1  /*
2   * fs/f2fs/segment.h
3   *
4   * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5   *             http://www.samsung.com/
6   *
7   * This program is free software; you can redistribute it and/or modify
8   * it under the terms of the GNU General Public License version 2 as
9   * published by the Free Software Foundation.
10   */
11  #include <linux/blkdev.h>
12  #include <linux/backing-dev.h>
13  
14  /* constant macro */
15  #define NULL_SEGNO			((unsigned int)(~0))
16  #define NULL_SECNO			((unsigned int)(~0))
17  
18  #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
19  #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
20  
21  #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22  
23  /* L: Logical segment # in volume, R: Relative segment # in main area */
24  #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
25  #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
26  
27  #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
28  #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
29  
30  #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
31  #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
32  #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
33  
34  #define IS_CURSEG(sbi, seg)						\
35  	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
36  	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
37  	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
38  	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
39  	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
40  	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
41  
42  #define IS_CURSEC(sbi, secno)						\
43  	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
44  	  (sbi)->segs_per_sec) ||	\
45  	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
46  	  (sbi)->segs_per_sec) ||	\
47  	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
48  	  (sbi)->segs_per_sec) ||	\
49  	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
50  	  (sbi)->segs_per_sec) ||	\
51  	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
52  	  (sbi)->segs_per_sec) ||	\
53  	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
54  	  (sbi)->segs_per_sec))	\
55  
56  #define MAIN_BLKADDR(sbi)						\
57  	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
58  		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
59  #define SEG0_BLKADDR(sbi)						\
60  	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
61  		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
62  
63  #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
64  #define MAIN_SECS(sbi)	((sbi)->total_sections)
65  
66  #define TOTAL_SEGS(sbi)							\
67  	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
68  		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
69  #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
70  
71  #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
72  #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
73  					(sbi)->log_blocks_per_seg))
74  
75  #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
76  	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
77  
78  #define NEXT_FREE_BLKADDR(sbi, curseg)					\
79  	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
80  
81  #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
82  #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
83  	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
84  #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
85  	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
86  
87  #define GET_SEGNO(sbi, blk_addr)					\
88  	((!is_valid_data_blkaddr(sbi, blk_addr)) ?			\
89  	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
90  		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
91  #define BLKS_PER_SEC(sbi)					\
92  	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
93  #define GET_SEC_FROM_SEG(sbi, segno)				\
94  	((segno) / (sbi)->segs_per_sec)
95  #define GET_SEG_FROM_SEC(sbi, secno)				\
96  	((secno) * (sbi)->segs_per_sec)
97  #define GET_ZONE_FROM_SEC(sbi, secno)				\
98  	((secno) / (sbi)->secs_per_zone)
99  #define GET_ZONE_FROM_SEG(sbi, segno)				\
100  	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
101  
102  #define GET_SUM_BLOCK(sbi, segno)				\
103  	((sbi)->sm_info->ssa_blkaddr + (segno))
104  
105  #define GET_SUM_TYPE(footer) ((footer)->entry_type)
106  #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
107  
108  #define SIT_ENTRY_OFFSET(sit_i, segno)					\
109  	((segno) % (sit_i)->sents_per_block)
110  #define SIT_BLOCK_OFFSET(segno)					\
111  	((segno) / SIT_ENTRY_PER_BLOCK)
112  #define	START_SEGNO(segno)		\
113  	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
114  #define SIT_BLK_CNT(sbi)			\
115  	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
116  #define f2fs_bitmap_size(nr)			\
117  	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
118  
119  #define SECTOR_FROM_BLOCK(blk_addr)					\
120  	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
121  #define SECTOR_TO_BLOCK(sectors)					\
122  	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
123  
124  /*
125   * indicate a block allocation direction: RIGHT and LEFT.
126   * RIGHT means allocating new sections towards the end of volume.
127   * LEFT means the opposite direction.
128   */
129  enum {
130  	ALLOC_RIGHT = 0,
131  	ALLOC_LEFT
132  };
133  
134  /*
135   * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
136   * LFS writes data sequentially with cleaning operations.
