
1299 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1300 sfp_hwmon_calibrate_tx_power(sfp, value);
1301 return 0;
1302
1303 case hwmon_power_lcrit_alarm:
1304 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1305 if (err < 0)
1306 return err;
1307
1308 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1309 return 0;
1310
1311 case hwmon_power_min_alarm:
1312 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1313 if (err < 0)
1314 return err;
1315
1316 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1317 return 0;
1318
1319 case hwmon_power_max_alarm:
1320 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1321 if (err < 0)
1322 return err;
1323
1324 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1325 return 0;
1326
1327 case hwmon_power_crit_alarm:
1328 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1329 if (err < 0)
1330 return err;
1331
1332 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1333 return 0;
1334 default:
1335 return -EOPNOTSUPP;
1336 }
1337
1338 return -EOPNOTSUPP;
1339 }
1340
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1341 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1342 {
1343 u8 status;
1344 int err;
1345
1346 switch (attr) {
1347 case hwmon_power_input:
1348 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1349
1350 case hwmon_power_lcrit:
1351 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1352 sfp_hwmon_to_rx_power(value);
1353 return 0;
1354
1355 case hwmon_power_min:
1356 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1357 sfp_hwmon_to_rx_power(value);
1358 return 0;
1359
1360 case hwmon_power_max:
1361 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1362 sfp_hwmon_to_rx_power(value);
1363 return 0;
1364
1365 case hwmon_power_crit:
1366 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1367 sfp_hwmon_to_rx_power(value);
1368 return 0;
1369
1370 case hwmon_power_lcrit_alarm:
1371 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1372 if (err < 0)
1373 return err;
1374
1375 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1376 return 0;
1377
1378 case hwmon_power_min_alarm:
1379 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1380 if (err < 0)
1381 return err;
1382
1383 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1384 return 0;
1385
1386 case hwmon_power_max_alarm:
1387 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1388 if (err < 0)
1389 return err;
1390
1391 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1392 return 0;
1393
1394 case hwmon_power_crit_alarm:
1395 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1396 if (err < 0)
1397 return err;
1398
1399 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1400 return 0;
1401 default:
1402 return -EOPNOTSUPP;
1403 }
1404
1405 return -EOPNOTSUPP;
1406 }
1407
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1408 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1409 u32 attr, int channel, long *value)
1410 {
1411 struct sfp *sfp = dev_get_drvdata(dev);
1412
1413 switch (type) {
1414 case hwmon_temp:
1415 return sfp_hwmon_temp(sfp, attr, value);
1416 case hwmon_in:
1417 return sfp_hwmon_vcc(sfp, attr, value);
1418 case hwmon_curr:
1419 return sfp_hwmon_bias(sfp, attr, value);
1420 case hwmon_power:
1421 switch (channel) {
1422 case 0:
1423 return sfp_hwmon_tx_power(sfp, attr, value);
1424 case 1:
1425 return sfp_hwmon_rx_power(sfp, attr, value);
1426 default:
1427 return -EOPNOTSUPP;
1428 }
1429 default:
1430 return -EOPNOTSUPP;
1431 }
1432 }
1433
1434 static const char *const sfp_hwmon_power_labels[] = {
1435 "TX_power",
1436 "RX_power",
1437 };
1438
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1439 static int sfp_hwmon_read_string(struct device *dev,
1440 enum hwmon_sensor_types type,
1441 u32 attr, int channel, const char **str)
1442 {
1443 switch (type) {
1444 case hwmon_curr:
1445 switch (attr) {
1446 case hwmon_curr_label:
1447 *str = "bias";
1448 return 0;
1449 default:
1450 return -EOPNOTSUPP;
1451 }
1452 break;
1453 case hwmon_temp:
1454 switch (attr) {
1455 case hwmon_temp_label:
1456 *str = "temperature";
1457 return 0;
1458 default:
1459 return -EOPNOTSUPP;
1460 }
1461 break;
1462 case hwmon_in:
1463 switch (attr) {
1464 case hwmon_in_label:
1465 *str = "VCC";
1466 return 0;
1467 default:
1468 return -EOPNOTSUPP;
1469 }
1470 break;
1471 case hwmon_power:
1472 switch (attr) {
1473 case hwmon_power_label:
1474 *str = sfp_hwmon_power_labels[channel];
1475 return 0;
1476 default:
1477 return -EOPNOTSUPP;
1478 }
1479 break;
1480 default:
1481 return -EOPNOTSUPP;
1482 }
1483
1484 return -EOPNOTSUPP;
1485 }
1486
1487 static const struct hwmon_ops sfp_hwmon_ops = {
1488 .is_visible = sfp_hwmon_is_visible,
1489 .read = sfp_hwmon_read,
1490 .read_string = sfp_hwmon_read_string,
1491 };
1492
1493 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1494 HWMON_CHANNEL_INFO(chip,
1495 HWMON_C_REGISTER_TZ),
1496 HWMON_CHANNEL_INFO(in,
1497 HWMON_I_INPUT |
1498 HWMON_I_MAX | HWMON_I_MIN |
1499 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1500 HWMON_I_CRIT | HWMON_I_LCRIT |
1501 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1502 HWMON_I_LABEL),
1503 HWMON_CHANNEL_INFO(temp,
1504 HWMON_T_INPUT |
1505 HWMON_T_MAX | HWMON_T_MIN |
1506 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1507 HWMON_T_CRIT | HWMON_T_LCRIT |
1508 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1509 HWMON_T_LABEL),
1510 HWMON_CHANNEL_INFO(curr,
1511 HWMON_C_INPUT |
1512 HWMON_C_MAX | HWMON_C_MIN |
1513 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1514 HWMON_C_CRIT | HWMON_C_LCRIT |
1515 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1516 HWMON_C_LABEL),
1517 HWMON_CHANNEL_INFO(power,
1518 /* Transmit power */
1519 HWMON_P_INPUT |
1520 HWMON_P_MAX | HWMON_P_MIN |
1521 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1522 HWMON_P_CRIT | HWMON_P_LCRIT |
1523 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1524 HWMON_P_LABEL,
1525 /* Receive power */
1526 HWMON_P_INPUT |
1527 HWMON_P_MAX | HWMON_P_MIN |
1528 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1529 HWMON_P_CRIT | HWMON_P_LCRIT |
1530 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1531 HWMON_P_LABEL),
1532 NULL,
1533 };
1534
1535 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1536 .ops = &sfp_hwmon_ops,
1537 .info = sfp_hwmon_info,
1538 };
1539
sfp_hwmon_probe(struct work_struct * work)1540 static void sfp_hwmon_probe(struct work_struct *work)
1541 {
1542 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1543 int err;
1544
1545 /* hwmon interface needs to access 16bit registers in atomic way to
1546 * guarantee coherency of the diagnostic monitoring data. If it is not
1547 * possible to guarantee coherency because EEPROM is broken in such way
1548 * that does not support atomic 16bit read operation then we have to
1549 * skip registration of hwmon device.
