1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
17
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
20
21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
26
27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE)
29
30 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
31 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
32 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
33
34 #define IS_CURSEG(sbi, seg) \
35 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
38 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
41
42 #define IS_CURSEC(sbi, secno) \
43 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
44 (sbi)->segs_per_sec) || \
45 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
46 (sbi)->segs_per_sec) || \
47 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
48 (sbi)->segs_per_sec) || \
49 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
50 (sbi)->segs_per_sec) || \
51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
52 (sbi)->segs_per_sec) || \
53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
54 (sbi)->segs_per_sec)) \
55
56 #define MAIN_BLKADDR(sbi) \
57 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
58 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
59 #define SEG0_BLKADDR(sbi) \
60 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
61 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
62
63 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
64 #define MAIN_SECS(sbi) ((sbi)->total_sections)
65
66 #define TOTAL_SEGS(sbi) \
67 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
68 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
69 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
70
71 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
72 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
73 (sbi)->log_blocks_per_seg))
74
75 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
76 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
77
78 #define NEXT_FREE_BLKADDR(sbi, curseg) \
79 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
80
81 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
82 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
83 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
84 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
85 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
86
87 #define GET_SEGNO(sbi, blk_addr) \
88 ((!is_valid_data_blkaddr(sbi, blk_addr)) ? \
89 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
90 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
91 #define BLKS_PER_SEC(sbi) \
92 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
93 #define GET_SEC_FROM_SEG(sbi, segno) \
94 ((segno) / (sbi)->segs_per_sec)
95 #define GET_SEG_FROM_SEC(sbi, secno) \
96 ((secno) * (sbi)->segs_per_sec)
97 #define GET_ZONE_FROM_SEC(sbi, secno) \
98 ((secno) / (sbi)->secs_per_zone)
99 #define GET_ZONE_FROM_SEG(sbi, segno) \
100 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
101
102 #define GET_SUM_BLOCK(sbi, segno) \
103 ((sbi)->sm_info->ssa_blkaddr + (segno))
104
105 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
106 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
107
108 #define SIT_ENTRY_OFFSET(sit_i, segno) \
109 ((segno) % (sit_i)->sents_per_block)
110 #define SIT_BLOCK_OFFSET(segno) \
111 ((segno) / SIT_ENTRY_PER_BLOCK)
112 #define START_SEGNO(segno) \
113 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
114 #define SIT_BLK_CNT(sbi) \
115 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
116 #define f2fs_bitmap_size(nr) \
117 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
118
119 #define SECTOR_FROM_BLOCK(blk_addr) \
120 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
121 #define SECTOR_TO_BLOCK(sectors) \
122 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
123
124 /*
125 * indicate a block allocation direction: RIGHT and LEFT.
126 * RIGHT means allocating new sections towards the end of volume.
127 * LEFT means the opposite direction.
128 */
129 enum {
130 ALLOC_RIGHT = 0,
131 ALLOC_LEFT
132 };
133
134 /*
135 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
136 * LFS writes data sequentially with cleaning operations.
137 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
138 */
139 enum {
140 LFS = 0,
141 SSR
142 };
143
144 /*
145 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
146 * GC_CB is based on cost-benefit algorithm.
147 * GC_GREEDY is based on greedy algorithm.
148 */
149 enum {
150 GC_CB = 0,
151 GC_GREEDY,
152 ALLOC_NEXT,
153 FLUSH_DEVICE,
154 MAX_GC_POLICY,
155 };
156
157 /*
158 * BG_GC means the background cleaning job.
159 * FG_GC means the on-demand cleaning job.
160 * FORCE_FG_GC means on-demand cleaning job in background.
