1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
3 *
4 * Copyright (c) 2013 Faraday Technology Corporation
5 *
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
9 *
10 * Most of code borrowed from the Linux-3.7 EHCI driver
11 */
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36
37 #include <asm/byteorder.h>
38 #include <asm/irq.h>
39 #include <asm/unaligned.h>
40
41 #include "fotg210.h"
42
43 static const char hcd_name[] = "fotg210_hcd";
44
45 #undef FOTG210_URB_TRACE
46 #define FOTG210_STATS
47
48 /* magic numbers that can affect system performance */
49 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
50 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
51 #define FOTG210_TUNE_RL_TT 0
52 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
53 #define FOTG210_TUNE_MULT_TT 1
54
55 /* Some drivers think it's safe to schedule isochronous transfers more than 256
56 * ms into the future (partly as a result of an old bug in the scheduling
57 * code). In an attempt to avoid trouble, we will use a minimum scheduling
58 * length of 512 frames instead of 256.
59 */
60 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
61
62 /* Initial IRQ latency: faster than hw default */
63 static int log2_irq_thresh; /* 0 to 6 */
64 module_param(log2_irq_thresh, int, S_IRUGO);
65 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
66
67 /* initial park setting: slower than hw default */
68 static unsigned park;
69 module_param(park, uint, S_IRUGO);
70 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
71
72 /* for link power management(LPM) feature */
73 static unsigned int hird;
74 module_param(hird, int, S_IRUGO);
75 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
76
77 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
78
79 #include "fotg210-hcd.h"
80
81 #define fotg210_dbg(fotg210, fmt, args...) \
82 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_err(fotg210, fmt, args...) \
84 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_info(fotg210, fmt, args...) \
86 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
87 #define fotg210_warn(fotg210, fmt, args...) \
88 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
89
90 /* check the values in the HCSPARAMS register (host controller _Structural_
91 * parameters) see EHCI spec, Table 2-4 for each value
92 */
dbg_hcs_params(struct fotg210_hcd * fotg210,char * label)93 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
94 {
95 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
96
97 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
98 HCS_N_PORTS(params));
99 }
100
101 /* check the values in the HCCPARAMS register (host controller _Capability_
102 * parameters) see EHCI Spec, Table 2-5 for each value
103 */
dbg_hcc_params(struct fotg210_hcd * fotg210,char * label)104 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
105 {
106 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
107
108 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
109 params,
110 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
111 HCC_CANPARK(params) ? " park" : "");
112 }
113
114 static void __maybe_unused
dbg_qtd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)115 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
116 {
117 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
118 hc32_to_cpup(fotg210, &qtd->hw_next),
119 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
120 hc32_to_cpup(fotg210, &qtd->hw_token),
121 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
122 if (qtd->hw_buf[1])
123 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
124 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
125 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
126 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
127 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
128 }
129
130 static void __maybe_unused
dbg_qh(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qh * qh)131 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
132 {
133 struct fotg210_qh_hw *hw = qh->hw;
134
135 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
136 hw->hw_next, hw->hw_info1, hw->hw_info2,
137 hw->hw_current);
138
139 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
140 }
141
142 static void __maybe_unused
dbg_itd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_itd * itd)143 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
144 {
145 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
146 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
147 itd->urb);
148
149 fotg210_dbg(fotg210,
150 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
151 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
152 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
153 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
154 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
155 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
156 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
157 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
158 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
159
160 fotg210_dbg(fotg210,
161 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
162 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
163 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
164 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
165 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
166 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
167 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
168 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
169
170 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
171 itd->index[0], itd->index[1], itd->index[2],
172 itd->index[3], itd->index[4], itd->index[5],
173 itd->index[6], itd->index[7]);
174 }
175
176 static int __maybe_unused
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)177 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
178 {
179 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
180 label, label[0] ? " " : "", status,
181 (status & STS_ASS) ? " Async" : "",
182 (status & STS_PSS) ? " Periodic" : "",
183 (status & STS_RECL) ? " Recl" : "",
184 (status & STS_HALT) ? " Halt" : "",
185 (status & STS_IAA) ? " IAA" : "",
186 (status & STS_FATAL) ? " FATAL" : "",
187 (status & STS_FLR) ? " FLR" : "",
188 (status & STS_PCD) ? " PCD" : "",
189 (status & STS_ERR) ? " ERR" : "",
190 (status & STS_INT) ? " INT" : "");
191 }
192
193 static int __maybe_unused
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)194 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
195 {
196 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
197 label, label[0] ? " " : "", enable,
198 (enable & STS_IAA) ? " IAA" : "",
199 (enable & STS_FATAL) ? " FATAL" : "",
200 (enable & STS_FLR) ? " FLR" : "",
201 (enable & STS_PCD) ? " PCD" : "",
202 (enable & STS_ERR) ? " ERR" : "",
203 (enable & STS_INT) ? " INT" : "");
204 }
205
206 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
207
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)208 static int dbg_command_buf(char *buf, unsigned len, const char *label,
209 u32 command)
210 {
211 return scnprintf(buf, len,
212 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
213 label, label[0] ? " " : "", command,
214 (command & CMD_PARK) ? " park" : "(park)",
215 CMD_PARK_CNT(command),
216 (command >> 16) & 0x3f,
217 (command & CMD_IAAD) ? " IAAD" : "",
218 (command & CMD_ASE) ? " Async" : "",
219 (command & CMD_PSE) ? " Periodic" : "",
220 fls_strings[(command >> 2) & 0x3],
221 (command & CMD_RESET) ? " Reset" : "",
222 (command & CMD_RUN) ? "RUN" : "HALT");
223 }
224
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)225 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
226 u32 status)
227 {
228 char *sig;
229
230 /* signaling state */
231 switch (status & (3 << 10)) {
232 case 0 << 10:
233 sig = "se0";
234 break;
235 case 1 << 10:
236 sig = "k";
237 break; /* low speed */
238 case 2 << 10:
239 sig = "j";
240 break;
241 default:
242 sig = "?";
243 break;
244 }
245
246 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
247 label, label[0] ? " " : "", port, status,
248 status >> 25, /*device address */
249 sig,
250 (status & PORT_RESET) ? " RESET" : "",
251 (status & PORT_SUSPEND) ? " SUSPEND" : "",
252 (status & PORT_RESUME) ? " RESUME" : "",
253 (status & PORT_PEC) ? " PEC" : "",
254 (status & PORT_PE) ? " PE" : "",
255 (status & PORT_CSC) ? " CSC" : "",
256 (status & PORT_CONNECT) ? " CONNECT" : "");
257
258 return buf;
259 }
260
261 /* functions have the "wrong" filename when they're output... */
262 #define dbg_status(fotg210, label, status) { \
263 char _buf[80]; \
264 dbg_status_buf(_buf, sizeof(_buf), label, status); \
265 fotg210_dbg(fotg210, "%s\n", _buf); \
266 }
267
268 #define dbg_cmd(fotg210, label, command) { \
269 char _buf[80]; \
270 dbg_command_buf(_buf, sizeof(_buf), label, command); \
271 fotg210_dbg(fotg210, "%s\n", _buf); \
272 }
273
274 #define dbg_port(fotg210, label, port, status) { \
275 char _buf[80]; \
276 fotg210_dbg(fotg210, "%s\n", \
277 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278 }
279
280 /* troubleshooting help: expose state in debugfs */
281 static int debug_async_open(struct inode *, struct file *);
282 static int debug_periodic_open(struct inode *, struct file *);
283 static int debug_registers_open(struct inode *, struct file *);
284 static int debug_async_open(struct inode *, struct file *);
285
286 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
287 static int debug_close(struct inode *, struct file *);
288
289 static const struct file_operations debug_async_fops = {
290 .owner = THIS_MODULE,
291 .open = debug_async_open,
292 .read = debug_output,
293 .release = debug_close,
294 .llseek = default_llseek,
295 };
296 static const struct file_operations debug_periodic_fops = {
297 .owner = THIS_MODULE,
298 .open = debug_periodic_open,
299 .read = debug_output,
300 .release = debug_close,
301 .llseek = default_llseek,
302 };
303 static const struct file_operations debug_registers_fops = {
304 .owner = THIS_MODULE,
305 .open = debug_registers_open,
306 .read = debug_output,
307 .release = debug_close,
308 .llseek = default_llseek,
309 };
310
311 static struct dentry *fotg210_debug_root;
312
313 struct debug_buffer {
314 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
315 struct usb_bus *bus;
316 struct mutex mutex; /* protect filling of buffer */
317 size_t count; /* number of characters filled into buffer */
318 char *output_buf;
319 size_t alloc_size;
320 };
321
speed_char(u32 scratch)322 static inline char speed_char(u32 scratch)
323 {
324 switch (scratch & (3 << 12)) {
325 case QH_FULL_SPEED:
326 return 'f';
327
328 case QH_LOW_SPEED:
329 return 'l';
330
331 case QH_HIGH_SPEED:
332 return 'h';
333
334 default:
335 return '?';
336 }
337 }
338
token_mark(struct fotg210_hcd * fotg210,__hc32 token)339 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
340 {
341 __u32 v = hc32_to_cpu(fotg210, token);
342
343 if (v & QTD_STS_ACTIVE)
344 return '*';
345 if (v & QTD_STS_HALT)
346 return '-';
347 if (!IS_SHORT_READ(v))
348 return ' ';
349 /* tries to advance through hw_alt_next */
350 return '/';
351 }
352
qh_lines(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,char ** nextp,unsigned * sizep)353 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
354 char **nextp, unsigned *sizep)
355 {
356 u32 scratch;
357 u32 hw_curr;
358 struct fotg210_qtd *td;
359 unsigned temp;
360 unsigned size = *sizep;
361 char *next = *nextp;
362 char mark;
363 __le32 list_end = FOTG210_LIST_END(fotg210);
364 struct fotg210_qh_hw *hw = qh->hw;
365
366 if (hw->hw_qtd_next == list_end) /* NEC does this */
367 mark = '@';
368 else
369 mark = token_mark(fotg210, hw->hw_token);
370 if (mark == '/') { /* qh_alt_next controls qh advance? */
371 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
372 fotg210->async->hw->hw_alt_next)
373 mark = '#'; /* blocked */
374 else if (hw->hw_alt_next == list_end)
375 mark = '.'; /* use hw_qtd_next */
376 /* else alt_next points to some other qtd */
377 }
378 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
379 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
380 temp = scnprintf(next, size,
381 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
382 qh, scratch & 0x007f,
383 speed_char(scratch),
384 (scratch >> 8) & 0x000f,
385 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
386 hc32_to_cpup(fotg210, &hw->hw_token), mark,
387 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
388 ? "data1" : "data0",
389 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
390 size -= temp;
391 next += temp;
392
393 /* hc may be modifying the list as we read it ... */
394 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
395 scratch = hc32_to_cpup(fotg210, &td->hw_token);
396 mark = ' ';
397 if (hw_curr == td->qtd_dma)
398 mark = '*';
399 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
400 mark = '+';
401 else if (QTD_LENGTH(scratch)) {
402 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
403 mark = '#';
404 else if (td->hw_alt_next != list_end)
405 mark = '/';
406 }
407 temp = snprintf(next, size,
408 "\n\t%p%c%s len=%d %08x urb %p",
409 td, mark, ({ char *tmp;
410 switch ((scratch>>8)&0x03) {
411 case 0:
412 tmp = "out";
413 break;
414 case 1:
415 tmp = "in";
416 break;
417 case 2:
418 tmp = "setup";
419 break;
420 default:
421 tmp = "?";
422 break;
423 } tmp; }),
424 (scratch >> 16) & 0x7fff,
425 scratch,
426 td->urb);
427 if (size < temp)
428 temp = size;
429 size -= temp;
430 next += temp;
431 if (temp == size)
432 goto done;
433 }
434
435 temp = snprintf(next, size, "\n");
436 if (size < temp)
437 temp = size;
438
439 size -= temp;
440 next += temp;
441
442 done:
443 *sizep = size;
444 *nextp = next;
445 }
446
fill_async_buffer(struct debug_buffer * buf)447 static ssize_t fill_async_buffer(struct debug_buffer *buf)
448 {
449 struct usb_hcd *hcd;
450 struct fotg210_hcd *fotg210;
451 unsigned long flags;
452 unsigned temp, size;
453 char *next;
454 struct fotg210_qh *qh;
455
456 hcd = bus_to_hcd(buf->bus);
457 fotg210 = hcd_to_fotg210(hcd);
458 next = buf->output_buf;
459 size = buf->alloc_size;
460
461 *next = 0;
462
463 /* dumps a snapshot of the async schedule.
464 * usually empty except for long-term bulk reads, or head.
465 * one QH per line, and TDs we know about
466 */
467 spin_lock_irqsave(&fotg210->lock, flags);
468 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
469 qh = qh->qh_next.qh)
470 qh_lines(fotg210, qh, &next, &size);
471 if (fotg210->async_unlink && size > 0) {
472 temp = scnprintf(next, size, "\nunlink =\n");
473 size -= temp;
474 next += temp;
475
476 for (qh = fotg210->async_unlink; size > 0 && qh;
477 qh = qh->unlink_next)
478 qh_lines(fotg210, qh, &next, &size);
479 }
480 spin_unlock_irqrestore(&fotg210->lock, flags);
481
482 return strlen(buf->output_buf);
483 }
484
485 /* count tds, get ep direction */
output_buf_tds_dir(char * buf,struct fotg210_hcd * fotg210,struct fotg210_qh_hw * hw,struct fotg210_qh * qh,unsigned size)486 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
487 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
488 {
489 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
490 struct fotg210_qtd *qtd;
491 char *type = "";
492 unsigned temp = 0;
493
494 /* count tds, get ep direction */
495 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
496 temp++;
497 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
498 case 0:
499 type = "out";
500 continue;
501 case 1:
502 type = "in";
503 continue;
504 }
505 }
506
507 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
508 speed_char(scratch), scratch & 0x007f,
509 (scratch >> 8) & 0x000f, type, qh->usecs,
510 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
511 }
512
513 #define DBG_SCHED_LIMIT 64
fill_periodic_buffer(struct debug_buffer * buf)514 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
515 {
516 struct usb_hcd *hcd;
517 struct fotg210_hcd *fotg210;
518 unsigned long flags;
519 union fotg210_shadow p, *seen;
520 unsigned temp, size, seen_count;
521 char *next;
522 unsigned i;
523 __hc32 tag;
524
525 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
526 if (!seen)
527 return 0;
528
529 seen_count = 0;
530
531 hcd = bus_to_hcd(buf->bus);
532 fotg210 = hcd_to_fotg210(hcd);
533 next = buf->output_buf;
534 size = buf->alloc_size;
535
536 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
537 size -= temp;
538 next += temp;
539
540 /* dump a snapshot of the periodic schedule.
541 * iso changes, interrupt usually doesn't.