1550 */
1551 if (sfp->i2c_block_size < 2) {
1552 dev_info(sfp->dev,
1553 "skipping hwmon device registration due to broken EEPROM\n");
1554 dev_info(sfp->dev,
1555 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1556 return;
1557 }
1558
1559 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1560 if (err < 0) {
1561 if (sfp->hwmon_tries--) {
1562 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1563 T_PROBE_RETRY_SLOW);
1564 } else {
1565 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1566 ERR_PTR(err));
1567 }
1568 return;
1569 }
1570
1571 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1572 if (IS_ERR(sfp->hwmon_name)) {
1573 dev_err(sfp->dev, "out of memory for hwmon name\n");
1574 return;
1575 }
1576
1577 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1578 sfp->hwmon_name, sfp,
1579 &sfp_hwmon_chip_info,
1580 NULL);
1581 if (IS_ERR(sfp->hwmon_dev))
1582 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1583 PTR_ERR(sfp->hwmon_dev));
1584 }
1585
sfp_hwmon_insert(struct sfp * sfp)1586 static int sfp_hwmon_insert(struct sfp *sfp)
1587 {
1588 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1589 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1590 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1591 }
1592
1593 return 0;
1594 }
1595
sfp_hwmon_remove(struct sfp * sfp)1596 static void sfp_hwmon_remove(struct sfp *sfp)
1597 {
1598 cancel_delayed_work_sync(&sfp->hwmon_probe);
1599 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1600 hwmon_device_unregister(sfp->hwmon_dev);
1601 sfp->hwmon_dev = NULL;
1602 kfree(sfp->hwmon_name);
1603 }
1604 }
1605
sfp_hwmon_init(struct sfp * sfp)1606 static int sfp_hwmon_init(struct sfp *sfp)
1607 {
1608 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1609
1610 return 0;
1611 }
1612
sfp_hwmon_exit(struct sfp * sfp)1613 static void sfp_hwmon_exit(struct sfp *sfp)
1614 {
1615 cancel_delayed_work_sync(&sfp->hwmon_probe);
1616 }
1617 #else
sfp_hwmon_insert(struct sfp * sfp)1618 static int sfp_hwmon_insert(struct sfp *sfp)
1619 {
1620 return 0;
1621 }
1622
sfp_hwmon_remove(struct sfp * sfp)1623 static void sfp_hwmon_remove(struct sfp *sfp)
1624 {
1625 }
1626
sfp_hwmon_init(struct sfp * sfp)1627 static int sfp_hwmon_init(struct sfp *sfp)
1628 {
1629 return 0;
1630 }
1631
sfp_hwmon_exit(struct sfp * sfp)1632 static void sfp_hwmon_exit(struct sfp *sfp)
1633 {
1634 }
1635 #endif
1636
1637 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1638 static void sfp_module_tx_disable(struct sfp *sfp)
1639 {
1640 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1641 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1642 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1643 }
1644
sfp_module_tx_enable(struct sfp * sfp)1645 static void sfp_module_tx_enable(struct sfp *sfp)
1646 {
1647 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1648 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1649 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1650 }
1651
1652 #if IS_ENABLED(CONFIG_DEBUG_FS)
sfp_debug_state_show(struct seq_file * s,void * data)1653 static int sfp_debug_state_show(struct seq_file *s, void *data)
1654 {
1655 struct sfp *sfp = s->private;
1656
1657 seq_printf(s, "Module state: %s\n",
1658 mod_state_to_str(sfp->sm_mod_state));
1659 seq_printf(s, "Module probe attempts: %d %d\n",
1660 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1661 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1662 seq_printf(s, "Device state: %s\n",
1663 dev_state_to_str(sfp->sm_dev_state));
1664 seq_printf(s, "Main state: %s\n",
1665 sm_state_to_str(sfp->sm_state));
1666 seq_printf(s, "Fault recovery remaining retries: %d\n",
1667 sfp->sm_fault_retries);
1668 seq_printf(s, "PHY probe remaining retries: %d\n",
1669 sfp->sm_phy_retries);
1670 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1671 seq_printf(s, "Rate select threshold: %u kBd\n",
1672 sfp->rs_threshold_kbd);
1673 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1674 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1675 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1676 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1677 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1678 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1679 return 0;
1680 }
1681 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1682
sfp_debugfs_init(struct sfp * sfp)1683 static void sfp_debugfs_init(struct sfp *sfp)
1684 {
1685 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1686
1687 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1688 &sfp_debug_state_fops);
1689 }
1690
sfp_debugfs_exit(struct sfp * sfp)1691 static void sfp_debugfs_exit(struct sfp *sfp)
1692 {
1693 debugfs_remove_recursive(sfp->debugfs_dir);
1694 }
1695 #else
sfp_debugfs_init(struct sfp * sfp)1696 static void sfp_debugfs_init(struct sfp *sfp)
1697 {
1698 }
1699
sfp_debugfs_exit(struct sfp * sfp)1700 static void sfp_debugfs_exit(struct sfp *sfp)
1701 {
1702 }
1703 #endif
1704
sfp_module_tx_fault_reset(struct sfp * sfp)1705 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1706 {
1707 unsigned int state;
1708
1709 mutex_lock(&sfp->st_mutex);
1710 state = sfp->state;
1711 if (!(state & SFP_F_TX_DISABLE)) {
1712 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1713
1714 udelay(T_RESET_US);
1715
1716 sfp_set_state(sfp, state);
1717 }
1718 mutex_unlock(&sfp->st_mutex);
1719 }
1720
1721 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1722 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1723 {
1724 if (timeout)
1725 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1726 timeout);
1727 else
1728 cancel_delayed_work(&sfp->timeout);
1729 }
1730
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1731 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1732 unsigned int timeout)
1733 {
1734 sfp->sm_state = state;
1735 sfp_sm_set_timer(sfp, timeout);
1736 }
1737
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1738 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1739 unsigned int timeout)
1740 {
1741 sfp->sm_mod_state = state;
1742 sfp_sm_set_timer(sfp, timeout);
1743 }
1744
sfp_sm_phy_detach(struct sfp * sfp)1745 static void sfp_sm_phy_detach(struct sfp *sfp)
1746 {
1747 sfp_remove_phy(sfp->sfp_bus);
1748 phy_device_remove(sfp->mod_phy);
1749 phy_device_free(sfp->mod_phy);
1750 sfp->mod_phy = NULL;
1751 }
1752
sfp_sm_probe_phy(struct sfp * sfp,int addr,bool is_c45)1753 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1754 {
1755 struct phy_device *phy;
1756 int err;
1757
1758 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1759 if (phy == ERR_PTR(-ENODEV))
1760 return PTR_ERR(phy);
1761 if (IS_ERR(phy)) {
1762 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1763 return PTR_ERR(phy);
1764 }
1765
1766 /* Mark this PHY as being on a SFP module */
1767 phy->is_on_sfp_module = true;
1768
1769 err = phy_device_register(phy);
1770 if (err) {
1771 phy_device_free(phy);
1772 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1773 ERR_PTR(err));
1774 return err;
1775 }
1776
1777 err = sfp_add_phy(sfp->sfp_bus, phy);
1778 if (err) {
1779 phy_device_remove(phy);
1780 phy_device_free(phy);
1781 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1782 return err;
1783 }
1784
1785 sfp->mod_phy = phy;
1786
1787 return 0;
1788 }
1789
sfp_sm_link_up(struct sfp * sfp)1790 static void sfp_sm_link_up(struct sfp *sfp)
1791 {
1792 sfp_link_up(sfp->sfp_bus);
1793 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1794 }
1795
sfp_sm_link_down(struct sfp * sfp)1796 static void sfp_sm_link_down(struct sfp *sfp)
1797 {
1798 sfp_link_down(sfp->sfp_bus);
1799 }
1800
sfp_sm_link_check_los(struct sfp * sfp)1801 static void sfp_sm_link_check_los(struct sfp *sfp)
1802 {
1803 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1804 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1805 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1806 bool los = false;
1807
1808 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1809 * are set, we assume that no LOS signal is available. If both are
1810 * set, we assume LOS is not implemented (and is meaningless.)