161 */
162 enum {
163 BG_GC = 0,
164 FG_GC,
165 FORCE_FG_GC,
166 };
167
168 /* for a function parameter to select a victim segment */
169 struct victim_sel_policy {
170 int alloc_mode; /* LFS or SSR */
171 int gc_mode; /* GC_CB or GC_GREEDY */
172 unsigned long *dirty_segmap; /* dirty segment bitmap */
173 unsigned int max_search; /* maximum # of segments to search */
174 unsigned int offset; /* last scanned bitmap offset */
175 unsigned int ofs_unit; /* bitmap search unit */
176 unsigned int min_cost; /* minimum cost */
177 unsigned int min_segno; /* segment # having min. cost */
178 };
179
180 struct seg_entry {
181 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
182 unsigned int valid_blocks:10; /* # of valid blocks */
183 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
184 unsigned int padding:6; /* padding */
185 unsigned char *cur_valid_map; /* validity bitmap of blocks */
186 #ifdef CONFIG_F2FS_CHECK_FS
187 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
188 #endif
189 /*
190 * # of valid blocks and the validity bitmap stored in the the last
191 * checkpoint pack. This information is used by the SSR mode.
192 */
193 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
194 unsigned char *discard_map;
195 unsigned long long mtime; /* modification time of the segment */
196 };
197
198 struct sec_entry {
199 unsigned int valid_blocks; /* # of valid blocks in a section */
200 };
201
202 struct segment_allocation {
203 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204 };
205
206 /*
207 * this value is set in page as a private data which indicate that
208 * the page is atomically written, and it is in inmem_pages list.
209 */
210 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
211 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
212
213 #define IS_ATOMIC_WRITTEN_PAGE(page) \
214 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
215 #define IS_DUMMY_WRITTEN_PAGE(page) \
216 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
217
218 #define MAX_SKIP_GC_COUNT 16
219
220 struct inmem_pages {
221 struct list_head list;
222 struct page *page;
223 block_t old_addr; /* for revoking when fail to commit */
224 };
225
226 struct sit_info {
227 const struct segment_allocation *s_ops;
228
229 block_t sit_base_addr; /* start block address of SIT area */
230 block_t sit_blocks; /* # of blocks used by SIT area */
231 block_t written_valid_blocks; /* # of valid blocks in main area */
232 char *sit_bitmap; /* SIT bitmap pointer */
233 #ifdef CONFIG_F2FS_CHECK_FS
234 char *sit_bitmap_mir; /* SIT bitmap mirror */
235 #endif
236 unsigned int bitmap_size; /* SIT bitmap size */
237
238 unsigned long *tmp_map; /* bitmap for temporal use */
239 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
240 unsigned int dirty_sentries; /* # of dirty sentries */
241 unsigned int sents_per_block; /* # of SIT entries per block */
242 struct rw_semaphore sentry_lock; /* to protect SIT cache */
243 struct seg_entry *sentries; /* SIT segment-level cache */
244 struct sec_entry *sec_entries; /* SIT section-level cache */
245
246 /* for cost-benefit algorithm in cleaning procedure */
247 unsigned long long elapsed_time; /* elapsed time after mount */
248 unsigned long long mounted_time; /* mount time */
249 unsigned long long min_mtime; /* min. modification time */
250 unsigned long long max_mtime; /* max. modification time */
251
252 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
253 };
254
255 struct free_segmap_info {
256 unsigned int start_segno; /* start segment number logically */
257 unsigned int free_segments; /* # of free segments */
258 unsigned int free_sections; /* # of free sections */
259 spinlock_t segmap_lock; /* free segmap lock */
260 unsigned long *free_segmap; /* free segment bitmap */
261 unsigned long *free_secmap; /* free section bitmap */
262 };
263
264 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
265 enum dirty_type {
266 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
267 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
268 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
269 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
270 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
271 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
272 DIRTY, /* to count # of dirty segments */
273 PRE, /* to count # of entirely obsolete segments */
274 NR_DIRTY_TYPE
275 };
276
277 struct dirty_seglist_info {
278 const struct victim_selection *v_ops; /* victim selction operation */
279 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
280 struct mutex seglist_lock; /* lock for segment bitmaps */
281 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
282 unsigned long *victim_secmap; /* background GC victims */
283 };
284
285 /* victim selection function for cleaning and SSR */
286 struct victim_selection {
287 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
288 int, int, char);
289 };
290
291 /* for active log information */
292 struct curseg_info {
293 struct mutex curseg_mutex; /* lock for consistency */
294 struct f2fs_summary_block *sum_blk; /* cached summary block */
295 struct rw_semaphore journal_rwsem; /* protect journal area */
296 struct f2fs_journal *journal; /* cached journal info */
297 unsigned char alloc_type; /* current allocation type */
298 unsigned int segno; /* current segment number */
299 unsigned short next_blkoff; /* next block offset to write */
300 unsigned int zone; /* current zone number */
301 unsigned int next_segno; /* preallocated segment */
302 };
303
304 struct sit_entry_set {
305 struct list_head set_list; /* link with all sit sets */
306 unsigned int start_segno; /* start segno of sits in set */
307 unsigned int entry_cnt; /* the # of sit entries in set */
308 };
309
310 /*
311 * inline functions
312 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)313 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
314 {
315 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
316 }
317
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)318 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
319 unsigned int segno)
320 {
321 struct sit_info *sit_i = SIT_I(sbi);
322 return &sit_i->sentries[segno];
323 }
324
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)325 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
326 unsigned int segno)
327 {
328 struct sit_info *sit_i = SIT_I(sbi);
329 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
330 }
331
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)332 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
333 unsigned int segno, bool use_section)
334 {
335 /*
336 * In order to get # of valid blocks in a section instantly from many
337 * segments, f2fs manages two counting structures separately.