137   * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
138   */
139  enum {
140  	LFS = 0,
141  	SSR
142  };
143  
144  /*
145   * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
146   * GC_CB is based on cost-benefit algorithm.
147   * GC_GREEDY is based on greedy algorithm.
148   */
149  enum {
150  	GC_CB = 0,
151  	GC_GREEDY,
152  	ALLOC_NEXT,
153  	FLUSH_DEVICE,
154  	MAX_GC_POLICY,
155  };
156  
157  /*
158   * BG_GC means the background cleaning job.
159   * FG_GC means the on-demand cleaning job.
160   * FORCE_FG_GC means on-demand cleaning job in background.
161   */
162  enum {
163  	BG_GC = 0,
164  	FG_GC,
165  	FORCE_FG_GC,
166  };
167  
168  /* for a function parameter to select a victim segment */
169  struct victim_sel_policy {
170  	int alloc_mode;			/* LFS or SSR */
171  	int gc_mode;			/* GC_CB or GC_GREEDY */
172  	unsigned long *dirty_segmap;	/* dirty segment bitmap */
173  	unsigned int max_search;	/* maximum # of segments to search */
174  	unsigned int offset;		/* last scanned bitmap offset */
175  	unsigned int ofs_unit;		/* bitmap search unit */
176  	unsigned int min_cost;		/* minimum cost */
177  	unsigned int min_segno;		/* segment # having min. cost */
178  };
179  
180  struct seg_entry {
181  	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
182  	unsigned int valid_blocks:10;	/* # of valid blocks */
183  	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
184  	unsigned int padding:6;		/* padding */
185  	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
186  #ifdef CONFIG_F2FS_CHECK_FS
187  	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
188  #endif
189  	/*
190  	 * # of valid blocks and the validity bitmap stored in the the last
191  	 * checkpoint pack. This information is used by the SSR mode.
192  	 */
193  	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
194  	unsigned char *discard_map;
195  	unsigned long long mtime;	/* modification time of the segment */
196  };
197  
198  struct sec_entry {
199  	unsigned int valid_blocks;	/* # of valid blocks in a section */
200  };
201  
202  struct segment_allocation {
203  	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204  };
205  
206  /*
207   * this value is set in page as a private data which indicate that
208   * the page is atomically written, and it is in inmem_pages list.
209   */
210  #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
211  #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
212  
213  #define IS_ATOMIC_WRITTEN_PAGE(page)			\
214  		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
215  #define IS_DUMMY_WRITTEN_PAGE(page)			\
216  		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
217  
218  #define MAX_SKIP_GC_COUNT			16
219  
220  struct inmem_pages {
221  	struct list_head list;
222  	struct page *page;
223  	block_t old_addr;		/* for revoking when fail to commit */
224  };
225  
226  struct sit_info {
227  	const struct segment_allocation *s_ops;
228  
229  	block_t sit_base_addr;		/* start block address of SIT area */
230  	block_t sit_blocks;		/* # of blocks used by SIT area */
231  	block_t written_valid_blocks;	/* # of valid blocks in main area */
232  	char *sit_bitmap;		/* SIT bitmap pointer */
233  #ifdef CONFIG_F2FS_CHECK_FS
234  	char *sit_bitmap_mir;		/* SIT bitmap mirror */
235  #endif
236  	unsigned int bitmap_size;	/* SIT bitmap size */
237  
238  	unsigned long *tmp_map;			/* bitmap for temporal use */
239  	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
240  	unsigned int dirty_sentries;		/* # of dirty sentries */
241  	unsigned int sents_per_block;		/* # of SIT entries per block */
242  	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
243  	struct seg_entry *sentries;		/* SIT segment-level cache */
244  	struct sec_entry *sec_entries;		/* SIT section-level cache */
245  
246  	/* for cost-benefit algorithm in cleaning procedure */