1811 */
1812 if (los_options == los_inverted)
1813 los = !(sfp->state & SFP_F_LOS);
1814 else if (los_options == los_normal)
1815 los = !!(sfp->state & SFP_F_LOS);
1816
1817 if (los)
1818 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1819 else
1820 sfp_sm_link_up(sfp);
1821 }
1822
sfp_los_event_active(struct sfp * sfp,unsigned int event)1823 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1824 {
1825 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1826 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1827 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1828
1829 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1830 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1831 }
1832
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1833 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1834 {
1835 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1836 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1837 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1838
1839 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1840 (los_options == los_normal && event == SFP_E_LOS_LOW);
1841 }
1842
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1843 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1844 {
1845 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1846 dev_err(sfp->dev,
1847 "module persistently indicates fault, disabling\n");
1848 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1849 } else {
1850 if (warn)
1851 dev_err(sfp->dev, "module transmit fault indicated\n");
1852
1853 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1854 }
1855 }
1856
sfp_sm_add_mdio_bus(struct sfp * sfp)1857 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1858 {
1859 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1860 return sfp_i2c_mdiobus_create(sfp);
1861
1862 return 0;
1863 }
1864
1865 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1866 * normally sits at I2C bus address 0x56, and may either be a clause 22
1867 * or clause 45 PHY.
1868 *
1869 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1870 * negotiation enabled, but some may be in 1000base-X - which is for the
1871 * PHY driver to determine.
1872 *
1873 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1874 * mode according to the negotiated line speed.
1875 */
sfp_sm_probe_for_phy(struct sfp * sfp)1876 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1877 {
1878 int err = 0;
1879
1880 switch (sfp->mdio_protocol) {
1881 case MDIO_I2C_NONE:
1882 break;
1883
1884 case MDIO_I2C_MARVELL_C22:
1885 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1886 break;
1887
1888 case MDIO_I2C_C45:
1889 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1890 break;
1891
1892 case MDIO_I2C_ROLLBALL:
1893 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1894 break;
1895 }
1896
1897 return err;
1898 }
1899
sfp_module_parse_power(struct sfp * sfp)1900 static int sfp_module_parse_power(struct sfp *sfp)
1901 {
1902 u32 power_mW = 1000;
1903 bool supports_a2;
1904
1905 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1906 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1907 power_mW = 1500;
1908 /* Added in Rev 11.9, but there is no compliance code for this */
1909 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1910 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1911 power_mW = 2000;
1912
1913 /* Power level 1 modules (max. 1W) are always supported. */
1914 if (power_mW <= 1000) {
1915 sfp->module_power_mW = power_mW;
1916 return 0;
1917 }
1918
1919 supports_a2 = sfp->id.ext.sff8472_compliance !=
1920 SFP_SFF8472_COMPLIANCE_NONE ||
1921 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1922
1923 if (power_mW > sfp->max_power_mW) {
1924 /* Module power specification exceeds the allowed maximum. */
1925 if (!supports_a2) {
1926 /* The module appears not to implement bus address
1927 * 0xa2, so assume that the module powers up in the
1928 * indicated mode.
1929 */
1930 dev_err(sfp->dev,
1931 "Host does not support %u.%uW modules\n",
1932 power_mW / 1000, (power_mW / 100) % 10);
1933 return -EINVAL;
1934 } else {
1935 dev_warn(sfp->dev,
1936 "Host does not support %u.%uW modules, module left in power mode 1\n",
1937 power_mW / 1000, (power_mW / 100) % 10);
1938 return 0;
1939 }
1940 }
1941
1942 if (!supports_a2) {
1943 /* The module power level is below the host maximum and the
1944 * module appears not to implement bus address 0xa2, so assume
1945 * that the module powers up in the indicated mode.
1946 */
1947 return 0;
1948 }
1949
1950 /* If the module requires a higher power mode, but also requires
1951 * an address change sequence, warn the user that the module may
1952 * not be functional.
1953 */
1954 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1955 dev_warn(sfp->dev,
1956 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1957 power_mW / 1000, (power_mW / 100) % 10);
1958 return 0;
1959 }
1960
1961 sfp->module_power_mW = power_mW;
1962
1963 return 0;
1964 }
1965
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)1966 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1967 {
1968 int err;
1969
1970 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1971 SFP_EXT_STATUS_PWRLVL_SELECT,
1972 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1973 if (err != sizeof(u8)) {
1974 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1975 enable ? "en" : "dis", ERR_PTR(err));
1976 return -EAGAIN;
1977 }
1978
1979 if (enable)
1980 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1981 sfp->module_power_mW / 1000,
1982 (sfp->module_power_mW / 100) % 10);
1983
1984 return 0;
1985 }
1986
sfp_module_parse_rate_select(struct sfp * sfp)1987 static void sfp_module_parse_rate_select(struct sfp *sfp)
1988 {
1989 u8 rate_id;
1990
1991 sfp->rs_threshold_kbd = 0;
1992 sfp->rs_state_mask = 0;
1993
1994 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
1995 /* No support for RateSelect */
1996 return;
1997
1998 /* Default to INF-8074 RateSelect operation. The signalling threshold
1999 * rate is not well specified, so always select "Full Bandwidth", but
2000 * SFF-8079 reveals that it is understood that RS0 will be low for
2001 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2002 * This method exists prior to SFF-8472.
2003 */
2004 sfp->rs_state_mask = SFP_F_RS0;
2005 sfp->rs_threshold_kbd = 1594;
2006
2007 /* Parse the rate identifier, which is complicated due to history:
2008 * SFF-8472 rev 9.5 marks this field as reserved.