338 */
339 if (use_section && sbi->segs_per_sec > 1)
340 return get_sec_entry(sbi, segno)->valid_blocks;
341 else
342 return get_seg_entry(sbi, segno)->valid_blocks;
343 }
344
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)345 static inline void seg_info_from_raw_sit(struct seg_entry *se,
346 struct f2fs_sit_entry *rs)
347 {
348 se->valid_blocks = GET_SIT_VBLOCKS(rs);
349 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
350 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
351 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
352 #ifdef CONFIG_F2FS_CHECK_FS
353 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
354 #endif
355 se->type = GET_SIT_TYPE(rs);
356 se->mtime = le64_to_cpu(rs->mtime);
357 }
358
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)359 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
360 struct f2fs_sit_entry *rs)
361 {
362 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
363 se->valid_blocks;
364 rs->vblocks = cpu_to_le16(raw_vblocks);
365 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
366 rs->mtime = cpu_to_le64(se->mtime);
367 }
368
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)369 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
370 struct page *page, unsigned int start)
371 {
372 struct f2fs_sit_block *raw_sit;
373 struct seg_entry *se;
374 struct f2fs_sit_entry *rs;
375 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
376 (unsigned long)MAIN_SEGS(sbi));
377 int i;
378
379 raw_sit = (struct f2fs_sit_block *)page_address(page);
380 memset(raw_sit, 0, PAGE_SIZE);
381 for (i = 0; i < end - start; i++) {
382 rs = &raw_sit->entries[i];
383 se = get_seg_entry(sbi, start + i);
384 __seg_info_to_raw_sit(se, rs);
385 }
386 }
387
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)388 static inline void seg_info_to_raw_sit(struct seg_entry *se,
389 struct f2fs_sit_entry *rs)
390 {
391 __seg_info_to_raw_sit(se, rs);
392
393 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
394 se->ckpt_valid_blocks = se->valid_blocks;
395 }
396
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)397 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
398 unsigned int max, unsigned int segno)
399 {
400 unsigned int ret;
401 spin_lock(&free_i->segmap_lock);
402 ret = find_next_bit(free_i->free_segmap, max, segno);
403 spin_unlock(&free_i->segmap_lock);
404 return ret;
405 }
406
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)407 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
408 {
409 struct free_segmap_info *free_i = FREE_I(sbi);
410 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
411 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
412 unsigned int next;
413
414 spin_lock(&free_i->segmap_lock);
415 clear_bit(segno, free_i->free_segmap);
416 free_i->free_segments++;
417
418 next = find_next_bit(free_i->free_segmap,
419 start_segno + sbi->segs_per_sec, start_segno);
420 if (next >= start_segno + sbi->segs_per_sec) {
421 clear_bit(secno, free_i->free_secmap);
422 free_i->free_sections++;
423 }
424 spin_unlock(&free_i->segmap_lock);
425 }
426
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)427 static inline void __set_inuse(struct f2fs_sb_info *sbi,
428 unsigned int segno)
429 {
430 struct free_segmap_info *free_i = FREE_I(sbi);
431 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
432
433 set_bit(segno, free_i->free_segmap);
434 free_i->free_segments--;
435 if (!test_and_set_bit(secno, free_i->free_secmap))
436 free_i->free_sections--;
437 }
438
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno)439 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
440 unsigned int segno)
441 {
442 struct free_segmap_info *free_i = FREE_I(sbi);
443 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
444 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
445 unsigned int next;
446
447 spin_lock(&free_i->segmap_lock);
448 if (test_and_clear_bit(segno, free_i->free_segmap)) {
449 free_i->free_segments++;
450
451 if (IS_CURSEC(sbi, secno))
452 goto skip_free;
453 next = find_next_bit(free_i->free_segmap,
454 start_segno + sbi->segs_per_sec, start_segno);
455 if (next >= start_segno + sbi->segs_per_sec) {
456 if (test_and_clear_bit(secno, free_i->free_secmap))
457 free_i->free_sections++;
458 }
459 }
460 skip_free:
461 spin_unlock(&free_i->segmap_lock);
462 }
463
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)464 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
