1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
8 #include <linux/i2c.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/of.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20
21 #include "sfp.h"
22 #include "swphy.h"
23
24 enum {
25 GPIO_MODDEF0,
26 GPIO_LOS,
27 GPIO_TX_FAULT,
28 GPIO_TX_DISABLE,
29 GPIO_RATE_SELECT,
30 GPIO_MAX,
31
32 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33 SFP_F_LOS = BIT(GPIO_LOS),
34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
37
38 SFP_E_INSERT = 0,
39 SFP_E_REMOVE,
40 SFP_E_DEV_ATTACH,
41 SFP_E_DEV_DETACH,
42 SFP_E_DEV_DOWN,
43 SFP_E_DEV_UP,
44 SFP_E_TX_FAULT,
45 SFP_E_TX_CLEAR,
46 SFP_E_LOS_HIGH,
47 SFP_E_LOS_LOW,
48 SFP_E_TIMEOUT,
49
50 SFP_MOD_EMPTY = 0,
51 SFP_MOD_ERROR,
52 SFP_MOD_PROBE,
53 SFP_MOD_WAITDEV,
54 SFP_MOD_HPOWER,
55 SFP_MOD_WAITPWR,
56 SFP_MOD_PRESENT,
57
58 SFP_DEV_DETACHED = 0,
59 SFP_DEV_DOWN,
60 SFP_DEV_UP,
61
62 SFP_S_DOWN = 0,
63 SFP_S_FAIL,
64 SFP_S_WAIT,
65 SFP_S_INIT,
66 SFP_S_INIT_PHY,
67 SFP_S_INIT_TX_FAULT,
68 SFP_S_WAIT_LOS,
69 SFP_S_LINK_UP,
70 SFP_S_TX_FAULT,
71 SFP_S_REINIT,
72 SFP_S_TX_DISABLE,
73 };
74
75 static const char * const mod_state_strings[] = {
76 [SFP_MOD_EMPTY] = "empty",
77 [SFP_MOD_ERROR] = "error",
78 [SFP_MOD_PROBE] = "probe",
79 [SFP_MOD_WAITDEV] = "waitdev",
80 [SFP_MOD_HPOWER] = "hpower",
81 [SFP_MOD_WAITPWR] = "waitpwr",
82 [SFP_MOD_PRESENT] = "present",
83 };
84
mod_state_to_str(unsigned short mod_state)85 static const char *mod_state_to_str(unsigned short mod_state)
86 {
87 if (mod_state >= ARRAY_SIZE(mod_state_strings))
88 return "Unknown module state";
89 return mod_state_strings[mod_state];
90 }
91
92 static const char * const dev_state_strings[] = {
93 [SFP_DEV_DETACHED] = "detached",
94 [SFP_DEV_DOWN] = "down",
95 [SFP_DEV_UP] = "up",
96 };
97
dev_state_to_str(unsigned short dev_state)98 static const char *dev_state_to_str(unsigned short dev_state)
99 {
100 if (dev_state >= ARRAY_SIZE(dev_state_strings))
101 return "Unknown device state";
102 return dev_state_strings[dev_state];
103 }
104
105 static const char * const event_strings[] = {
106 [SFP_E_INSERT] = "insert",
107 [SFP_E_REMOVE] = "remove",
108 [SFP_E_DEV_ATTACH] = "dev_attach",
109 [SFP_E_DEV_DETACH] = "dev_detach",
110 [SFP_E_DEV_DOWN] = "dev_down",
111 [SFP_E_DEV_UP] = "dev_up",
112 [SFP_E_TX_FAULT] = "tx_fault",
113 [SFP_E_TX_CLEAR] = "tx_clear",
114 [SFP_E_LOS_HIGH] = "los_high",
115 [SFP_E_LOS_LOW] = "los_low",
116 [SFP_E_TIMEOUT] = "timeout",
117 };
118
event_to_str(unsigned short event)119 static const char *event_to_str(unsigned short event)
120 {
121 if (event >= ARRAY_SIZE(event_strings))
122 return "Unknown event";
123 return event_strings[event];
124 }
125
126 static const char * const sm_state_strings[] = {
127 [SFP_S_DOWN] = "down",
128 [SFP_S_FAIL] = "fail",
129 [SFP_S_WAIT] = "wait",
130 [SFP_S_INIT] = "init",
131 [SFP_S_INIT_PHY] = "init_phy",
132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133 [SFP_S_WAIT_LOS] = "wait_los",
134 [SFP_S_LINK_UP] = "link_up",
135 [SFP_S_TX_FAULT] = "tx_fault",
136 [SFP_S_REINIT] = "reinit",
137 [SFP_S_TX_DISABLE] = "tx_disable",
138 };
139
sm_state_to_str(unsigned short sm_state)140 static const char *sm_state_to_str(unsigned short sm_state)
141 {
142 if (sm_state >= ARRAY_SIZE(sm_state_strings))
143 return "Unknown state";
144 return sm_state_strings[sm_state];
145 }
146
147 static const char *gpio_of_names[] = {
148 "mod-def0",
149 "los",
150 "tx-fault",
151 "tx-disable",
152 "rate-select0",
153 };
154
155 static const enum gpiod_flags gpio_flags[] = {
156 GPIOD_IN,
157 GPIOD_IN,
158 GPIOD_IN,
159 GPIOD_ASIS,
160 GPIOD_ASIS,
161 };
162
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164 * non-cooled module to initialise its laser safety circuitry. We wait
165 * an initial T_WAIT period before we check the tx fault to give any PHY
166 * on board (for a copper SFP) time to initialise.
167 */
168 #define T_WAIT msecs_to_jiffies(50)
169 #define T_WAIT_ROLLBALL msecs_to_jiffies(25000)
170 #define T_START_UP msecs_to_jiffies(300)
171 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
172
173 /* t_reset is the time required to assert the TX_DISABLE signal to reset
174 * an indicated TX_FAULT.
175 */
176 #define T_RESET_US 10
177 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
178
179 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
180 * time. If the TX_FAULT signal is not deasserted after this number of
181 * attempts at clearing it, we decide that the module is faulty.
182 * N_FAULT is the same but after the module has initialised.
183 */
184 #define N_FAULT_INIT 5
185 #define N_FAULT 5
186
187 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
188 * R_PHY_RETRY is the number of attempts.
189 */
190 #define T_PHY_RETRY msecs_to_jiffies(50)
191 #define R_PHY_RETRY 12
192
193 /* SFP module presence detection is poor: the three MOD DEF signals are
194 * the same length on the PCB, which means it's possible for MOD DEF 0 to
195 * connect before the I2C bus on MOD DEF 1/2.
196 *
197 * The SFF-8472 specifies t_serial ("Time from power on until module is
198 * ready for data transmission over the two wire serial bus.") as 300ms.
199 */
200 #define T_SERIAL msecs_to_jiffies(300)
201 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
202 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
203 #define R_PROBE_RETRY_INIT 10
204 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
205 #define R_PROBE_RETRY_SLOW 12
206
207 /* SFP modules appear to always have their PHY configured for bus address
208 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
209 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
210 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
211 */
212 #define SFP_PHY_ADDR 22
213 #define SFP_PHY_ADDR_ROLLBALL 17
214
215 struct sff_data {
216 unsigned int gpios;
217 bool (*module_supported)(const struct sfp_eeprom_id *id);
218 };
219
220 struct sfp {
221 struct device *dev;
222 struct i2c_adapter *i2c;
223 struct mii_bus *i2c_mii;
224 struct sfp_bus *sfp_bus;
225 enum mdio_i2c_proto mdio_protocol;
226 struct phy_device *mod_phy;
227 const struct sff_data *type;
228 size_t i2c_block_size;
229 u32 max_power_mW;
230
231 unsigned int (*get_state)(struct sfp *);
232 void (*set_state)(struct sfp *, unsigned int);
233 int (*read)(struct sfp *, bool, u8, void *, size_t);
234 int (*write)(struct sfp *, bool, u8, void *, size_t);
235
236 struct gpio_desc *gpio[GPIO_MAX];
237 int gpio_irq[GPIO_MAX];
238
239 bool need_poll;
240
241 struct mutex st_mutex; /* Protects state */
242 unsigned int state_hw_mask;
243 unsigned int state_soft_mask;
244 unsigned int state;
245 struct delayed_work poll;
246 struct delayed_work timeout;
247 struct mutex sm_mutex; /* Protects state machine */
248 unsigned char sm_mod_state;
249 unsigned char sm_mod_tries_init;
250 unsigned char sm_mod_tries;
251 unsigned char sm_dev_state;
252 unsigned short sm_state;
253 unsigned char sm_fault_retries;
254 unsigned char sm_phy_retries;
255
256 struct sfp_eeprom_id id;
257 unsigned int module_power_mW;
258 unsigned int module_t_start_up;
259 unsigned int module_t_wait;
260 bool tx_fault_ignore;
261
262 const struct sfp_quirk *quirk;
263
264 #if IS_ENABLED(CONFIG_HWMON)
265 struct sfp_diag diag;
266 struct delayed_work hwmon_probe;
267 unsigned int hwmon_tries;
268 struct device *hwmon_dev;
269 char *hwmon_name;
270 #endif
271
272 #if IS_ENABLED(CONFIG_DEBUG_FS)
273 struct dentry *debugfs_dir;
274 #endif
275 };
276
sff_module_supported(const struct sfp_eeprom_id * id)277 static bool sff_module_supported(const struct sfp_eeprom_id *id)
278 {
279 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
280 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
281 }
282
283 static const struct sff_data sff_data = {
284 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
285 .module_supported = sff_module_supported,
286 };
287
sfp_module_supported(const struct sfp_eeprom_id * id)288 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
289 {
290 if (id->base.phys_id == SFF8024_ID_SFP &&
291 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
292 return true;
293
294 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
295 * phys id SFF instead of SFP. Therefore mark this module explicitly
296 * as supported based on vendor name and pn match.