542 */
543 spin_lock_irqsave(&fotg210->lock, flags);
544 for (i = 0; i < fotg210->periodic_size; i++) {
545 p = fotg210->pshadow[i];
546 if (likely(!p.ptr))
547 continue;
548
549 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
550
551 temp = scnprintf(next, size, "%4d: ", i);
552 size -= temp;
553 next += temp;
554
555 do {
556 struct fotg210_qh_hw *hw;
557
558 switch (hc32_to_cpu(fotg210, tag)) {
559 case Q_TYPE_QH:
560 hw = p.qh->hw;
561 temp = scnprintf(next, size, " qh%d-%04x/%p",
562 p.qh->period,
563 hc32_to_cpup(fotg210,
564 &hw->hw_info2)
565 /* uframe masks */
566 & (QH_CMASK | QH_SMASK),
567 p.qh);
568 size -= temp;
569 next += temp;
570 /* don't repeat what follows this qh */
571 for (temp = 0; temp < seen_count; temp++) {
572 if (seen[temp].ptr != p.ptr)
573 continue;
574 if (p.qh->qh_next.ptr) {
575 temp = scnprintf(next, size,
576 " ...");
577 size -= temp;
578 next += temp;
579 }
580 break;
581 }
582 /* show more info the first time around */
583 if (temp == seen_count) {
584 temp = output_buf_tds_dir(next,
585 fotg210, hw,
586 p.qh, size);
587
588 if (seen_count < DBG_SCHED_LIMIT)
589 seen[seen_count++].qh = p.qh;
590 } else
591 temp = 0;
592 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
593 p = p.qh->qh_next;
594 break;
595 case Q_TYPE_FSTN:
596 temp = scnprintf(next, size,
597 " fstn-%8x/%p",
598 p.fstn->hw_prev, p.fstn);
599 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
600 p = p.fstn->fstn_next;
601 break;
602 case Q_TYPE_ITD:
603 temp = scnprintf(next, size,
604 " itd/%p", p.itd);
605 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
606 p = p.itd->itd_next;
607 break;
608 }
609 size -= temp;
610 next += temp;
611 } while (p.ptr);
612
613 temp = scnprintf(next, size, "\n");
614 size -= temp;
615 next += temp;
616 }
617 spin_unlock_irqrestore(&fotg210->lock, flags);
618 kfree(seen);
619
620 return buf->alloc_size - size;
621 }
622 #undef DBG_SCHED_LIMIT
623
rh_state_string(struct fotg210_hcd * fotg210)624 static const char *rh_state_string(struct fotg210_hcd *fotg210)
625 {
626 switch (fotg210->rh_state) {
627 case FOTG210_RH_HALTED:
628 return "halted";
629 case FOTG210_RH_SUSPENDED:
630 return "suspended";
631 case FOTG210_RH_RUNNING:
632 return "running";
633 case FOTG210_RH_STOPPING:
634 return "stopping";
635 }
636 return "?";
637 }
638
fill_registers_buffer(struct debug_buffer * buf)639 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
640 {
641 struct usb_hcd *hcd;
642 struct fotg210_hcd *fotg210;
643 unsigned long flags;
644 unsigned temp, size, i;
645 char *next, scratch[80];
646 static const char fmt[] = "%*s\n";
647 static const char label[] = "";
648
649 hcd = bus_to_hcd(buf->bus);
650 fotg210 = hcd_to_fotg210(hcd);
651 next = buf->output_buf;
652 size = buf->alloc_size;
653
654 spin_lock_irqsave(&fotg210->lock, flags);
655
656 if (!HCD_HW_ACCESSIBLE(hcd)) {
657 size = scnprintf(next, size,
658 "bus %s, device %s\n"
659 "%s\n"
660 "SUSPENDED(no register access)\n",
661 hcd->self.controller->bus->name,
662 dev_name(hcd->self.controller),
663 hcd->product_desc);
664 goto done;
665 }
666
667 /* Capability Registers */
668 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
669 &fotg210->caps->hc_capbase));
670 temp = scnprintf(next, size,
671 "bus %s, device %s\n"
672 "%s\n"
673 "EHCI %x.%02x, rh state %s\n",
674 hcd->self.controller->bus->name,
675 dev_name(hcd->self.controller),
676 hcd->product_desc,
677 i >> 8, i & 0x0ff, rh_state_string(fotg210));
678 size -= temp;
679 next += temp;
680
681 /* FIXME interpret both types of params */
682 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
683 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
684 size -= temp;
685 next += temp;
686
687 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
688 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
689 size -= temp;
690 next += temp;
691
692 /* Operational Registers */
693 temp = dbg_status_buf(scratch, sizeof(scratch), label,
694 fotg210_readl(fotg210, &fotg210->regs->status));
695 temp = scnprintf(next, size, fmt, temp, scratch);
696 size -= temp;
697 next += temp;
698
699 temp = dbg_command_buf(scratch, sizeof(scratch), label,
700 fotg210_readl(fotg210, &fotg210->regs->command));
701 temp = scnprintf(next, size, fmt, temp, scratch);
702 size -= temp;
703 next += temp;
704
705 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
706 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
707 temp = scnprintf(next, size, fmt, temp, scratch);
708 size -= temp;
709 next += temp;
710
711 temp = scnprintf(next, size, "uframe %04x\n",
712 fotg210_read_frame_index(fotg210));
713 size -= temp;
714 next += temp;
715
716 if (fotg210->async_unlink) {
717 temp = scnprintf(next, size, "async unlink qh %p\n",
718 fotg210->async_unlink);
719 size -= temp;
720 next += temp;
721 }
722
723 #ifdef FOTG210_STATS
724 temp = scnprintf(next, size,
725 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
726 fotg210->stats.normal, fotg210->stats.error,
727 fotg210->stats.iaa, fotg210->stats.lost_iaa);
728 size -= temp;
729 next += temp;
730
731 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
732 fotg210->stats.complete, fotg210->stats.unlink);
733 size -= temp;
734 next += temp;
735 #endif
736
737 done:
738 spin_unlock_irqrestore(&fotg210->lock, flags);
739
740 return buf->alloc_size - size;
741 }
742
743 static struct debug_buffer
alloc_buffer(struct usb_bus * bus,ssize_t (* fill_func)(struct debug_buffer *))744 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
745 {
746 struct debug_buffer *buf;
747
748 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
749
750 if (buf) {
751 buf->bus = bus;
752 buf->fill_func = fill_func;
753 mutex_init(&buf->mutex);
754 buf->alloc_size = PAGE_SIZE;
755 }
756
757 return buf;
758 }
759
fill_buffer(struct debug_buffer * buf)760 static int fill_buffer(struct debug_buffer *buf)
761 {
762 int ret = 0;
763
764 if (!buf->output_buf)
765 buf->output_buf = vmalloc(buf->alloc_size);
766
767 if (!buf->output_buf) {
768 ret = -ENOMEM;
769 goto out;
770 }
771
772 ret = buf->fill_func(buf);
773
774 if (ret >= 0) {
775 buf->count = ret;
776 ret = 0;
777 }
778
779 out:
780 return ret;
781 }
782
debug_output(struct file * file,char __user * user_buf,size_t len,loff_t * offset)783 static ssize_t debug_output(struct file *file, char __user *user_buf,
784 size_t len, loff_t *offset)
785 {
786 struct debug_buffer *buf = file->private_data;
787 int ret = 0;
788
789 mutex_lock(&buf->mutex);
790 if (buf->count == 0) {
791 ret = fill_buffer(buf);
792 if (ret != 0) {
793 mutex_unlock(&buf->mutex);
794 goto out;
795 }
796 }
797 mutex_unlock(&buf->mutex);
798
799 ret = simple_read_from_buffer(user_buf, len, offset,
800 buf->output_buf, buf->count);
801
802 out:
803 return ret;
804
805 }
806
debug_close(struct inode * inode,struct file * file)807 static int debug_close(struct inode *inode, struct file *file)
808 {
809 struct debug_buffer *buf = file->private_data;
810
811 if (buf) {
812 vfree(buf->output_buf);
813 kfree(buf);
814 }
815
816 return 0;
817 }
debug_async_open(struct inode * inode,struct file * file)818 static int debug_async_open(struct inode *inode, struct file *file)
819 {
820 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
821
822 return file->private_data ? 0 : -ENOMEM;
823 }
824
debug_periodic_open(struct inode * inode,struct file * file)825 static int debug_periodic_open(struct inode *inode, struct file *file)
826 {
827 struct debug_buffer *buf;
828
829 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
830 if (!buf)
831 return -ENOMEM;
832
833 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
834 file->private_data = buf;
835 return 0;
836 }
837
debug_registers_open(struct inode * inode,struct file * file)838 static int debug_registers_open(struct inode *inode, struct file *file)
839 {
840 file->private_data = alloc_buffer(inode->i_private,
841 fill_registers_buffer);
842
843 return file->private_data ? 0 : -ENOMEM;
844 }
845
create_debug_files(struct fotg210_hcd * fotg210)846 static inline void create_debug_files(struct fotg210_hcd *fotg210)
847 {
848 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
849 struct dentry *root;
850
851 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
852
853 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
854 debugfs_create_file("periodic", S_IRUGO, root, bus,
855 &debug_periodic_fops);
856 debugfs_create_file("registers", S_IRUGO, root, bus,
857 &debug_registers_fops);
858 }
859
remove_debug_files(struct fotg210_hcd * fotg210)860 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
861 {
862 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
863
864 debugfs_lookup_and_remove(bus->bus_name, fotg210_debug_root);
865 }
866
867 /* handshake - spin reading hc until handshake completes or fails
868 * @ptr: address of hc register to be read
869 * @mask: bits to look at in result of read
870 * @done: value of those bits when handshake succeeds
871 * @usec: timeout in microseconds
872 *
873 * Returns negative errno, or zero on success
874 *
875 * Success happens when the "mask" bits have the specified value (hardware
876 * handshake done). There are two failure modes: "usec" have passed (major
877 * hardware flakeout), or the register reads as all-ones (hardware removed).
878 *
879 * That last failure should_only happen in cases like physical cardbus eject
880 * before driver shutdown. But it also seems to be caused by bugs in cardbus
881 * bridge shutdown: shutting down the bridge before the devices using it.
882 */
handshake(struct fotg210_hcd * fotg210,void __iomem * ptr,u32 mask,u32 done,int usec)883 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
884 u32 mask, u32 done, int usec)
885 {
886 u32 result;
887 int ret;
888
889 ret = readl_poll_timeout_atomic(ptr, result,
890 ((result & mask) == done ||
891 result == U32_MAX), 1, usec);
892 if (result == U32_MAX) /* card removed */
893 return -ENODEV;
894
895 return ret;
896 }
897
898 /* Force HC to halt state from unknown (EHCI spec section 2.3).
899 * Must be called with interrupts enabled and the lock not held.
900 */
fotg210_halt(struct fotg210_hcd * fotg210)901 static int fotg210_halt(struct fotg210_hcd *fotg210)
902 {
903 u32 temp;
904
905 spin_lock_irq(&fotg210->lock);
906
907 /* disable any irqs left enabled by previous code */
908 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
909
910 /*
911 * This routine gets called during probe before fotg210->command
912 * has been initialized, so we can't rely on its value.
913 */
914 fotg210->command &= ~CMD_RUN;
915 temp = fotg210_readl(fotg210, &fotg210->regs->command);
916 temp &= ~(CMD_RUN | CMD_IAAD);
917 fotg210_writel(fotg210, temp, &fotg210->regs->command);
918
919 spin_unlock_irq(&fotg210->lock);
920 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
921
922 return handshake(fotg210, &fotg210->regs->status,
923 STS_HALT, STS_HALT, 16 * 125);
924 }
925
926 /* Reset a non-running (STS_HALT == 1) controller.
927 * Must be called with interrupts enabled and the lock not held.
928 */
fotg210_reset(struct fotg210_hcd * fotg210)929 static int fotg210_reset(struct fotg210_hcd *fotg210)
930 {
931 int retval;
932 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
933
934 /* If the EHCI debug controller is active, special care must be
935 * taken before and after a host controller reset
936 */
937 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
938 fotg210->debug = NULL;
939
940 command |= CMD_RESET;
941 dbg_cmd(fotg210, "reset", command);
942 fotg210_writel(fotg210, command, &fotg210->regs->command);
943 fotg210->rh_state = FOTG210_RH_HALTED;
944 fotg210->next_statechange = jiffies;
945 retval = handshake(fotg210, &fotg210->regs->command,
946 CMD_RESET, 0, 250 * 1000);
947
948 if (retval)
949 return retval;
950
951 if (fotg210->debug)
952 dbgp_external_startup(fotg210_to_hcd(fotg210));
953
954 fotg210->port_c_suspend = fotg210->suspended_ports =
955 fotg210->resuming_ports = 0;
956 return retval;
957 }
958
959 /* Idle the controller (turn off the schedules).
960 * Must be called with interrupts enabled and the lock not held.
961 */
fotg210_quiesce(struct fotg210_hcd * fotg210)962 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
963 {
964 u32 temp;
965
966 if (fotg210->rh_state != FOTG210_RH_RUNNING)
967 return;
968
969 /* wait for any schedule enables/disables to take effect */
970 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
971 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
972 16 * 125);
973
974 /* then disable anything that's still active */
975 spin_lock_irq(&fotg210->lock);
976 fotg210->command &= ~(CMD_ASE | CMD_PSE);
977 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
978 spin_unlock_irq(&fotg210->lock);
979
980 /* hardware can take 16 microframes to turn off ... */
981 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
982 16 * 125);
983 }
984
985 static void end_unlink_async(struct fotg210_hcd *fotg210);
986 static void unlink_empty_async(struct fotg210_hcd *fotg210);
987 static void fotg210_work(struct fotg210_hcd *fotg210);
988 static void start_unlink_intr(struct fotg210_hcd *fotg210,
989 struct fotg210_qh *qh);
990 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
991
992 /* Set a bit in the USBCMD register */
fotg210_set_command_bit(struct fotg210_hcd * fotg210,u32 bit)993 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
994 {
995 fotg210->command |= bit;
996 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
997
998 /* unblock posted write */
999 fotg210_readl(fotg210, &fotg210->regs->command);
1000 }
1001
1002 /* Clear a bit in the USBCMD register */
fotg210_clear_command_bit(struct fotg210_hcd * fotg210,u32 bit)1003 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1004 {
1005 fotg210->command &= ~bit;
1006 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1007
1008 /* unblock posted write */
1009 fotg210_readl(fotg210, &fotg210->regs->command);
1010 }
1011
1012 /* EHCI timer support... Now using hrtimers.
1013 *
1014 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1015 * the timer routine runs, it checks each possible event; events that are
1016 * currently enabled and whose expiration time has passed get handled.
1017 * The set of enabled events is stored as a collection of bitflags in
1018 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1019 * increasing delay values (ranging between 1 ms and 100 ms).
1020 *
1021 * Rather than implementing a sorted list or tree of all pending events,
1022 * we keep track only of the lowest-numbered pending event, in
1023 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1024 * expiration time is set to the timeout value for this event.
1025 *
1026 * As a result, events might not get handled right away; the actual delay
1027 * could be anywhere up to twice the requested delay. This doesn't
1028 * matter, because none of the events are especially time-critical. The
1029 * ones that matter most all have a delay of 1 ms, so they will be
1030 * handled after 2 ms at most, which is okay. In addition to this, we
1031 * allow for an expiration range of 1 ms.
1032 */
1033
1034 /* Delay lengths for the hrtimer event types.
