1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include "i915_drv.h"
7 #include "intel_context.h"
8 #include "intel_gpu_commands.h"
9 #include "intel_gt.h"
10 #include "intel_gtt.h"
11 #include "intel_migrate.h"
12 #include "intel_ring.h"
13
14 struct insert_pte_data {
15 u64 offset;
16 };
17
18 #define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */
19
20 #define GET_CCS_BYTES(i915, size) (HAS_FLAT_CCS(i915) ? \
21 DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0)
engine_supports_migration(struct intel_engine_cs * engine)22 static bool engine_supports_migration(struct intel_engine_cs *engine)
23 {
24 if (!engine)
25 return false;
26
27 /*
28 * We need the ability to prevent aribtration (MI_ARB_ON_OFF),
29 * the ability to write PTE using inline data (MI_STORE_DATA)
30 * and of course the ability to do the block transfer (blits).
31 */
32 GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS);
33
34 return true;
35 }
36
xehpsdv_toggle_pdes(struct i915_address_space * vm,struct i915_page_table * pt,void * data)37 static void xehpsdv_toggle_pdes(struct i915_address_space *vm,
38 struct i915_page_table *pt,
39 void *data)
40 {
41 struct insert_pte_data *d = data;
42
43 /*
44 * Insert a dummy PTE into every PT that will map to LMEM to ensure
45 * we have a correctly setup PDE structure for later use.
46 */
47 vm->insert_page(vm, 0, d->offset, I915_CACHE_NONE, PTE_LM);
48 GEM_BUG_ON(!pt->is_compact);
49 d->offset += SZ_2M;
50 }
51
xehpsdv_insert_pte(struct i915_address_space * vm,struct i915_page_table * pt,void * data)52 static void xehpsdv_insert_pte(struct i915_address_space *vm,
53 struct i915_page_table *pt,
54 void *data)
55 {
56 struct insert_pte_data *d = data;
57
58 /*
59 * We are playing tricks here, since the actual pt, from the hw
60 * pov, is only 256bytes with 32 entries, or 4096bytes with 512
61 * entries, but we are still guaranteed that the physical
62 * alignment is 64K underneath for the pt, and we are careful
63 * not to access the space in the void.
64 */
65 vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, PTE_LM);
66 d->offset += SZ_64K;
67 }
68
insert_pte(struct i915_address_space * vm,struct i915_page_table * pt,void * data)69 static void insert_pte(struct i915_address_space *vm,
70 struct i915_page_table *pt,
71 void *data)
72 {
73 struct insert_pte_data *d = data;
74
75 vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE,
76 i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0);
77 d->offset += PAGE_SIZE;
78 }
79
migrate_vm(struct intel_gt * gt)80 static struct i915_address_space *migrate_vm(struct intel_gt *gt)
81 {
82 struct i915_vm_pt_stash stash = {};
83 struct i915_ppgtt *vm;
84 int err;
85 int i;
86
87 /*
88 * We construct a very special VM for use by all migration contexts,
89 * it is kept pinned so that it can be used at any time. As we need
90 * to pre-allocate the page directories for the migration VM, this
91 * limits us to only using a small number of prepared vma.
92 *
93 * To be able to pipeline and reschedule migration operations while
94 * avoiding unnecessary contention on the vm itself, the PTE updates
95 * are inline with the blits. All the blits use the same fixed
96 * addresses, with the backing store redirection being updated on the
97 * fly. Only 2 implicit vma are used for all migration operations.
98 *
99 * We lay the ppGTT out as:
100 *
101 * [0, CHUNK_SZ) -> first object
102 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second object
103 * [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE
104 *
105 * By exposing the dma addresses of the page directories themselves
106 * within the ppGTT, we are then able to rewrite the PTE prior to use.
107 * But the PTE update and subsequent migration operation must be atomic,
108 * i.e. within the same non-preemptible window so that we do not switch
109 * to another migration context that overwrites the PTE.
110 *
111 * This changes quite a bit on platforms with HAS_64K_PAGES support,
112 * where we instead have three windows, each CHUNK_SIZE in size. The
113 * first is reserved for mapping system-memory, and that just uses the
114 * 512 entry layout using 4K GTT pages. The other two windows just map
115 * lmem pages and must use the new compact 32 entry layout using 64K GTT
116 * pages, which ensures we can address any lmem object that the user
117 * throws at us. We then also use the xehpsdv_toggle_pdes as a way of
118 * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the
119 * compact layout for each of these page-tables, that fall within the
120 * [CHUNK_SIZE, 3 * CHUNK_SIZE) range.