247  	unsigned long long elapsed_time;	/* elapsed time after mount */
248  	unsigned long long mounted_time;	/* mount time */
249  	unsigned long long min_mtime;		/* min. modification time */
250  	unsigned long long max_mtime;		/* max. modification time */
251  
252  	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
253  };
254  
255  struct free_segmap_info {
256  	unsigned int start_segno;	/* start segment number logically */
257  	unsigned int free_segments;	/* # of free segments */
258  	unsigned int free_sections;	/* # of free sections */
259  	spinlock_t segmap_lock;		/* free segmap lock */
260  	unsigned long *free_segmap;	/* free segment bitmap */
261  	unsigned long *free_secmap;	/* free section bitmap */
262  };
263  
264  /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
265  enum dirty_type {
266  	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
267  	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
268  	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
269  	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
270  	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
271  	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
272  	DIRTY,			/* to count # of dirty segments */
273  	PRE,			/* to count # of entirely obsolete segments */
274  	NR_DIRTY_TYPE
275  };
276  
277  struct dirty_seglist_info {
278  	const struct victim_selection *v_ops;	/* victim selction operation */
279  	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
280  	struct mutex seglist_lock;		/* lock for segment bitmaps */
281  	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
282  	unsigned long *victim_secmap;		/* background GC victims */
283  };
284  
285  /* victim selection function for cleaning and SSR */
286  struct victim_selection {
287  	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
288  							int, int, char);
289  };
290  
291  /* for active log information */
292  struct curseg_info {
293  	struct mutex curseg_mutex;		/* lock for consistency */
294  	struct f2fs_summary_block *sum_blk;	/* cached summary block */
295  	struct rw_semaphore journal_rwsem;	/* protect journal area */
296  	struct f2fs_journal *journal;		/* cached journal info */
297  	unsigned char alloc_type;		/* current allocation type */
298  	unsigned int segno;			/* current segment number */
299  	unsigned short next_blkoff;		/* next block offset to write */
300  	unsigned int zone;			/* current zone number */
301  	unsigned int next_segno;		/* preallocated segment */
302  };
303  
304  struct sit_entry_set {
305  	struct list_head set_list;	/* link with all sit sets */
306  	unsigned int start_segno;	/* start segno of sits in set */
307  	unsigned int entry_cnt;		/* the # of sit entries in set */
308  };
309  
310  /*
311   * inline functions
312   */
CURSEG_I(struct f2fs_sb_info * sbi,int type)313  static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
314  {
315  	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
316  }
317  
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)318  static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
319  						unsigned int segno)
320  {
321  	struct sit_info *sit_i = SIT_I(sbi);
322  	return &sit_i->sentries[segno];
323  }
324  
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)325  static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
326  						unsigned int segno)
327  {
328  	struct sit_info *sit_i = SIT_I(sbi);
329  	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
330  }
331  
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)332  static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
333  				unsigned int segno, bool use_section)
334  {
335  	/*
336  	 * In order to get # of valid blocks in a section instantly from many
337  	 * segments, f2fs manages two counting structures separately.