1035 * Keep this list sorted by delay length, in the same order as
1036 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1037 */
1038 static unsigned event_delays_ns[] = {
1039 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1040 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1041 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1042 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1043 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1044 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1045 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1046 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1047 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1048 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1049 };
1050
1051 /* Enable a pending hrtimer event */
fotg210_enable_event(struct fotg210_hcd * fotg210,unsigned event,bool resched)1052 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1053 bool resched)
1054 {
1055 ktime_t *timeout = &fotg210->hr_timeouts[event];
1056
1057 if (resched)
1058 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1059 fotg210->enabled_hrtimer_events |= (1 << event);
1060
1061 /* Track only the lowest-numbered pending event */
1062 if (event < fotg210->next_hrtimer_event) {
1063 fotg210->next_hrtimer_event = event;
1064 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1065 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1066 }
1067 }
1068
1069
1070 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
fotg210_poll_ASS(struct fotg210_hcd * fotg210)1071 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1072 {
1073 unsigned actual, want;
1074
1075 /* Don't enable anything if the controller isn't running (e.g., died) */
1076 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1077 return;
1078
1079 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1080 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1081
1082 if (want != actual) {
1083
1084 /* Poll again later, but give up after about 20 ms */
1085 if (fotg210->ASS_poll_count++ < 20) {
1086 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1087 true);
1088 return;
1089 }
1090 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1091 want, actual);
1092 }
1093 fotg210->ASS_poll_count = 0;
1094
1095 /* The status is up-to-date; restart or stop the schedule as needed */
1096 if (want == 0) { /* Stopped */
1097 if (fotg210->async_count > 0)
1098 fotg210_set_command_bit(fotg210, CMD_ASE);
1099
1100 } else { /* Running */
1101 if (fotg210->async_count == 0) {
1102
1103 /* Turn off the schedule after a while */
1104 fotg210_enable_event(fotg210,
1105 FOTG210_HRTIMER_DISABLE_ASYNC,
1106 true);
1107 }
1108 }
1109 }
1110
1111 /* Turn off the async schedule after a brief delay */
fotg210_disable_ASE(struct fotg210_hcd * fotg210)1112 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1113 {
1114 fotg210_clear_command_bit(fotg210, CMD_ASE);
1115 }
1116
1117
1118 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
fotg210_poll_PSS(struct fotg210_hcd * fotg210)1119 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1120 {
1121 unsigned actual, want;
1122
1123 /* Don't do anything if the controller isn't running (e.g., died) */
1124 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1125 return;
1126
1127 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1128 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1129
1130 if (want != actual) {
1131
1132 /* Poll again later, but give up after about 20 ms */
1133 if (fotg210->PSS_poll_count++ < 20) {
1134 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1135 true);
1136 return;
1137 }
1138 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1139 want, actual);
1140 }
1141 fotg210->PSS_poll_count = 0;
1142
1143 /* The status is up-to-date; restart or stop the schedule as needed */
1144 if (want == 0) { /* Stopped */
1145 if (fotg210->periodic_count > 0)
1146 fotg210_set_command_bit(fotg210, CMD_PSE);
1147
1148 } else { /* Running */
1149 if (fotg210->periodic_count == 0) {
1150
1151 /* Turn off the schedule after a while */
1152 fotg210_enable_event(fotg210,
1153 FOTG210_HRTIMER_DISABLE_PERIODIC,
1154 true);
1155 }
1156 }
1157 }
1158
1159 /* Turn off the periodic schedule after a brief delay */
fotg210_disable_PSE(struct fotg210_hcd * fotg210)1160 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1161 {
1162 fotg210_clear_command_bit(fotg210, CMD_PSE);
1163 }
1164
1165
1166 /* Poll the STS_HALT status bit; see when a dead controller stops */
fotg210_handle_controller_death(struct fotg210_hcd * fotg210)1167 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1168 {
1169 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1170
1171 /* Give up after a few milliseconds */
1172 if (fotg210->died_poll_count++ < 5) {
1173 /* Try again later */
1174 fotg210_enable_event(fotg210,
1175 FOTG210_HRTIMER_POLL_DEAD, true);
1176 return;
1177 }
1178 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1179 }
1180
1181 /* Clean up the mess */
1182 fotg210->rh_state = FOTG210_RH_HALTED;
1183 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1184 fotg210_work(fotg210);
1185 end_unlink_async(fotg210);
1186
1187 /* Not in process context, so don't try to reset the controller */
1188 }
1189
1190
1191 /* Handle unlinked interrupt QHs once they are gone from the hardware */
fotg210_handle_intr_unlinks(struct fotg210_hcd * fotg210)1192 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1193 {
1194 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1195
1196 /*
1197 * Process all the QHs on the intr_unlink list that were added
1198 * before the current unlink cycle began. The list is in
1199 * temporal order, so stop when we reach the first entry in the
1200 * current cycle. But if the root hub isn't running then
1201 * process all the QHs on the list.
1202 */
1203 fotg210->intr_unlinking = true;
1204 while (fotg210->intr_unlink) {
1205 struct fotg210_qh *qh = fotg210->intr_unlink;
1206
1207 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1208 break;
1209 fotg210->intr_unlink = qh->unlink_next;
1210 qh->unlink_next = NULL;
1211 end_unlink_intr(fotg210, qh);
1212 }
1213
1214 /* Handle remaining entries later */
1215 if (fotg210->intr_unlink) {
1216 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1217 true);
1218 ++fotg210->intr_unlink_cycle;
1219 }
1220 fotg210->intr_unlinking = false;
1221 }
1222
1223
1224 /* Start another free-iTDs/siTDs cycle */
start_free_itds(struct fotg210_hcd * fotg210)1225 static void start_free_itds(struct fotg210_hcd *fotg210)
1226 {
1227 if (!(fotg210->enabled_hrtimer_events &
1228 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1229 fotg210->last_itd_to_free = list_entry(
1230 fotg210->cached_itd_list.prev,
1231 struct fotg210_itd, itd_list);
1232 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1233 }
1234 }
1235
1236 /* Wait for controller to stop using old iTDs and siTDs */
end_free_itds(struct fotg210_hcd * fotg210)1237 static void end_free_itds(struct fotg210_hcd *fotg210)
1238 {
1239 struct fotg210_itd *itd, *n;
1240
1241 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1242 fotg210->last_itd_to_free = NULL;
1243
1244 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1245 list_del(&itd->itd_list);
1246 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1247 if (itd == fotg210->last_itd_to_free)
1248 break;
1249 }
1250
1251 if (!list_empty(&fotg210->cached_itd_list))
1252 start_free_itds(fotg210);
1253 }
1254
1255
1256 /* Handle lost (or very late) IAA interrupts */
fotg210_iaa_watchdog(struct fotg210_hcd * fotg210)1257 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1258 {
1259 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1260 return;
1261
1262 /*
1263 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1264 * So we need this watchdog, but must protect it against both
1265 * (a) SMP races against real IAA firing and retriggering, and
1266 * (b) clean HC shutdown, when IAA watchdog was pending.
1267 */
1268 if (fotg210->async_iaa) {
1269 u32 cmd, status;
1270
1271 /* If we get here, IAA is *REALLY* late. It's barely
1272 * conceivable that the system is so busy that CMD_IAAD
1273 * is still legitimately set, so let's be sure it's
1274 * clear before we read STS_IAA. (The HC should clear
1275 * CMD_IAAD when it sets STS_IAA.)
1276 */
1277 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1278
1279 /*
1280 * If IAA is set here it either legitimately triggered
1281 * after the watchdog timer expired (_way_ late, so we'll
1282 * still count it as lost) ... or a silicon erratum:
1283 * - VIA seems to set IAA without triggering the IRQ;
1284 * - IAAD potentially cleared without setting IAA.
1285 */
1286 status = fotg210_readl(fotg210, &fotg210->regs->status);
1287 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1288 INCR(fotg210->stats.lost_iaa);
1289 fotg210_writel(fotg210, STS_IAA,
1290 &fotg210->regs->status);
1291 }
1292
1293 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1294 status, cmd);
1295 end_unlink_async(fotg210);
1296 }
1297 }
1298
1299
1300 /* Enable the I/O watchdog, if appropriate */
turn_on_io_watchdog(struct fotg210_hcd * fotg210)1301 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1302 {
1303 /* Not needed if the controller isn't running or it's already enabled */
1304 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1305 (fotg210->enabled_hrtimer_events &
1306 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1307 return;
1308
1309 /*
1310 * Isochronous transfers always need the watchdog.
1311 * For other sorts we use it only if the flag is set.
1312 */
1313 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1314 fotg210->async_count + fotg210->intr_count > 0))
1315 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1316 true);
1317 }
1318
1319
1320 /* Handler functions for the hrtimer event types.
1321 * Keep this array in the same order as the event types indexed by
1322 * enum fotg210_hrtimer_event in fotg210.h.
1323 */
1324 static void (*event_handlers[])(struct fotg210_hcd *) = {
1325 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1326 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1327 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1328 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1329 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1330 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1331 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1332 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1333 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1334 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1335 };
1336
fotg210_hrtimer_func(struct hrtimer * t)1337 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1338 {
1339 struct fotg210_hcd *fotg210 =
1340 container_of(t, struct fotg210_hcd, hrtimer);
1341 ktime_t now;
1342 unsigned long events;
1343 unsigned long flags;
1344 unsigned e;
1345
1346 spin_lock_irqsave(&fotg210->lock, flags);
1347
1348 events = fotg210->enabled_hrtimer_events;
1349 fotg210->enabled_hrtimer_events = 0;
1350 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1351
1352 /*
1353 * Check each pending event. If its time has expired, handle
1354 * the event; otherwise re-enable it.
1355 */
1356 now = ktime_get();
1357 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1358 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1359 event_handlers[e](fotg210);
1360 else
1361 fotg210_enable_event(fotg210, e, false);
1362 }
1363
1364 spin_unlock_irqrestore(&fotg210->lock, flags);
1365 return HRTIMER_NORESTART;
1366 }
1367
1368 #define fotg210_bus_suspend NULL
1369 #define fotg210_bus_resume NULL
1370
check_reset_complete(struct fotg210_hcd * fotg210,int index,u32 __iomem * status_reg,int port_status)1371 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1372 u32 __iomem *status_reg, int port_status)
1373 {
1374 if (!(port_status & PORT_CONNECT))
1375 return port_status;
1376
1377 /* if reset finished and it's still not enabled -- handoff */
1378 if (!(port_status & PORT_PE))
1379 /* with integrated TT, there's nobody to hand it to! */
1380 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1381 index + 1);
1382 else
1383 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1384 index + 1);
1385
1386 return port_status;
1387 }
1388
1389
1390 /* build "status change" packet (one or two bytes) from HC registers */
1391
fotg210_hub_status_data(struct usb_hcd * hcd,char * buf)1392 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1393 {
1394 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1395 u32 temp, status;
1396 u32 mask;
1397 int retval = 1;
1398 unsigned long flags;
1399
1400 /* init status to no-changes */
1401 buf[0] = 0;
1402
1403 /* Inform the core about resumes-in-progress by returning
1404 * a non-zero value even if there are no status changes.
1405 */
1406 status = fotg210->resuming_ports;
1407
1408 mask = PORT_CSC | PORT_PEC;
1409 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1410
1411 /* no hub change reports (bit 0) for now (power, ...) */
1412
1413 /* port N changes (bit N)? */
1414 spin_lock_irqsave(&fotg210->lock, flags);
1415
1416 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1417
1418 /*
1419 * Return status information even for ports with OWNER set.
1420 * Otherwise hub_wq wouldn't see the disconnect event when a
1421 * high-speed device is switched over to the companion
1422 * controller by the user.
1423 */
1424
1425 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1426 (fotg210->reset_done[0] &&
1427 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1428 buf[0] |= 1 << 1;
1429 status = STS_PCD;
1430 }
1431 /* FIXME autosuspend idle root hubs */
1432 spin_unlock_irqrestore(&fotg210->lock, flags);
1433 return status ? retval : 0;
1434 }
1435
fotg210_hub_descriptor(struct fotg210_hcd * fotg210,struct usb_hub_descriptor * desc)1436 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1437 struct usb_hub_descriptor *desc)
1438 {
1439 int ports = HCS_N_PORTS(fotg210->hcs_params);
1440 u16 temp;
1441
1442 desc->bDescriptorType = USB_DT_HUB;
1443 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1444 desc->bHubContrCurrent = 0;
1445
1446 desc->bNbrPorts = ports;
1447 temp = 1 + (ports / 8);
1448 desc->bDescLength = 7 + 2 * temp;
1449
1450 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1451 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1452 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1453
1454 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1455 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1456 desc->wHubCharacteristics = cpu_to_le16(temp);
1457 }
1458
fotg210_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)1459 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1460 u16 wIndex, char *buf, u16 wLength)
1461 {
1462 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1463 int ports = HCS_N_PORTS(fotg210->hcs_params);
1464 u32 __iomem *status_reg = &fotg210->regs->port_status;
1465 u32 temp, temp1, status;
1466 unsigned long flags;
1467 int retval = 0;
1468 unsigned selector;
1469
1470 /*
1471 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1472 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1473 * (track current state ourselves) ... blink for diagnostics,
1474 * power, "this is the one", etc. EHCI spec supports this.
1475 */
1476
1477 spin_lock_irqsave(&fotg210->lock, flags);
1478 switch (typeReq) {
1479 case ClearHubFeature:
1480 switch (wValue) {
1481 case C_HUB_LOCAL_POWER:
1482 case C_HUB_OVER_CURRENT:
1483 /* no hub-wide feature/status flags */
1484 break;
1485 default:
1486 goto error;
1487 }
1488 break;
1489 case ClearPortFeature:
1490 if (!wIndex || wIndex > ports)
1491 goto error;
1492 wIndex--;
1493 temp = fotg210_readl(fotg210, status_reg);
1494 temp &= ~PORT_RWC_BITS;
1495
1496 /*
1497 * Even if OWNER is set, so the port is owned by the
1498 * companion controller, hub_wq needs to be able to clear
1499 * the port-change status bits (especially
1500 * USB_PORT_STAT_C_CONNECTION).
1501 */
1502
1503 switch (wValue) {
1504 case USB_PORT_FEAT_ENABLE:
1505 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1506 break;
1507 case USB_PORT_FEAT_C_ENABLE:
1508 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1509 break;
1510 case USB_PORT_FEAT_SUSPEND:
1511 if (temp & PORT_RESET)
1512 goto error;
1513 if (!(temp & PORT_SUSPEND))
1514 break;
1515 if ((temp & PORT_PE) == 0)
1516 goto error;
1517
1518 /* resume signaling for 20 msec */
1519 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1520 fotg210->reset_done[wIndex] = jiffies
1521 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1522 break;
1523 case USB_PORT_FEAT_C_SUSPEND:
1524 clear_bit(wIndex, &fotg210->port_c_suspend);
1525 break;
1526 case USB_PORT_FEAT_C_CONNECTION:
1527 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1528 break;
1529 case USB_PORT_FEAT_C_OVER_CURRENT:
1530 fotg210_writel(fotg210, temp | OTGISR_OVC,
1531 &fotg210->regs->otgisr);
1532 break;
1533 case USB_PORT_FEAT_C_RESET:
1534 /* GetPortStatus clears reset */
1535 break;
1536 default:
1537 goto error;
1538 }
1539 fotg210_readl(fotg210, &fotg210->regs->command);
1540 break;
1541 case GetHubDescriptor:
1542 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1543 buf);
1544 break;
1545 case GetHubStatus:
1546 /* no hub-wide feature/status flags */
1547 memset(buf, 0, 4);
1548 /*cpu_to_le32s ((u32 *) buf); */
1549 break;
1550 case GetPortStatus:
1551 if (!wIndex || wIndex > ports)
1552 goto error;
1553 wIndex--;
1554 status = 0;
1555 temp = fotg210_readl(fotg210, status_reg);
1556
1557 /* wPortChange bits */
1558 if (temp & PORT_CSC)
1559 status |= USB_PORT_STAT_C_CONNECTION << 16;
1560 if (temp & PORT_PEC)
1561 status |= USB_PORT_STAT_C_ENABLE << 16;
1562
1563 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1564 if (temp1 & OTGISR_OVC)
1565 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1566
1567 /* whoever resumes must GetPortStatus to complete it!! */
1568 if (temp & PORT_RESUME) {
1569
1570 /* Remote Wakeup received? */
1571 if (!fotg210->reset_done[wIndex]) {
1572 /* resume signaling for 20 msec */
1573 fotg210->reset_done[wIndex] = jiffies
1574 + msecs_to_jiffies(20);
1575 /* check the port again */
1576 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1577 fotg210->reset_done[wIndex]);
1578 }
1579
1580 /* resume completed? */
1581 else if (time_after_eq(jiffies,
1582 fotg210->reset_done[wIndex])) {
1583 clear_bit(wIndex, &fotg210->suspended_ports);
1584 set_bit(wIndex, &fotg210->port_c_suspend);
1585 fotg210->reset_done[wIndex] = 0;
1586
1587 /* stop resume signaling */
1588 temp = fotg210_readl(fotg210, status_reg);
1589 fotg210_writel(fotg210, temp &
1590 ~(PORT_RWC_BITS | PORT_RESUME),
1591 status_reg);
1592 clear_bit(wIndex, &fotg210->resuming_ports);
1593 retval = handshake(fotg210, status_reg,
1594 PORT_RESUME, 0, 2000);/* 2ms */
1595 if (retval != 0) {
1596 fotg210_err(fotg210,
1597 "port %d resume error %d\n",
1598 wIndex + 1, retval);
1599 goto error;
1600 }
1601 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1602 }
1603 }
1604
1605 /* whoever resets must GetPortStatus to complete it!! */
1606 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1607 fotg210->reset_done[wIndex])) {
1608 status |= USB_PORT_STAT_C_RESET << 16;
1609 fotg210->reset_done[wIndex] = 0;
1610 clear_bit(wIndex, &fotg210->resuming_ports);
1611
1612 /* force reset to complete */
1613 fotg210_writel(fotg210,
1614 temp & ~(PORT_RWC_BITS | PORT_RESET),
1615 status_reg);
1616 /* REVISIT: some hardware needs 550+ usec to clear
1617 * this bit; seems too long to spin routinely...