121 *
122 * We lay the ppGTT out as:
123 *
124 * [0, CHUNK_SZ) -> first window/object, maps smem
125 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src
126 * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst
127 *
128 * For the PTE window it's also quite different, since each PTE must
129 * point to some 64K page, one for each PT(since it's in lmem), and yet
130 * each is only <= 4096bytes, but since the unused space within that PTE
131 * range is never touched, this should be fine.
132 *
133 * So basically each PT now needs 64K of virtual memory, instead of 4K,
134 * which looks like:
135 *
136 * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE
137 */
138
139 vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY);
140 if (IS_ERR(vm))
141 return ERR_CAST(vm);
142
143 if (!vm->vm.allocate_va_range || !vm->vm.foreach) {
144 err = -ENODEV;
145 goto err_vm;
146 }
147
148 if (HAS_64K_PAGES(gt->i915))
149 stash.pt_sz = I915_GTT_PAGE_SIZE_64K;
150
151 /*
152 * Each engine instance is assigned its own chunk in the VM, so
153 * that we can run multiple instances concurrently
154 */
155 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
156 struct intel_engine_cs *engine;
157 u64 base = (u64)i << 32;
158 struct insert_pte_data d = {};
159 struct i915_gem_ww_ctx ww;
160 u64 sz;
161
162 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
163 if (!engine_supports_migration(engine))
164 continue;
165
166 /*
167 * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need
168 * 4x2 page directories for source/destination.
169 */
170 if (HAS_64K_PAGES(gt->i915))
171 sz = 3 * CHUNK_SZ;
172 else
173 sz = 2 * CHUNK_SZ;
174 d.offset = base + sz;
175
176 /*
177 * We need another page directory setup so that we can write
178 * the 8x512 PTE in each chunk.
179 */
180 if (HAS_64K_PAGES(gt->i915))
181 sz += (sz / SZ_2M) * SZ_64K;
182 else
183 sz += (sz >> 12) * sizeof(u64);
184
185 err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz);
186 if (err)
187 goto err_vm;
188
189 for_i915_gem_ww(&ww, err, true) {
190 err = i915_vm_lock_objects(&vm->vm, &ww);
191 if (err)
192 continue;
193 err = i915_vm_map_pt_stash(&vm->vm, &stash);
194 if (err)
195 continue;
196
197 vm->vm.allocate_va_range(&vm->vm, &stash, base, sz);
198 }
199 i915_vm_free_pt_stash(&vm->vm, &stash);
200 if (err)
201 goto err_vm;
202
203 /* Now allow the GPU to rewrite the PTE via its own ppGTT */
204 if (HAS_64K_PAGES(gt->i915)) {
205 vm->vm.foreach(&vm->vm, base, d.offset - base,
206 xehpsdv_insert_pte, &d);
207 d.offset = base + CHUNK_SZ;
208 vm->vm.foreach(&vm->vm,
209 d.offset,
210 2 * CHUNK_SZ,
211 xehpsdv_toggle_pdes, &d);
212 } else {
213 vm->vm.foreach(&vm->vm, base, d.offset - base,
214 insert_pte, &d);
215 }
216 }
217
218 return &vm->vm;
219
220 err_vm:
221 i915_vm_put(&vm->vm);
222 return ERR_PTR(err);
223 }
224
first_copy_engine(struct intel_gt * gt)225 static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt)
226 {
227 struct intel_engine_cs *engine;
228 int i;
229
230 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
231 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
232 if (engine_supports_migration(engine))
233 return engine;
234 }
235
236 return NULL;
237 }
238
pinned_context(struct intel_gt * gt)239 static struct intel_context *pinned_context(struct intel_gt *gt)
240 {
241 static struct lock_class_key key;
242 struct intel_engine_cs *engine;
243 struct i915_address_space *vm;
244 struct intel_context *ce;
245
246 engine = first_copy_engine(gt);
247 if (!engine)
248 return ERR_PTR(-ENODEV);
249
250 vm = migrate_vm(gt);
251 if (IS_ERR(vm))
252 return ERR_CAST(vm);
253
254 ce = intel_engine_create_pinned_context(engine, vm, SZ_512K,
255 I915_GEM_HWS_MIGRATE,
256 &key, "migrate");
257 i915_vm_put(vm);
258 return ce;
259 }
260
intel_migrate_init(struct intel_migrate * m,struct intel_gt * gt)261 int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt)
262 {
263 struct intel_context *ce;
264
265 memset(m, 0, sizeof(*m));
266
267 ce = pinned_context(gt);
268 if (IS_ERR(ce))
269 return PTR_ERR(ce);
270
271 m->context = ce;
272 return 0;
273 }
274
random_index(unsigned int max)275 static int random_index(unsigned int max)
276 {
277 return upper_32_bits(mul_u32_u32(get_random_u32(), max));
278 }
279
__migrate_engines(struct intel_gt * gt)280 static struct intel_context *__migrate_engines(struct intel_gt *gt)
281 {
282 struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE];
283 struct intel_engine_cs *engine;
284 unsigned int count, i;
285
286 count = 0;
287 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
288 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
289 if (engine_supports_migration(engine))
290 engines[count++] = engine;
291 }
292
293 return intel_context_create(engines[random_index(count)]);
294 }
295
intel_migrate_create_context(struct intel_migrate * m)296 struct intel_context *intel_migrate_create_context(struct intel_migrate *m)
297 {
298 struct intel_context *ce;
299
300 /*
301 * We randomly distribute contexts across the engines upon constrction,
302 * as they all share the same pinned vm, and so in order to allow
303 * multiple blits to run in parallel, we must construct each blit
304 * to use a different range of the vm for its GTT. This has to be
305 * known at construction, so we can not use the late greedy load
306 * balancing of the virtual-engine.