2009 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2010 * compliance is not required.
2011 * SFF-8472 rev 10.2 defines this field using values 0..4
2012 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2013 * and even values.
2014 */
2015 rate_id = sfp->id.base.rate_id;
2016 if (rate_id == 0)
2017 /* Unspecified */
2018 return;
2019
2020 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2021 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2022 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2023 */
2024 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2025 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2026 rate_id == 3)
2027 rate_id = SFF_RID_8431;
2028
2029 if (rate_id & SFF_RID_8079) {
2030 /* SFF-8079 RateSelect / Application Select in conjunction with
2031 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2032 * with only bit 0 used, which takes precedence over SFF-8472.
2033 */
2034 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2035 /* SFF-8079 Part 1 - rate selection between Fibre
2036 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2037 * is high for 2125, so we have to subtract 1 to
2038 * include it.
2039 */
2040 sfp->rs_threshold_kbd = 2125 - 1;
2041 sfp->rs_state_mask = SFP_F_RS0;
2042 }
2043 return;
2044 }
2045
2046 /* SFF-8472 rev 9.5 does not define the rate identifier */
2047 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2048 return;
2049
2050 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2051 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2052 */
2053 switch (rate_id) {
2054 case SFF_RID_8431_RX_ONLY:
2055 sfp->rs_threshold_kbd = 4250;
2056 sfp->rs_state_mask = SFP_F_RS0;
2057 break;
2058
2059 case SFF_RID_8431_TX_ONLY:
2060 sfp->rs_threshold_kbd = 4250;
2061 sfp->rs_state_mask = SFP_F_RS1;
2062 break;
2063
2064 case SFF_RID_8431:
2065 sfp->rs_threshold_kbd = 4250;
2066 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2067 break;
2068
2069 case SFF_RID_10G8G:
2070 sfp->rs_threshold_kbd = 9000;
2071 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2072 break;
2073 }
2074 }
2075
2076 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2077 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2078 * not support multibyte reads from the EEPROM. Each multi-byte read
2079 * operation returns just one byte of EEPROM followed by zeros. There is
2080 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2081 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2082 * name and vendor id into EEPROM, so there is even no way to detect if
2083 * module is V-SOL V2801F. Therefore check for those zeros in the read
2084 * data and then based on check switch to reading EEPROM to one byte
2085 * at a time.
2086 */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)2087 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2088 {
2089 size_t i, block_size = sfp->i2c_block_size;
2090
2091 /* Already using byte IO */
2092 if (block_size == 1)
2093 return false;
2094
2095 for (i = 1; i < len; i += block_size) {
2096 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2097 return false;
2098 }
2099 return true;
2100 }
2101
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)2102 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2103 {
2104 u8 check;
2105 int err;
2106
2107 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2108 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2109 id->base.connector != SFF8024_CONNECTOR_LC) {
2110 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2111 id->base.phys_id = SFF8024_ID_SFF_8472;
2112 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2113 id->base.connector = SFF8024_CONNECTOR_LC;
2114 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2115 if (err != 3) {
2116 dev_err(sfp->dev,
2117 "Failed to rewrite module EEPROM: %pe\n",
2118 ERR_PTR(err));
2119 return err;
2120 }
2121
2122 /* Cotsworks modules have been found to require a delay between write operations. */
2123 mdelay(50);
2124
2125 /* Update base structure checksum */
2126 check = sfp_check(&id->base, sizeof(id->base) - 1);
2127 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2128 if (err != 1) {
2129 dev_err(sfp->dev,
2130 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2131 ERR_PTR(err));
2132 return err;
2133 }
2134 }
2135 return 0;
2136 }
2137
sfp_module_parse_sff8472(struct sfp * sfp)2138 static int sfp_module_parse_sff8472(struct sfp *sfp)
2139 {
2140 /* If the module requires address swap mode, warn about it */
2141 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2142 dev_warn(sfp->dev,
2143 "module address swap to access page 0xA2 is not supported.\n");
2144 else
2145 sfp->have_a2 = true;
2146
2147 return 0;
2148 }
2149
sfp_sm_mod_probe(struct sfp * sfp,bool report)2150 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2151 {
2152 /* SFP module inserted - read I2C data */
2153 struct sfp_eeprom_id id;
2154 bool cotsworks_sfbg;
2155 unsigned int mask;
2156 bool cotsworks;
2157 u8 check;
2158 int ret;
2159
2160 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2161
2162 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2163 if (ret < 0) {
2164 if (report)
2165 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2166 ERR_PTR(ret));
2167 return -EAGAIN;
2168 }
2169
2170 if (ret != sizeof(id.base)) {
2171 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2172 return -EAGAIN;
2173 }
2174
2175 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2176 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2177 * that EEPROM supports atomic 16bit read operation for diagnostic
2178 * fields, so do not switch to one byte reading at a time unless it
2179 * is really required and we have no other option.
2180 */
2181 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2182 dev_info(sfp->dev,
2183 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2184 dev_info(sfp->dev,
2185 "Switching to reading EEPROM to one byte at a time\n");
2186 sfp->i2c_block_size = 1;
2187
2188 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2189 if (ret < 0) {
2190 if (report)
2191 dev_err(sfp->dev,
2192 "failed to read EEPROM: %pe\n",
2193 ERR_PTR(ret));
2194 return -EAGAIN;
2195 }
2196
2197 if (ret != sizeof(id.base)) {
2198 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2199 ERR_PTR(ret));
2200 return -EAGAIN;
2201 }
2202 }
2203
2204 /* Cotsworks do not seem to update the checksums when they
2205 * do the final programming with the final module part number,
2206 * serial number and date code.
2207 */
2208 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2209 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2210
2211 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2212 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2213 * Cotsworks PN matches and bytes are not correct.