1618 */
1619 retval = handshake(fotg210, status_reg,
1620 PORT_RESET, 0, 1000);
1621 if (retval != 0) {
1622 fotg210_err(fotg210, "port %d reset error %d\n",
1623 wIndex + 1, retval);
1624 goto error;
1625 }
1626
1627 /* see what we found out */
1628 temp = check_reset_complete(fotg210, wIndex, status_reg,
1629 fotg210_readl(fotg210, status_reg));
1630
1631 /* restart schedule */
1632 fotg210->command |= CMD_RUN;
1633 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1634 }
1635
1636 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1637 fotg210->reset_done[wIndex] = 0;
1638 clear_bit(wIndex, &fotg210->resuming_ports);
1639 }
1640
1641 /* transfer dedicated ports to the companion hc */
1642 if ((temp & PORT_CONNECT) &&
1643 test_bit(wIndex, &fotg210->companion_ports)) {
1644 temp &= ~PORT_RWC_BITS;
1645 fotg210_writel(fotg210, temp, status_reg);
1646 fotg210_dbg(fotg210, "port %d --> companion\n",
1647 wIndex + 1);
1648 temp = fotg210_readl(fotg210, status_reg);
1649 }
1650
1651 /*
1652 * Even if OWNER is set, there's no harm letting hub_wq
1653 * see the wPortStatus values (they should all be 0 except
1654 * for PORT_POWER anyway).
1655 */
1656
1657 if (temp & PORT_CONNECT) {
1658 status |= USB_PORT_STAT_CONNECTION;
1659 status |= fotg210_port_speed(fotg210, temp);
1660 }
1661 if (temp & PORT_PE)
1662 status |= USB_PORT_STAT_ENABLE;
1663
1664 /* maybe the port was unsuspended without our knowledge */
1665 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1666 status |= USB_PORT_STAT_SUSPEND;
1667 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1668 clear_bit(wIndex, &fotg210->suspended_ports);
1669 clear_bit(wIndex, &fotg210->resuming_ports);
1670 fotg210->reset_done[wIndex] = 0;
1671 if (temp & PORT_PE)
1672 set_bit(wIndex, &fotg210->port_c_suspend);
1673 }
1674
1675 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1676 if (temp1 & OTGISR_OVC)
1677 status |= USB_PORT_STAT_OVERCURRENT;
1678 if (temp & PORT_RESET)
1679 status |= USB_PORT_STAT_RESET;
1680 if (test_bit(wIndex, &fotg210->port_c_suspend))
1681 status |= USB_PORT_STAT_C_SUSPEND << 16;
1682
1683 if (status & ~0xffff) /* only if wPortChange is interesting */
1684 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1685 put_unaligned_le32(status, buf);
1686 break;
1687 case SetHubFeature:
1688 switch (wValue) {
1689 case C_HUB_LOCAL_POWER:
1690 case C_HUB_OVER_CURRENT:
1691 /* no hub-wide feature/status flags */
1692 break;
1693 default:
1694 goto error;
1695 }
1696 break;
1697 case SetPortFeature:
1698 selector = wIndex >> 8;
1699 wIndex &= 0xff;
1700
1701 if (!wIndex || wIndex > ports)
1702 goto error;
1703 wIndex--;
1704 temp = fotg210_readl(fotg210, status_reg);
1705 temp &= ~PORT_RWC_BITS;
1706 switch (wValue) {
1707 case USB_PORT_FEAT_SUSPEND:
1708 if ((temp & PORT_PE) == 0
1709 || (temp & PORT_RESET) != 0)
1710 goto error;
1711
1712 /* After above check the port must be connected.
1713 * Set appropriate bit thus could put phy into low power
1714 * mode if we have hostpc feature
1715 */
1716 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1717 status_reg);
1718 set_bit(wIndex, &fotg210->suspended_ports);
1719 break;
1720 case USB_PORT_FEAT_RESET:
1721 if (temp & PORT_RESUME)
1722 goto error;
1723 /* line status bits may report this as low speed,
1724 * which can be fine if this root hub has a
1725 * transaction translator built in.
1726 */
1727 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1728 temp |= PORT_RESET;
1729 temp &= ~PORT_PE;
1730
1731 /*
1732 * caller must wait, then call GetPortStatus
1733 * usb 2.0 spec says 50 ms resets on root
1734 */
1735 fotg210->reset_done[wIndex] = jiffies
1736 + msecs_to_jiffies(50);
1737 fotg210_writel(fotg210, temp, status_reg);
1738 break;
1739
1740 /* For downstream facing ports (these): one hub port is put
1741 * into test mode according to USB2 11.24.2.13, then the hub
1742 * must be reset (which for root hub now means rmmod+modprobe,
1743 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1744 * about the EHCI-specific stuff.
1745 */
1746 case USB_PORT_FEAT_TEST:
1747 if (!selector || selector > 5)
1748 goto error;
1749 spin_unlock_irqrestore(&fotg210->lock, flags);
1750 fotg210_quiesce(fotg210);
1751 spin_lock_irqsave(&fotg210->lock, flags);
1752
1753 /* Put all enabled ports into suspend */
1754 temp = fotg210_readl(fotg210, status_reg) &
1755 ~PORT_RWC_BITS;
1756 if (temp & PORT_PE)
1757 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1758 status_reg);
1759
1760 spin_unlock_irqrestore(&fotg210->lock, flags);
1761 fotg210_halt(fotg210);
1762 spin_lock_irqsave(&fotg210->lock, flags);
1763
1764 temp = fotg210_readl(fotg210, status_reg);
1765 temp |= selector << 16;
1766 fotg210_writel(fotg210, temp, status_reg);
1767 break;
1768
1769 default:
1770 goto error;
1771 }
1772 fotg210_readl(fotg210, &fotg210->regs->command);
1773 break;
1774
1775 default:
1776 error:
1777 /* "stall" on error */
1778 retval = -EPIPE;
1779 }
1780 spin_unlock_irqrestore(&fotg210->lock, flags);
1781 return retval;
1782 }
1783
fotg210_relinquish_port(struct usb_hcd * hcd,int portnum)1784 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1785 int portnum)
1786 {
1787 return;
1788 }
1789
fotg210_port_handed_over(struct usb_hcd * hcd,int portnum)1790 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1791 int portnum)
1792 {
1793 return 0;
1794 }
1795
1796 /* There's basically three types of memory:
1797 * - data used only by the HCD ... kmalloc is fine
1798 * - async and periodic schedules, shared by HC and HCD ... these
1799 * need to use dma_pool or dma_alloc_coherent
1800 * - driver buffers, read/written by HC ... single shot DMA mapped
1801 *
1802 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1803 * No memory seen by this driver is pageable.
1804 */
1805
1806 /* Allocate the key transfer structures from the previously allocated pool */
fotg210_qtd_init(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t dma)1807 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1808 struct fotg210_qtd *qtd, dma_addr_t dma)
1809 {
1810 memset(qtd, 0, sizeof(*qtd));
1811 qtd->qtd_dma = dma;
1812 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1813 qtd->hw_next = FOTG210_LIST_END(fotg210);
1814 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1815 INIT_LIST_HEAD(&qtd->qtd_list);
1816 }
1817
fotg210_qtd_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1818 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1819 gfp_t flags)
1820 {
1821 struct fotg210_qtd *qtd;
1822 dma_addr_t dma;
1823
1824 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1825 if (qtd != NULL)
1826 fotg210_qtd_init(fotg210, qtd, dma);
1827
1828 return qtd;
1829 }
1830
fotg210_qtd_free(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)1831 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1832 struct fotg210_qtd *qtd)
1833 {
1834 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1835 }
1836
1837
qh_destroy(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)1838 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1839 {
1840 /* clean qtds first, and know this is not linked */
1841 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1842 fotg210_dbg(fotg210, "unused qh not empty!\n");
1843 BUG();
1844 }
1845 if (qh->dummy)
1846 fotg210_qtd_free(fotg210, qh->dummy);
1847 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1848 kfree(qh);
1849 }
1850
fotg210_qh_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1851 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1852 gfp_t flags)
1853 {
1854 struct fotg210_qh *qh;
1855 dma_addr_t dma;
1856
1857 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1858 if (!qh)
1859 goto done;
1860 qh->hw = (struct fotg210_qh_hw *)
1861 dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1862 if (!qh->hw)
1863 goto fail;
1864 qh->qh_dma = dma;
1865 INIT_LIST_HEAD(&qh->qtd_list);
1866
1867 /* dummy td enables safe urb queuing */
1868 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1869 if (qh->dummy == NULL) {
1870 fotg210_dbg(fotg210, "no dummy td\n");
1871 goto fail1;
1872 }
1873 done:
1874 return qh;
1875 fail1:
1876 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1877 fail:
1878 kfree(qh);
1879 return NULL;
1880 }
1881
1882 /* The queue heads and transfer descriptors are managed from pools tied
1883 * to each of the "per device" structures.
1884 * This is the initialisation and cleanup code.
1885 */
1886
fotg210_mem_cleanup(struct fotg210_hcd * fotg210)1887 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1888 {
1889 if (fotg210->async)
1890 qh_destroy(fotg210, fotg210->async);
1891 fotg210->async = NULL;
1892
1893 if (fotg210->dummy)
1894 qh_destroy(fotg210, fotg210->dummy);
1895 fotg210->dummy = NULL;
1896
1897 /* DMA consistent memory and pools */
1898 dma_pool_destroy(fotg210->qtd_pool);
1899 fotg210->qtd_pool = NULL;
1900
1901 dma_pool_destroy(fotg210->qh_pool);
1902 fotg210->qh_pool = NULL;
1903
1904 dma_pool_destroy(fotg210->itd_pool);
1905 fotg210->itd_pool = NULL;
1906
1907 if (fotg210->periodic)
1908 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1909 fotg210->periodic_size * sizeof(u32),
1910 fotg210->periodic, fotg210->periodic_dma);
1911 fotg210->periodic = NULL;
1912
1913 /* shadow periodic table */
1914 kfree(fotg210->pshadow);
1915 fotg210->pshadow = NULL;
1916 }
1917
1918 /* remember to add cleanup code (above) if you add anything here */
fotg210_mem_init(struct fotg210_hcd * fotg210,gfp_t flags)1919 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1920 {
1921 int i;
1922
1923 /* QTDs for control/bulk/intr transfers */
1924 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1925 fotg210_to_hcd(fotg210)->self.controller,
1926 sizeof(struct fotg210_qtd),
1927 32 /* byte alignment (for hw parts) */,
1928 4096 /* can't cross 4K */);
1929 if (!fotg210->qtd_pool)
1930 goto fail;
1931
1932 /* QHs for control/bulk/intr transfers */
1933 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1934 fotg210_to_hcd(fotg210)->self.controller,
1935 sizeof(struct fotg210_qh_hw),
1936 32 /* byte alignment (for hw parts) */,
1937 4096 /* can't cross 4K */);
1938 if (!fotg210->qh_pool)
1939 goto fail;
1940
1941 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1942 if (!fotg210->async)
1943 goto fail;
1944
1945 /* ITD for high speed ISO transfers */
1946 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1947 fotg210_to_hcd(fotg210)->self.controller,
1948 sizeof(struct fotg210_itd),
1949 64 /* byte alignment (for hw parts) */,
1950 4096 /* can't cross 4K */);
1951 if (!fotg210->itd_pool)
1952 goto fail;
1953
1954 /* Hardware periodic table */
1955 fotg210->periodic =
1956 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1957 fotg210->periodic_size * sizeof(__le32),
1958 &fotg210->periodic_dma, 0);
1959 if (fotg210->periodic == NULL)
1960 goto fail;
1961
1962 for (i = 0; i < fotg210->periodic_size; i++)
1963 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1964
1965 /* software shadow of hardware table */
1966 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1967 flags);
1968 if (fotg210->pshadow != NULL)
1969 return 0;
1970
1971 fail:
1972 fotg210_dbg(fotg210, "couldn't init memory\n");
1973 fotg210_mem_cleanup(fotg210);
1974 return -ENOMEM;
1975 }
1976 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1977 *
1978 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1979 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1980 * buffers needed for the larger number). We use one QH per endpoint, queue
1981 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1982 *
1983 * ISO traffic uses "ISO TD" (itd) records, and (along with
1984 * interrupts) needs careful scheduling. Performance improvements can be
1985 * an ongoing challenge. That's in "ehci-sched.c".
1986 *
1987 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1988 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1989 * (b) special fields in qh entries or (c) split iso entries. TTs will
1990 * buffer low/full speed data so the host collects it at high speed.
1991 */
1992
1993 /* fill a qtd, returning how much of the buffer we were able to queue up */
qtd_fill(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)1994 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1995 dma_addr_t buf, size_t len, int token, int maxpacket)
1996 {
1997 int i, count;
1998 u64 addr = buf;
1999
2000 /* one buffer entry per 4K ... first might be short or unaligned */
2001 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2002 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2003 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2004 if (likely(len < count)) /* ... iff needed */
2005 count = len;
2006 else {
2007 buf += 0x1000;
2008 buf &= ~0x0fff;
2009
2010 /* per-qtd limit: from 16K to 20K (best alignment) */
2011 for (i = 1; count < len && i < 5; i++) {
2012 addr = buf;
2013 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2014 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2015 (u32)(addr >> 32));
2016 buf += 0x1000;
2017 if ((count + 0x1000) < len)
2018 count += 0x1000;
2019 else
2020 count = len;
2021 }
2022
2023 /* short packets may only terminate transfers */
2024 if (count != len)
2025 count -= (count % maxpacket);
2026 }
2027 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2028 qtd->length = count;
2029
2030 return count;
2031 }
2032
qh_update(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct fotg210_qtd * qtd)2033 static inline void qh_update(struct fotg210_hcd *fotg210,
2034 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2035 {
2036 struct fotg210_qh_hw *hw = qh->hw;
2037
2038 /* writes to an active overlay are unsafe */
2039 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2040
2041 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2042 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2043
2044 /* Except for control endpoints, we make hardware maintain data
2045 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2046 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2047 * ever clear it.
2048 */
2049 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2050 unsigned is_out, epnum;
2051
2052 is_out = qh->is_out;
2053 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2054 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2055 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2056 usb_settoggle(qh->dev, epnum, is_out, 1);
2057 }
2058 }
2059
2060 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2061 }
2062
2063 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2064 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2065 * recovery (including urb dequeue) would need software changes to a QH...
2066 */
qh_refresh(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2067 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2068 {
2069 struct fotg210_qtd *qtd;
2070
2071 if (list_empty(&qh->qtd_list))
2072 qtd = qh->dummy;
2073 else {
2074 qtd = list_entry(qh->qtd_list.next,
2075 struct fotg210_qtd, qtd_list);
2076 /*
2077 * first qtd may already be partially processed.
2078 * If we come here during unlink, the QH overlay region
2079 * might have reference to the just unlinked qtd. The
2080 * qtd is updated in qh_completions(). Update the QH
2081 * overlay here.