307 */
308 ce = __migrate_engines(m->context->engine->gt);
309 if (IS_ERR(ce))
310 return ce;
311
312 ce->ring = NULL;
313 ce->ring_size = SZ_256K;
314
315 i915_vm_put(ce->vm);
316 ce->vm = i915_vm_get(m->context->vm);
317
318 return ce;
319 }
320
sg_sgt(struct scatterlist * sg)321 static inline struct sgt_dma sg_sgt(struct scatterlist *sg)
322 {
323 dma_addr_t addr = sg_dma_address(sg);
324
325 return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) };
326 }
327
emit_no_arbitration(struct i915_request * rq)328 static int emit_no_arbitration(struct i915_request *rq)
329 {
330 u32 *cs;
331
332 cs = intel_ring_begin(rq, 2);
333 if (IS_ERR(cs))
334 return PTR_ERR(cs);
335
336 /* Explicitly disable preemption for this request. */
337 *cs++ = MI_ARB_ON_OFF;
338 *cs++ = MI_NOOP;
339 intel_ring_advance(rq, cs);
340
341 return 0;
342 }
343
emit_pte(struct i915_request * rq,struct sgt_dma * it,enum i915_cache_level cache_level,bool is_lmem,u64 offset,int length)344 static int emit_pte(struct i915_request *rq,
345 struct sgt_dma *it,
346 enum i915_cache_level cache_level,
347 bool is_lmem,
348 u64 offset,
349 int length)
350 {
351 bool has_64K_pages = HAS_64K_PAGES(rq->engine->i915);
352 const u64 encode = rq->context->vm->pte_encode(0, cache_level,
353 is_lmem ? PTE_LM : 0);
354 struct intel_ring *ring = rq->ring;
355 int pkt, dword_length;
356 u32 total = 0;
357 u32 page_size;
358 u32 *hdr, *cs;
359
360 GEM_BUG_ON(GRAPHICS_VER(rq->engine->i915) < 8);
361
362 page_size = I915_GTT_PAGE_SIZE;
363 dword_length = 0x400;
364
365 /* Compute the page directory offset for the target address range */
366 if (has_64K_pages) {
367 GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M));
368
369 offset /= SZ_2M;
370 offset *= SZ_64K;
371 offset += 3 * CHUNK_SZ;
372
373 if (is_lmem) {
374 page_size = I915_GTT_PAGE_SIZE_64K;
375 dword_length = 0x40;
376 }
377 } else {
378 offset >>= 12;
379 offset *= sizeof(u64);
380 offset += 2 * CHUNK_SZ;
381 }
382
383 offset += (u64)rq->engine->instance << 32;
384
385 cs = intel_ring_begin(rq, 6);
386 if (IS_ERR(cs))
387 return PTR_ERR(cs);
388
389 /* Pack as many PTE updates as possible into a single MI command */
390 pkt = min_t(int, dword_length, ring->space / sizeof(u32) + 5);
391 pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);
392
393 hdr = cs;
394 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */
395 *cs++ = lower_32_bits(offset);
396 *cs++ = upper_32_bits(offset);
397
398 do {
399 if (cs - hdr >= pkt) {
400 int dword_rem;
401
402 *hdr += cs - hdr - 2;
403 *cs++ = MI_NOOP;
404
405 ring->emit = (void *)cs - ring->vaddr;
406 intel_ring_advance(rq, cs);
407 intel_ring_update_space(ring);
408
409 cs = intel_ring_begin(rq, 6);
410 if (IS_ERR(cs))
411 return PTR_ERR(cs);
412
413 dword_rem = dword_length;
414 if (has_64K_pages) {
415 if (IS_ALIGNED(total, SZ_2M)) {
416 offset = round_up(offset, SZ_64K);
417 } else {
418 dword_rem = SZ_2M - (total & (SZ_2M - 1));
419 dword_rem /= page_size;
420 dword_rem *= 2;
421 }
422 }
423
424 pkt = min_t(int, dword_rem, ring->space / sizeof(u32) + 5);
425 pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);
426
427 hdr = cs;
428 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21);
429 *cs++ = lower_32_bits(offset);
430 *cs++ = upper_32_bits(offset);
431 }
432
433 GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size));
434
435 *cs++ = lower_32_bits(encode | it->dma);
436 *cs++ = upper_32_bits(encode | it->dma);
437
438 offset += 8;
439 total += page_size;
440
441 it->dma += page_size;
442 if (it->dma >= it->max) {
443 it->sg = __sg_next(it->sg);
444 if (!it->sg || sg_dma_len(it->sg) == 0)