465 unsigned int segno)
466 {
467 struct free_segmap_info *free_i = FREE_I(sbi);
468 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
469
470 spin_lock(&free_i->segmap_lock);
471 if (!test_and_set_bit(segno, free_i->free_segmap)) {
472 free_i->free_segments--;
473 if (!test_and_set_bit(secno, free_i->free_secmap))
474 free_i->free_sections--;
475 }
476 spin_unlock(&free_i->segmap_lock);
477 }
478
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)479 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
480 void *dst_addr)
481 {
482 struct sit_info *sit_i = SIT_I(sbi);
483
484 #ifdef CONFIG_F2FS_CHECK_FS
485 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
486 sit_i->bitmap_size))
487 f2fs_bug_on(sbi, 1);
488 #endif
489 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
490 }
491
written_block_count(struct f2fs_sb_info * sbi)492 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
493 {
494 return SIT_I(sbi)->written_valid_blocks;
495 }
496
free_segments(struct f2fs_sb_info * sbi)497 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
498 {
499 return FREE_I(sbi)->free_segments;
500 }
501
reserved_segments(struct f2fs_sb_info * sbi)502 static inline int reserved_segments(struct f2fs_sb_info *sbi)
503 {
504 return SM_I(sbi)->reserved_segments;
505 }
506
free_sections(struct f2fs_sb_info * sbi)507 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
508 {
509 return FREE_I(sbi)->free_sections;
510 }
511
prefree_segments(struct f2fs_sb_info * sbi)512 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
513 {
514 return DIRTY_I(sbi)->nr_dirty[PRE];
515 }
516
dirty_segments(struct f2fs_sb_info * sbi)517 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
518 {
519 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
520 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
521 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
522 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
523 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
524 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
525 }
526
overprovision_segments(struct f2fs_sb_info * sbi)527 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
528 {
529 return SM_I(sbi)->ovp_segments;
530 }
531
reserved_sections(struct f2fs_sb_info * sbi)532 static inline int reserved_sections(struct f2fs_sb_info *sbi)
533 {
534 return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
535 }
536
has_curseg_enough_space(struct f2fs_sb_info * sbi)537 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
538 {
539 unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
540 get_pages(sbi, F2FS_DIRTY_DENTS);
541 unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
542 unsigned int segno, left_blocks;
543 int i;
544
545 /* check current node segment */
546 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
547 segno = CURSEG_I(sbi, i)->segno;
548 left_blocks = sbi->blocks_per_seg -
549 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
550
551 if (node_blocks > left_blocks)
552 return false;
553 }
554
555 /* check current data segment */
556 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
557 left_blocks = sbi->blocks_per_seg -
558 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
559 if (dent_blocks > left_blocks)
560 return false;
561 return true;
562 }
563
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)564 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
565 int freed, int needed)
566 {
567 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
568 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
569 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
570
571 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
572 return false;
573
574 if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
575 has_curseg_enough_space(sbi))
576 return false;
577 return (free_sections(sbi) + freed) <=
578 (node_secs + 2 * dent_secs + imeta_secs +
579 reserved_sections(sbi) + needed);
580 }
581
excess_prefree_segs(struct f2fs_sb_info * sbi)582 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
583 {
584 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
585 }
586
utilization(struct f2fs_sb_info * sbi)587 static inline int utilization(struct f2fs_sb_info *sbi)
588 {
589 return div_u64((u64)valid_user_blocks(sbi) * 100,
590 sbi->user_block_count);
591 }
592
593 /*
594 * Sometimes f2fs may be better to drop out-of-place update policy.