338  	 */
339  	if (use_section && sbi->segs_per_sec > 1)
340  		return get_sec_entry(sbi, segno)->valid_blocks;
341  	else
342  		return get_seg_entry(sbi, segno)->valid_blocks;
343  }
344  
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)345  static inline void seg_info_from_raw_sit(struct seg_entry *se,
346  					struct f2fs_sit_entry *rs)
347  {
348  	se->valid_blocks = GET_SIT_VBLOCKS(rs);
349  	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
350  	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
351  	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
352  #ifdef CONFIG_F2FS_CHECK_FS
353  	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
354  #endif
355  	se->type = GET_SIT_TYPE(rs);
356  	se->mtime = le64_to_cpu(rs->mtime);
357  }
358  
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)359  static inline void __seg_info_to_raw_sit(struct seg_entry *se,
360  					struct f2fs_sit_entry *rs)
361  {
362  	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
363  					se->valid_blocks;
364  	rs->vblocks = cpu_to_le16(raw_vblocks);
365  	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
366  	rs->mtime = cpu_to_le64(se->mtime);
367  }
368  
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)369  static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
370  				struct page *page, unsigned int start)
371  {
372  	struct f2fs_sit_block *raw_sit;
373  	struct seg_entry *se;
374  	struct f2fs_sit_entry *rs;
375  	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
376  					(unsigned long)MAIN_SEGS(sbi));
377  	int i;
378  
379  	raw_sit = (struct f2fs_sit_block *)page_address(page);
380  	memset(raw_sit, 0, PAGE_SIZE);
381  	for (i = 0; i < end - start; i++) {
382  		rs = &raw_sit->entries[i];
383  		se = get_seg_entry(sbi, start + i);
384  		__seg_info_to_raw_sit(se, rs);
385  	}
386  }
387  
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)388  static inline void seg_info_to_raw_sit(struct seg_entry *se,
389  					struct f2fs_sit_entry *rs)
390  {
391  	__seg_info_to_raw_sit(se, rs);
392  
393  	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
394  	se->ckpt_valid_blocks = se->valid_blocks;
395  }
396  
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)397  static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
398  		unsigned int max, unsigned int segno)
399  {
400  	unsigned int ret;
401  	spin_lock(&free_i->segmap_lock);
402  	ret = find_next_bit(free_i->free_segmap, max, segno);
403  	spin_unlock(&free_i->segmap_lock);
404  	return ret;
405  }
406  
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)407  static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
408  {
409  	struct free_segmap_info *free_i = FREE_I(sbi);
410  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
411  	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
412  	unsigned int next;
413  
414  	spin_lock(&free_i->segmap_lock);
415  	clear_bit(segno, free_i->free_segmap);
416  	free_i->free_segments++;
417  
418  	next = find_next_bit(free_i->free_segmap,
419  			start_segno + sbi->segs_per_sec, start_segno);
420  	if (next >= start_segno + sbi->segs_per_sec) {
421  		clear_bit(secno, free_i->free_secmap);
422  		free_i->free_sections++;
423  	}
424  	spin_unlock(&free_i->segmap_lock);
425  }
426  
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)427  static inline void __set_inuse(struct f2fs_sb_info *sbi,
428  		unsigned int segno)
429  {
430  	struct free_segmap_info *free_i = FREE_I(sbi);
431  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
432  
433  	set_bit(segno, free_i->free_segmap);
434  	free_i->free_segments--;
435  	if (!test_and_set_bit(secno, free_i->free_secmap))
436  		free_i->free_sections--;
437  }
438  
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno)439  static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
440  		unsigned int segno)
441  {
442  	struct free_segmap_info *free_i = FREE_I(sbi);
443  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
444  	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
445  	unsigned int next;
446  
447  	spin_lock(&free_i->segmap_lock);
448  	if (test_and_clear_bit(segno, free_i->free_segmap)) {
449  		free_i->free_segments++;
450  
451  		if (IS_CURSEC(sbi, secno))
452  			goto skip_free;
453  		next = find_next_bit(free_i->free_segmap,
454  				start_segno + sbi->segs_per_sec, start_segno);
455  		if (next >= start_segno + sbi->segs_per_sec) {
456  			if (test_and_clear_bit(secno, free_i->free_secmap))
457  				free_i->free_sections++;
458  		}
459  	}
460  skip_free:
461  	spin_unlock(&free_i->segmap_lock);
462  }
463  
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)464  static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
465  		unsigned int segno)
466  {
467  	struct free_segmap_info *free_i = FREE_I(sbi);
468  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
469  
470  	spin_lock(&free_i->segmap_lock);
471  	if (!test_and_set_bit(segno, free_i->free_segmap)) {
472  		free_i->free_segments--;