445 break;
446
447 it->dma = sg_dma_address(it->sg);
448 it->max = it->dma + sg_dma_len(it->sg);
449 }
450 } while (total < length);
451
452 *hdr += cs - hdr - 2;
453 *cs++ = MI_NOOP;
454
455 ring->emit = (void *)cs - ring->vaddr;
456 intel_ring_advance(rq, cs);
457 intel_ring_update_space(ring);
458
459 return total;
460 }
461
wa_1209644611_applies(int ver,u32 size)462 static bool wa_1209644611_applies(int ver, u32 size)
463 {
464 u32 height = size >> PAGE_SHIFT;
465
466 if (ver != 11)
467 return false;
468
469 return height % 4 == 3 && height <= 8;
470 }
471
472 /**
473 * DOC: Flat-CCS - Memory compression for Local memory
474 *
475 * On Xe-HP and later devices, we use dedicated compression control state (CCS)
476 * stored in local memory for each surface, to support the 3D and media
477 * compression formats.
478 *
479 * The memory required for the CCS of the entire local memory is 1/256 of the
480 * local memory size. So before the kernel boot, the required memory is reserved
481 * for the CCS data and a secure register will be programmed with the CCS base
482 * address.
483 *
484 * Flat CCS data needs to be cleared when a lmem object is allocated.
485 * And CCS data can be copied in and out of CCS region through
486 * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly.
487 *
488 * I915 supports Flat-CCS on lmem only objects. When an objects has smem in
489 * its preference list, on memory pressure, i915 needs to migrate the lmem
490 * content into smem. If the lmem object is Flat-CCS compressed by userspace,
491 * then i915 needs to decompress it. But I915 lack the required information
492 * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects.
493 *
494 * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can
495 * be temporarily evicted to smem, along with the auxiliary CCS state, where
496 * it can be potentially swapped-out at a later point, if required.
497 * If userspace later touches the evicted pages, then we always move
498 * the backing memory back to lmem, which includes restoring the saved CCS state,
499 * and potentially performing any required swap-in.
500 *
501 * For the migration of the lmem objects with smem in placement list, such as
502 * {lmem, smem}, objects are treated as non Flat-CCS capable objects.
503 */
504
i915_flush_dw(u32 * cmd,u32 flags)505 static inline u32 *i915_flush_dw(u32 *cmd, u32 flags)
506 {
507 *cmd++ = MI_FLUSH_DW | flags;
508 *cmd++ = 0;
509 *cmd++ = 0;
510
511 return cmd;
512 }
513
emit_copy_ccs(struct i915_request * rq,u32 dst_offset,u8 dst_access,u32 src_offset,u8 src_access,int size)514 static int emit_copy_ccs(struct i915_request *rq,
515 u32 dst_offset, u8 dst_access,
516 u32 src_offset, u8 src_access, int size)
517 {
518 struct drm_i915_private *i915 = rq->engine->i915;
519 int mocs = rq->engine->gt->mocs.uc_index << 1;
520 u32 num_ccs_blks;
521 u32 *cs;
522
523 cs = intel_ring_begin(rq, 12);
524 if (IS_ERR(cs))
525 return PTR_ERR(cs);
526
527 num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
528 NUM_CCS_BYTES_PER_BLOCK);
529 GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER);
530 cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
531
532 /*
533 * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS
534 * data in and out of the CCS region.
535 *
536 * We can copy at most 1024 blocks of 256 bytes using one
537 * XY_CTRL_SURF_COPY_BLT instruction.
538 *
539 * In case we need to copy more than 1024 blocks, we need to add
540 * another instruction to the same batch buffer.
541 *
542 * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS.
543 *
544 * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM.