297 */
298 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
299 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
300 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
301 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
302 return true;
303
304 return false;
305 }
306
307 static const struct sff_data sfp_data = {
308 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
309 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
310 .module_supported = sfp_module_supported,
311 };
312
313 static const struct of_device_id sfp_of_match[] = {
314 { .compatible = "sff,sff", .data = &sff_data, },
315 { .compatible = "sff,sfp", .data = &sfp_data, },
316 { },
317 };
318 MODULE_DEVICE_TABLE(of, sfp_of_match);
319
sfp_fixup_long_startup(struct sfp * sfp)320 static void sfp_fixup_long_startup(struct sfp *sfp)
321 {
322 sfp->module_t_start_up = T_START_UP_BAD_GPON;
323 }
324
sfp_fixup_ignore_tx_fault(struct sfp * sfp)325 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
326 {
327 sfp->tx_fault_ignore = true;
328 }
329
sfp_fixup_halny_gsfp(struct sfp * sfp)330 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
331 {
332 /* Ignore the TX_FAULT and LOS signals on this module.
333 * these are possibly used for other purposes on this
334 * module, e.g. a serial port.
335 */
336 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
337 }
338
sfp_fixup_rollball(struct sfp * sfp)339 static void sfp_fixup_rollball(struct sfp *sfp)
340 {
341 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
342 sfp->module_t_wait = T_WAIT_ROLLBALL;
343 }
344
sfp_fixup_rollball_cc(struct sfp * sfp)345 static void sfp_fixup_rollball_cc(struct sfp *sfp)
346 {
347 sfp_fixup_rollball(sfp);
348
349 /* Some RollBall SFPs may have wrong (zero) extended compliance code
350 * burned in EEPROM. For PHY probing we need the correct one.
351 */
352 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
353 }
354
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)355 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
356 unsigned long *modes,
357 unsigned long *interfaces)
358 {
359 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
360 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
361 }
362
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)363 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
364 unsigned long *modes,
365 unsigned long *interfaces)
366 {
367 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
368 * types including 10G Ethernet which is not truth. So clear all claimed
369 * modes and set only one mode which module supports: 1000baseX_Full.
370 */
371 linkmode_zero(modes);
372 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
373 }
374
375 #define SFP_QUIRK(_v, _p, _m, _f) \
376 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
377 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
378 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
379
380 static const struct sfp_quirk sfp_quirks[] = {
381 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
382 // report 2500MBd NRZ in their EEPROM
383 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
384
385 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
386 // NRZ in their EEPROM
387 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
388 sfp_fixup_long_startup),
389
390 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
391
392 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
393 // their EEPROM
394 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
395 sfp_fixup_ignore_tx_fault),
396
397 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
398 // 2500MBd NRZ in their EEPROM
399 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
400
401 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
402
403 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
404 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
405 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
406 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
407 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
408 };
409
sfp_strlen(const char * str,size_t maxlen)410 static size_t sfp_strlen(const char *str, size_t maxlen)
411 {
412 size_t size, i;
413
414 /* Trailing characters should be filled with space chars, but
415 * some manufacturers can't read SFF-8472 and use NUL.
416 */
417 for (i = 0, size = 0; i < maxlen; i++)
418 if (str[i] != ' ' && str[i] != '\0')
419 size = i + 1;
420
421 return size;
422 }
423
sfp_match(const char * qs,const char * str,size_t len)424 static bool sfp_match(const char *qs, const char *str, size_t len)
425 {
426 if (!qs)
427 return true;
428 if (strlen(qs) != len)
429 return false;
430 return !strncmp(qs, str, len);
431 }
432
sfp_lookup_quirk(const struct sfp_eeprom_id * id)433 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
434 {
435 const struct sfp_quirk *q;
436 unsigned int i;
437 size_t vs, ps;
438
439 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
440 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
441
442 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
443 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
444 sfp_match(q->part, id->base.vendor_pn, ps))
445 return q;
446
447 return NULL;
448 }
449
450 static unsigned long poll_jiffies;
451
sfp_gpio_get_state(struct sfp * sfp)452 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
453 {
454 unsigned int i, state, v;
455
456 for (i = state = 0; i < GPIO_MAX; i++) {
457 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
458 continue;
459
460 v = gpiod_get_value_cansleep(sfp->gpio[i]);
461 if (v)
462 state |= BIT(i);
463 }
464
465 return state;
466 }
467
sff_gpio_get_state(struct sfp * sfp)468 static unsigned int sff_gpio_get_state(struct sfp *sfp)
469 {
470 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
471 }
472
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)473 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
474 {
475 if (state & SFP_F_PRESENT) {
476 /* If the module is present, drive the signals */
477 if (sfp->gpio[GPIO_TX_DISABLE])
478 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
479 state & SFP_F_TX_DISABLE);
480 if (state & SFP_F_RATE_SELECT)
481 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
482 state & SFP_F_RATE_SELECT);
483 } else {
484 /* Otherwise, let them float to the pull-ups */
485 if (sfp->gpio[GPIO_TX_DISABLE])
486 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
487 if (state & SFP_F_RATE_SELECT)
488 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
489 }
490 }
491
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)492 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
493 size_t len)
494 {
495 struct i2c_msg msgs[2];
496 u8 bus_addr = a2 ? 0x51 : 0x50;
497 size_t block_size = sfp->i2c_block_size;
498 size_t this_len;
499 int ret;
500
501 msgs[0].addr = bus_addr;
502 msgs[0].flags = 0;
503 msgs[0].len = 1;
504 msgs[0].buf = &dev_addr;
505 msgs[1].addr = bus_addr;
506 msgs[1].flags = I2C_M_RD;
507 msgs[1].len = len;
508 msgs[1].buf = buf;
509
510 while (len) {
511 this_len = len;
512 if (this_len > block_size)
513 this_len = block_size;
514
515 msgs[1].len = this_len;
516
517 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
518 if (ret < 0)
519 return ret;
520
521 if (ret != ARRAY_SIZE(msgs))
522 break;
523
524 msgs[1].buf += this_len;
525 dev_addr += this_len;
526 len -= this_len;
527 }
528
529 return msgs[1].buf - (u8 *)buf;
530 }
531
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)532 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
533 size_t len)
534 {
535 struct i2c_msg msgs[1];
536 u8 bus_addr = a2 ? 0x51 : 0x50;
537 int ret;
538
539 msgs[0].addr = bus_addr;
540 msgs[0].flags = 0;
541 msgs[0].len = 1 + len;
542 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
543 if (!msgs[0].buf)
544 return -ENOMEM;
545
546 msgs[0].buf[0] = dev_addr;
547 memcpy(&msgs[0].buf[1], buf, len);
548
549 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
550
551 kfree(msgs[0].buf);
552
553 if (ret < 0)
554 return ret;
555
556 return ret == ARRAY_SIZE(msgs) ? len : 0;
557 }
558
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)559 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
560 {
561 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
562 return -EINVAL;
563
564 sfp->i2c = i2c;
565 sfp->read = sfp_i2c_read;
566 sfp->write = sfp_i2c_write;
567
568 return 0;
569 }
570
sfp_i2c_mdiobus_create(struct sfp * sfp)571 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
572 {
573 struct mii_bus *i2c_mii;
574 int ret;
575
576 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
577 if (IS_ERR(i2c_mii))
578 return PTR_ERR(i2c_mii);
579
580 i2c_mii->name = "SFP I2C Bus";
581 i2c_mii->phy_mask = ~0;
582
583 ret = mdiobus_register(i2c_mii);
584 if (ret < 0) {
585 mdiobus_free(i2c_mii);
586 return ret;
587 }
588
589 sfp->i2c_mii = i2c_mii;
590
591 return 0;
592 }
593
sfp_i2c_mdiobus_destroy(struct sfp * sfp)594 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
595 {
596 mdiobus_unregister(sfp->i2c_mii);
597 sfp->i2c_mii = NULL;
598 }
599
600 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)601 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
602 {
603 return sfp->read(sfp, a2, addr, buf, len);
604 }
605
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)606 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
607 {
608 return sfp->write(sfp, a2, addr, buf, len);
609 }
610
sfp_soft_get_state(struct sfp * sfp)611 static unsigned int sfp_soft_get_state(struct sfp *sfp)
612 {
613 unsigned int state = 0;
614 u8 status;
615 int ret;
616
617 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
618 if (ret == sizeof(status)) {
619 if (status & SFP_STATUS_RX_LOS)
620 state |= SFP_F_LOS;
621 if (status & SFP_STATUS_TX_FAULT)
622 state |= SFP_F_TX_FAULT;
623 } else {
624 dev_err_ratelimited(sfp->dev,
625 "failed to read SFP soft status: %pe\n",
626 ERR_PTR(ret));
627 /* Preserve the current state */
628 state = sfp->state;
629 }
630
631 return state & sfp->state_soft_mask;
632 }
633
sfp_soft_set_state(struct sfp * sfp,unsigned int state)634 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
635 {
636 u8 status;
637
638 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
639 sizeof(status)) {
640 if (state & SFP_F_TX_DISABLE)
641 status |= SFP_STATUS_TX_DISABLE_FORCE;
642 else
643 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
644
645 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
646 }
647 }
648
sfp_soft_start_poll(struct sfp * sfp)649 static void sfp_soft_start_poll(struct sfp *sfp)
650 {
651 const struct sfp_eeprom_id *id = &sfp->id;
652 unsigned int mask = 0;
653
654 sfp->state_soft_mask = 0;
655 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
656 mask |= SFP_F_TX_DISABLE;
657 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
658 mask |= SFP_F_TX_FAULT;
659 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
660 mask |= SFP_F_LOS;
661
662 // Poll the soft state for hardware pins we want to ignore
663 sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
664
665 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
666 !sfp->need_poll)
667 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
668 }
669
sfp_soft_stop_poll(struct sfp * sfp)670 static void sfp_soft_stop_poll(struct sfp *sfp)
671 {
672 sfp->state_soft_mask = 0;
673 }
674
sfp_get_state(struct sfp * sfp)675 static unsigned int sfp_get_state(struct sfp *sfp)
676 {
677 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
678 unsigned int state;
679
680 state = sfp->get_state(sfp) & sfp->state_hw_mask;
681 if (state & SFP_F_PRESENT && soft)
682 state |= sfp_soft_get_state(sfp);
683
684 return state;
685 }
686
sfp_set_state(struct sfp * sfp,unsigned int state)687 static void sfp_set_state(struct sfp *sfp, unsigned int state)
688 {
689 sfp->set_state(sfp, state);
690
691 if (state & SFP_F_PRESENT &&
692 sfp->state_soft_mask & SFP_F_TX_DISABLE)
693 sfp_soft_set_state(sfp, state);
694 }
695
sfp_check(void * buf,size_t len)696 static unsigned int sfp_check(void *buf, size_t len)
697 {
698 u8 *p, check;
699
700 for (p = buf, check = 0; len; p++, len--)
701 check += *p;
702
703 return check;
704 }
705
706 /* hwmon */
707 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)708 static umode_t sfp_hwmon_is_visible(const void *data,
709 enum hwmon_sensor_types type,
710 u32 attr, int channel)
711 {
712 const struct sfp *sfp = data;
713
714 switch (type) {
715 case hwmon_temp:
716 switch (attr) {
717 case hwmon_temp_min_alarm:
718 case hwmon_temp_max_alarm:
719 case hwmon_temp_lcrit_alarm:
720 case hwmon_temp_crit_alarm:
721 case hwmon_temp_min:
722 case hwmon_temp_max:
723 case hwmon_temp_lcrit:
724 case hwmon_temp_crit:
725 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
726 return 0;
727 fallthrough;
728 case hwmon_temp_input:
729 case hwmon_temp_label:
730 return 0444;
731 default:
732 return 0;
733 }
734 case hwmon_in:
735 switch (attr) {
736 case hwmon_in_min_alarm:
737 case hwmon_in_max_alarm:
738 case hwmon_in_lcrit_alarm:
739 case hwmon_in_crit_alarm:
740 case hwmon_in_min:
741 case hwmon_in_max:
742 case hwmon_in_lcrit:
743 case hwmon_in_crit:
744 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
745 return 0;
746 fallthrough;
747 case hwmon_in_input:
748 case hwmon_in_label:
749 return 0444;
750 default:
751 return 0;
752 }
753 case hwmon_curr:
754 switch (attr) {
755 case hwmon_curr_min_alarm:
756 case hwmon_curr_max_alarm:
757 case hwmon_curr_lcrit_alarm:
758 case hwmon_curr_crit_alarm:
759 case hwmon_curr_min:
760 case hwmon_curr_max:
761 case hwmon_curr_lcrit:
762 case hwmon_curr_crit:
763 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
764 return 0;
765 fallthrough;
766 case hwmon_curr_input:
767 case hwmon_curr_label:
768 return 0444;
769 default:
770 return 0;
771 }
772 case hwmon_power:
773 /* External calibration of receive power requires
774 * floating point arithmetic. Doing that in the kernel
775 * is not easy, so just skip it. If the module does
776 * not require external calibration, we can however
777 * show receiver power, since FP is then not needed.