2082 */
2083 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2084 qh->hw->hw_qtd_next = qtd->hw_next;
2085 qtd = NULL;
2086 }
2087 }
2088
2089 if (qtd)
2090 qh_update(fotg210, qh, qtd);
2091 }
2092
2093 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2094
fotg210_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2095 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2096 struct usb_host_endpoint *ep)
2097 {
2098 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2099 struct fotg210_qh *qh = ep->hcpriv;
2100 unsigned long flags;
2101
2102 spin_lock_irqsave(&fotg210->lock, flags);
2103 qh->clearing_tt = 0;
2104 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2105 && fotg210->rh_state == FOTG210_RH_RUNNING)
2106 qh_link_async(fotg210, qh);
2107 spin_unlock_irqrestore(&fotg210->lock, flags);
2108 }
2109
fotg210_clear_tt_buffer(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct urb * urb,u32 token)2110 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2111 struct fotg210_qh *qh, struct urb *urb, u32 token)
2112 {
2113
2114 /* If an async split transaction gets an error or is unlinked,
2115 * the TT buffer may be left in an indeterminate state. We
2116 * have to clear the TT buffer.
2117 *
2118 * Note: this routine is never called for Isochronous transfers.
2119 */
2120 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2121 struct usb_device *tt = urb->dev->tt->hub;
2122
2123 dev_dbg(&tt->dev,
2124 "clear tt buffer port %d, a%d ep%d t%08x\n",
2125 urb->dev->ttport, urb->dev->devnum,
2126 usb_pipeendpoint(urb->pipe), token);
2127
2128 if (urb->dev->tt->hub !=
2129 fotg210_to_hcd(fotg210)->self.root_hub) {
2130 if (usb_hub_clear_tt_buffer(urb) == 0)
2131 qh->clearing_tt = 1;
2132 }
2133 }
2134 }
2135
qtd_copy_status(struct fotg210_hcd * fotg210,struct urb * urb,size_t length,u32 token)2136 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2137 size_t length, u32 token)
2138 {
2139 int status = -EINPROGRESS;
2140
2141 /* count IN/OUT bytes, not SETUP (even short packets) */
2142 if (likely(QTD_PID(token) != 2))
2143 urb->actual_length += length - QTD_LENGTH(token);
2144
2145 /* don't modify error codes */
2146 if (unlikely(urb->unlinked))
2147 return status;
2148
2149 /* force cleanup after short read; not always an error */
2150 if (unlikely(IS_SHORT_READ(token)))
2151 status = -EREMOTEIO;
2152
2153 /* serious "can't proceed" faults reported by the hardware */
2154 if (token & QTD_STS_HALT) {
2155 if (token & QTD_STS_BABBLE) {
2156 /* FIXME "must" disable babbling device's port too */
2157 status = -EOVERFLOW;
2158 /* CERR nonzero + halt --> stall */
2159 } else if (QTD_CERR(token)) {
2160 status = -EPIPE;
2161
2162 /* In theory, more than one of the following bits can be set
2163 * since they are sticky and the transaction is retried.
2164 * Which to test first is rather arbitrary.
2165 */
2166 } else if (token & QTD_STS_MMF) {
2167 /* fs/ls interrupt xfer missed the complete-split */
2168 status = -EPROTO;
2169 } else if (token & QTD_STS_DBE) {
2170 status = (QTD_PID(token) == 1) /* IN ? */
2171 ? -ENOSR /* hc couldn't read data */
2172 : -ECOMM; /* hc couldn't write data */
2173 } else if (token & QTD_STS_XACT) {
2174 /* timeout, bad CRC, wrong PID, etc */
2175 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2176 urb->dev->devpath,
2177 usb_pipeendpoint(urb->pipe),
2178 usb_pipein(urb->pipe) ? "in" : "out");
2179 status = -EPROTO;
2180 } else { /* unknown */
2181 status = -EPROTO;
2182 }
2183
2184 fotg210_dbg(fotg210,
2185 "dev%d ep%d%s qtd token %08x --> status %d\n",
2186 usb_pipedevice(urb->pipe),
2187 usb_pipeendpoint(urb->pipe),
2188 usb_pipein(urb->pipe) ? "in" : "out",
2189 token, status);
2190 }
2191
2192 return status;
2193 }
2194
fotg210_urb_done(struct fotg210_hcd * fotg210,struct urb * urb,int status)2195 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2196 int status)
2197 __releases(fotg210->lock)
2198 __acquires(fotg210->lock)
2199 {
2200 if (likely(urb->hcpriv != NULL)) {
2201 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2202
2203 /* S-mask in a QH means it's an interrupt urb */
2204 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2205
2206 /* ... update hc-wide periodic stats (for usbfs) */
2207 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2208 }
2209 }
2210
2211 if (unlikely(urb->unlinked)) {
2212 INCR(fotg210->stats.unlink);
2213 } else {
2214 /* report non-error and short read status as zero */
2215 if (status == -EINPROGRESS || status == -EREMOTEIO)
2216 status = 0;
2217 INCR(fotg210->stats.complete);
2218 }
2219
2220 #ifdef FOTG210_URB_TRACE
2221 fotg210_dbg(fotg210,
2222 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2223 __func__, urb->dev->devpath, urb,
2224 usb_pipeendpoint(urb->pipe),
2225 usb_pipein(urb->pipe) ? "in" : "out",
2226 status,
2227 urb->actual_length, urb->transfer_buffer_length);
2228 #endif
2229
2230 /* complete() can reenter this HCD */
2231 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2232 spin_unlock(&fotg210->lock);
2233 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2234 spin_lock(&fotg210->lock);
2235 }
2236
2237 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2238
2239 /* Process and free completed qtds for a qh, returning URBs to drivers.
2240 * Chases up to qh->hw_current. Returns number of completions called,
2241 * indicating how much "real" work we did.
2242 */
qh_completions(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2243 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2244 struct fotg210_qh *qh)
2245 {
2246 struct fotg210_qtd *last, *end = qh->dummy;
2247 struct fotg210_qtd *qtd, *tmp;
2248 int last_status;
2249 int stopped;
2250 unsigned count = 0;
2251 u8 state;
2252 struct fotg210_qh_hw *hw = qh->hw;
2253
2254 if (unlikely(list_empty(&qh->qtd_list)))
2255 return count;
2256
2257 /* completions (or tasks on other cpus) must never clobber HALT
2258 * till we've gone through and cleaned everything up, even when
2259 * they add urbs to this qh's queue or mark them for unlinking.
2260 *
2261 * NOTE: unlinking expects to be done in queue order.
2262 *
2263 * It's a bug for qh->qh_state to be anything other than
2264 * QH_STATE_IDLE, unless our caller is scan_async() or
2265 * scan_intr().
2266 */
2267 state = qh->qh_state;
2268 qh->qh_state = QH_STATE_COMPLETING;
2269 stopped = (state == QH_STATE_IDLE);
2270
2271 rescan:
2272 last = NULL;
2273 last_status = -EINPROGRESS;
2274 qh->needs_rescan = 0;
2275
2276 /* remove de-activated QTDs from front of queue.
2277 * after faults (including short reads), cleanup this urb
2278 * then let the queue advance.
2279 * if queue is stopped, handles unlinks.
2280 */
2281 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2282 struct urb *urb;
2283 u32 token = 0;
2284
2285 urb = qtd->urb;
2286
2287 /* clean up any state from previous QTD ...*/
2288 if (last) {
2289 if (likely(last->urb != urb)) {
2290 fotg210_urb_done(fotg210, last->urb,
2291 last_status);
2292 count++;
2293 last_status = -EINPROGRESS;
2294 }
2295 fotg210_qtd_free(fotg210, last);
2296 last = NULL;
2297 }
2298
2299 /* ignore urbs submitted during completions we reported */
2300 if (qtd == end)
2301 break;
2302
2303 /* hardware copies qtd out of qh overlay */
2304 rmb();
2305 token = hc32_to_cpu(fotg210, qtd->hw_token);
2306
2307 /* always clean up qtds the hc de-activated */
2308 retry_xacterr:
2309 if ((token & QTD_STS_ACTIVE) == 0) {
2310
2311 /* Report Data Buffer Error: non-fatal but useful */
2312 if (token & QTD_STS_DBE)
2313 fotg210_dbg(fotg210,
2314 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2315 urb, usb_endpoint_num(&urb->ep->desc),
2316 usb_endpoint_dir_in(&urb->ep->desc)
2317 ? "in" : "out",
2318 urb->transfer_buffer_length, qtd, qh);
2319
2320 /* on STALL, error, and short reads this urb must
2321 * complete and all its qtds must be recycled.
2322 */
2323 if ((token & QTD_STS_HALT) != 0) {
2324
2325 /* retry transaction errors until we
2326 * reach the software xacterr limit
2327 */
2328 if ((token & QTD_STS_XACT) &&
2329 QTD_CERR(token) == 0 &&
2330 ++qh->xacterrs < QH_XACTERR_MAX &&
2331 !urb->unlinked) {
2332 fotg210_dbg(fotg210,
2333 "detected XactErr len %zu/%zu retry %d\n",
2334 qtd->length - QTD_LENGTH(token),
2335 qtd->length,
2336 qh->xacterrs);
2337
2338 /* reset the token in the qtd and the
2339 * qh overlay (which still contains
2340 * the qtd) so that we pick up from
2341 * where we left off
2342 */
2343 token &= ~QTD_STS_HALT;
2344 token |= QTD_STS_ACTIVE |
2345 (FOTG210_TUNE_CERR << 10);
2346 qtd->hw_token = cpu_to_hc32(fotg210,
2347 token);
2348 wmb();
2349 hw->hw_token = cpu_to_hc32(fotg210,
2350 token);
2351 goto retry_xacterr;
2352 }
2353 stopped = 1;
2354
2355 /* magic dummy for some short reads; qh won't advance.
2356 * that silicon quirk can kick in with this dummy too.
2357 *
2358 * other short reads won't stop the queue, including
2359 * control transfers (status stage handles that) or
2360 * most other single-qtd reads ... the queue stops if
2361 * URB_SHORT_NOT_OK was set so the driver submitting
2362 * the urbs could clean it up.
2363 */
2364 } else if (IS_SHORT_READ(token) &&
2365 !(qtd->hw_alt_next &
2366 FOTG210_LIST_END(fotg210))) {
2367 stopped = 1;
2368 }
2369
2370 /* stop scanning when we reach qtds the hc is using */
2371 } else if (likely(!stopped
2372 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2373 break;
2374
2375 /* scan the whole queue for unlinks whenever it stops */
2376 } else {
2377 stopped = 1;
2378
2379 /* cancel everything if we halt, suspend, etc */
2380 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2381 last_status = -ESHUTDOWN;
2382
2383 /* this qtd is active; skip it unless a previous qtd
2384 * for its urb faulted, or its urb was canceled.
2385 */
2386 else if (last_status == -EINPROGRESS && !urb->unlinked)
2387 continue;
2388
2389 /* qh unlinked; token in overlay may be most current */
2390 if (state == QH_STATE_IDLE &&
2391 cpu_to_hc32(fotg210, qtd->qtd_dma)
2392 == hw->hw_current) {
2393 token = hc32_to_cpu(fotg210, hw->hw_token);
2394
2395 /* An unlink may leave an incomplete
2396 * async transaction in the TT buffer.
2397 * We have to clear it.
2398 */
2399 fotg210_clear_tt_buffer(fotg210, qh, urb,
2400 token);
2401 }
2402 }
2403
2404 /* unless we already know the urb's status, collect qtd status
2405 * and update count of bytes transferred. in common short read
2406 * cases with only one data qtd (including control transfers),
2407 * queue processing won't halt. but with two or more qtds (for
2408 * example, with a 32 KB transfer), when the first qtd gets a
2409 * short read the second must be removed by hand.
2410 */
2411 if (last_status == -EINPROGRESS) {
2412 last_status = qtd_copy_status(fotg210, urb,
2413 qtd->length, token);
2414 if (last_status == -EREMOTEIO &&
2415 (qtd->hw_alt_next &
2416 FOTG210_LIST_END(fotg210)))
2417 last_status = -EINPROGRESS;
2418
2419 /* As part of low/full-speed endpoint-halt processing
2420 * we must clear the TT buffer (11.17.5).
2421 */
2422 if (unlikely(last_status != -EINPROGRESS &&
2423 last_status != -EREMOTEIO)) {
2424 /* The TT's in some hubs malfunction when they
2425 * receive this request following a STALL (they
2426 * stop sending isochronous packets). Since a
2427 * STALL can't leave the TT buffer in a busy
2428 * state (if you believe Figures 11-48 - 11-51
2429 * in the USB 2.0 spec), we won't clear the TT
2430 * buffer in this case. Strictly speaking this
2431 * is a violation of the spec.
2432 */
2433 if (last_status != -EPIPE)
2434 fotg210_clear_tt_buffer(fotg210, qh,
2435 urb, token);
2436 }
2437 }
2438
2439 /* if we're removing something not at the queue head,
2440 * patch the hardware queue pointer.
2441 */
2442 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2443 last = list_entry(qtd->qtd_list.prev,
2444 struct fotg210_qtd, qtd_list);
2445 last->hw_next = qtd->hw_next;
2446 }
2447
2448 /* remove qtd; it's recycled after possible urb completion */
2449 list_del(&qtd->qtd_list);
2450 last = qtd;
2451
2452 /* reinit the xacterr counter for the next qtd */
2453 qh->xacterrs = 0;
2454 }
2455
2456 /* last urb's completion might still need calling */
2457 if (likely(last != NULL)) {
2458 fotg210_urb_done(fotg210, last->urb, last_status);
2459 count++;
2460 fotg210_qtd_free(fotg210, last);
2461 }
2462
2463 /* Do we need to rescan for URBs dequeued during a giveback? */
2464 if (unlikely(qh->needs_rescan)) {
2465 /* If the QH is already unlinked, do the rescan now. */
2466 if (state == QH_STATE_IDLE)
2467 goto rescan;
2468
2469 /* Otherwise we have to wait until the QH is fully unlinked.
2470 * Our caller will start an unlink if qh->needs_rescan is
2471 * set. But if an unlink has already started, nothing needs
2472 * to be done.
2473 */
2474 if (state != QH_STATE_LINKED)
2475 qh->needs_rescan = 0;
2476 }
2477
2478 /* restore original state; caller must unlink or relink */
2479 qh->qh_state = state;
2480
2481 /* be sure the hardware's done with the qh before refreshing
2482 * it after fault cleanup, or recovering from silicon wrongly
2483 * overlaying the dummy qtd (which reduces DMA chatter).
2484 */
2485 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2486 switch (state) {
2487 case QH_STATE_IDLE:
2488 qh_refresh(fotg210, qh);
2489 break;
2490 case QH_STATE_LINKED:
2491 /* We won't refresh a QH that's linked (after the HC
2492 * stopped the queue). That avoids a race:
2493 * - HC reads first part of QH;
2494 * - CPU updates that first part and the token;
2495 * - HC reads rest of that QH, including token
2496 * Result: HC gets an inconsistent image, and then
2497 * DMAs to/from the wrong memory (corrupting it).
2498 *
2499 * That should be rare for interrupt transfers,
2500 * except maybe high bandwidth ...
2501 */
2502
2503 /* Tell the caller to start an unlink */
2504 qh->needs_rescan = 1;
2505 break;
2506 /* otherwise, unlink already started */
2507 }
2508 }
2509
2510 return count;
2511 }
2512
2513 /* reverse of qh_urb_transaction: free a list of TDs.
2514 * used for cleanup after errors, before HC sees an URB's TDs.
2515 */
qtd_list_free(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head)2516 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2517 struct list_head *head)
2518 {
2519 struct fotg210_qtd *qtd, *temp;
2520
2521 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2522 list_del(&qtd->qtd_list);
2523 fotg210_qtd_free(fotg210, qtd);
2524 }
2525 }
2526
2527 /* create a list of filled qtds for this URB; won't link into qh.