545 */
546 *cs++ = XY_CTRL_SURF_COPY_BLT |
547 src_access << SRC_ACCESS_TYPE_SHIFT |
548 dst_access << DST_ACCESS_TYPE_SHIFT |
549 ((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT;
550 *cs++ = src_offset;
551 *cs++ = rq->engine->instance |
552 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
553 *cs++ = dst_offset;
554 *cs++ = rq->engine->instance |
555 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
556
557 cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
558 *cs++ = MI_NOOP;
559
560 intel_ring_advance(rq, cs);
561
562 return 0;
563 }
564
emit_copy(struct i915_request * rq,u32 dst_offset,u32 src_offset,int size)565 static int emit_copy(struct i915_request *rq,
566 u32 dst_offset, u32 src_offset, int size)
567 {
568 const int ver = GRAPHICS_VER(rq->engine->i915);
569 u32 instance = rq->engine->instance;
570 u32 *cs;
571
572 cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6);
573 if (IS_ERR(cs))
574 return PTR_ERR(cs);
575
576 if (ver >= 9 && !wa_1209644611_applies(ver, size)) {
577 *cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2);
578 *cs++ = BLT_DEPTH_32 | PAGE_SIZE;
579 *cs++ = 0;
580 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
581 *cs++ = dst_offset;
582 *cs++ = instance;
583 *cs++ = 0;
584 *cs++ = PAGE_SIZE;
585 *cs++ = src_offset;
586 *cs++ = instance;
587 } else if (ver >= 8) {
588 *cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2);
589 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
590 *cs++ = 0;
591 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
592 *cs++ = dst_offset;
593 *cs++ = instance;
594 *cs++ = 0;
595 *cs++ = PAGE_SIZE;
596 *cs++ = src_offset;
597 *cs++ = instance;
598 } else {
599 GEM_BUG_ON(instance);
600 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
601 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
602 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE;
603 *cs++ = dst_offset;
604 *cs++ = PAGE_SIZE;
605 *cs++ = src_offset;
606 }
607
608 intel_ring_advance(rq, cs);
609 return 0;
610 }
611
scatter_list_length(struct scatterlist * sg)612 static u64 scatter_list_length(struct scatterlist *sg)
613 {
614 u64 len = 0;
615
616 while (sg && sg_dma_len(sg)) {
617 len += sg_dma_len(sg);
618 sg = sg_next(sg);
619 }
620
621 return len;
622 }
623
624 static int
calculate_chunk_sz(struct drm_i915_private * i915,bool src_is_lmem,u64 bytes_to_cpy,u64 ccs_bytes_to_cpy)625 calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem,
626 u64 bytes_to_cpy, u64 ccs_bytes_to_cpy)
627 {
628 if (ccs_bytes_to_cpy && !src_is_lmem)
629 /*
630 * When CHUNK_SZ is passed all the pages upto CHUNK_SZ
631 * will be taken for the blt. in Flat-ccs supported
632 * platform Smem obj will have more pages than required
633 * for main meory hence limit it to the required size
634 * for main memory
635 */
636 return min_t(u64, bytes_to_cpy, CHUNK_SZ);
637 else
638 return CHUNK_SZ;
639 }
640
get_ccs_sg_sgt(struct sgt_dma * it,u64 bytes_to_cpy)641 static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy)
642 {
643 u64 len;
644
645 do {
646 GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg));
647 len = it->max - it->dma;
648 if (len > bytes_to_cpy) {
649 it->dma += bytes_to_cpy;
650 break;
651 }
652
653 bytes_to_cpy -= len;
654
655 it->sg = __sg_next(it->sg);
656 it->dma = sg_dma_address(it->sg);
657 it->max = it->dma + sg_dma_len(it->sg);
658 } while (bytes_to_cpy);
659 }
660
661 int
intel_context_migrate_copy(struct intel_context * ce,const struct i915_deps * deps,struct scatterlist * src,enum i915_cache_level src_cache_level,bool src_is_lmem,struct scatterlist * dst,enum i915_cache_level dst_cache_level,bool dst_is_lmem,struct i915_request ** out)662 intel_context_migrate_copy(struct intel_context *ce,
663 const struct i915_deps *deps,
664 struct scatterlist *src,
665 enum i915_cache_level src_cache_level,
666 bool src_is_lmem,
667 struct scatterlist *dst,
668 enum i915_cache_level dst_cache_level,
669 bool dst_is_lmem,
670 struct i915_request **out)
671 {
672 struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs;
673 struct drm_i915_private *i915 = ce->engine->i915;
674 u64 ccs_bytes_to_cpy = 0, bytes_to_cpy;
675 enum i915_cache_level ccs_cache_level;
676 u32 src_offset, dst_offset;
677 u8 src_access, dst_access;
678 struct i915_request *rq;
679 u64 src_sz, dst_sz;
680 bool ccs_is_src, overwrite_ccs;
681 int err;
682
683 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
684 GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem));
685 *out = NULL;
686
687 GEM_BUG_ON(ce->ring->size < SZ_64K);
688
689 src_sz = scatter_list_length(src);
690 bytes_to_cpy = src_sz;
691
692 if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) {
693 src_access = !src_is_lmem && dst_is_lmem;
694 dst_access = !src_access;
695
696 dst_sz = scatter_list_length(dst);
697 if (src_is_lmem) {
698 it_ccs = it_dst;
699 ccs_cache_level = dst_cache_level;
700 ccs_is_src = false;
701 } else if (dst_is_lmem) {
702 bytes_to_cpy = dst_sz;
703 it_ccs = it_src;
704 ccs_cache_level = src_cache_level;
705 ccs_is_src = true;
706 }
707
708 /*
709 * When there is a eviction of ccs needed smem will have the
710 * extra pages for the ccs data
711 *
712 * TO-DO: Want to move the size mismatch check to a WARN_ON,
713 * but still we have some requests of smem->lmem with same size.