778 */
779 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
780 channel == 1)
781 return 0;
782 switch (attr) {
783 case hwmon_power_min_alarm:
784 case hwmon_power_max_alarm:
785 case hwmon_power_lcrit_alarm:
786 case hwmon_power_crit_alarm:
787 case hwmon_power_min:
788 case hwmon_power_max:
789 case hwmon_power_lcrit:
790 case hwmon_power_crit:
791 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
792 return 0;
793 fallthrough;
794 case hwmon_power_input:
795 case hwmon_power_label:
796 return 0444;
797 default:
798 return 0;
799 }
800 default:
801 return 0;
802 }
803 }
804
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)805 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
806 {
807 __be16 val;
808 int err;
809
810 err = sfp_read(sfp, true, reg, &val, sizeof(val));
811 if (err < 0)
812 return err;
813
814 *value = be16_to_cpu(val);
815
816 return 0;
817 }
818
sfp_hwmon_to_rx_power(long * value)819 static void sfp_hwmon_to_rx_power(long *value)
820 {
821 *value = DIV_ROUND_CLOSEST(*value, 10);
822 }
823
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)824 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
825 long *value)
826 {
827 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
828 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
829 }
830
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)831 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
832 {
833 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
834 be16_to_cpu(sfp->diag.cal_t_offset), value);
835
836 if (*value >= 0x8000)
837 *value -= 0x10000;
838
839 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
840 }
841
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)842 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
843 {
844 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
845 be16_to_cpu(sfp->diag.cal_v_offset), value);
846
847 *value = DIV_ROUND_CLOSEST(*value, 10);
848 }
849
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)850 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
851 {
852 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
853 be16_to_cpu(sfp->diag.cal_txi_offset), value);
854
855 *value = DIV_ROUND_CLOSEST(*value, 500);
856 }
857
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)858 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
859 {
860 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
861 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
862
863 *value = DIV_ROUND_CLOSEST(*value, 10);
864 }
865
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)866 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
867 {
868 int err;
869
870 err = sfp_hwmon_read_sensor(sfp, reg, value);
871 if (err < 0)
872 return err;
873
874 sfp_hwmon_calibrate_temp(sfp, value);
875
876 return 0;
877 }
878
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)879 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
880 {
881 int err;
882
883 err = sfp_hwmon_read_sensor(sfp, reg, value);
884 if (err < 0)
885 return err;
886
887 sfp_hwmon_calibrate_vcc(sfp, value);
888
889 return 0;
890 }
891
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)892 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
893 {
894 int err;
895
896 err = sfp_hwmon_read_sensor(sfp, reg, value);
897 if (err < 0)
898 return err;
899
900 sfp_hwmon_calibrate_bias(sfp, value);
901
902 return 0;
903 }
904
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)905 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
906 {
907 int err;
908
909 err = sfp_hwmon_read_sensor(sfp, reg, value);
910 if (err < 0)
911 return err;
912
913 sfp_hwmon_calibrate_tx_power(sfp, value);
914
915 return 0;
916 }
917
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)918 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
919 {
920 int err;
921
922 err = sfp_hwmon_read_sensor(sfp, reg, value);
923 if (err < 0)
924 return err;
925
926 sfp_hwmon_to_rx_power(value);
927
928 return 0;
929 }
930
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)931 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
932 {
933 u8 status;
934 int err;
935
936 switch (attr) {
937 case hwmon_temp_input:
938 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
939
940 case hwmon_temp_lcrit:
941 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
942 sfp_hwmon_calibrate_temp(sfp, value);
943 return 0;
944
945 case hwmon_temp_min:
946 *value = be16_to_cpu(sfp->diag.temp_low_warn);
947 sfp_hwmon_calibrate_temp(sfp, value);
948 return 0;
949 case hwmon_temp_max:
950 *value = be16_to_cpu(sfp->diag.temp_high_warn);
951 sfp_hwmon_calibrate_temp(sfp, value);
952 return 0;
953
954 case hwmon_temp_crit:
955 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
956 sfp_hwmon_calibrate_temp(sfp, value);
957 return 0;
958
959 case hwmon_temp_lcrit_alarm:
960 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
961 if (err < 0)
962 return err;
963
964 *value = !!(status & SFP_ALARM0_TEMP_LOW);
965 return 0;
966
967 case hwmon_temp_min_alarm:
968 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
969 if (err < 0)
970 return err;
971
972 *value = !!(status & SFP_WARN0_TEMP_LOW);
973 return 0;
974
975 case hwmon_temp_max_alarm:
976 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
977 if (err < 0)
978 return err;
979
980 *value = !!(status & SFP_WARN0_TEMP_HIGH);
981 return 0;
982
983 case hwmon_temp_crit_alarm:
984 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
985 if (err < 0)
986 return err;
987
988 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
989 return 0;
990 default:
991 return -EOPNOTSUPP;
992 }
993
994 return -EOPNOTSUPP;
995 }
996
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)997 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
998 {
999 u8 status;
1000 int err;
1001
1002 switch (attr) {
1003 case hwmon_in_input:
1004 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1005
1006 case hwmon_in_lcrit:
1007 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1008 sfp_hwmon_calibrate_vcc(sfp, value);
1009 return 0;
1010
1011 case hwmon_in_min:
1012 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1013 sfp_hwmon_calibrate_vcc(sfp, value);
1014 return 0;
1015
1016 case hwmon_in_max:
1017 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1018 sfp_hwmon_calibrate_vcc(sfp, value);
1019 return 0;
1020
1021 case hwmon_in_crit:
1022 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1023 sfp_hwmon_calibrate_vcc(sfp, value);
1024 return 0;
1025
1026 case hwmon_in_lcrit_alarm:
1027 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1028 if (err < 0)
1029 return err;
1030
1031 *value = !!(status & SFP_ALARM0_VCC_LOW);
1032 return 0;
1033
1034 case hwmon_in_min_alarm:
1035 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1036 if (err < 0)
1037 return err;
1038
1039 *value = !!(status & SFP_WARN0_VCC_LOW);
1040 return 0;
1041
1042 case hwmon_in_max_alarm:
1043 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1044 if (err < 0)
1045 return err;
1046
1047 *value = !!(status & SFP_WARN0_VCC_HIGH);
1048 return 0;
1049
1050 case hwmon_in_crit_alarm:
1051 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1052 if (err < 0)
1053 return err;
1054
1055 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1056 return 0;
1057 default:
1058 return -EOPNOTSUPP;
1059 }
1060
1061 return -EOPNOTSUPP;
1062 }
1063
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)1064 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1065 {
1066 u8 status;
1067 int err;
1068
1069 switch (attr) {
1070 case hwmon_curr_input:
1071 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1072
1073 case hwmon_curr_lcrit:
1074 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1075 sfp_hwmon_calibrate_bias(sfp, value);
1076 return 0;
1077
1078 case hwmon_curr_min:
1079 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1080 sfp_hwmon_calibrate_bias(sfp, value);
1081 return 0;
1082
1083 case hwmon_curr_max:
1084 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1085 sfp_hwmon_calibrate_bias(sfp, value);
1086 return 0;
1087
1088 case hwmon_curr_crit:
1089 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1090 sfp_hwmon_calibrate_bias(sfp, value);
1091 return 0;
1092
1093 case hwmon_curr_lcrit_alarm:
1094 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1095 if (err < 0)
1096 return err;
1097
1098 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1099 return 0;
1100
1101 case hwmon_curr_min_alarm:
1102 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1103 if (err < 0)
1104 return err;
1105
1106 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1107 return 0;
1108
1109 case hwmon_curr_max_alarm:
1110 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1111 if (err < 0)
1112 return err;
1113
1114 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1115 return 0;
1116
1117 case hwmon_curr_crit_alarm:
1118 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1119 if (err < 0)
1120 return err;
1121
1122 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1123 return 0;
1124 default:
1125 return -EOPNOTSUPP;
1126 }
1127
1128 return -EOPNOTSUPP;
1129 }
1130
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)1131 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1132 {
1133 u8 status;
1134 int err;
1135
1136 switch (attr) {
1137 case hwmon_power_input:
1138 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1139
1140 case hwmon_power_lcrit:
1141 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1142 sfp_hwmon_calibrate_tx_power(sfp, value);
1143 return 0;
1144
1145 case hwmon_power_min:
1146 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1147 sfp_hwmon_calibrate_tx_power(sfp, value);
1148 return 0;
1149
1150 case hwmon_power_max:
1151 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1152 sfp_hwmon_calibrate_tx_power(sfp, value);
1153 return 0;
1154
1155 case hwmon_power_crit:
1156 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1157 sfp_hwmon_calibrate_tx_power(sfp, value);
1158 return 0;
1159
1160 case hwmon_power_lcrit_alarm:
1161 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1162 if (err < 0)
1163 return err;
1164
1165 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1166 return 0;
1167
1168 case hwmon_power_min_alarm:
1169 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1170 if (err < 0)
1171 return err;
1172
1173 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1174 return 0;
1175
1176 case hwmon_power_max_alarm:
1177 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1178 if (err < 0)
1179 return err;
1180
1181 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1182 return 0;
1183
1184 case hwmon_power_crit_alarm:
1185 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1186 if (err < 0)
1187 return err;
1188
1189 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1190 return 0;
1191 default:
1192 return -EOPNOTSUPP;
1193 }
1194
1195 return -EOPNOTSUPP;
1196 }
1197
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1198 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1199 {
1200 u8 status;
1201 int err;
1202
1203 switch (attr) {
1204 case hwmon_power_input:
1205 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1206
1207 case hwmon_power_lcrit:
1208 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1209 sfp_hwmon_to_rx_power(value);
1210 return 0;
1211
1212 case hwmon_power_min:
1213 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1214 sfp_hwmon_to_rx_power(value);
1215 return 0;
1216
1217 case hwmon_power_max:
1218 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1219 sfp_hwmon_to_rx_power(value);
1220 return 0;
1221
1222 case hwmon_power_crit:
1223 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1224 sfp_hwmon_to_rx_power(value);
1225 return 0;
1226
1227 case hwmon_power_lcrit_alarm:
1228 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1229 if (err < 0)
1230 return err;
1231
1232 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1233 return 0;
1234
1235 case hwmon_power_min_alarm:
1236 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1237 if (err < 0)
1238 return err;
1239
1240 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1241 return 0;
1242
1243 case hwmon_power_max_alarm:
1244 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1245 if (err < 0)
1246 return err;
1247
1248 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1249 return 0;
1250
1251 case hwmon_power_crit_alarm:
1252 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1253 if (err < 0)
1254 return err;
1255
1256 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1257 return 0;
1258 default:
1259 return -EOPNOTSUPP;
1260 }
1261
1262 return -EOPNOTSUPP;
1263 }
1264
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1265 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1266 u32 attr, int channel, long *value)
1267 {
1268 struct sfp *sfp = dev_get_drvdata(dev);
1269
1270 switch (type) {
1271 case hwmon_temp:
1272 return sfp_hwmon_temp(sfp, attr, value);
1273 case hwmon_in:
1274 return sfp_hwmon_vcc(sfp, attr, value);
1275 case hwmon_curr:
1276 return sfp_hwmon_bias(sfp, attr, value);
1277 case hwmon_power:
1278 switch (channel) {
1279 case 0:
1280 return sfp_hwmon_tx_power(sfp, attr, value);
1281 case 1:
1282 return sfp_hwmon_rx_power(sfp, attr, value);
1283 default:
1284 return -EOPNOTSUPP;
1285 }
1286 default:
1287 return -EOPNOTSUPP;
1288 }
1289 }
1290
1291 static const char *const sfp_hwmon_power_labels[] = {
1292 "TX_power",
1293 "RX_power",
1294 };
1295
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1296 static int sfp_hwmon_read_string(struct device *dev,
1297 enum hwmon_sensor_types type,
1298 u32 attr, int channel, const char **str)
1299 {
1300 switch (type) {
1301 case hwmon_curr:
1302 switch (attr) {
1303 case hwmon_curr_label:
1304 *str = "bias";
1305 return 0;
1306 default:
1307 return -EOPNOTSUPP;
1308 }
1309 break;
1310 case hwmon_temp:
1311 switch (attr) {
1312 case hwmon_temp_label:
1313 *str = "temperature";
1314 return 0;
1315 default:
1316 return -EOPNOTSUPP;
1317 }
1318 break;
1319 case hwmon_in:
1320 switch (attr) {
1321 case hwmon_in_label:
1322 *str = "VCC";
1323 return 0;
1324 default:
1325 return -EOPNOTSUPP;
1326 }
1327 break;
1328 case hwmon_power:
1329 switch (attr) {
1330 case hwmon_power_label:
1331 *str = sfp_hwmon_power_labels[channel];
1332 return 0;
1333 default:
1334 return -EOPNOTSUPP;
1335 }
1336 break;
1337 default:
1338 return -EOPNOTSUPP;
1339 }
1340
1341 return -EOPNOTSUPP;
1342 }
1343
1344 static const struct hwmon_ops sfp_hwmon_ops = {
1345 .is_visible = sfp_hwmon_is_visible,
1346 .read = sfp_hwmon_read,
1347 .read_string = sfp_hwmon_read_string,
1348 };
1349
1350 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1351 HWMON_CHANNEL_INFO(chip,
1352 HWMON_C_REGISTER_TZ),
1353 HWMON_CHANNEL_INFO(in,
1354 HWMON_I_INPUT |
1355 HWMON_I_MAX | HWMON_I_MIN |
1356 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1357 HWMON_I_CRIT | HWMON_I_LCRIT |
1358 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1359 HWMON_I_LABEL),
1360 HWMON_CHANNEL_INFO(temp,
1361 HWMON_T_INPUT |
1362 HWMON_T_MAX | HWMON_T_MIN |
1363 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1364 HWMON_T_CRIT | HWMON_T_LCRIT |
1365 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1366 HWMON_T_LABEL),
1367 HWMON_CHANNEL_INFO(curr,
1368 HWMON_C_INPUT |
1369 HWMON_C_MAX | HWMON_C_MIN |
1370 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1371 HWMON_C_CRIT | HWMON_C_LCRIT |
1372 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1373 HWMON_C_LABEL),
1374 HWMON_CHANNEL_INFO(power,
1375 /* Transmit power */
1376 HWMON_P_INPUT |
1377 HWMON_P_MAX | HWMON_P_MIN |
1378 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1379 HWMON_P_CRIT | HWMON_P_LCRIT |
1380 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1381 HWMON_P_LABEL,
1382 /* Receive power */
1383 HWMON_P_INPUT |
1384 HWMON_P_MAX | HWMON_P_MIN |
1385 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1386 HWMON_P_CRIT | HWMON_P_LCRIT |
1387 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1388 HWMON_P_LABEL),
1389 NULL,
1390 };
1391
1392 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1393 .ops = &sfp_hwmon_ops,
1394 .info = sfp_hwmon_info,
1395 };
1396
sfp_hwmon_probe(struct work_struct * work)1397 static void sfp_hwmon_probe(struct work_struct *work)
1398 {
1399 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1400 int err;
1401
1402 /* hwmon interface needs to access 16bit registers in atomic way to
1403 * guarantee coherency of the diagnostic monitoring data. If it is not
1404 * possible to guarantee coherency because EEPROM is broken in such way
1405 * that does not support atomic 16bit read operation then we have to
1406 * skip registration of hwmon device.
1407 */
1408 if (sfp->i2c_block_size < 2) {
1409 dev_info(sfp->dev,
1410 "skipping hwmon device registration due to broken EEPROM\n");
1411 dev_info(sfp->dev,
1412 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1413 return;
1414 }
1415
1416 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1417 if (err < 0) {
1418 if (sfp->hwmon_tries--) {
1419 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1420 T_PROBE_RETRY_SLOW);
1421 } else {
1422 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1423 ERR_PTR(err));
1424 }
1425 return;
1426 }
1427
1428 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1429 if (IS_ERR(sfp->hwmon_name)) {
1430 dev_err(sfp->dev, "out of memory for hwmon name\n");
1431 return;
1432 }
1433
1434 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1435 sfp->hwmon_name, sfp,
1436 &sfp_hwmon_chip_info,
1437 NULL);
1438 if (IS_ERR(sfp->hwmon_dev))
1439 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1440 PTR_ERR(sfp->hwmon_dev));
1441 }
1442
sfp_hwmon_insert(struct sfp * sfp)1443 static int sfp_hwmon_insert(struct sfp *sfp)
1444 {
1445 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1446 return 0;
1447
1448 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1449 return 0;
1450
1451 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1452 /* This driver in general does not support address
1453 * change.