595 * And, users can control the policy through sysfs entries.
596 * There are five policies with triggering conditions as follows.
597 * F2FS_IPU_FORCE - all the time,
598 * F2FS_IPU_SSR - if SSR mode is activated,
599 * F2FS_IPU_UTIL - if FS utilization is over threashold,
600 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
601 * threashold,
602 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
603 * storages. IPU will be triggered only if the # of dirty
604 * pages over min_fsync_blocks.
605 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
606 */
607 #define DEF_MIN_IPU_UTIL 70
608 #define DEF_MIN_FSYNC_BLOCKS 8
609 #define DEF_MIN_HOT_BLOCKS 16
610
611 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
612
613 enum {
614 F2FS_IPU_FORCE,
615 F2FS_IPU_SSR,
616 F2FS_IPU_UTIL,
617 F2FS_IPU_SSR_UTIL,
618 F2FS_IPU_FSYNC,
619 F2FS_IPU_ASYNC,
620 };
621
curseg_segno(struct f2fs_sb_info * sbi,int type)622 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
623 int type)
624 {
625 struct curseg_info *curseg = CURSEG_I(sbi, type);
626 return curseg->segno;
627 }
628
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)629 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
630 int type)
631 {
632 struct curseg_info *curseg = CURSEG_I(sbi, type);
633 return curseg->alloc_type;
634 }
635
curseg_blkoff(struct f2fs_sb_info * sbi,int type)636 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
637 {
638 struct curseg_info *curseg = CURSEG_I(sbi, type);
639 return curseg->next_blkoff;
640 }
641
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)642 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
643 {
644 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
645 }
646
verify_block_addr(struct f2fs_io_info * fio,block_t blk_addr)647 static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
648 {
649 struct f2fs_sb_info *sbi = fio->sbi;
650
651 if (__is_meta_io(fio))
652 verify_blkaddr(sbi, blk_addr, META_GENERIC);
653 else
654 verify_blkaddr(sbi, blk_addr, DATA_GENERIC);
655 }
656
657 /*
658 * Summary block is always treated as an invalid block
659 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)660 static inline int check_block_count(struct f2fs_sb_info *sbi,
661 int segno, struct f2fs_sit_entry *raw_sit)
662 {
663 #ifdef CONFIG_F2FS_CHECK_FS
664 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
665 int valid_blocks = 0;
666 int cur_pos = 0, next_pos;
667
668 /* check bitmap with valid block count */
669 do {
670 if (is_valid) {
671 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
672 sbi->blocks_per_seg,
673 cur_pos);
674 valid_blocks += next_pos - cur_pos;
675 } else
676 next_pos = find_next_bit_le(&raw_sit->valid_map,
677 sbi->blocks_per_seg,
678 cur_pos);
679 cur_pos = next_pos;
680 is_valid = !is_valid;
681 } while (cur_pos < sbi->blocks_per_seg);
682
683 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
684 f2fs_msg(sbi->sb, KERN_ERR,
685 "Mismatch valid blocks %d vs. %d",
686 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
687 set_sbi_flag(sbi, SBI_NEED_FSCK);
688 return -EINVAL;
689 }
690 #endif
691 /* check segment usage, and check boundary of a given segment number */
692 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
693 || segno > TOTAL_SEGS(sbi) - 1)) {
694 f2fs_msg(sbi->sb, KERN_ERR,
695 "Wrong valid blocks %d or segno %u",
696 GET_SIT_VBLOCKS(raw_sit), segno);
697 set_sbi_flag(sbi, SBI_NEED_FSCK);
698 return -EINVAL;
699 }
700 return 0;
701 }
702
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)703 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
704 unsigned int start)
705 {
706 struct sit_info *sit_i = SIT_I(sbi);
707 unsigned int offset = SIT_BLOCK_OFFSET(start);
708 block_t blk_addr = sit_i->sit_base_addr + offset;
709
710 check_seg_range(sbi, start);
711
712 #ifdef CONFIG_F2FS_CHECK_FS
713 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
714 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
715 f2fs_bug_on(sbi, 1);
716 #endif
717
718 /* calculate sit block address */
719 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
720 blk_addr += sit_i->sit_blocks;
721
722 return blk_addr;