714 * Need to fix it.
715 */
716 ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0;
717 if (ccs_bytes_to_cpy)
718 get_ccs_sg_sgt(&it_ccs, bytes_to_cpy);
719 }
720
721 overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem;
722
723 src_offset = 0;
724 dst_offset = CHUNK_SZ;
725 if (HAS_64K_PAGES(ce->engine->i915)) {
726 src_offset = 0;
727 dst_offset = 0;
728 if (src_is_lmem)
729 src_offset = CHUNK_SZ;
730 if (dst_is_lmem)
731 dst_offset = 2 * CHUNK_SZ;
732 }
733
734 do {
735 int len;
736
737 rq = i915_request_create(ce);
738 if (IS_ERR(rq)) {
739 err = PTR_ERR(rq);
740 goto out_ce;
741 }
742
743 if (deps) {
744 err = i915_request_await_deps(rq, deps);
745 if (err)
746 goto out_rq;
747
748 if (rq->engine->emit_init_breadcrumb) {
749 err = rq->engine->emit_init_breadcrumb(rq);
750 if (err)
751 goto out_rq;
752 }
753
754 deps = NULL;
755 }
756
757 /* The PTE updates + copy must not be interrupted. */
758 err = emit_no_arbitration(rq);
759 if (err)
760 goto out_rq;
761
762 src_sz = calculate_chunk_sz(i915, src_is_lmem,
763 bytes_to_cpy, ccs_bytes_to_cpy);
764
765 len = emit_pte(rq, &it_src, src_cache_level, src_is_lmem,
766 src_offset, src_sz);
767 if (!len) {
768 err = -EINVAL;
769 goto out_rq;
770 }
771 if (len < 0) {
772 err = len;
773 goto out_rq;
774 }
775
776 err = emit_pte(rq, &it_dst, dst_cache_level, dst_is_lmem,
777 dst_offset, len);
778 if (err < 0)
779 goto out_rq;
780 if (err < len) {
781 err = -EINVAL;
782 goto out_rq;
783 }
784
785 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
786 if (err)
787 goto out_rq;
788
789 err = emit_copy(rq, dst_offset, src_offset, len);
790 if (err)
791 goto out_rq;
792
793 bytes_to_cpy -= len;
794
795 if (ccs_bytes_to_cpy) {
796 int ccs_sz;
797
798 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
799 if (err)
800 goto out_rq;
801
802 ccs_sz = GET_CCS_BYTES(i915, len);
803 err = emit_pte(rq, &it_ccs, ccs_cache_level, false,
804 ccs_is_src ? src_offset : dst_offset,
805 ccs_sz);
806 if (err < 0)
807 goto out_rq;
808 if (err < ccs_sz) {
809 err = -EINVAL;
810 goto out_rq;
811 }
812
813 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
814 if (err)
815 goto out_rq;
816
817 err = emit_copy_ccs(rq, dst_offset, dst_access,
818 src_offset, src_access, len);
819 if (err)
820 goto out_rq;
821
822 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
823 if (err)
824 goto out_rq;
825 ccs_bytes_to_cpy -= ccs_sz;
826 } else if (overwrite_ccs) {
827 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
828 if (err)
829 goto out_rq;
830
831 /*
832 * While we can't always restore/manage the CCS state,
833 * we still need to ensure we don't leak the CCS state
834 * from the previous user, so make sure we overwrite it
835 * with something.