1454 */
1455 return 0;
1456
1457 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1458 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1459
1460 return 0;
1461 }
1462
sfp_hwmon_remove(struct sfp * sfp)1463 static void sfp_hwmon_remove(struct sfp *sfp)
1464 {
1465 cancel_delayed_work_sync(&sfp->hwmon_probe);
1466 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1467 hwmon_device_unregister(sfp->hwmon_dev);
1468 sfp->hwmon_dev = NULL;
1469 kfree(sfp->hwmon_name);
1470 }
1471 }
1472
sfp_hwmon_init(struct sfp * sfp)1473 static int sfp_hwmon_init(struct sfp *sfp)
1474 {
1475 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1476
1477 return 0;
1478 }
1479
sfp_hwmon_exit(struct sfp * sfp)1480 static void sfp_hwmon_exit(struct sfp *sfp)
1481 {
1482 cancel_delayed_work_sync(&sfp->hwmon_probe);
1483 }
1484 #else
sfp_hwmon_insert(struct sfp * sfp)1485 static int sfp_hwmon_insert(struct sfp *sfp)
1486 {
1487 return 0;
1488 }
1489
sfp_hwmon_remove(struct sfp * sfp)1490 static void sfp_hwmon_remove(struct sfp *sfp)
1491 {
1492 }
1493
sfp_hwmon_init(struct sfp * sfp)1494 static int sfp_hwmon_init(struct sfp *sfp)
1495 {
1496 return 0;
1497 }
1498
sfp_hwmon_exit(struct sfp * sfp)1499 static void sfp_hwmon_exit(struct sfp *sfp)
1500 {
1501 }
1502 #endif
1503
1504 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1505 static void sfp_module_tx_disable(struct sfp *sfp)
1506 {
1507 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1508 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1509 sfp->state |= SFP_F_TX_DISABLE;
1510 sfp_set_state(sfp, sfp->state);
1511 }
1512
sfp_module_tx_enable(struct sfp * sfp)1513 static void sfp_module_tx_enable(struct sfp *sfp)
1514 {
1515 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1516 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1517 sfp->state &= ~SFP_F_TX_DISABLE;
1518 sfp_set_state(sfp, sfp->state);
1519 }
1520
1521 #if IS_ENABLED(CONFIG_DEBUG_FS)
sfp_debug_state_show(struct seq_file * s,void * data)1522 static int sfp_debug_state_show(struct seq_file *s, void *data)
1523 {
1524 struct sfp *sfp = s->private;
1525
1526 seq_printf(s, "Module state: %s\n",
1527 mod_state_to_str(sfp->sm_mod_state));
1528 seq_printf(s, "Module probe attempts: %d %d\n",
1529 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1530 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1531 seq_printf(s, "Device state: %s\n",
1532 dev_state_to_str(sfp->sm_dev_state));
1533 seq_printf(s, "Main state: %s\n",
1534 sm_state_to_str(sfp->sm_state));
1535 seq_printf(s, "Fault recovery remaining retries: %d\n",
1536 sfp->sm_fault_retries);
1537 seq_printf(s, "PHY probe remaining retries: %d\n",
1538 sfp->sm_phy_retries);
1539 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1540 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1541 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1542 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1543 return 0;
1544 }
1545 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1546
sfp_debugfs_init(struct sfp * sfp)1547 static void sfp_debugfs_init(struct sfp *sfp)
1548 {
1549 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1550
1551 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1552 &sfp_debug_state_fops);
1553 }
1554
sfp_debugfs_exit(struct sfp * sfp)1555 static void sfp_debugfs_exit(struct sfp *sfp)
1556 {
1557 debugfs_remove_recursive(sfp->debugfs_dir);
1558 }
1559 #else
sfp_debugfs_init(struct sfp * sfp)1560 static void sfp_debugfs_init(struct sfp *sfp)
1561 {
1562 }
1563
sfp_debugfs_exit(struct sfp * sfp)1564 static void sfp_debugfs_exit(struct sfp *sfp)
1565 {
1566 }
1567 #endif
1568
sfp_module_tx_fault_reset(struct sfp * sfp)1569 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1570 {
1571 unsigned int state = sfp->state;
1572
1573 if (state & SFP_F_TX_DISABLE)
1574 return;
1575
1576 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1577
1578 udelay(T_RESET_US);
1579
1580 sfp_set_state(sfp, state);
1581 }
1582
1583 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1584 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1585 {
1586 if (timeout)
1587 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1588 timeout);
1589 else
1590 cancel_delayed_work(&sfp->timeout);
1591 }
1592
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1593 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1594 unsigned int timeout)
1595 {
1596 sfp->sm_state = state;
1597 sfp_sm_set_timer(sfp, timeout);
1598 }
1599
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1600 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1601 unsigned int timeout)
1602 {
1603 sfp->sm_mod_state = state;
1604 sfp_sm_set_timer(sfp, timeout);
1605 }
1606
sfp_sm_phy_detach(struct sfp * sfp)1607 static void sfp_sm_phy_detach(struct sfp *sfp)
1608 {
1609 sfp_remove_phy(sfp->sfp_bus);
1610 phy_device_remove(sfp->mod_phy);
1611 phy_device_free(sfp->mod_phy);
1612 sfp->mod_phy = NULL;
1613 }
1614
sfp_sm_probe_phy(struct sfp * sfp,int addr,bool is_c45)1615 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1616 {
1617 struct phy_device *phy;
1618 int err;
1619
1620 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1621 if (phy == ERR_PTR(-ENODEV))
1622 return PTR_ERR(phy);
1623 if (IS_ERR(phy)) {
1624 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1625 return PTR_ERR(phy);
1626 }
1627
1628 err = phy_device_register(phy);
1629 if (err) {
1630 phy_device_free(phy);
1631 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1632 ERR_PTR(err));
1633 return err;
1634 }
1635
1636 err = sfp_add_phy(sfp->sfp_bus, phy);
1637 if (err) {
1638 phy_device_remove(phy);
1639 phy_device_free(phy);
1640 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1641 return err;
1642 }
1643
1644 sfp->mod_phy = phy;
1645
1646 return 0;
1647 }
1648
sfp_sm_link_up(struct sfp * sfp)1649 static void sfp_sm_link_up(struct sfp *sfp)
1650 {
1651 sfp_link_up(sfp->sfp_bus);
1652 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1653 }
1654
sfp_sm_link_down(struct sfp * sfp)1655 static void sfp_sm_link_down(struct sfp *sfp)
1656 {
1657 sfp_link_down(sfp->sfp_bus);
1658 }
1659
sfp_sm_link_check_los(struct sfp * sfp)1660 static void sfp_sm_link_check_los(struct sfp *sfp)
1661 {
1662 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1663 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1664 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1665 bool los = false;
1666
1667 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1668 * are set, we assume that no LOS signal is available. If both are
1669 * set, we assume LOS is not implemented (and is meaningless.)
1670 */
1671 if (los_options == los_inverted)
1672 los = !(sfp->state & SFP_F_LOS);
1673 else if (los_options == los_normal)
1674 los = !!(sfp->state & SFP_F_LOS);
1675
1676 if (los)
1677 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1678 else
1679 sfp_sm_link_up(sfp);
1680 }
1681
sfp_los_event_active(struct sfp * sfp,unsigned int event)1682 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1683 {
1684 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1685 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1686 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1687
1688 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1689 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1690 }
1691
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1692 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1693 {
1694 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1695 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1696 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1697
1698 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1699 (los_options == los_normal && event == SFP_E_LOS_LOW);
1700 }
1701
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1702 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1703 {
1704 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1705 dev_err(sfp->dev,
1706 "module persistently indicates fault, disabling\n");
1707 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1708 } else {
1709 if (warn)
1710 dev_err(sfp->dev, "module transmit fault indicated\n");
1711
1712 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1713 }
1714 }
1715
sfp_sm_add_mdio_bus(struct sfp * sfp)1716 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1717 {
1718 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1719 return sfp_i2c_mdiobus_create(sfp);
1720
1721 return 0;
1722 }
1723
1724 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1725 * normally sits at I2C bus address 0x56, and may either be a clause 22
1726 * or clause 45 PHY.
1727 *
1728 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1729 * negotiation enabled, but some may be in 1000base-X - which is for the
1730 * PHY driver to determine.
1731 *
1732 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1733 * mode according to the negotiated line speed.
1734 */
sfp_sm_probe_for_phy(struct sfp * sfp)1735 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1736 {
1737 int err = 0;
1738
1739 switch (sfp->mdio_protocol) {
1740 case MDIO_I2C_NONE:
1741 break;
1742
1743 case MDIO_I2C_MARVELL_C22:
1744 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1745 break;
1746
1747 case MDIO_I2C_C45:
1748 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1749 break;
1750
1751 case MDIO_I2C_ROLLBALL:
1752 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1753 break;
1754 }
1755
1756 return err;
1757 }
1758
sfp_module_parse_power(struct sfp * sfp)1759 static int sfp_module_parse_power(struct sfp *sfp)
1760 {
1761 u32 power_mW = 1000;
1762 bool supports_a2;
1763
1764 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1765 power_mW = 1500;
1766 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1767 power_mW = 2000;
1768
1769 supports_a2 = sfp->id.ext.sff8472_compliance !=
1770 SFP_SFF8472_COMPLIANCE_NONE ||
1771 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1772
1773 if (power_mW > sfp->max_power_mW) {
1774 /* Module power specification exceeds the allowed maximum. */
1775 if (!supports_a2) {
1776 /* The module appears not to implement bus address
1777 * 0xa2, so assume that the module powers up in the
1778 * indicated mode.
1779 */
1780 dev_err(sfp->dev,
1781 "Host does not support %u.%uW modules\n",
1782 power_mW / 1000, (power_mW / 100) % 10);
1783 return -EINVAL;
1784 } else {
1785 dev_warn(sfp->dev,
1786 "Host does not support %u.%uW modules, module left in power mode 1\n",
1787 power_mW / 1000, (power_mW / 100) % 10);
1788 return 0;
1789 }
1790 }
1791
1792 if (power_mW <= 1000) {
1793 /* Modules below 1W do not require a power change sequence */
1794 sfp->module_power_mW = power_mW;
1795 return 0;
1796 }
1797
1798 if (!supports_a2) {
1799 /* The module power level is below the host maximum and the
1800 * module appears not to implement bus address 0xa2, so assume
1801 * that the module powers up in the indicated mode.
1802 */
1803 return 0;
1804 }
1805
1806 /* If the module requires a higher power mode, but also requires
1807 * an address change sequence, warn the user that the module may
1808 * not be functional.
1809 */
1810 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1811 dev_warn(sfp->dev,
1812 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1813 power_mW / 1000, (power_mW / 100) % 10);
1814 return 0;
1815 }
1816
1817 sfp->module_power_mW = power_mW;
1818
1819 return 0;
1820 }
1821
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)1822 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1823 {
1824 u8 val;
1825 int err;
1826
1827 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1828 if (err != sizeof(val)) {
1829 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err));
1830 return -EAGAIN;
1831 }
1832
1833 /* DM7052 reports as a high power module, responds to reads (with
1834 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1835 * if the bit is already set, we're already in high power mode.