2528 */
qh_urb_transaction(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head,gfp_t flags)2529 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2530 struct urb *urb, struct list_head *head, gfp_t flags)
2531 {
2532 struct fotg210_qtd *qtd, *qtd_prev;
2533 dma_addr_t buf;
2534 int len, this_sg_len, maxpacket;
2535 int is_input;
2536 u32 token;
2537 int i;
2538 struct scatterlist *sg;
2539
2540 /*
2541 * URBs map to sequences of QTDs: one logical transaction
2542 */
2543 qtd = fotg210_qtd_alloc(fotg210, flags);
2544 if (unlikely(!qtd))
2545 return NULL;
2546 list_add_tail(&qtd->qtd_list, head);
2547 qtd->urb = urb;
2548
2549 token = QTD_STS_ACTIVE;
2550 token |= (FOTG210_TUNE_CERR << 10);
2551 /* for split transactions, SplitXState initialized to zero */
2552
2553 len = urb->transfer_buffer_length;
2554 is_input = usb_pipein(urb->pipe);
2555 if (usb_pipecontrol(urb->pipe)) {
2556 /* SETUP pid */
2557 qtd_fill(fotg210, qtd, urb->setup_dma,
2558 sizeof(struct usb_ctrlrequest),
2559 token | (2 /* "setup" */ << 8), 8);
2560
2561 /* ... and always at least one more pid */
2562 token ^= QTD_TOGGLE;
2563 qtd_prev = qtd;
2564 qtd = fotg210_qtd_alloc(fotg210, flags);
2565 if (unlikely(!qtd))
2566 goto cleanup;
2567 qtd->urb = urb;
2568 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2569 list_add_tail(&qtd->qtd_list, head);
2570
2571 /* for zero length DATA stages, STATUS is always IN */
2572 if (len == 0)
2573 token |= (1 /* "in" */ << 8);
2574 }
2575
2576 /*
2577 * data transfer stage: buffer setup
2578 */
2579 i = urb->num_mapped_sgs;
2580 if (len > 0 && i > 0) {
2581 sg = urb->sg;
2582 buf = sg_dma_address(sg);
2583
2584 /* urb->transfer_buffer_length may be smaller than the
2585 * size of the scatterlist (or vice versa)
2586 */
2587 this_sg_len = min_t(int, sg_dma_len(sg), len);
2588 } else {
2589 sg = NULL;
2590 buf = urb->transfer_dma;
2591 this_sg_len = len;
2592 }
2593
2594 if (is_input)
2595 token |= (1 /* "in" */ << 8);
2596 /* else it's already initted to "out" pid (0 << 8) */
2597
2598 maxpacket = usb_maxpacket(urb->dev, urb->pipe);
2599
2600 /*
2601 * buffer gets wrapped in one or more qtds;
2602 * last one may be "short" (including zero len)
2603 * and may serve as a control status ack
2604 */
2605 for (;;) {
2606 int this_qtd_len;
2607
2608 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2609 maxpacket);
2610 this_sg_len -= this_qtd_len;
2611 len -= this_qtd_len;
2612 buf += this_qtd_len;
2613
2614 /*
2615 * short reads advance to a "magic" dummy instead of the next
2616 * qtd ... that forces the queue to stop, for manual cleanup.
2617 * (this will usually be overridden later.)
2618 */
2619 if (is_input)
2620 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2621
2622 /* qh makes control packets use qtd toggle; maybe switch it */
2623 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2624 token ^= QTD_TOGGLE;
2625
2626 if (likely(this_sg_len <= 0)) {
2627 if (--i <= 0 || len <= 0)
2628 break;
2629 sg = sg_next(sg);
2630 buf = sg_dma_address(sg);
2631 this_sg_len = min_t(int, sg_dma_len(sg), len);
2632 }
2633
2634 qtd_prev = qtd;
2635 qtd = fotg210_qtd_alloc(fotg210, flags);
2636 if (unlikely(!qtd))
2637 goto cleanup;
2638 qtd->urb = urb;
2639 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2640 list_add_tail(&qtd->qtd_list, head);
2641 }
2642
2643 /*
2644 * unless the caller requires manual cleanup after short reads,
2645 * have the alt_next mechanism keep the queue running after the
2646 * last data qtd (the only one, for control and most other cases).
2647 */
2648 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2649 usb_pipecontrol(urb->pipe)))
2650 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2651
2652 /*
2653 * control requests may need a terminating data "status" ack;
2654 * other OUT ones may need a terminating short packet
2655 * (zero length).
2656 */
2657 if (likely(urb->transfer_buffer_length != 0)) {
2658 int one_more = 0;
2659
2660 if (usb_pipecontrol(urb->pipe)) {
2661 one_more = 1;
2662 token ^= 0x0100; /* "in" <--> "out" */
2663 token |= QTD_TOGGLE; /* force DATA1 */
2664 } else if (usb_pipeout(urb->pipe)
2665 && (urb->transfer_flags & URB_ZERO_PACKET)
2666 && !(urb->transfer_buffer_length % maxpacket)) {
2667 one_more = 1;
2668 }
2669 if (one_more) {
2670 qtd_prev = qtd;
2671 qtd = fotg210_qtd_alloc(fotg210, flags);
2672 if (unlikely(!qtd))
2673 goto cleanup;
2674 qtd->urb = urb;
2675 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2676 list_add_tail(&qtd->qtd_list, head);
2677
2678 /* never any data in such packets */
2679 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2680 }
2681 }
2682
2683 /* by default, enable interrupt on urb completion */
2684 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2685 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2686 return head;
2687
2688 cleanup:
2689 qtd_list_free(fotg210, urb, head);
2690 return NULL;
2691 }
2692
2693 /* Would be best to create all qh's from config descriptors,
2694 * when each interface/altsetting is established. Unlink
2695 * any previous qh and cancel its urbs first; endpoints are
2696 * implicitly reset then (data toggle too).
2697 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2698 */
2699
2700
2701 /* Each QH holds a qtd list; a QH is used for everything except iso.
2702 *
2703 * For interrupt urbs, the scheduler must set the microframe scheduling
2704 * mask(s) each time the QH gets scheduled. For highspeed, that's
2705 * just one microframe in the s-mask. For split interrupt transactions
2706 * there are additional complications: c-mask, maybe FSTNs.
2707 */
qh_make(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t flags)2708 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2709 gfp_t flags)
2710 {
2711 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2712 struct usb_host_endpoint *ep;
2713 u32 info1 = 0, info2 = 0;
2714 int is_input, type;
2715 int maxp = 0;
2716 int mult;
2717 struct usb_tt *tt = urb->dev->tt;
2718 struct fotg210_qh_hw *hw;
2719
2720 if (!qh)
2721 return qh;
2722
2723 /*
2724 * init endpoint/device data for this QH
2725 */
2726 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2727 info1 |= usb_pipedevice(urb->pipe) << 0;
2728
2729 is_input = usb_pipein(urb->pipe);
2730 type = usb_pipetype(urb->pipe);
2731 ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2732 maxp = usb_endpoint_maxp(&ep->desc);
2733 mult = usb_endpoint_maxp_mult(&ep->desc);
2734
2735 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2736 * acts like up to 3KB, but is built from smaller packets.
2737 */
2738 if (maxp > 1024) {
2739 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2740 goto done;
2741 }
2742
2743 /* Compute interrupt scheduling parameters just once, and save.
2744 * - allowing for high bandwidth, how many nsec/uframe are used?
2745 * - split transactions need a second CSPLIT uframe; same question
2746 * - splits also need a schedule gap (for full/low speed I/O)
2747 * - qh has a polling interval
2748 *
2749 * For control/bulk requests, the HC or TT handles these.
2750 */
2751 if (type == PIPE_INTERRUPT) {
2752 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2753 is_input, 0, mult * maxp));
2754 qh->start = NO_FRAME;
2755
2756 if (urb->dev->speed == USB_SPEED_HIGH) {
2757 qh->c_usecs = 0;
2758 qh->gap_uf = 0;
2759
2760 qh->period = urb->interval >> 3;
2761 if (qh->period == 0 && urb->interval != 1) {
2762 /* NOTE interval 2 or 4 uframes could work.
2763 * But interval 1 scheduling is simpler, and
2764 * includes high bandwidth.
2765 */
2766 urb->interval = 1;
2767 } else if (qh->period > fotg210->periodic_size) {
2768 qh->period = fotg210->periodic_size;
2769 urb->interval = qh->period << 3;
2770 }
2771 } else {
2772 int think_time;
2773
2774 /* gap is f(FS/LS transfer times) */
2775 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2776 is_input, 0, maxp) / (125 * 1000);
2777
2778 /* FIXME this just approximates SPLIT/CSPLIT times */
2779 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2780 qh->c_usecs = qh->usecs + HS_USECS(0);
2781 qh->usecs = HS_USECS(1);
2782 } else { /* SPLIT+DATA, gap, CSPLIT */
2783 qh->usecs += HS_USECS(1);
2784 qh->c_usecs = HS_USECS(0);
2785 }
2786
2787 think_time = tt ? tt->think_time : 0;
2788 qh->tt_usecs = NS_TO_US(think_time +
2789 usb_calc_bus_time(urb->dev->speed,
2790 is_input, 0, maxp));
2791 qh->period = urb->interval;
2792 if (qh->period > fotg210->periodic_size) {
2793 qh->period = fotg210->periodic_size;
2794 urb->interval = qh->period;
2795 }
2796 }
2797 }
2798
2799 /* support for tt scheduling, and access to toggles */
2800 qh->dev = urb->dev;
2801
2802 /* using TT? */
2803 switch (urb->dev->speed) {
2804 case USB_SPEED_LOW:
2805 info1 |= QH_LOW_SPEED;
2806 fallthrough;
2807
2808 case USB_SPEED_FULL:
2809 /* EPS 0 means "full" */
2810 if (type != PIPE_INTERRUPT)
2811 info1 |= (FOTG210_TUNE_RL_TT << 28);
2812 if (type == PIPE_CONTROL) {
2813 info1 |= QH_CONTROL_EP; /* for TT */
2814 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2815 }
2816 info1 |= maxp << 16;
2817
2818 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2819
2820 /* Some Freescale processors have an erratum in which the
2821 * port number in the queue head was 0..N-1 instead of 1..N.
2822 */
2823 if (fotg210_has_fsl_portno_bug(fotg210))
2824 info2 |= (urb->dev->ttport-1) << 23;
2825 else
2826 info2 |= urb->dev->ttport << 23;
2827
2828 /* set the address of the TT; for TDI's integrated
2829 * root hub tt, leave it zeroed.
2830 */
2831 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2832 info2 |= tt->hub->devnum << 16;
2833
2834 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2835
2836 break;
2837
2838 case USB_SPEED_HIGH: /* no TT involved */
2839 info1 |= QH_HIGH_SPEED;
2840 if (type == PIPE_CONTROL) {
2841 info1 |= (FOTG210_TUNE_RL_HS << 28);
2842 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2843 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2844 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2845 } else if (type == PIPE_BULK) {
2846 info1 |= (FOTG210_TUNE_RL_HS << 28);
2847 /* The USB spec says that high speed bulk endpoints
2848 * always use 512 byte maxpacket. But some device
2849 * vendors decided to ignore that, and MSFT is happy
2850 * to help them do so. So now people expect to use
2851 * such nonconformant devices with Linux too; sigh.
2852 */
2853 info1 |= maxp << 16;
2854 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2855 } else { /* PIPE_INTERRUPT */
2856 info1 |= maxp << 16;
2857 info2 |= mult << 30;
2858 }
2859 break;
2860 default:
2861 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2862 urb->dev->speed);
2863 done:
2864 qh_destroy(fotg210, qh);
2865 return NULL;
2866 }
2867
2868 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2869
2870 /* init as live, toggle clear, advance to dummy */
2871 qh->qh_state = QH_STATE_IDLE;
2872 hw = qh->hw;
2873 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2874 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2875 qh->is_out = !is_input;
2876 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2877 qh_refresh(fotg210, qh);
2878 return qh;
2879 }
2880
enable_async(struct fotg210_hcd * fotg210)2881 static void enable_async(struct fotg210_hcd *fotg210)
2882 {
2883 if (fotg210->async_count++)
2884 return;
2885
2886 /* Stop waiting to turn off the async schedule */
2887 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2888
2889 /* Don't start the schedule until ASS is 0 */
2890 fotg210_poll_ASS(fotg210);
2891 turn_on_io_watchdog(fotg210);
2892 }
2893
disable_async(struct fotg210_hcd * fotg210)2894 static void disable_async(struct fotg210_hcd *fotg210)
2895 {
2896 if (--fotg210->async_count)
2897 return;
2898
2899 /* The async schedule and async_unlink list are supposed to be empty */
2900 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2901
2902 /* Don't turn off the schedule until ASS is 1 */
2903 fotg210_poll_ASS(fotg210);
2904 }
2905
2906 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2907
qh_link_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2908 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2909 {
2910 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2911 struct fotg210_qh *head;
2912
2913 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2914 if (unlikely(qh->clearing_tt))
2915 return;
2916
2917 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2918
2919 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2920 qh_refresh(fotg210, qh);
2921
2922 /* splice right after start */
2923 head = fotg210->async;
2924 qh->qh_next = head->qh_next;
2925 qh->hw->hw_next = head->hw->hw_next;
2926 wmb();
2927
2928 head->qh_next.qh = qh;
2929 head->hw->hw_next = dma;
2930
2931 qh->xacterrs = 0;
2932 qh->qh_state = QH_STATE_LINKED;
2933 /* qtd completions reported later by interrupt */
2934
2935 enable_async(fotg210);
2936 }
2937
2938 /* For control/bulk/interrupt, return QH with these TDs appended.
2939 * Allocates and initializes the QH if necessary.
2940 * Returns null if it can't allocate a QH it needs to.
2941 * If the QH has TDs (urbs) already, that's great.
2942 */
qh_append_tds(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)2943 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2944 struct urb *urb, struct list_head *qtd_list,
2945 int epnum, void **ptr)
2946 {
2947 struct fotg210_qh *qh = NULL;
2948 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2949
2950 qh = (struct fotg210_qh *) *ptr;
2951 if (unlikely(qh == NULL)) {
2952 /* can't sleep here, we have fotg210->lock... */
2953 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2954 *ptr = qh;
2955 }
2956 if (likely(qh != NULL)) {
2957 struct fotg210_qtd *qtd;
2958
2959 if (unlikely(list_empty(qtd_list)))
2960 qtd = NULL;
2961 else
2962 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2963 qtd_list);
2964
2965 /* control qh may need patching ... */
2966 if (unlikely(epnum == 0)) {
2967 /* usb_reset_device() briefly reverts to address 0 */
2968 if (usb_pipedevice(urb->pipe) == 0)
2969 qh->hw->hw_info1 &= ~qh_addr_mask;
2970 }
2971
2972 /* just one way to queue requests: swap with the dummy qtd.
2973 * only hc or qh_refresh() ever modify the overlay.
2974 */
2975 if (likely(qtd != NULL)) {
2976 struct fotg210_qtd *dummy;
2977 dma_addr_t dma;
2978 __hc32 token;
2979
2980 /* to avoid racing the HC, use the dummy td instead of
2981 * the first td of our list (becomes new dummy). both
2982 * tds stay deactivated until we're done, when the
2983 * HC is allowed to fetch the old dummy (4.10.2).