723 }
724
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)725 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
726 pgoff_t block_addr)
727 {
728 struct sit_info *sit_i = SIT_I(sbi);
729 block_addr -= sit_i->sit_base_addr;
730 if (block_addr < sit_i->sit_blocks)
731 block_addr += sit_i->sit_blocks;
732 else
733 block_addr -= sit_i->sit_blocks;
734
735 return block_addr + sit_i->sit_base_addr;
736 }
737
set_to_next_sit(struct sit_info * sit_i,unsigned int start)738 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
739 {
740 unsigned int block_off = SIT_BLOCK_OFFSET(start);
741
742 f2fs_change_bit(block_off, sit_i->sit_bitmap);
743 #ifdef CONFIG_F2FS_CHECK_FS
744 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
745 #endif
746 }
747
get_mtime(struct f2fs_sb_info * sbi,bool base_time)748 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
749 bool base_time)
750 {
751 struct sit_info *sit_i = SIT_I(sbi);
752 time64_t diff, now = ktime_get_real_seconds();
753
754 if (now >= sit_i->mounted_time)
755 return sit_i->elapsed_time + now - sit_i->mounted_time;
756
757 /* system time is set to the past */
758 if (!base_time) {
759 diff = sit_i->mounted_time - now;
760 if (sit_i->elapsed_time >= diff)
761 return sit_i->elapsed_time - diff;
762 return 0;
763 }
764 return sit_i->elapsed_time;
765 }
766
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)767 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
768 unsigned int ofs_in_node, unsigned char version)
769 {
770 sum->nid = cpu_to_le32(nid);
771 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
772 sum->version = version;
773 }
774
start_sum_block(struct f2fs_sb_info * sbi)775 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
776 {
777 return __start_cp_addr(sbi) +
778 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
779 }
780
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)781 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
782 {
783 return __start_cp_addr(sbi) +
784 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
785 - (base + 1) + type;
786 }
787
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)788 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
789 {
790 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
791 return true;
792 return false;
793 }
794
795 /*
796 * It is very important to gather dirty pages and write at once, so that we can
797 * submit a big bio without interfering other data writes.
798 * By default, 512 pages for directory data,
799 * 512 pages (2MB) * 8 for nodes, and
800 * 256 pages * 8 for meta are set.
801 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)802 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
803 {
804 if (sbi->sb->s_bdi->wb.dirty_exceeded)
805 return 0;
806
807 if (type == DATA)
808 return sbi->blocks_per_seg;
809 else if (type == NODE)
810 return 8 * sbi->blocks_per_seg;
811 else if (type == META)
812 return 8 * BIO_MAX_PAGES;
813 else
814 return 0;
815 }
816
817 /*
818 * When writing pages, it'd better align nr_to_write for segment size.
819 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)820 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
821 struct writeback_control *wbc)
822 {
823 long nr_to_write, desired;
824
825 if (wbc->sync_mode != WB_SYNC_NONE)
826 return 0;
827
828 nr_to_write = wbc->nr_to_write;
829 desired = BIO_MAX_PAGES;
830 if (type == NODE)
831 desired <<= 1;
832
833 wbc->nr_to_write = desired;
834 return desired - nr_to_write;
835 }
836
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)837 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
838 {
839 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
840 bool wakeup = false;
841 int i;
842
843 if (force)
844 goto wake_up;
845
846 mutex_lock(&dcc->cmd_lock);
847 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
848 if (i + 1 < dcc->discard_granularity)
849 break;
850 if (!list_empty(&dcc->pend_list[i])) {
851 wakeup = true;
852 break;
853 }
854 }
855 mutex_unlock(&dcc->cmd_lock);
856 if (!wakeup)
857 return;
858 wake_up:
859 dcc->discard_wake = 1;
860 wake_up_interruptible_all(&dcc->discard_wait_queue);
861 }
862