1836 */
1837 if (!!(val & BIT(0)) == enable)
1838 return 0;
1839
1840 if (enable)
1841 val |= BIT(0);
1842 else
1843 val &= ~BIT(0);
1844
1845 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1846 if (err != sizeof(val)) {
1847 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n",
1848 ERR_PTR(err));
1849 return -EAGAIN;
1850 }
1851
1852 if (enable)
1853 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1854 sfp->module_power_mW / 1000,
1855 (sfp->module_power_mW / 100) % 10);
1856
1857 return 0;
1858 }
1859
1860 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1861 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1862 * not support multibyte reads from the EEPROM. Each multi-byte read
1863 * operation returns just one byte of EEPROM followed by zeros. There is
1864 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1865 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1866 * name and vendor id into EEPROM, so there is even no way to detect if
1867 * module is V-SOL V2801F. Therefore check for those zeros in the read
1868 * data and then based on check switch to reading EEPROM to one byte
1869 * at a time.
1870 */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)1871 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1872 {
1873 size_t i, block_size = sfp->i2c_block_size;
1874
1875 /* Already using byte IO */
1876 if (block_size == 1)
1877 return false;
1878
1879 for (i = 1; i < len; i += block_size) {
1880 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1881 return false;
1882 }
1883 return true;
1884 }
1885
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)1886 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1887 {
1888 u8 check;
1889 int err;
1890
1891 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1892 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1893 id->base.connector != SFF8024_CONNECTOR_LC) {
1894 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1895 id->base.phys_id = SFF8024_ID_SFF_8472;
1896 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1897 id->base.connector = SFF8024_CONNECTOR_LC;
1898 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1899 if (err != 3) {
1900 dev_err(sfp->dev,
1901 "Failed to rewrite module EEPROM: %pe\n",
1902 ERR_PTR(err));
1903 return err;
1904 }
1905
1906 /* Cotsworks modules have been found to require a delay between write operations. */
1907 mdelay(50);
1908
1909 /* Update base structure checksum */
1910 check = sfp_check(&id->base, sizeof(id->base) - 1);
1911 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1912 if (err != 1) {
1913 dev_err(sfp->dev,
1914 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1915 ERR_PTR(err));
1916 return err;
1917 }
1918 }
1919 return 0;
1920 }
1921
sfp_sm_mod_probe(struct sfp * sfp,bool report)1922 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1923 {
1924 /* SFP module inserted - read I2C data */
1925 struct sfp_eeprom_id id;
1926 bool cotsworks_sfbg;
1927 bool cotsworks;
1928 u8 check;
1929 int ret;
1930
1931 /* Some SFP modules and also some Linux I2C drivers do not like reads
1932 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1933 * a time.
1934 */
1935 sfp->i2c_block_size = 16;
1936
1937 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1938 if (ret < 0) {
1939 if (report)
1940 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1941 ERR_PTR(ret));
1942 return -EAGAIN;
1943 }
1944
1945 if (ret != sizeof(id.base)) {
1946 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1947 return -EAGAIN;
1948 }
1949
1950 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1951 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1952 * that EEPROM supports atomic 16bit read operation for diagnostic
1953 * fields, so do not switch to one byte reading at a time unless it
1954 * is really required and we have no other option.
1955 */
1956 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1957 dev_info(sfp->dev,
1958 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1959 dev_info(sfp->dev,
1960 "Switching to reading EEPROM to one byte at a time\n");
1961 sfp->i2c_block_size = 1;
1962
1963 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1964 if (ret < 0) {
1965 if (report)
1966 dev_err(sfp->dev,
1967 "failed to read EEPROM: %pe\n",
1968 ERR_PTR(ret));
1969 return -EAGAIN;
1970 }
1971
1972 if (ret != sizeof(id.base)) {
1973 dev_err(sfp->dev, "EEPROM short read: %pe\n",
1974 ERR_PTR(ret));
1975 return -EAGAIN;
1976 }
1977 }
1978
1979 /* Cotsworks do not seem to update the checksums when they
1980 * do the final programming with the final module part number,
1981 * serial number and date code.
1982 */
1983 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1984 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1985
1986 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1987 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
1988 * Cotsworks PN matches and bytes are not correct.
1989 */
1990 if (cotsworks && cotsworks_sfbg) {
1991 ret = sfp_cotsworks_fixup_check(sfp, &id);
1992 if (ret < 0)
1993 return ret;
1994 }
1995
1996 /* Validate the checksum over the base structure */
1997 check = sfp_check(&id.base, sizeof(id.base) - 1);
1998 if (check != id.base.cc_base) {
1999 if (cotsworks) {
2000 dev_warn(sfp->dev,
2001 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2002 check, id.base.cc_base);
2003 } else {
2004 dev_err(sfp->dev,
2005 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2006 check, id.base.cc_base);
2007 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2008 16, 1, &id, sizeof(id), true);
2009 return -EINVAL;
2010 }
2011 }
2012
2013 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2014 if (ret < 0) {
2015 if (report)
2016 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2017 ERR_PTR(ret));
2018 return -EAGAIN;
2019 }
2020
2021 if (ret != sizeof(id.ext)) {
2022 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2023 return -EAGAIN;
2024 }
2025
2026 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2027 if (check != id.ext.cc_ext) {
2028 if (cotsworks) {
2029 dev_warn(sfp->dev,
2030 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2031 check, id.ext.cc_ext);
2032 } else {
2033 dev_err(sfp->dev,
2034 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2035 check, id.ext.cc_ext);
2036 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2037 16, 1, &id, sizeof(id), true);
2038 memset(&id.ext, 0, sizeof(id.ext));
2039 }
2040 }
2041
2042 sfp->id = id;
2043
2044 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2045 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2046 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2047 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2048 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2049 (int)sizeof(id.ext.datecode), id.ext.datecode);
2050
2051 /* Check whether we support this module */
2052 if (!sfp->type->module_supported(&id)) {
2053 dev_err(sfp->dev,
2054 "module is not supported - phys id 0x%02x 0x%02x\n",
2055 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2056 return -EINVAL;
2057 }
2058
2059 /* If the module requires address swap mode, warn about it */
2060 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2061 dev_warn(sfp->dev,
2062 "module address swap to access page 0xA2 is not supported.\n");
2063
2064 /* Parse the module power requirement */
2065 ret = sfp_module_parse_power(sfp);
2066 if (ret < 0)
2067 return ret;
2068
2069 /* Initialise state bits to use from hardware */
2070 sfp->state_hw_mask = SFP_F_PRESENT;
2071 if (sfp->gpio[GPIO_TX_DISABLE])
2072 sfp->state_hw_mask |= SFP_F_TX_DISABLE;
2073 if (sfp->gpio[GPIO_TX_FAULT])
2074 sfp->state_hw_mask |= SFP_F_TX_FAULT;
2075 if (sfp->gpio[GPIO_LOS])
2076 sfp->state_hw_mask |= SFP_F_LOS;
2077
2078 sfp->module_t_start_up = T_START_UP;
2079 sfp->module_t_wait = T_WAIT;
2080
2081 sfp->tx_fault_ignore = false;
2082
2083 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2084 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2085 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2086 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2087 sfp->mdio_protocol = MDIO_I2C_C45;
2088 else if (sfp->id.base.e1000_base_t)
2089 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2090 else
2091 sfp->mdio_protocol = MDIO_I2C_NONE;
2092
2093 sfp->quirk = sfp_lookup_quirk(&id);
2094 if (sfp->quirk && sfp->quirk->fixup)
2095 sfp->quirk->fixup(sfp);
2096
2097 return 0;
2098 }
2099
sfp_sm_mod_remove(struct sfp * sfp)2100 static void sfp_sm_mod_remove(struct sfp *sfp)
2101 {
2102 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2103 sfp_module_remove(sfp->sfp_bus);
2104
2105 sfp_hwmon_remove(sfp);
2106
2107 memset(&sfp->id, 0, sizeof(sfp->id));
2108 sfp->module_power_mW = 0;
2109
2110 dev_info(sfp->dev, "module removed\n");
2111 }
2112
2113 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)2114 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2115 {
2116 switch (sfp->sm_dev_state) {
2117 default:
2118 if (event == SFP_E_DEV_ATTACH)
2119 sfp->sm_dev_state = SFP_DEV_DOWN;
2120 break;
2121
2122 case SFP_DEV_DOWN:
2123 if (event == SFP_E_DEV_DETACH)
2124 sfp->sm_dev_state = SFP_DEV_DETACHED;
2125 else if (event == SFP_E_DEV_UP)
2126 sfp->sm_dev_state = SFP_DEV_UP;
2127 break;
2128
2129 case SFP_DEV_UP:
2130 if (event == SFP_E_DEV_DETACH)
2131 sfp->sm_dev_state = SFP_DEV_DETACHED;
2132 else if (event == SFP_E_DEV_DOWN)
2133 sfp->sm_dev_state = SFP_DEV_DOWN;
2134 break;
2135 }
2136 }
2137
2138 /* This state machine tracks the insert/remove state of the module, probes
2139 * the on-board EEPROM, and sets up the power level.