2984 */
2985 token = qtd->hw_token;
2986 qtd->hw_token = HALT_BIT(fotg210);
2987
2988 dummy = qh->dummy;
2989
2990 dma = dummy->qtd_dma;
2991 *dummy = *qtd;
2992 dummy->qtd_dma = dma;
2993
2994 list_del(&qtd->qtd_list);
2995 list_add(&dummy->qtd_list, qtd_list);
2996 list_splice_tail(qtd_list, &qh->qtd_list);
2997
2998 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2999 qh->dummy = qtd;
3000
3001 /* hc must see the new dummy at list end */
3002 dma = qtd->qtd_dma;
3003 qtd = list_entry(qh->qtd_list.prev,
3004 struct fotg210_qtd, qtd_list);
3005 qtd->hw_next = QTD_NEXT(fotg210, dma);
3006
3007 /* let the hc process these next qtds */
3008 wmb();
3009 dummy->hw_token = token;
3010
3011 urb->hcpriv = qh;
3012 }
3013 }
3014 return qh;
3015 }
3016
submit_async(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3017 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3018 struct list_head *qtd_list, gfp_t mem_flags)
3019 {
3020 int epnum;
3021 unsigned long flags;
3022 struct fotg210_qh *qh = NULL;
3023 int rc;
3024
3025 epnum = urb->ep->desc.bEndpointAddress;
3026
3027 #ifdef FOTG210_URB_TRACE
3028 {
3029 struct fotg210_qtd *qtd;
3030
3031 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3032 fotg210_dbg(fotg210,
3033 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3034 __func__, urb->dev->devpath, urb,
3035 epnum & 0x0f, (epnum & USB_DIR_IN)
3036 ? "in" : "out",
3037 urb->transfer_buffer_length,
3038 qtd, urb->ep->hcpriv);
3039 }
3040 #endif
3041
3042 spin_lock_irqsave(&fotg210->lock, flags);
3043 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3044 rc = -ESHUTDOWN;
3045 goto done;
3046 }
3047 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3048 if (unlikely(rc))
3049 goto done;
3050
3051 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3052 if (unlikely(qh == NULL)) {
3053 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3054 rc = -ENOMEM;
3055 goto done;
3056 }
3057
3058 /* Control/bulk operations through TTs don't need scheduling,
3059 * the HC and TT handle it when the TT has a buffer ready.
3060 */
3061 if (likely(qh->qh_state == QH_STATE_IDLE))
3062 qh_link_async(fotg210, qh);
3063 done:
3064 spin_unlock_irqrestore(&fotg210->lock, flags);
3065 if (unlikely(qh == NULL))
3066 qtd_list_free(fotg210, urb, qtd_list);
3067 return rc;
3068 }
3069
single_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3070 static void single_unlink_async(struct fotg210_hcd *fotg210,
3071 struct fotg210_qh *qh)
3072 {
3073 struct fotg210_qh *prev;
3074
3075 /* Add to the end of the list of QHs waiting for the next IAAD */
3076 qh->qh_state = QH_STATE_UNLINK;
3077 if (fotg210->async_unlink)
3078 fotg210->async_unlink_last->unlink_next = qh;
3079 else
3080 fotg210->async_unlink = qh;
3081 fotg210->async_unlink_last = qh;
3082
3083 /* Unlink it from the schedule */
3084 prev = fotg210->async;
3085 while (prev->qh_next.qh != qh)
3086 prev = prev->qh_next.qh;
3087
3088 prev->hw->hw_next = qh->hw->hw_next;
3089 prev->qh_next = qh->qh_next;
3090 if (fotg210->qh_scan_next == qh)
3091 fotg210->qh_scan_next = qh->qh_next.qh;
3092 }
3093
start_iaa_cycle(struct fotg210_hcd * fotg210,bool nested)3094 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3095 {
3096 /*
3097 * Do nothing if an IAA cycle is already running or
3098 * if one will be started shortly.
3099 */
3100 if (fotg210->async_iaa || fotg210->async_unlinking)
3101 return;
3102
3103 /* Do all the waiting QHs at once */
3104 fotg210->async_iaa = fotg210->async_unlink;
3105 fotg210->async_unlink = NULL;
3106
3107 /* If the controller isn't running, we don't have to wait for it */
3108 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3109 if (!nested) /* Avoid recursion */
3110 end_unlink_async(fotg210);
3111
3112 /* Otherwise start a new IAA cycle */
3113 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3114 /* Make sure the unlinks are all visible to the hardware */
3115 wmb();
3116
3117 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3118 &fotg210->regs->command);
3119 fotg210_readl(fotg210, &fotg210->regs->command);
3120 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3121 true);
3122 }
3123 }
3124
3125 /* the async qh for the qtds being unlinked are now gone from the HC */
3126
end_unlink_async(struct fotg210_hcd * fotg210)3127 static void end_unlink_async(struct fotg210_hcd *fotg210)
3128 {
3129 struct fotg210_qh *qh;
3130
3131 /* Process the idle QHs */
3132 restart:
3133 fotg210->async_unlinking = true;
3134 while (fotg210->async_iaa) {
3135 qh = fotg210->async_iaa;
3136 fotg210->async_iaa = qh->unlink_next;
3137 qh->unlink_next = NULL;
3138
3139 qh->qh_state = QH_STATE_IDLE;
3140 qh->qh_next.qh = NULL;
3141
3142 qh_completions(fotg210, qh);
3143 if (!list_empty(&qh->qtd_list) &&
3144 fotg210->rh_state == FOTG210_RH_RUNNING)
3145 qh_link_async(fotg210, qh);
3146 disable_async(fotg210);
3147 }
3148 fotg210->async_unlinking = false;
3149
3150 /* Start a new IAA cycle if any QHs are waiting for it */
3151 if (fotg210->async_unlink) {
3152 start_iaa_cycle(fotg210, true);
3153 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3154 goto restart;
3155 }
3156 }
3157
unlink_empty_async(struct fotg210_hcd * fotg210)3158 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3159 {
3160 struct fotg210_qh *qh, *next;
3161 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3162 bool check_unlinks_later = false;
3163
3164 /* Unlink all the async QHs that have been empty for a timer cycle */
3165 next = fotg210->async->qh_next.qh;
3166 while (next) {
3167 qh = next;
3168 next = qh->qh_next.qh;
3169
3170 if (list_empty(&qh->qtd_list) &&
3171 qh->qh_state == QH_STATE_LINKED) {
3172 if (!stopped && qh->unlink_cycle ==
3173 fotg210->async_unlink_cycle)
3174 check_unlinks_later = true;
3175 else
3176 single_unlink_async(fotg210, qh);
3177 }
3178 }
3179
3180 /* Start a new IAA cycle if any QHs are waiting for it */
3181 if (fotg210->async_unlink)
3182 start_iaa_cycle(fotg210, false);
3183
3184 /* QHs that haven't been empty for long enough will be handled later */
3185 if (check_unlinks_later) {
3186 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3187 true);
3188 ++fotg210->async_unlink_cycle;
3189 }
3190 }
3191
3192 /* makes sure the async qh will become idle */
3193 /* caller must own fotg210->lock */
3194
start_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3195 static void start_unlink_async(struct fotg210_hcd *fotg210,
3196 struct fotg210_qh *qh)
3197 {
3198 /*
3199 * If the QH isn't linked then there's nothing we can do
3200 * unless we were called during a giveback, in which case
3201 * qh_completions() has to deal with it.
3202 */
3203 if (qh->qh_state != QH_STATE_LINKED) {
3204 if (qh->qh_state == QH_STATE_COMPLETING)
3205 qh->needs_rescan = 1;
3206 return;
3207 }
3208
3209 single_unlink_async(fotg210, qh);
3210 start_iaa_cycle(fotg210, false);
3211 }
3212
scan_async(struct fotg210_hcd * fotg210)3213 static void scan_async(struct fotg210_hcd *fotg210)
3214 {
3215 struct fotg210_qh *qh;
3216 bool check_unlinks_later = false;
3217
3218 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3219 while (fotg210->qh_scan_next) {
3220 qh = fotg210->qh_scan_next;
3221 fotg210->qh_scan_next = qh->qh_next.qh;
3222 rescan:
3223 /* clean any finished work for this qh */
3224 if (!list_empty(&qh->qtd_list)) {
3225 int temp;
3226
3227 /*
3228 * Unlinks could happen here; completion reporting
3229 * drops the lock. That's why fotg210->qh_scan_next
3230 * always holds the next qh to scan; if the next qh
3231 * gets unlinked then fotg210->qh_scan_next is adjusted
3232 * in single_unlink_async().
3233 */
3234 temp = qh_completions(fotg210, qh);
3235 if (qh->needs_rescan) {
3236 start_unlink_async(fotg210, qh);
3237 } else if (list_empty(&qh->qtd_list)
3238 && qh->qh_state == QH_STATE_LINKED) {
3239 qh->unlink_cycle = fotg210->async_unlink_cycle;
3240 check_unlinks_later = true;
3241 } else if (temp != 0)
3242 goto rescan;
3243 }
3244 }
3245
3246 /*
3247 * Unlink empty entries, reducing DMA usage as well
3248 * as HCD schedule-scanning costs. Delay for any qh
3249 * we just scanned, there's a not-unusual case that it
3250 * doesn't stay idle for long.
3251 */
3252 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3253 !(fotg210->enabled_hrtimer_events &
3254 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3255 fotg210_enable_event(fotg210,
3256 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3257 ++fotg210->async_unlink_cycle;
3258 }
3259 }
3260 /* EHCI scheduled transaction support: interrupt, iso, split iso
3261 * These are called "periodic" transactions in the EHCI spec.
3262 *
3263 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3264 * with the "asynchronous" transaction support (control/bulk transfers).
3265 * The only real difference is in how interrupt transfers are scheduled.
3266 *
3267 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3268 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3269 * pre-calculated schedule data to make appending to the queue be quick.
3270 */
3271 static int fotg210_get_frame(struct usb_hcd *hcd);
3272
3273 /* periodic_next_shadow - return "next" pointer on shadow list
3274 * @periodic: host pointer to qh/itd
3275 * @tag: hardware tag for type of this record
3276 */
periodic_next_shadow(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3277 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3278 union fotg210_shadow *periodic, __hc32 tag)
3279 {
3280 switch (hc32_to_cpu(fotg210, tag)) {
3281 case Q_TYPE_QH:
3282 return &periodic->qh->qh_next;
3283 case Q_TYPE_FSTN:
3284 return &periodic->fstn->fstn_next;
3285 default:
3286 return &periodic->itd->itd_next;
3287 }
3288 }
3289
shadow_next_periodic(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3290 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3291 union fotg210_shadow *periodic, __hc32 tag)
3292 {
3293 switch (hc32_to_cpu(fotg210, tag)) {
3294 /* our fotg210_shadow.qh is actually software part */
3295 case Q_TYPE_QH:
3296 return &periodic->qh->hw->hw_next;
3297 /* others are hw parts */
3298 default:
3299 return periodic->hw_next;
3300 }
3301 }
3302
3303 /* caller must hold fotg210->lock */
periodic_unlink(struct fotg210_hcd * fotg210,unsigned frame,void * ptr)3304 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3305 void *ptr)
3306 {
3307 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3308 __hc32 *hw_p = &fotg210->periodic[frame];
3309 union fotg210_shadow here = *prev_p;
3310
3311 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3312 while (here.ptr && here.ptr != ptr) {
3313 prev_p = periodic_next_shadow(fotg210, prev_p,
3314 Q_NEXT_TYPE(fotg210, *hw_p));
3315 hw_p = shadow_next_periodic(fotg210, &here,
3316 Q_NEXT_TYPE(fotg210, *hw_p));
3317 here = *prev_p;
3318 }
3319 /* an interrupt entry (at list end) could have been shared */
3320 if (!here.ptr)
3321 return;
3322
3323 /* update shadow and hardware lists ... the old "next" pointers
3324 * from ptr may still be in use, the caller updates them.
3325 */
3326 *prev_p = *periodic_next_shadow(fotg210, &here,
3327 Q_NEXT_TYPE(fotg210, *hw_p));
3328
3329 *hw_p = *shadow_next_periodic(fotg210, &here,
3330 Q_NEXT_TYPE(fotg210, *hw_p));
3331 }
3332
3333 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe)3334 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3335 unsigned frame, unsigned uframe)
3336 {
3337 __hc32 *hw_p = &fotg210->periodic[frame];
3338 union fotg210_shadow *q = &fotg210->pshadow[frame];
3339 unsigned usecs = 0;
3340 struct fotg210_qh_hw *hw;
3341
3342 while (q->ptr) {
3343 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3344 case Q_TYPE_QH:
3345 hw = q->qh->hw;
3346 /* is it in the S-mask? */
3347 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3348 usecs += q->qh->usecs;
3349 /* ... or C-mask? */
3350 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3351 1 << (8 + uframe)))
3352 usecs += q->qh->c_usecs;
3353 hw_p = &hw->hw_next;
3354 q = &q->qh->qh_next;
3355 break;
3356 /* case Q_TYPE_FSTN: */
3357 default:
3358 /* for "save place" FSTNs, count the relevant INTR
3359 * bandwidth from the previous frame
3360 */
3361 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3362 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3363
3364 hw_p = &q->fstn->hw_next;
3365 q = &q->fstn->fstn_next;
3366 break;
3367 case Q_TYPE_ITD:
3368 if (q->itd->hw_transaction[uframe])
3369 usecs += q->itd->stream->usecs;
3370 hw_p = &q->itd->hw_next;
3371 q = &q->itd->itd_next;
3372 break;
3373 }
3374 }
3375 if (usecs > fotg210->uframe_periodic_max)
3376 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3377 frame * 8 + uframe, usecs);
3378 return usecs;
3379 }
3380
same_tt(struct usb_device * dev1,struct usb_device * dev2)3381 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3382 {
3383 if (!dev1->tt || !dev2->tt)
3384 return 0;
3385 if (dev1->tt != dev2->tt)
3386 return 0;
3387 if (dev1->tt->multi)
3388 return dev1->ttport == dev2->ttport;
3389 else
3390 return 1;
3391 }
3392
3393 /* return true iff the device's transaction translator is available
3394 * for a periodic transfer starting at the specified frame, using
3395 * all the uframes in the mask.
3396 */
tt_no_collision(struct fotg210_hcd * fotg210,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)3397 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3398 struct usb_device *dev, unsigned frame, u32 uf_mask)
3399 {
3400 if (period == 0) /* error */
3401 return 0;
3402
3403 /* note bandwidth wastage: split never follows csplit
3404 * (different dev or endpoint) until the next uframe.
3405 * calling convention doesn't make that distinction.
3406 */
3407 for (; frame < fotg210->periodic_size; frame += period) {
3408 union fotg210_shadow here;
3409 __hc32 type;
3410 struct fotg210_qh_hw *hw;
3411
3412 here = fotg210->pshadow[frame];
3413 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3414 while (here.ptr) {
3415 switch (hc32_to_cpu(fotg210, type)) {
3416 case Q_TYPE_ITD:
3417 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3418 here = here.itd->itd_next;
3419 continue;
3420 case Q_TYPE_QH:
3421 hw = here.qh->hw;
3422 if (same_tt(dev, here.qh->dev)) {
3423 u32 mask;
3424
3425 mask = hc32_to_cpu(fotg210,
3426 hw->hw_info2);
3427 /* "knows" no gap is needed */
3428 mask |= mask >> 8;
3429 if (mask & uf_mask)
3430 break;
3431 }
3432 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3433 here = here.qh->qh_next;
3434 continue;
3435 /* case Q_TYPE_FSTN: */
3436 default:
3437 fotg210_dbg(fotg210,
3438 "periodic frame %d bogus type %d\n",
3439 frame, type);
3440 }
3441
3442 /* collision or error */
3443 return 0;
3444 }
3445 }
3446
3447 /* no collision */
3448 return 1;
3449 }
3450
enable_periodic(struct fotg210_hcd * fotg210)3451 static void enable_periodic(struct fotg210_hcd *fotg210)
3452 {
3453 if (fotg210->periodic_count++)
3454 return;
3455
3456 /* Stop waiting to turn off the periodic schedule */
3457 fotg210->enabled_hrtimer_events &=
3458 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3459
3460 /* Don't start the schedule until PSS is 0 */
3461 fotg210_poll_PSS(fotg210);
3462 turn_on_io_watchdog(fotg210);
3463 }
3464
disable_periodic(struct fotg210_hcd * fotg210)3465 static void disable_periodic(struct fotg210_hcd *fotg210)
3466 {
3467 if (--fotg210->periodic_count)
3468 return;
3469
3470 /* Don't turn off the schedule until PSS is 1 */
3471 fotg210_poll_PSS(fotg210);
3472 }
3473
3474 /* periodic schedule slots have iso tds (normal or split) first, then a
3475 * sparse tree for active interrupt transfers.
3476 *
3477 * this just links in a qh; caller guarantees uframe masks are set right.