836 */
837 err = emit_copy_ccs(rq, dst_offset, INDIRECT_ACCESS,
838 dst_offset, DIRECT_ACCESS, len);
839 if (err)
840 goto out_rq;
841
842 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
843 if (err)
844 goto out_rq;
845 }
846
847 /* Arbitration is re-enabled between requests. */
848 out_rq:
849 if (*out)
850 i915_request_put(*out);
851 *out = i915_request_get(rq);
852 i915_request_add(rq);
853
854 if (err)
855 break;
856
857 if (!bytes_to_cpy && !ccs_bytes_to_cpy) {
858 if (src_is_lmem)
859 WARN_ON(it_src.sg && sg_dma_len(it_src.sg));
860 else
861 WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg));
862 break;
863 }
864
865 if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) ||
866 !it_dst.sg || !sg_dma_len(it_dst.sg) ||
867 (ccs_bytes_to_cpy && (!it_ccs.sg ||
868 !sg_dma_len(it_ccs.sg))))) {
869 err = -EINVAL;
870 break;
871 }
872
873 cond_resched();
874 } while (1);
875
876 out_ce:
877 return err;
878 }
879
emit_clear(struct i915_request * rq,u32 offset,int size,u32 value,bool is_lmem)880 static int emit_clear(struct i915_request *rq, u32 offset, int size,
881 u32 value, bool is_lmem)
882 {
883 struct drm_i915_private *i915 = rq->engine->i915;
884 int mocs = rq->engine->gt->mocs.uc_index << 1;
885 const int ver = GRAPHICS_VER(i915);
886 int ring_sz;
887 u32 *cs;
888
889 GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX);
890
891 if (HAS_FLAT_CCS(i915) && ver >= 12)
892 ring_sz = XY_FAST_COLOR_BLT_DW;
893 else if (ver >= 8)
894 ring_sz = 8;
895 else
896 ring_sz = 6;
897
898 cs = intel_ring_begin(rq, ring_sz);
899 if (IS_ERR(cs))
900 return PTR_ERR(cs);
901
902 if (HAS_FLAT_CCS(i915) && ver >= 12) {
903 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
904 (XY_FAST_COLOR_BLT_DW - 2);
905 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) |
906 (PAGE_SIZE - 1);
907 *cs++ = 0;
908 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
909 *cs++ = offset;
910 *cs++ = rq->engine->instance;
911 *cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
912 /* BG7 */
913 *cs++ = value;
914 *cs++ = 0;
915 *cs++ = 0;
916 *cs++ = 0;
917 /* BG11 */
918 *cs++ = 0;
919 *cs++ = 0;
920 /* BG13 */
921 *cs++ = 0;
922 *cs++ = 0;
923 *cs++ = 0;
924 } else if (ver >= 8) {
925 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2);
926 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
927 *cs++ = 0;
928 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
929 *cs++ = offset;
930 *cs++ = rq->engine->instance;
931 *cs++ = value;
932 *cs++ = MI_NOOP;
933 } else {
934 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
935 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
936 *cs++ = 0;
937 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
938 *cs++ = offset;
939 *cs++ = value;
940 }
941
942 intel_ring_advance(rq, cs);
943 return 0;
944 }
945
946 int
intel_context_migrate_clear(struct intel_context * ce,const struct i915_deps * deps,struct scatterlist * sg,enum i915_cache_level cache_level,bool is_lmem,u32 value,struct i915_request ** out)947 intel_context_migrate_clear(struct intel_context *ce,
948 const struct i915_deps *deps,
949 struct scatterlist *sg,
950 enum i915_cache_level cache_level,
951 bool is_lmem,
952 u32 value,
953 struct i915_request **out)
954 {
955 struct drm_i915_private *i915 = ce->engine->i915;
956 struct sgt_dma it = sg_sgt(sg);
957 struct i915_request *rq;
958 u32 offset;
959 int err;
960
961 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
962 *out = NULL;
963
964 GEM_BUG_ON(ce->ring->size < SZ_64K);
965
966 offset = 0;
967 if (HAS_64K_PAGES(i915) && is_lmem)
968 offset = CHUNK_SZ;
969
970 do {
971 int len;
972
973 rq = i915_request_create(ce);
974 if (IS_ERR(rq)) {
975 err = PTR_ERR(rq);
976 goto out_ce;
977 }
978
979 if (deps) {
980 err = i915_request_await_deps(rq, deps);
981 if (err)
982 goto out_rq;
983