2140 */
sfp_sm_module(struct sfp * sfp,unsigned int event)2141 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2142 {
2143 int err;
2144
2145 /* Handle remove event globally, it resets this state machine */
2146 if (event == SFP_E_REMOVE) {
2147 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2148 sfp_sm_mod_remove(sfp);
2149 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2150 return;
2151 }
2152
2153 /* Handle device detach globally */
2154 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2155 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2156 if (sfp->module_power_mW > 1000 &&
2157 sfp->sm_mod_state > SFP_MOD_HPOWER)
2158 sfp_sm_mod_hpower(sfp, false);
2159 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2160 return;
2161 }
2162
2163 switch (sfp->sm_mod_state) {
2164 default:
2165 if (event == SFP_E_INSERT) {
2166 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2167 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2168 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2169 }
2170 break;
2171
2172 case SFP_MOD_PROBE:
2173 /* Wait for T_PROBE_INIT to time out */
2174 if (event != SFP_E_TIMEOUT)
2175 break;
2176
2177 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2178 if (err == -EAGAIN) {
2179 if (sfp->sm_mod_tries_init &&
2180 --sfp->sm_mod_tries_init) {
2181 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2182 break;
2183 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2184 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2185 dev_warn(sfp->dev,
2186 "please wait, module slow to respond\n");
2187 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2188 break;
2189 }
2190 }
2191 if (err < 0) {
2192 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2193 break;
2194 }
2195
2196 err = sfp_hwmon_insert(sfp);
2197 if (err)
2198 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2199 ERR_PTR(err));
2200
2201 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2202 fallthrough;
2203 case SFP_MOD_WAITDEV:
2204 /* Ensure that the device is attached before proceeding */
2205 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2206 break;
2207
2208 /* Report the module insertion to the upstream device */
2209 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2210 sfp->quirk);
2211 if (err < 0) {
2212 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2213 break;
2214 }
2215
2216 /* If this is a power level 1 module, we are done */
2217 if (sfp->module_power_mW <= 1000)
2218 goto insert;
2219
2220 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2221 fallthrough;
2222 case SFP_MOD_HPOWER:
2223 /* Enable high power mode */
2224 err = sfp_sm_mod_hpower(sfp, true);
2225 if (err < 0) {
2226 if (err != -EAGAIN) {
2227 sfp_module_remove(sfp->sfp_bus);
2228 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2229 } else {
2230 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2231 }
2232 break;
2233 }
2234
2235 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2236 break;
2237
2238 case SFP_MOD_WAITPWR:
2239 /* Wait for T_HPOWER_LEVEL to time out */
2240 if (event != SFP_E_TIMEOUT)
2241 break;
2242
2243 insert:
2244 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2245 break;
2246
2247 case SFP_MOD_PRESENT:
2248 case SFP_MOD_ERROR:
2249 break;
2250 }
2251 }
2252
sfp_sm_main(struct sfp * sfp,unsigned int event)2253 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2254 {
2255 unsigned long timeout;
2256 int ret;
2257
2258 /* Some events are global */
2259 if (sfp->sm_state != SFP_S_DOWN &&
2260 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2261 sfp->sm_dev_state != SFP_DEV_UP)) {
2262 if (sfp->sm_state == SFP_S_LINK_UP &&
2263 sfp->sm_dev_state == SFP_DEV_UP)
2264 sfp_sm_link_down(sfp);
2265 if (sfp->sm_state > SFP_S_INIT)
2266 sfp_module_stop(sfp->sfp_bus);
2267 if (sfp->mod_phy)
2268 sfp_sm_phy_detach(sfp);
2269 if (sfp->i2c_mii)
2270 sfp_i2c_mdiobus_destroy(sfp);
2271 sfp_module_tx_disable(sfp);
2272 sfp_soft_stop_poll(sfp);
2273 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2274 return;
2275 }
2276
2277 /* The main state machine */
2278 switch (sfp->sm_state) {
2279 case SFP_S_DOWN:
2280 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2281 sfp->sm_dev_state != SFP_DEV_UP)
2282 break;
2283
2284 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2285 sfp_soft_start_poll(sfp);
2286
2287 sfp_module_tx_enable(sfp);
2288
2289 /* Initialise the fault clearance retries */
2290 sfp->sm_fault_retries = N_FAULT_INIT;
2291
2292 /* We need to check the TX_FAULT state, which is not defined
2293 * while TX_DISABLE is asserted. The earliest we want to do
2294 * anything (such as probe for a PHY) is 50ms (or more on
2295 * specific modules).
2296 */
2297 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2298 break;
2299
2300 case SFP_S_WAIT:
2301 if (event != SFP_E_TIMEOUT)
2302 break;
2303
2304 if (sfp->state & SFP_F_TX_FAULT) {
2305 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2306 * from the TX_DISABLE deassertion for the module to
2307 * initialise, which is indicated by TX_FAULT
2308 * deasserting.
2309 */
2310 timeout = sfp->module_t_start_up;
2311 if (timeout > sfp->module_t_wait)
2312 timeout -= sfp->module_t_wait;
2313 else
2314 timeout = 1;
2315
2316 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2317 } else {
2318 /* TX_FAULT is not asserted, assume the module has
2319 * finished initialising.
2320 */
2321 goto init_done;
2322 }
2323 break;
2324
2325 case SFP_S_INIT:
2326 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2327 /* TX_FAULT is still asserted after t_init
2328 * or t_start_up, so assume there is a fault.
2329 */
2330 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2331 sfp->sm_fault_retries == N_FAULT_INIT);
2332 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2333 init_done:
2334 /* Create mdiobus and start trying for PHY */
2335 ret = sfp_sm_add_mdio_bus(sfp);
2336 if (ret < 0) {
2337 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2338 break;
2339 }
2340 sfp->sm_phy_retries = R_PHY_RETRY;
2341 goto phy_probe;
2342 }
2343 break;
2344
2345 case SFP_S_INIT_PHY:
2346 if (event != SFP_E_TIMEOUT)
2347 break;
2348 phy_probe:
2349 /* TX_FAULT deasserted or we timed out with TX_FAULT
2350 * clear. Probe for the PHY and check the LOS state.
2351 */
2352 ret = sfp_sm_probe_for_phy(sfp);
2353 if (ret == -ENODEV) {
2354 if (--sfp->sm_phy_retries) {
2355 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2356 break;
2357 } else {
2358 dev_info(sfp->dev, "no PHY detected\n");
2359 }
2360 } else if (ret) {
2361 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2362 break;
2363 }
2364 if (sfp_module_start(sfp->sfp_bus)) {
2365 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2366 break;
2367 }
2368 sfp_sm_link_check_los(sfp);
2369
2370 /* Reset the fault retry count */
2371 sfp->sm_fault_retries = N_FAULT;
2372 break;
2373
2374 case SFP_S_INIT_TX_FAULT:
2375 if (event == SFP_E_TIMEOUT) {
2376 sfp_module_tx_fault_reset(sfp);
2377 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2378 }
2379 break;
2380
2381 case SFP_S_WAIT_LOS:
2382 if (event == SFP_E_TX_FAULT)
2383 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2384 else if (sfp_los_event_inactive(sfp, event))
2385 sfp_sm_link_up(sfp);
2386 break;
2387
2388 case SFP_S_LINK_UP:
2389 if (event == SFP_E_TX_FAULT) {
2390 sfp_sm_link_down(sfp);
2391 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2392 } else if (sfp_los_event_active(sfp, event)) {
2393 sfp_sm_link_down(sfp);
2394 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2395 }
2396 break;
2397
2398 case SFP_S_TX_FAULT:
2399 if (event == SFP_E_TIMEOUT) {
2400 sfp_module_tx_fault_reset(sfp);
2401 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2402 }
2403 break;
2404
2405 case SFP_S_REINIT:
2406 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2407 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2408 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2409 dev_info(sfp->dev, "module transmit fault recovered\n");
2410 sfp_sm_link_check_los(sfp);
2411 }
2412 break;
2413
2414 case SFP_S_TX_DISABLE:
2415 break;
2416 }
2417 }
2418
sfp_sm_event(struct sfp * sfp,unsigned int event)2419 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2420 {
2421 mutex_lock(&sfp->sm_mutex);
2422
2423 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2424 mod_state_to_str(sfp->sm_mod_state),
2425 dev_state_to_str(sfp->sm_dev_state),
2426 sm_state_to_str(sfp->sm_state),
2427 event_to_str(event));
2428
2429 sfp_sm_device(sfp, event);
2430 sfp_sm_module(sfp, event);
2431 sfp_sm_main(sfp, event);
2432
2433 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2434 mod_state_to_str(sfp->sm_mod_state),
2435 dev_state_to_str(sfp->sm_dev_state),
2436 sm_state_to_str(sfp->sm_state));
2437
2438 mutex_unlock(&sfp->sm_mutex);
2439 }
2440
sfp_attach(struct sfp * sfp)2441 static void sfp_attach(struct sfp *sfp)
2442 {
2443 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2444 }
2445
sfp_detach(struct sfp * sfp)2446 static void sfp_detach(struct sfp *sfp)
2447 {
2448 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2449 }
2450
sfp_start(struct sfp * sfp)2451 static void sfp_start(struct sfp *sfp)
2452 {
2453 sfp_sm_event(sfp, SFP_E_DEV_UP);
2454 }
2455
sfp_stop(struct sfp * sfp)2456 static void sfp_stop(struct sfp *sfp)
2457 {
2458 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2459 }
2460
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2461 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2462 {
2463 /* locking... and check module is present */
2464
2465 if (sfp->id.ext.sff8472_compliance &&
2466 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2467 modinfo->type = ETH_MODULE_SFF_8472;
2468 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2469 } else {
2470 modinfo->type = ETH_MODULE_SFF_8079;
2471 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2472 }
2473 return 0;
2474 }
2475
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2476 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2477 u8 *data)
2478 {
2479 unsigned int first, last, len;
2480 int ret;
2481
2482 if (ee->len == 0)
2483 return -EINVAL;
2484
2485 first = ee->offset;
2486 last = ee->offset + ee->len;
2487 if (first < ETH_MODULE_SFF_8079_LEN) {
2488 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2489 len -= first;
2490
2491 ret = sfp_read(sfp, false, first, data, len);
2492 if (ret < 0)
2493 return ret;
2494
2495 first += len;
2496 data += len;
2497 }
2498 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2499 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2500 len -= first;
2501 first -= ETH_MODULE_SFF_8079_LEN;
2502
2503 ret = sfp_read(sfp, true, first, data, len);
2504 if (ret < 0)
2505 return ret;
2506 }
2507 return 0;
2508 }
2509
sfp_module_eeprom_by_page(struct sfp * sfp,const struct ethtool_module_eeprom * page,struct netlink_ext_ack * extack)2510 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2511 const struct ethtool_module_eeprom *page,
2512 struct netlink_ext_ack *extack)
2513 {
2514 if (page->bank) {
2515 NL_SET_ERR_MSG(extack, "Banks not supported");
2516 return -EOPNOTSUPP;
2517 }
2518
2519 if (page->page) {
2520 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2521 return -EOPNOTSUPP;
2522 }
2523
2524 if (page->i2c_address != 0x50 &&
2525 page->i2c_address != 0x51) {
2526 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2527 return -EOPNOTSUPP;
2528 }
2529
2530 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2531 page->data, page->length);
2532 };
2533
2534 static const struct sfp_socket_ops sfp_module_ops = {
2535 .attach = sfp_attach,
2536 .detach = sfp_detach,
2537 .start = sfp_start,
2538 .stop = sfp_stop,
2539 .module_info = sfp_module_info,
2540 .module_eeprom = sfp_module_eeprom,
2541 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2542 };
2543
sfp_timeout(struct work_struct * work)2544 static void sfp_timeout(struct work_struct *work)
2545 {
2546 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2547
2548 rtnl_lock();
2549 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2550 rtnl_unlock();
2551 }
2552
sfp_check_state(struct sfp * sfp)2553 static void sfp_check_state(struct sfp *sfp)
2554 {
2555 unsigned int state, i, changed;
2556
2557 mutex_lock(&sfp->st_mutex);
2558 state = sfp_get_state(sfp);
2559 changed = state ^ sfp->state;
2560 if (sfp->tx_fault_ignore)
2561 changed &= SFP_F_PRESENT | SFP_F_LOS;
2562 else
2563 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2564
2565 for (i = 0; i < GPIO_MAX; i++)
2566 if (changed & BIT(i))
2567 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2568 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2569
2570 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2571 sfp->state = state;
2572
2573 rtnl_lock();
2574 if (changed & SFP_F_PRESENT)
2575 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2576 SFP_E_INSERT : SFP_E_REMOVE);
2577
2578 if (changed & SFP_F_TX_FAULT)
2579 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2580 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2581
2582 if (changed & SFP_F_LOS)
2583 sfp_sm_event(sfp, state & SFP_F_LOS ?