2214 */
2215 if (cotsworks && cotsworks_sfbg) {
2216 ret = sfp_cotsworks_fixup_check(sfp, &id);
2217 if (ret < 0)
2218 return ret;
2219 }
2220
2221 /* Validate the checksum over the base structure */
2222 check = sfp_check(&id.base, sizeof(id.base) - 1);
2223 if (check != id.base.cc_base) {
2224 if (cotsworks) {
2225 dev_warn(sfp->dev,
2226 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2227 check, id.base.cc_base);
2228 } else {
2229 dev_err(sfp->dev,
2230 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2231 check, id.base.cc_base);
2232 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2233 16, 1, &id, sizeof(id), true);
2234 return -EINVAL;
2235 }
2236 }
2237
2238 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2239 if (ret < 0) {
2240 if (report)
2241 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2242 ERR_PTR(ret));
2243 return -EAGAIN;
2244 }
2245
2246 if (ret != sizeof(id.ext)) {
2247 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2248 return -EAGAIN;
2249 }
2250
2251 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2252 if (check != id.ext.cc_ext) {
2253 if (cotsworks) {
2254 dev_warn(sfp->dev,
2255 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2256 check, id.ext.cc_ext);
2257 } else {
2258 dev_err(sfp->dev,
2259 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2260 check, id.ext.cc_ext);
2261 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2262 16, 1, &id, sizeof(id), true);
2263 memset(&id.ext, 0, sizeof(id.ext));
2264 }
2265 }
2266
2267 sfp->id = id;
2268
2269 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2270 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2271 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2272 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2273 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2274 (int)sizeof(id.ext.datecode), id.ext.datecode);
2275
2276 /* Check whether we support this module */
2277 if (!sfp->type->module_supported(&id)) {
2278 dev_err(sfp->dev,
2279 "module is not supported - phys id 0x%02x 0x%02x\n",
2280 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2281 return -EINVAL;
2282 }
2283
2284 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2285 ret = sfp_module_parse_sff8472(sfp);
2286 if (ret < 0)
2287 return ret;
2288 }
2289
2290 /* Parse the module power requirement */
2291 ret = sfp_module_parse_power(sfp);
2292 if (ret < 0)
2293 return ret;
2294
2295 sfp_module_parse_rate_select(sfp);
2296
2297 mask = SFP_F_PRESENT;
2298 if (sfp->gpio[GPIO_TX_DISABLE])
2299 mask |= SFP_F_TX_DISABLE;
2300 if (sfp->gpio[GPIO_TX_FAULT])
2301 mask |= SFP_F_TX_FAULT;
2302 if (sfp->gpio[GPIO_LOS])
2303 mask |= SFP_F_LOS;
2304 if (sfp->gpio[GPIO_RS0])
2305 mask |= SFP_F_RS0;
2306 if (sfp->gpio[GPIO_RS1])
2307 mask |= SFP_F_RS1;
2308
2309 sfp->module_t_start_up = T_START_UP;
2310 sfp->module_t_wait = T_WAIT;
2311
2312 sfp->tx_fault_ignore = false;
2313
2314 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2315 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2316 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2317 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2318 sfp->mdio_protocol = MDIO_I2C_C45;
2319 else if (sfp->id.base.e1000_base_t)
2320 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2321 else
2322 sfp->mdio_protocol = MDIO_I2C_NONE;
2323
2324 sfp->quirk = sfp_lookup_quirk(&id);
2325
2326 mutex_lock(&sfp->st_mutex);
2327 /* Initialise state bits to use from hardware */
2328 sfp->state_hw_mask = mask;
2329
2330 /* We want to drive the rate select pins that the module is using */
2331 sfp->state_hw_drive |= sfp->rs_state_mask;
2332
2333 if (sfp->quirk && sfp->quirk->fixup)
2334 sfp->quirk->fixup(sfp);
2335 mutex_unlock(&sfp->st_mutex);
2336
2337 return 0;
2338 }
2339
sfp_sm_mod_remove(struct sfp * sfp)2340 static void sfp_sm_mod_remove(struct sfp *sfp)
2341 {
2342 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2343 sfp_module_remove(sfp->sfp_bus);
2344
2345 sfp_hwmon_remove(sfp);
2346
2347 memset(&sfp->id, 0, sizeof(sfp->id));
2348 sfp->module_power_mW = 0;
2349 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2350 sfp->have_a2 = false;
2351
2352 dev_info(sfp->dev, "module removed\n");
2353 }
2354
2355 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)2356 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2357 {
2358 switch (sfp->sm_dev_state) {
2359 default:
2360 if (event == SFP_E_DEV_ATTACH)
2361 sfp->sm_dev_state = SFP_DEV_DOWN;
2362 break;
2363
2364 case SFP_DEV_DOWN:
2365 if (event == SFP_E_DEV_DETACH)
2366 sfp->sm_dev_state = SFP_DEV_DETACHED;
2367 else if (event == SFP_E_DEV_UP)
2368 sfp->sm_dev_state = SFP_DEV_UP;
2369 break;
2370
2371 case SFP_DEV_UP:
2372 if (event == SFP_E_DEV_DETACH)
2373 sfp->sm_dev_state = SFP_DEV_DETACHED;
2374 else if (event == SFP_E_DEV_DOWN)
2375 sfp->sm_dev_state = SFP_DEV_DOWN;
2376 break;
2377 }
2378 }
2379
2380 /* This state machine tracks the insert/remove state of the module, probes
2381 * the on-board EEPROM, and sets up the power level.
2382 */
sfp_sm_module(struct sfp * sfp,unsigned int event)2383 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2384 {
2385 int err;
2386
2387 /* Handle remove event globally, it resets this state machine */
2388 if (event == SFP_E_REMOVE) {
2389 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2390 sfp_sm_mod_remove(sfp);
2391 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2392 return;
2393 }
2394
2395 /* Handle device detach globally */
2396 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2397 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2398 if (sfp->module_power_mW > 1000 &&
2399 sfp->sm_mod_state > SFP_MOD_HPOWER)
2400 sfp_sm_mod_hpower(sfp, false);
2401 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2402 return;
2403 }
2404
2405 switch (sfp->sm_mod_state) {
2406 default:
2407 if (event == SFP_E_INSERT) {
2408 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2409 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2410 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2411 }
2412 break;
2413
2414 case SFP_MOD_PROBE:
2415 /* Wait for T_PROBE_INIT to time out */
2416 if (event != SFP_E_TIMEOUT)
2417 break;
2418
2419 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2420 if (err == -EAGAIN) {
2421 if (sfp->sm_mod_tries_init &&
2422 --sfp->sm_mod_tries_init) {
2423 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2424 break;
2425 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2426 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2427 dev_warn(sfp->dev,
2428 "please wait, module slow to respond\n");
2429 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2430 break;
2431 }
2432 }
2433 if (err < 0) {
2434 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2435 break;
2436 }
2437
2438 /* Force a poll to re-read the hardware signal state after
2439 * sfp_sm_mod_probe() changed state_hw_mask.