984 if (rq->engine->emit_init_breadcrumb) {
985 err = rq->engine->emit_init_breadcrumb(rq);
986 if (err)
987 goto out_rq;
988 }
989
990 deps = NULL;
991 }
992
993 /* The PTE updates + clear must not be interrupted. */
994 err = emit_no_arbitration(rq);
995 if (err)
996 goto out_rq;
997
998 len = emit_pte(rq, &it, cache_level, is_lmem, offset, CHUNK_SZ);
999 if (len <= 0) {
1000 err = len;
1001 goto out_rq;
1002 }
1003
1004 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1005 if (err)
1006 goto out_rq;
1007
1008 err = emit_clear(rq, offset, len, value, is_lmem);
1009 if (err)
1010 goto out_rq;
1011
1012 if (HAS_FLAT_CCS(i915) && is_lmem && !value) {
1013 /*
1014 * copy the content of memory into corresponding
1015 * ccs surface
1016 */
1017 err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset,
1018 DIRECT_ACCESS, len);
1019 if (err)
1020 goto out_rq;
1021 }
1022
1023 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1024
1025 /* Arbitration is re-enabled between requests. */
1026 out_rq:
1027 if (*out)
1028 i915_request_put(*out);
1029 *out = i915_request_get(rq);
1030 i915_request_add(rq);
1031 if (err || !it.sg || !sg_dma_len(it.sg))
1032 break;
1033
1034 cond_resched();
1035 } while (1);
1036
1037 out_ce:
1038 return err;
1039 }
1040
intel_migrate_copy(struct intel_migrate * m,struct i915_gem_ww_ctx * ww,const struct i915_deps * deps,struct scatterlist * src,enum i915_cache_level src_cache_level,bool src_is_lmem,struct scatterlist * dst,enum i915_cache_level dst_cache_level,bool dst_is_lmem,struct i915_request ** out)1041 int intel_migrate_copy(struct intel_migrate *m,
1042 struct i915_gem_ww_ctx *ww,
1043 const struct i915_deps *deps,
1044 struct scatterlist *src,
1045 enum i915_cache_level src_cache_level,
1046 bool src_is_lmem,
1047 struct scatterlist *dst,
1048 enum i915_cache_level dst_cache_level,
1049 bool dst_is_lmem,
1050 struct i915_request **out)
1051 {
1052 struct intel_context *ce;
1053 int err;
1054
1055 *out = NULL;
1056 if (!m->context)
1057 return -ENODEV;
1058
1059 ce = intel_migrate_create_context(m);
1060 if (IS_ERR(ce))
1061 ce = intel_context_get(m->context);
1062 GEM_BUG_ON(IS_ERR(ce));
1063
1064 err = intel_context_pin_ww(ce, ww);
1065 if (err)
1066 goto out;
1067
1068 err = intel_context_migrate_copy(ce, deps,
1069 src, src_cache_level, src_is_lmem,
1070 dst, dst_cache_level, dst_is_lmem,
1071 out);
1072
1073 intel_context_unpin(ce);
1074 out:
1075 intel_context_put(ce);
1076 return err;
1077 }
1078
1079 int
intel_migrate_clear(struct intel_migrate * m,struct i915_gem_ww_ctx * ww,const struct i915_deps * deps,struct scatterlist * sg,enum i915_cache_level cache_level,bool is_lmem,u32 value,struct i915_request ** out)1080 intel_migrate_clear(struct intel_migrate *m,
1081 struct i915_gem_ww_ctx *ww,
1082 const struct i915_deps *deps,
1083 struct scatterlist *sg,
1084 enum i915_cache_level cache_level,
1085 bool is_lmem,
1086 u32 value,
1087 struct i915_request **out)
1088 {
1089 struct intel_context *ce;
1090 int err;
1091
1092 *out = NULL;
1093 if (!m->context)
1094 return -ENODEV;
1095
1096 ce = intel_migrate_create_context(m);
1097 if (IS_ERR(ce))
1098 ce = intel_context_get(m->context);
1099 GEM_BUG_ON(IS_ERR(ce));
1100
1101 err = intel_context_pin_ww(ce, ww);
1102 if (err)
1103 goto out;
1104
1105 err = intel_context_migrate_clear(ce, deps, sg, cache_level,
1106 is_lmem, value, out);
1107
1108 intel_context_unpin(ce);
1109 out:
1110 intel_context_put(ce);
1111 return err;
1112 }
1113
intel_migrate_fini(struct intel_migrate * m)1114 void intel_migrate_fini(struct intel_migrate *m)
1115 {
1116 struct intel_context *ce;
1117
1118 ce = fetch_and_zero(&m->context);
1119 if (!ce)
1120 return;
1121
1122 intel_engine_destroy_pinned_context(ce);
1123 }
1124
1125 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1126 #include "selftest_migrate.c"
1127 #endif
1128