2584 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2585 rtnl_unlock();
2586 mutex_unlock(&sfp->st_mutex);
2587 }
2588
sfp_irq(int irq,void * data)2589 static irqreturn_t sfp_irq(int irq, void *data)
2590 {
2591 struct sfp *sfp = data;
2592
2593 sfp_check_state(sfp);
2594
2595 return IRQ_HANDLED;
2596 }
2597
sfp_poll(struct work_struct * work)2598 static void sfp_poll(struct work_struct *work)
2599 {
2600 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2601
2602 sfp_check_state(sfp);
2603
2604 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2605 sfp->need_poll)
2606 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2607 }
2608
sfp_alloc(struct device * dev)2609 static struct sfp *sfp_alloc(struct device *dev)
2610 {
2611 struct sfp *sfp;
2612
2613 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2614 if (!sfp)
2615 return ERR_PTR(-ENOMEM);
2616
2617 sfp->dev = dev;
2618
2619 mutex_init(&sfp->sm_mutex);
2620 mutex_init(&sfp->st_mutex);
2621 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2622 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2623
2624 sfp_hwmon_init(sfp);
2625
2626 return sfp;
2627 }
2628
sfp_cleanup(void * data)2629 static void sfp_cleanup(void *data)
2630 {
2631 struct sfp *sfp = data;
2632
2633 sfp_hwmon_exit(sfp);
2634
2635 cancel_delayed_work_sync(&sfp->poll);
2636 cancel_delayed_work_sync(&sfp->timeout);
2637 if (sfp->i2c_mii) {
2638 mdiobus_unregister(sfp->i2c_mii);
2639 mdiobus_free(sfp->i2c_mii);
2640 }
2641 if (sfp->i2c)
2642 i2c_put_adapter(sfp->i2c);
2643 kfree(sfp);
2644 }
2645
sfp_probe(struct platform_device * pdev)2646 static int sfp_probe(struct platform_device *pdev)
2647 {
2648 const struct sff_data *sff;
2649 struct i2c_adapter *i2c;
2650 char *sfp_irq_name;
2651 struct sfp *sfp;
2652 int err, i;
2653
2654 sfp = sfp_alloc(&pdev->dev);
2655 if (IS_ERR(sfp))
2656 return PTR_ERR(sfp);
2657
2658 platform_set_drvdata(pdev, sfp);
2659
2660 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2661 if (err < 0)
2662 return err;
2663
2664 sff = sfp->type = &sfp_data;
2665
2666 if (pdev->dev.of_node) {
2667 struct device_node *node = pdev->dev.of_node;
2668 const struct of_device_id *id;
2669 struct device_node *np;
2670
2671 id = of_match_node(sfp_of_match, node);
2672 if (WARN_ON(!id))
2673 return -EINVAL;
2674
2675 sff = sfp->type = id->data;
2676
2677 np = of_parse_phandle(node, "i2c-bus", 0);
2678 if (!np) {
2679 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2680 return -ENODEV;
2681 }
2682
2683 i2c = of_find_i2c_adapter_by_node(np);
2684 of_node_put(np);
2685 } else if (has_acpi_companion(&pdev->dev)) {
2686 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2687 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2688 struct fwnode_reference_args args;
2689 struct acpi_handle *acpi_handle;
2690 int ret;
2691
2692 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2693 if (ret || !is_acpi_device_node(args.fwnode)) {
2694 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2695 return -ENODEV;
2696 }
2697
2698 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2699 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2700 } else {
2701 return -EINVAL;
2702 }
2703
2704 if (!i2c)
2705 return -EPROBE_DEFER;
2706
2707 err = sfp_i2c_configure(sfp, i2c);
2708 if (err < 0) {
2709 i2c_put_adapter(i2c);
2710 return err;
2711 }
2712
2713 for (i = 0; i < GPIO_MAX; i++)
2714 if (sff->gpios & BIT(i)) {
2715 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2716 gpio_of_names[i], gpio_flags[i]);
2717 if (IS_ERR(sfp->gpio[i]))
2718 return PTR_ERR(sfp->gpio[i]);
2719 }
2720
2721 sfp->state_hw_mask = SFP_F_PRESENT;
2722
2723 sfp->get_state = sfp_gpio_get_state;
2724 sfp->set_state = sfp_gpio_set_state;
2725
2726 /* Modules that have no detect signal are always present */
2727 if (!(sfp->gpio[GPIO_MODDEF0]))
2728 sfp->get_state = sff_gpio_get_state;
2729
2730 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2731 &sfp->max_power_mW);
2732 if (!sfp->max_power_mW)
2733 sfp->max_power_mW = 1000;
2734
2735 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2736 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2737
2738 /* Get the initial state, and always signal TX disable,
2739 * since the network interface will not be up.
2740 */
2741 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2742
2743 if (sfp->gpio[GPIO_RATE_SELECT] &&
2744 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2745 sfp->state |= SFP_F_RATE_SELECT;
2746 sfp_set_state(sfp, sfp->state);
2747 sfp_module_tx_disable(sfp);
2748 if (sfp->state & SFP_F_PRESENT) {
2749 rtnl_lock();
2750 sfp_sm_event(sfp, SFP_E_INSERT);
2751 rtnl_unlock();
2752 }
2753
2754 for (i = 0; i < GPIO_MAX; i++) {
2755 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2756 continue;
2757
2758 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2759 if (sfp->gpio_irq[i] < 0) {
2760 sfp->gpio_irq[i] = 0;
2761 sfp->need_poll = true;
2762 continue;
2763 }
2764
2765 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2766 "%s-%s", dev_name(sfp->dev),
2767 gpio_of_names[i]);
2768
2769 if (!sfp_irq_name)
2770 return -ENOMEM;
2771
2772 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2773 NULL, sfp_irq,
2774 IRQF_ONESHOT |
2775 IRQF_TRIGGER_RISING |
2776 IRQF_TRIGGER_FALLING,
2777 sfp_irq_name, sfp);
2778 if (err) {
2779 sfp->gpio_irq[i] = 0;
2780 sfp->need_poll = true;
2781 }
2782 }
2783
2784 if (sfp->need_poll)
2785 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2786
2787 /* We could have an issue in cases no Tx disable pin is available or
2788 * wired as modules using a laser as their light source will continue to
2789 * be active when the fiber is removed. This could be a safety issue and
2790 * we should at least warn the user about that.
2791 */
2792 if (!sfp->gpio[GPIO_TX_DISABLE])
2793 dev_warn(sfp->dev,
2794 "No tx_disable pin: SFP modules will always be emitting.\n");
2795
2796 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2797 if (!sfp->sfp_bus)
2798 return -ENOMEM;
2799
2800 sfp_debugfs_init(sfp);
2801
2802 return 0;
2803 }
2804
sfp_remove(struct platform_device * pdev)2805 static int sfp_remove(struct platform_device *pdev)
2806 {
2807 struct sfp *sfp = platform_get_drvdata(pdev);
2808
2809 sfp_debugfs_exit(sfp);
2810 sfp_unregister_socket(sfp->sfp_bus);
2811
2812 rtnl_lock();
2813 sfp_sm_event(sfp, SFP_E_REMOVE);
2814 rtnl_unlock();
2815
2816 return 0;
2817 }
2818
sfp_shutdown(struct platform_device * pdev)2819 static void sfp_shutdown(struct platform_device *pdev)
2820 {
2821 struct sfp *sfp = platform_get_drvdata(pdev);
2822 int i;
2823
2824 for (i = 0; i < GPIO_MAX; i++) {
2825 if (!sfp->gpio_irq[i])
2826 continue;
2827
2828 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2829 }
2830
2831 cancel_delayed_work_sync(&sfp->poll);
2832 cancel_delayed_work_sync(&sfp->timeout);
2833 }
2834
2835 static struct platform_driver sfp_driver = {
2836 .probe = sfp_probe,
2837 .remove = sfp_remove,
2838 .shutdown = sfp_shutdown,
2839 .driver = {
2840 .name = "sfp",
2841 .of_match_table = sfp_of_match,
2842 },
2843 };
2844
sfp_init(void)2845 static int sfp_init(void)
2846 {
2847 poll_jiffies = msecs_to_jiffies(100);
2848
2849 return platform_driver_register(&sfp_driver);
2850 }
2851 module_init(sfp_init);
2852
sfp_exit(void)2853 static void sfp_exit(void)
2854 {
2855 platform_driver_unregister(&sfp_driver);
2856 }
2857 module_exit(sfp_exit);
2858
2859 MODULE_ALIAS("platform:sfp");
2860 MODULE_AUTHOR("Russell King");
2861 MODULE_LICENSE("GPL v2");
2862