2440 */
2441 mod_delayed_work(system_wq, &sfp->poll, 1);
2442
2443 err = sfp_hwmon_insert(sfp);
2444 if (err)
2445 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2446 ERR_PTR(err));
2447
2448 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2449 fallthrough;
2450 case SFP_MOD_WAITDEV:
2451 /* Ensure that the device is attached before proceeding */
2452 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2453 break;
2454
2455 /* Report the module insertion to the upstream device */
2456 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2457 sfp->quirk);
2458 if (err < 0) {
2459 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2460 break;
2461 }
2462
2463 /* If this is a power level 1 module, we are done */
2464 if (sfp->module_power_mW <= 1000)
2465 goto insert;
2466
2467 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2468 fallthrough;
2469 case SFP_MOD_HPOWER:
2470 /* Enable high power mode */
2471 err = sfp_sm_mod_hpower(sfp, true);
2472 if (err < 0) {
2473 if (err != -EAGAIN) {
2474 sfp_module_remove(sfp->sfp_bus);
2475 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2476 } else {
2477 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2478 }
2479 break;
2480 }
2481
2482 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2483 break;
2484
2485 case SFP_MOD_WAITPWR:
2486 /* Wait for T_HPOWER_LEVEL to time out */
2487 if (event != SFP_E_TIMEOUT)
2488 break;
2489
2490 insert:
2491 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2492 break;
2493
2494 case SFP_MOD_PRESENT:
2495 case SFP_MOD_ERROR:
2496 break;
2497 }
2498 }
2499
sfp_sm_main(struct sfp * sfp,unsigned int event)2500 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2501 {
2502 unsigned long timeout;
2503 int ret;
2504
2505 /* Some events are global */
2506 if (sfp->sm_state != SFP_S_DOWN &&
2507 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2508 sfp->sm_dev_state != SFP_DEV_UP)) {
2509 if (sfp->sm_state == SFP_S_LINK_UP &&
2510 sfp->sm_dev_state == SFP_DEV_UP)
2511 sfp_sm_link_down(sfp);
2512 if (sfp->sm_state > SFP_S_INIT)
2513 sfp_module_stop(sfp->sfp_bus);
2514 if (sfp->mod_phy)
2515 sfp_sm_phy_detach(sfp);
2516 if (sfp->i2c_mii)
2517 sfp_i2c_mdiobus_destroy(sfp);
2518 sfp_module_tx_disable(sfp);
2519 sfp_soft_stop_poll(sfp);
2520 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2521 return;
2522 }
2523
2524 /* The main state machine */
2525 switch (sfp->sm_state) {
2526 case SFP_S_DOWN:
2527 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2528 sfp->sm_dev_state != SFP_DEV_UP)
2529 break;
2530
2531 /* Only use the soft state bits if we have access to the A2h
2532 * memory, which implies that we have some level of SFF-8472
2533 * compliance.
2534 */
2535 if (sfp->have_a2)
2536 sfp_soft_start_poll(sfp);
2537
2538 sfp_module_tx_enable(sfp);
2539
2540 /* Initialise the fault clearance retries */
2541 sfp->sm_fault_retries = N_FAULT_INIT;
2542
2543 /* We need to check the TX_FAULT state, which is not defined
2544 * while TX_DISABLE is asserted. The earliest we want to do
2545 * anything (such as probe for a PHY) is 50ms (or more on
2546 * specific modules).
2547 */
2548 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2549 break;
2550
2551 case SFP_S_WAIT:
2552 if (event != SFP_E_TIMEOUT)
2553 break;
2554
2555 if (sfp->state & SFP_F_TX_FAULT) {
2556 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2557 * from the TX_DISABLE deassertion for the module to
2558 * initialise, which is indicated by TX_FAULT
2559 * deasserting.
2560 */
2561 timeout = sfp->module_t_start_up;
2562 if (timeout > sfp->module_t_wait)
2563 timeout -= sfp->module_t_wait;
2564 else
2565 timeout = 1;
2566
2567 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2568 } else {
2569 /* TX_FAULT is not asserted, assume the module has
2570 * finished initialising.
2571 */
2572 goto init_done;
2573 }
2574 break;
2575
2576 case SFP_S_INIT:
2577 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2578 /* TX_FAULT is still asserted after t_init
2579 * or t_start_up, so assume there is a fault.
2580 */
2581 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2582 sfp->sm_fault_retries == N_FAULT_INIT);
2583 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2584 init_done:
2585 /* Create mdiobus and start trying for PHY */
2586 ret = sfp_sm_add_mdio_bus(sfp);
2587 if (ret < 0) {
2588 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2589 break;
2590 }
2591 sfp->sm_phy_retries = R_PHY_RETRY;
2592 goto phy_probe;
2593 }
2594 break;
2595
2596 case SFP_S_INIT_PHY:
2597 if (event != SFP_E_TIMEOUT)
2598 break;
2599 phy_probe:
2600 /* TX_FAULT deasserted or we timed out with TX_FAULT
2601 * clear. Probe for the PHY and check the LOS state.
2602 */
2603 ret = sfp_sm_probe_for_phy(sfp);
2604 if (ret == -ENODEV) {
2605 if (--sfp->sm_phy_retries) {
2606 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2607 break;
2608 } else {
2609 dev_info(sfp->dev, "no PHY detected\n");
2610 }
2611 } else if (ret) {
2612 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2613 break;
2614 }
2615 if (sfp_module_start(sfp->sfp_bus)) {
2616 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2617 break;
2618 }
2619 sfp_sm_link_check_los(sfp);
2620
2621 /* Reset the fault retry count */
2622 sfp->sm_fault_retries = N_FAULT;
2623 break;
2624
2625 case SFP_S_INIT_TX_FAULT:
2626 if (event == SFP_E_TIMEOUT) {
2627 sfp_module_tx_fault_reset(sfp);
2628 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2629 }
2630 break;
2631
2632 case SFP_S_WAIT_LOS:
2633 if (event == SFP_E_TX_FAULT)
2634 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2635 else if (sfp_los_event_inactive(sfp, event))
2636 sfp_sm_link_up(sfp);
2637 break;
2638
2639 case SFP_S_LINK_UP:
2640 if (event == SFP_E_TX_FAULT) {
2641 sfp_sm_link_down(sfp);
2642 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2643 } else if (sfp_los_event_active(sfp, event)) {
2644 sfp_sm_link_down(sfp);
2645 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2646 }
2647 break;
2648
2649 case SFP_S_TX_FAULT:
2650 if (event == SFP_E_TIMEOUT) {
2651 sfp_module_tx_fault_reset(sfp);
2652 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2653 }
2654 break;
2655
2656 case SFP_S_REINIT:
2657 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2658 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2659 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2660 dev_info(sfp->dev, "module transmit fault recovered\n");
2661 sfp_sm_link_check_los(sfp);