473  		if (!test_and_set_bit(secno, free_i->free_secmap))
474  			free_i->free_sections--;
475  	}
476  	spin_unlock(&free_i->segmap_lock);
477  }
478  
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)479  static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
480  		void *dst_addr)
481  {
482  	struct sit_info *sit_i = SIT_I(sbi);
483  
484  #ifdef CONFIG_F2FS_CHECK_FS
485  	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
486  						sit_i->bitmap_size))
487  		f2fs_bug_on(sbi, 1);
488  #endif
489  	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
490  }
491  
written_block_count(struct f2fs_sb_info * sbi)492  static inline block_t written_block_count(struct f2fs_sb_info *sbi)
493  {
494  	return SIT_I(sbi)->written_valid_blocks;
495  }
496  
free_segments(struct f2fs_sb_info * sbi)497  static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
498  {
499  	return FREE_I(sbi)->free_segments;
500  }
501  
reserved_segments(struct f2fs_sb_info * sbi)502  static inline int reserved_segments(struct f2fs_sb_info *sbi)
503  {
504  	return SM_I(sbi)->reserved_segments;
505  }
506  
free_sections(struct f2fs_sb_info * sbi)507  static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
508  {
509  	return FREE_I(sbi)->free_sections;
510  }
511  
prefree_segments(struct f2fs_sb_info * sbi)512  static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
513  {
514  	return DIRTY_I(sbi)->nr_dirty[PRE];
515  }
516  
dirty_segments(struct f2fs_sb_info * sbi)517  static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
518  {
519  	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
520  		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
521  		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
522  		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
523  		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
524  		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
525  }
526  
overprovision_segments(struct f2fs_sb_info * sbi)527  static inline int overprovision_segments(struct f2fs_sb_info *sbi)
528  {
529  	return SM_I(sbi)->ovp_segments;
530  }
531  
reserved_sections(struct f2fs_sb_info * sbi)532  static inline int reserved_sections(struct f2fs_sb_info *sbi)
533  {
534  	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
535  }
536  
has_curseg_enough_space(struct f2fs_sb_info * sbi)537  static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
538  {
539  	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
540  					get_pages(sbi, F2FS_DIRTY_DENTS);
541  	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
542  	unsigned int segno, left_blocks;
543  	int i;
544  
545  	/* check current node segment */
546  	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
547  		segno = CURSEG_I(sbi, i)->segno;
548  		left_blocks = sbi->blocks_per_seg -
549  			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
550  
551  		if (node_blocks > left_blocks)
552  			return false;
553  	}
554  
555  	/* check current data segment */
556  	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
557  	left_blocks = sbi->blocks_per_seg -
558  			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
559  	if (dent_blocks > left_blocks)
560  		return false;
561  	return true;
562  }
563  
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)564  static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
565  					int freed, int needed)
566  {
567  	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
568  	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
569  	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
570  
571  	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
572  		return false;
573  
574  	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
575  			has_curseg_enough_space(sbi))
576  		return false;
577  	return (free_sections(sbi) + freed) <=
578  		(node_secs + 2 * dent_secs + imeta_secs +
579  		reserved_sections(sbi) + needed);
580  }
581  
excess_prefree_segs(struct f2fs_sb_info * sbi)582  static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
583  {
584  	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
585  }
586  
utilization(struct f2fs_sb_info * sbi)587  static inline int utilization(struct f2fs_sb_info *sbi)
588  {
589  	return div_u64((u64)valid_user_blocks(sbi) * 100,
590  					sbi->user_block_count);
591  }
592  
593  /*
594   * Sometimes f2fs may be better to drop out-of-place update policy.
595   * And, users can control the policy through sysfs entries.
596   * There are five policies with triggering conditions as follows.
597   * F2FS_IPU_FORCE - all the time,
598   * F2FS_IPU_SSR - if SSR mode is activated,
599   * F2FS_IPU_UTIL - if FS utilization is over threashold,
600   * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
601   *                     threashold,
602   * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
603   *                     storages. IPU will be triggered only if the # of dirty
604   *                     pages over min_fsync_blocks.