2662 }
2663 break;
2664
2665 case SFP_S_TX_DISABLE:
2666 break;
2667 }
2668 }
2669
__sfp_sm_event(struct sfp * sfp,unsigned int event)2670 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2671 {
2672 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2673 mod_state_to_str(sfp->sm_mod_state),
2674 dev_state_to_str(sfp->sm_dev_state),
2675 sm_state_to_str(sfp->sm_state),
2676 event_to_str(event));
2677
2678 sfp_sm_device(sfp, event);
2679 sfp_sm_module(sfp, event);
2680 sfp_sm_main(sfp, event);
2681
2682 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2683 mod_state_to_str(sfp->sm_mod_state),
2684 dev_state_to_str(sfp->sm_dev_state),
2685 sm_state_to_str(sfp->sm_state));
2686 }
2687
sfp_sm_event(struct sfp * sfp,unsigned int event)2688 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2689 {
2690 mutex_lock(&sfp->sm_mutex);
2691 __sfp_sm_event(sfp, event);
2692 mutex_unlock(&sfp->sm_mutex);
2693 }
2694
sfp_attach(struct sfp * sfp)2695 static void sfp_attach(struct sfp *sfp)
2696 {
2697 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2698 }
2699
sfp_detach(struct sfp * sfp)2700 static void sfp_detach(struct sfp *sfp)
2701 {
2702 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2703 }
2704
sfp_start(struct sfp * sfp)2705 static void sfp_start(struct sfp *sfp)
2706 {
2707 sfp_sm_event(sfp, SFP_E_DEV_UP);
2708 }
2709
sfp_stop(struct sfp * sfp)2710 static void sfp_stop(struct sfp *sfp)
2711 {
2712 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2713 }
2714
sfp_set_signal_rate(struct sfp * sfp,unsigned int rate_kbd)2715 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2716 {
2717 unsigned int set;
2718
2719 sfp->rate_kbd = rate_kbd;
2720
2721 if (rate_kbd > sfp->rs_threshold_kbd)
2722 set = sfp->rs_state_mask;
2723 else
2724 set = 0;
2725
2726 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2727 }
2728
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2729 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2730 {
2731 /* locking... and check module is present */
2732
2733 if (sfp->id.ext.sff8472_compliance &&
2734 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2735 modinfo->type = ETH_MODULE_SFF_8472;
2736 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2737 } else {
2738 modinfo->type = ETH_MODULE_SFF_8079;
2739 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2740 }
2741 return 0;
2742 }
2743
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2744 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2745 u8 *data)
2746 {
2747 unsigned int first, last, len;
2748 int ret;
2749
2750 if (!(sfp->state & SFP_F_PRESENT))
2751 return -ENODEV;
2752
2753 if (ee->len == 0)
2754 return -EINVAL;
2755
2756 first = ee->offset;
2757 last = ee->offset + ee->len;
2758 if (first < ETH_MODULE_SFF_8079_LEN) {
2759 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2760 len -= first;
2761
2762 ret = sfp_read(sfp, false, first, data, len);
2763 if (ret < 0)
2764 return ret;
2765
2766 first += len;
2767 data += len;
2768 }
2769 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2770 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2771 len -= first;
2772 first -= ETH_MODULE_SFF_8079_LEN;
2773
2774 ret = sfp_read(sfp, true, first, data, len);
2775 if (ret < 0)
2776 return ret;
2777 }
2778 return 0;
2779 }
2780
sfp_module_eeprom_by_page(struct sfp * sfp,const struct ethtool_module_eeprom * page,struct netlink_ext_ack * extack)2781 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2782 const struct ethtool_module_eeprom *page,
2783 struct netlink_ext_ack *extack)
2784 {
2785 if (!(sfp->state & SFP_F_PRESENT))
2786 return -ENODEV;
2787
2788 if (page->bank) {
2789 NL_SET_ERR_MSG(extack, "Banks not supported");
2790 return -EOPNOTSUPP;
2791 }
2792
2793 if (page->page) {
2794 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2795 return -EOPNOTSUPP;
2796 }
2797
2798 if (page->i2c_address != 0x50 &&
2799 page->i2c_address != 0x51) {
2800 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2801 return -EOPNOTSUPP;
2802 }
2803
2804 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2805 page->data, page->length);
2806 };
2807
2808 static const struct sfp_socket_ops sfp_module_ops = {
2809 .attach = sfp_attach,
2810 .detach = sfp_detach,
2811 .start = sfp_start,
2812 .stop = sfp_stop,
2813 .set_signal_rate = sfp_set_signal_rate,
2814 .module_info = sfp_module_info,
2815 .module_eeprom = sfp_module_eeprom,
2816 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2817 };
2818
sfp_timeout(struct work_struct * work)2819 static void sfp_timeout(struct work_struct *work)
2820 {
2821 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2822
2823 rtnl_lock();
2824 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2825 rtnl_unlock();
2826 }
2827
sfp_check_state(struct sfp * sfp)2828 static void sfp_check_state(struct sfp *sfp)
2829 {
2830 unsigned int state, i, changed;
2831
2832 rtnl_lock();
2833 mutex_lock(&sfp->st_mutex);
2834 state = sfp_get_state(sfp);
2835 changed = state ^ sfp->state;
2836 if (sfp->tx_fault_ignore)
2837 changed &= SFP_F_PRESENT | SFP_F_LOS;
2838 else
2839 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2840
2841 for (i = 0; i < GPIO_MAX; i++)
2842 if (changed & BIT(i))
2843 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2844 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2845
2846 state |= sfp->state & SFP_F_OUTPUTS;
2847 sfp->state = state;
2848 mutex_unlock(&sfp->st_mutex);
2849
2850 mutex_lock(&sfp->sm_mutex);
2851 if (changed & SFP_F_PRESENT)
2852 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2853 SFP_E_INSERT : SFP_E_REMOVE);
2854
2855 if (changed & SFP_F_TX_FAULT)
2856 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2857 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2858
2859 if (changed & SFP_F_LOS)
2860 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2861 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2862 mutex_unlock(&sfp->sm_mutex);
2863 rtnl_unlock();
2864 }
2865
sfp_irq(int irq,void * data)2866 static irqreturn_t sfp_irq(int irq, void *data)
2867 {
2868 struct sfp *sfp = data;
2869
2870 sfp_check_state(sfp);
2871
2872 return IRQ_HANDLED;
2873 }
2874
sfp_poll(struct work_struct * work)2875 static void sfp_poll(struct work_struct *work)
2876 {
2877 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2878
2879 sfp_check_state(sfp);
2880
2881 // st_mutex doesn't need to be held here for state_soft_mask,
2882 // it's unimportant if we race while reading this.
2883 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2884 sfp->need_poll)
2885 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2886 }
2887
sfp_alloc(struct device * dev)2888 static struct sfp *sfp_alloc(struct device *dev)
2889 {
2890 struct sfp *sfp;
2891
2892 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2893 if (!sfp)
2894 return ERR_PTR(-ENOMEM);
2895
2896 sfp->dev = dev;
2897 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2898
2899 mutex_init(&sfp->sm_mutex);
2900 mutex_init(&sfp->st_mutex);
2901 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2902 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2903
2904 sfp_hwmon_init(sfp);
2905
2906 return sfp;
2907 }
2908
sfp_cleanup(void * data)2909 static void sfp_cleanup(void *data)
2910 {
2911 struct sfp *sfp = data;
2912
2913 sfp_hwmon_exit(sfp);
2914
2915 cancel_delayed_work_sync(&sfp->poll);
2916 cancel_delayed_work_sync(&sfp->timeout);
2917 if (sfp->i2c_mii) {
2918 mdiobus_unregister(sfp->i2c_mii);
2919 mdiobus_free(sfp->i2c_mii);
2920 }
2921 if (sfp->i2c)
2922 i2c_put_adapter(sfp->i2c);
2923 kfree(sfp);
2924 }
2925
sfp_i2c_get(struct sfp * sfp)2926 static int sfp_i2c_get(struct sfp *sfp)
2927 {
2928 struct fwnode_handle *h;
2929 struct i2c_adapter *i2c;
2930 int err;
2931
2932 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2933 if (IS_ERR(h)) {
2934 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2935 return -ENODEV;
2936 }
2937
2938 i2c = i2c_get_adapter_by_fwnode(h);
2939 if (!i2c) {
2940 err = -EPROBE_DEFER;
2941 goto put;
2942 }
2943
2944 err = sfp_i2c_configure(sfp, i2c);
2945 if (err)
2946 i2c_put_adapter(i2c);
2947 put:
2948 fwnode_handle_put(h);
2949 return err;
2950 }
2951
sfp_probe(struct platform_device * pdev)2952 static int sfp_probe(struct platform_device *pdev)
2953 {
2954 const struct sff_data *sff;
2955 char *sfp_irq_name;
2956 struct sfp *sfp;
2957 int err, i;
2958
2959 sfp = sfp_alloc(&pdev->dev);
2960 if (IS_ERR(sfp))
2961 return PTR_ERR(sfp);
2962
2963 platform_set_drvdata(pdev, sfp);
2964
2965 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2966 if (err < 0)
2967 return err;
2968
2969 sff = device_get_match_data(sfp->dev);
2970 if (!sff)
2971 sff = &sfp_data;
2972
2973 sfp->type = sff;
2974
2975 err = sfp_i2c_get(sfp);
2976 if (err)
2977 return err;
2978
2979 for (i = 0; i < GPIO_MAX; i++)
2980 if (sff->gpios & BIT(i)) {
2981 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2982 gpio_names[i], gpio_flags[i]);
2983 if (IS_ERR(sfp->gpio[i]))
2984 return PTR_ERR(sfp->gpio[i]);
2985 }
2986
2987 sfp->state_hw_mask = SFP_F_PRESENT;
2988 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2989
2990 sfp->get_state = sfp_gpio_get_state;
2991 sfp->set_state = sfp_gpio_set_state;
2992
2993 /* Modules that have no detect signal are always present */
2994 if (!(sfp->gpio[GPIO_MODDEF0]))
2995 sfp->get_state = sff_gpio_get_state;
2996
2997 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2998 &sfp->max_power_mW);
2999 if (sfp->max_power_mW < 1000) {
3000 if (sfp->max_power_mW)
3001 dev_warn(sfp->dev,
3002 "Firmware bug: host maximum power should be at least 1W\n");
3003 sfp->max_power_mW = 1000;
3004 }
3005
3006 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3007 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3008
3009 /* Get the initial state, and always signal TX disable,
3010 * since the network interface will not be up.
3011 */
3012 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3013
3014 if (sfp->gpio[GPIO_RS0] &&
3015 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3016 sfp->state |= SFP_F_RS0;
3017 sfp_set_state(sfp, sfp->state);
3018 sfp_module_tx_disable(sfp);
3019 if (sfp->state & SFP_F_PRESENT) {
3020 rtnl_lock();
3021 sfp_sm_event(sfp, SFP_E_INSERT);
3022 rtnl_unlock();
3023 }
3024
3025 for (i = 0; i < GPIO_MAX; i++) {
3026 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3027 continue;
3028
3029 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3030 if (sfp->gpio_irq[i] < 0) {
3031 sfp->gpio_irq[i] = 0;
3032 sfp->need_poll = true;
3033 continue;
3034 }
3035
3036 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3037 "%s-%s", dev_name(sfp->dev),
3038 gpio_names[i]);
3039
3040 if (!sfp_irq_name)
3041 return -ENOMEM;
3042
3043 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3044 NULL, sfp_irq,
3045 IRQF_ONESHOT |
3046 IRQF_TRIGGER_RISING |
3047 IRQF_TRIGGER_FALLING,
3048 sfp_irq_name, sfp);
3049 if (err) {
3050 sfp->gpio_irq[i] = 0;
3051 sfp->need_poll = true;
3052 }
3053 }
3054
3055 if (sfp->need_poll)
3056 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3057
3058 /* We could have an issue in cases no Tx disable pin is available or
3059 * wired as modules using a laser as their light source will continue to
3060 * be active when the fiber is removed. This could be a safety issue and
3061 * we should at least warn the user about that.
3062 */
3063 if (!sfp->gpio[GPIO_TX_DISABLE])
3064 dev_warn(sfp->dev,
3065 "No tx_disable pin: SFP modules will always be emitting.\n");
3066
3067 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3068 if (!sfp->sfp_bus)
3069 return -ENOMEM;
3070
3071 sfp_debugfs_init(sfp);
3072
3073 return 0;
3074 }
3075
sfp_remove(struct platform_device * pdev)3076 static int sfp_remove(struct platform_device *pdev)
3077 {
3078 struct sfp *sfp = platform_get_drvdata(pdev);
3079
3080 sfp_debugfs_exit(sfp);
3081 sfp_unregister_socket(sfp->sfp_bus);
3082
3083 rtnl_lock();
3084 sfp_sm_event(sfp, SFP_E_REMOVE);
3085 rtnl_unlock();
3086
3087 return 0;
3088 }
3089
sfp_shutdown(struct platform_device * pdev)3090 static void sfp_shutdown(struct platform_device *pdev)
3091 {
3092 struct sfp *sfp = platform_get_drvdata(pdev);
3093 int i;
3094
3095 for (i = 0; i < GPIO_MAX; i++) {
3096 if (!sfp->gpio_irq[i])
3097 continue;
3098
3099 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3100 }
3101
3102 cancel_delayed_work_sync(&sfp->poll);
3103 cancel_delayed_work_sync(&sfp->timeout);
3104 }
3105
3106 static struct platform_driver sfp_driver = {
3107 .probe = sfp_probe,
3108 .remove = sfp_remove,
3109 .shutdown = sfp_shutdown,
3110 .driver = {
3111 .name = "sfp",
3112 .of_match_table = sfp_of_match,
3113 },
3114 };
3115
sfp_init(void)3116 static int sfp_init(void)
3117 {
3118 poll_jiffies = msecs_to_jiffies(100);
3119
3120 return platform_driver_register(&sfp_driver);
3121 }
3122 module_init(sfp_init);
3123
sfp_exit(void)3124 static void sfp_exit(void)
3125 {
3126 platform_driver_unregister(&sfp_driver);
3127 }
3128 module_exit(sfp_exit);
3129
3130 MODULE_ALIAS("platform:sfp");
3131 MODULE_AUTHOR("Russell King");
3132 MODULE_LICENSE("GPL v2");
3133