605   * F2FS_IPUT_DISABLE - disable IPU. (=default option)
606   */
607  #define DEF_MIN_IPU_UTIL	70
608  #define DEF_MIN_FSYNC_BLOCKS	8
609  #define DEF_MIN_HOT_BLOCKS	16
610  
611  #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
612  
613  enum {
614  	F2FS_IPU_FORCE,
615  	F2FS_IPU_SSR,
616  	F2FS_IPU_UTIL,
617  	F2FS_IPU_SSR_UTIL,
618  	F2FS_IPU_FSYNC,
619  	F2FS_IPU_ASYNC,
620  };
621  
curseg_segno(struct f2fs_sb_info * sbi,int type)622  static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
623  		int type)
624  {
625  	struct curseg_info *curseg = CURSEG_I(sbi, type);
626  	return curseg->segno;
627  }
628  
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)629  static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
630  		int type)
631  {
632  	struct curseg_info *curseg = CURSEG_I(sbi, type);
633  	return curseg->alloc_type;
634  }
635  
curseg_blkoff(struct f2fs_sb_info * sbi,int type)636  static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
637  {
638  	struct curseg_info *curseg = CURSEG_I(sbi, type);
639  	return curseg->next_blkoff;
640  }
641  
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)642  static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
643  {
644  	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
645  }
646  
verify_block_addr(struct f2fs_io_info * fio,block_t blk_addr)647  static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
648  {
649  	struct f2fs_sb_info *sbi = fio->sbi;
650  
651  	if (__is_meta_io(fio))
652  		verify_blkaddr(sbi, blk_addr, META_GENERIC);
653  	else
654  		verify_blkaddr(sbi, blk_addr, DATA_GENERIC);
655  }
656  
657  /*
658   * Summary block is always treated as an invalid block
659   */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)660  static inline int check_block_count(struct f2fs_sb_info *sbi,
661  		int segno, struct f2fs_sit_entry *raw_sit)
662  {
663  #ifdef CONFIG_F2FS_CHECK_FS
664  	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
665  	int valid_blocks = 0;
666  	int cur_pos = 0, next_pos;
667  
668  	/* check bitmap with valid block count */
669  	do {
670  		if (is_valid) {
671  			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
672  					sbi->blocks_per_seg,
673  					cur_pos);
674  			valid_blocks += next_pos - cur_pos;
675  		} else
676  			next_pos = find_next_bit_le(&raw_sit->valid_map,
677  					sbi->blocks_per_seg,
678  					cur_pos);
679  		cur_pos = next_pos;
680  		is_valid = !is_valid;
681  	} while (cur_pos < sbi->blocks_per_seg);
682  
683  	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
684  		f2fs_msg(sbi->sb, KERN_ERR,
685  				"Mismatch valid blocks %d vs. %d",
686  					GET_SIT_VBLOCKS(raw_sit), valid_blocks);
687  		set_sbi_flag(sbi, SBI_NEED_FSCK);
688  		return -EINVAL;
689  	}
690  #endif
691  	/* check segment usage, and check boundary of a given segment number */
692  	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
693  					|| segno > TOTAL_SEGS(sbi) - 1)) {
694  		f2fs_msg(sbi->sb, KERN_ERR,
695  				"Wrong valid blocks %d or segno %u",
696  					GET_SIT_VBLOCKS(raw_sit), segno);
697  		set_sbi_flag(sbi, SBI_NEED_FSCK);
698  		return -EINVAL;
699  	}
700  	return 0;
701  }
702  
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)703  static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
704  						unsigned int start)
705  {
706  	struct sit_info *sit_i = SIT_I(sbi);
707  	unsigned int offset = SIT_BLOCK_OFFSET(start);
708  	block_t blk_addr = sit_i->sit_base_addr + offset;
709  
710  	check_seg_range(sbi, start);
711  
712  #ifdef CONFIG_F2FS_CHECK_FS
713  	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
714  			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
715  		f2fs_bug_on(sbi, 1);
716  #endif
717  
718  	/* calculate sit block address */
719  	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
720  		blk_addr += sit_i->sit_blocks;
721  
722  	return blk_addr;
723  }
724  
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)725  static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
726  						pgoff_t block_addr)
727  {
728  	struct sit_info *sit_i = SIT_I(sbi);
729  	block_addr -= sit_i->sit_base_addr;
730  	if (block_addr < sit_i->sit_blocks)
731  		block_addr += sit_i->sit_blocks;
732  	else
733  		block_addr -= sit_i->sit_blocks;
734  
735  	return block_addr + sit_i->sit_base_addr;
736  }
737  
set_to_next_sit(struct sit_info * sit_i,unsigned int start)738  static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
739  {
740  	unsigned int block_off = SIT_BLOCK_OFFSET(start);
741  
742  	f2fs_change_bit(block_off, sit_i->sit_bitmap);
743  #ifdef CONFIG_F2FS_CHECK_FS
744  	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
745  #endif
746  }
747  
get_mtime(struct f2fs_sb_info * sbi,bool base_time)748  static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
749  						bool base_time)
750  {
751  	struct sit_info *sit_i = SIT_I(sbi);
752  	time64_t diff, now = ktime_get_real_seconds();
753  
754  	if (now >= sit_i->mounted_time)
755  		return sit_i->elapsed_time + now - sit_i->mounted_time;
756  
757  	/* system time is set to the past */
758  	if (!base_time) {
759  		diff = sit_i->mounted_time - now;
760  		if (sit_i->elapsed_time >= diff)
761  			return sit_i->elapsed_time - diff;
762  		return 0;
763  	}
764  	return sit_i->elapsed_time;
765  }
766  
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)767  static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
768  			unsigned int ofs_in_node, unsigned char version)
769  {
770  	sum->nid = cpu_to_le32(nid);
771  	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
772  	sum->version = version;
773  }
774  
start_sum_block(struct f2fs_sb_info * sbi)775  static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
776  {
777  	return __start_cp_addr(sbi) +
778  		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
779  }
780  
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)781  static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
782  {
783  	return __start_cp_addr(sbi) +
784  		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
785  				- (base + 1) + type;
786  }
787  
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)788  static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
789  {
790  	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
791  		return true;
792  	return false;
793  }
794  
795  /*
796   * It is very important to gather dirty pages and write at once, so that we can
797   * submit a big bio without interfering other data writes.
798   * By default, 512 pages for directory data,
799   * 512 pages (2MB) * 8 for nodes, and
800   * 256 pages * 8 for meta are set.
801   */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)802  static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
803  {
804  	if (sbi->sb->s_bdi->wb.dirty_exceeded)
805  		return 0;
806  
807  	if (type == DATA)
808  		return sbi->blocks_per_seg;
809  	else if (type == NODE)
810  		return 8 * sbi->blocks_per_seg;
811  	else if (type == META)
812  		return 8 * BIO_MAX_PAGES;
813  	else
814  		return 0;
815  }
816  
817  /*
818   * When writing pages, it'd better align nr_to_write for segment size.
819   */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)820  static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
821  					struct writeback_control *wbc)
822  {
823  	long nr_to_write, desired;
824  
825  	if (wbc->sync_mode != WB_SYNC_NONE)
826  		return 0;
827  
828  	nr_to_write = wbc->nr_to_write;
829  	desired = BIO_MAX_PAGES;
830  	if (type == NODE)
831  		desired <<= 1;
832  
833  	wbc->nr_to_write = desired;
834  	return desired - nr_to_write;
835  }
836  
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)837  static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
838  {
839  	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
840  	bool wakeup = false;
841  	int i;
842  
843  	if (force)
844  		goto wake_up;
845  
846  	mutex_lock(&dcc->cmd_lock);
847  	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
848  		if (i + 1 < dcc->discard_granularity)
849  			break;
850  		if (!list_empty(&dcc->pend_list[i])) {
851  			wakeup = true;
852  			break;
853  		}
854  	}
855  	mutex_unlock(&dcc->cmd_lock);
856  	if (!wakeup)
857  		return;
858  wake_up:
859  	dcc->discard_wake = 1;
860  	wake_up_interruptible_all(&dcc->discard_wait_queue);
861  }
862