3478 * no FSTN support (yet; fotg210 0.96+)
3479 */
qh_link_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3480 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3481 {
3482 unsigned i;
3483 unsigned period = qh->period;
3484
3485 dev_dbg(&qh->dev->dev,
3486 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3487 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3488 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3489 qh->c_usecs);
3490
3491 /* high bandwidth, or otherwise every microframe */
3492 if (period == 0)
3493 period = 1;
3494
3495 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3496 union fotg210_shadow *prev = &fotg210->pshadow[i];
3497 __hc32 *hw_p = &fotg210->periodic[i];
3498 union fotg210_shadow here = *prev;
3499 __hc32 type = 0;
3500
3501 /* skip the iso nodes at list head */
3502 while (here.ptr) {
3503 type = Q_NEXT_TYPE(fotg210, *hw_p);
3504 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3505 break;
3506 prev = periodic_next_shadow(fotg210, prev, type);
3507 hw_p = shadow_next_periodic(fotg210, &here, type);
3508 here = *prev;
3509 }
3510
3511 /* sorting each branch by period (slow-->fast)
3512 * enables sharing interior tree nodes
3513 */
3514 while (here.ptr && qh != here.qh) {
3515 if (qh->period > here.qh->period)
3516 break;
3517 prev = &here.qh->qh_next;
3518 hw_p = &here.qh->hw->hw_next;
3519 here = *prev;
3520 }
3521 /* link in this qh, unless some earlier pass did that */
3522 if (qh != here.qh) {
3523 qh->qh_next = here;
3524 if (here.qh)
3525 qh->hw->hw_next = *hw_p;
3526 wmb();
3527 prev->qh = qh;
3528 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3529 }
3530 }
3531 qh->qh_state = QH_STATE_LINKED;
3532 qh->xacterrs = 0;
3533
3534 /* update per-qh bandwidth for usbfs */
3535 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3536 ? ((qh->usecs + qh->c_usecs) / qh->period)
3537 : (qh->usecs * 8);
3538
3539 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3540
3541 /* maybe enable periodic schedule processing */
3542 ++fotg210->intr_count;
3543 enable_periodic(fotg210);
3544 }
3545
qh_unlink_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3546 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3547 struct fotg210_qh *qh)
3548 {
3549 unsigned i;
3550 unsigned period;
3551
3552 /*
3553 * If qh is for a low/full-speed device, simply unlinking it
3554 * could interfere with an ongoing split transaction. To unlink
3555 * it safely would require setting the QH_INACTIVATE bit and
3556 * waiting at least one frame, as described in EHCI 4.12.2.5.
3557 *
3558 * We won't bother with any of this. Instead, we assume that the
3559 * only reason for unlinking an interrupt QH while the current URB
3560 * is still active is to dequeue all the URBs (flush the whole
3561 * endpoint queue).
3562 *
3563 * If rebalancing the periodic schedule is ever implemented, this
3564 * approach will no longer be valid.
3565 */
3566
3567 /* high bandwidth, or otherwise part of every microframe */
3568 period = qh->period;
3569 if (!period)
3570 period = 1;
3571
3572 for (i = qh->start; i < fotg210->periodic_size; i += period)
3573 periodic_unlink(fotg210, i, qh);
3574
3575 /* update per-qh bandwidth for usbfs */
3576 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3577 ? ((qh->usecs + qh->c_usecs) / qh->period)
3578 : (qh->usecs * 8);
3579
3580 dev_dbg(&qh->dev->dev,
3581 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3582 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3583 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3584 qh->c_usecs);
3585
3586 /* qh->qh_next still "live" to HC */
3587 qh->qh_state = QH_STATE_UNLINK;
3588 qh->qh_next.ptr = NULL;
3589
3590 if (fotg210->qh_scan_next == qh)
3591 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3592 struct fotg210_qh, intr_node);
3593 list_del(&qh->intr_node);
3594 }
3595
start_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3596 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3597 struct fotg210_qh *qh)
3598 {
3599 /* If the QH isn't linked then there's nothing we can do
3600 * unless we were called during a giveback, in which case
3601 * qh_completions() has to deal with it.
3602 */
3603 if (qh->qh_state != QH_STATE_LINKED) {
3604 if (qh->qh_state == QH_STATE_COMPLETING)
3605 qh->needs_rescan = 1;
3606 return;
3607 }
3608
3609 qh_unlink_periodic(fotg210, qh);
3610
3611 /* Make sure the unlinks are visible before starting the timer */
3612 wmb();
3613
3614 /*
3615 * The EHCI spec doesn't say how long it takes the controller to
3616 * stop accessing an unlinked interrupt QH. The timer delay is
3617 * 9 uframes; presumably that will be long enough.
3618 */
3619 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3620
3621 /* New entries go at the end of the intr_unlink list */
3622 if (fotg210->intr_unlink)
3623 fotg210->intr_unlink_last->unlink_next = qh;
3624 else
3625 fotg210->intr_unlink = qh;
3626 fotg210->intr_unlink_last = qh;
3627
3628 if (fotg210->intr_unlinking)
3629 ; /* Avoid recursive calls */
3630 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3631 fotg210_handle_intr_unlinks(fotg210);
3632 else if (fotg210->intr_unlink == qh) {
3633 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3634 true);
3635 ++fotg210->intr_unlink_cycle;
3636 }
3637 }
3638
end_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3639 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3640 {
3641 struct fotg210_qh_hw *hw = qh->hw;
3642 int rc;
3643
3644 qh->qh_state = QH_STATE_IDLE;
3645 hw->hw_next = FOTG210_LIST_END(fotg210);
3646
3647 qh_completions(fotg210, qh);
3648
3649 /* reschedule QH iff another request is queued */
3650 if (!list_empty(&qh->qtd_list) &&
3651 fotg210->rh_state == FOTG210_RH_RUNNING) {
3652 rc = qh_schedule(fotg210, qh);
3653
3654 /* An error here likely indicates handshake failure
3655 * or no space left in the schedule. Neither fault
3656 * should happen often ...
3657 *
3658 * FIXME kill the now-dysfunctional queued urbs
3659 */
3660 if (rc != 0)
3661 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3662 qh, rc);
3663 }
3664
3665 /* maybe turn off periodic schedule */
3666 --fotg210->intr_count;
3667 disable_periodic(fotg210);
3668 }
3669
check_period(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)3670 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3671 unsigned uframe, unsigned period, unsigned usecs)
3672 {
3673 int claimed;
3674
3675 /* complete split running into next frame?
3676 * given FSTN support, we could sometimes check...
3677 */
3678 if (uframe >= 8)
3679 return 0;
3680
3681 /* convert "usecs we need" to "max already claimed" */
3682 usecs = fotg210->uframe_periodic_max - usecs;
3683
3684 /* we "know" 2 and 4 uframe intervals were rejected; so
3685 * for period 0, check _every_ microframe in the schedule.
3686 */
3687 if (unlikely(period == 0)) {
3688 do {
3689 for (uframe = 0; uframe < 7; uframe++) {
3690 claimed = periodic_usecs(fotg210, frame,
3691 uframe);
3692 if (claimed > usecs)
3693 return 0;
3694 }
3695 } while ((frame += 1) < fotg210->periodic_size);
3696
3697 /* just check the specified uframe, at that period */
3698 } else {
3699 do {
3700 claimed = periodic_usecs(fotg210, frame, uframe);
3701 if (claimed > usecs)
3702 return 0;
3703 } while ((frame += period) < fotg210->periodic_size);
3704 }
3705
3706 /* success! */
3707 return 1;
3708 }
3709
check_intr_schedule(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,const struct fotg210_qh * qh,__hc32 * c_maskp)3710 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3711 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3712 {
3713 int retval = -ENOSPC;
3714 u8 mask = 0;
3715
3716 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3717 goto done;
3718
3719 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3720 goto done;
3721 if (!qh->c_usecs) {
3722 retval = 0;
3723 *c_maskp = 0;
3724 goto done;
3725 }
3726
3727 /* Make sure this tt's buffer is also available for CSPLITs.
3728 * We pessimize a bit; probably the typical full speed case
3729 * doesn't need the second CSPLIT.
3730 *
3731 * NOTE: both SPLIT and CSPLIT could be checked in just
3732 * one smart pass...
3733 */
3734 mask = 0x03 << (uframe + qh->gap_uf);
3735 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3736
3737 mask |= 1 << uframe;
3738 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3739 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3740 qh->period, qh->c_usecs))
3741 goto done;
3742 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3743 qh->period, qh->c_usecs))
3744 goto done;
3745 retval = 0;
3746 }
3747 done:
3748 return retval;
3749 }
3750
3751 /* "first fit" scheduling policy used the first time through,
3752 * or when the previous schedule slot can't be re-used.
3753 */
qh_schedule(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3754 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3755 {
3756 int status;
3757 unsigned uframe;
3758 __hc32 c_mask;
3759 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3760 struct fotg210_qh_hw *hw = qh->hw;
3761
3762 qh_refresh(fotg210, qh);
3763 hw->hw_next = FOTG210_LIST_END(fotg210);
3764 frame = qh->start;
3765
3766 /* reuse the previous schedule slots, if we can */
3767 if (frame < qh->period) {
3768 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3769 status = check_intr_schedule(fotg210, frame, --uframe,
3770 qh, &c_mask);
3771 } else {
3772 uframe = 0;
3773 c_mask = 0;
3774 status = -ENOSPC;
3775 }
3776
3777 /* else scan the schedule to find a group of slots such that all
3778 * uframes have enough periodic bandwidth available.
3779 */
3780 if (status) {
3781 /* "normal" case, uframing flexible except with splits */
3782 if (qh->period) {
3783 int i;
3784
3785 for (i = qh->period; status && i > 0; --i) {
3786 frame = ++fotg210->random_frame % qh->period;
3787 for (uframe = 0; uframe < 8; uframe++) {
3788 status = check_intr_schedule(fotg210,
3789 frame, uframe, qh,
3790 &c_mask);
3791 if (status == 0)
3792 break;
3793 }
3794 }
3795
3796 /* qh->period == 0 means every uframe */
3797 } else {
3798 frame = 0;
3799 status = check_intr_schedule(fotg210, 0, 0, qh,
3800 &c_mask);
3801 }
3802 if (status)
3803 goto done;
3804 qh->start = frame;
3805
3806 /* reset S-frame and (maybe) C-frame masks */
3807 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3808 hw->hw_info2 |= qh->period
3809 ? cpu_to_hc32(fotg210, 1 << uframe)
3810 : cpu_to_hc32(fotg210, QH_SMASK);
3811 hw->hw_info2 |= c_mask;
3812 } else
3813 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3814
3815 /* stuff into the periodic schedule */
3816 qh_link_periodic(fotg210, qh);
3817 done:
3818 return status;
3819 }
3820
intr_submit(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3821 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3822 struct list_head *qtd_list, gfp_t mem_flags)
3823 {
3824 unsigned epnum;
3825 unsigned long flags;
3826 struct fotg210_qh *qh;
3827 int status;
3828 struct list_head empty;
3829
3830 /* get endpoint and transfer/schedule data */
3831 epnum = urb->ep->desc.bEndpointAddress;
3832
3833 spin_lock_irqsave(&fotg210->lock, flags);
3834
3835 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3836 status = -ESHUTDOWN;
3837 goto done_not_linked;
3838 }
3839 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3840 if (unlikely(status))
3841 goto done_not_linked;
3842
3843 /* get qh and force any scheduling errors */
3844 INIT_LIST_HEAD(&empty);
3845 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3846 if (qh == NULL) {
3847 status = -ENOMEM;
3848 goto done;
3849 }
3850 if (qh->qh_state == QH_STATE_IDLE) {
3851 status = qh_schedule(fotg210, qh);
3852 if (status)
3853 goto done;
3854 }
3855
3856 /* then queue the urb's tds to the qh */
3857 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3858 BUG_ON(qh == NULL);
3859
3860 /* ... update usbfs periodic stats */
3861 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3862
3863 done:
3864 if (unlikely(status))
3865 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3866 done_not_linked:
3867 spin_unlock_irqrestore(&fotg210->lock, flags);
3868 if (status)
3869 qtd_list_free(fotg210, urb, qtd_list);
3870
3871 return status;
3872 }
3873
scan_intr(struct fotg210_hcd * fotg210)3874 static void scan_intr(struct fotg210_hcd *fotg210)
3875 {
3876 struct fotg210_qh *qh;
3877
3878 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3879 &fotg210->intr_qh_list, intr_node) {
3880 rescan:
3881 /* clean any finished work for this qh */
3882 if (!list_empty(&qh->qtd_list)) {
3883 int temp;
3884
3885 /*
3886 * Unlinks could happen here; completion reporting
3887 * drops the lock. That's why fotg210->qh_scan_next
3888 * always holds the next qh to scan; if the next qh
3889 * gets unlinked then fotg210->qh_scan_next is adjusted
3890 * in qh_unlink_periodic().
3891 */
3892 temp = qh_completions(fotg210, qh);
3893 if (unlikely(qh->needs_rescan ||
3894 (list_empty(&qh->qtd_list) &&
3895 qh->qh_state == QH_STATE_LINKED)))
3896 start_unlink_intr(fotg210, qh);
3897 else if (temp != 0)
3898 goto rescan;
3899 }
3900 }
3901 }
3902
3903 /* fotg210_iso_stream ops work with both ITD and SITD */
3904
iso_stream_alloc(gfp_t mem_flags)3905 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3906 {
3907 struct fotg210_iso_stream *stream;
3908
3909 stream = kzalloc(sizeof(*stream), mem_flags);
3910 if (likely(stream != NULL)) {
3911 INIT_LIST_HEAD(&stream->td_list);
3912 INIT_LIST_HEAD(&stream->free_list);
3913 stream->next_uframe = -1;
3914 }
3915 return stream;
3916 }
3917
iso_stream_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)3918 static void iso_stream_init(struct fotg210_hcd *fotg210,
3919 struct fotg210_iso_stream *stream, struct usb_device *dev,
3920 int pipe, unsigned interval)
3921 {
3922 u32 buf1;
3923 unsigned epnum, maxp;
3924 int is_input;
3925 long bandwidth;
3926 unsigned multi;
3927 struct usb_host_endpoint *ep;
3928
3929 /*
3930 * this might be a "high bandwidth" highspeed endpoint,
3931 * as encoded in the ep descriptor's wMaxPacket field
3932 */
3933 epnum = usb_pipeendpoint(pipe);
3934 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3935 ep = usb_pipe_endpoint(dev, pipe);
3936 maxp = usb_endpoint_maxp(&ep->desc);
3937 if (is_input)
3938 buf1 = (1 << 11);
3939 else
3940 buf1 = 0;
3941
3942 multi = usb_endpoint_maxp_mult(&ep->desc);
3943 buf1 |= maxp;
3944 maxp *= multi;
3945
3946 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3947 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3948 stream->buf2 = cpu_to_hc32(fotg210, multi);
3949
3950 /* usbfs wants to report the average usecs per frame tied up
3951 * when transfers on this endpoint are scheduled ...
3952 */
3953 if (dev->speed == USB_SPEED_FULL) {
3954 interval <<= 3;
3955 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3956 is_input, 1, maxp));
3957 stream->usecs /= 8;
3958 } else {
3959 stream->highspeed = 1;
3960 stream->usecs = HS_USECS_ISO(maxp);
3961 }
3962 bandwidth = stream->usecs * 8;
3963 bandwidth /= interval;
3964
3965 stream->bandwidth = bandwidth;
3966 stream->udev = dev;
3967 stream->bEndpointAddress = is_input | epnum;
3968 stream->interval = interval;
3969 stream->maxp = maxp;
3970 }
3971
iso_stream_find(struct fotg210_hcd * fotg210,struct urb * urb)3972 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3973 struct urb *urb)
3974 {
3975 unsigned epnum;
3976 struct fotg210_iso_stream *stream;
3977 struct usb_host_endpoint *ep;
3978 unsigned long flags;
3979
3980 epnum = usb_pipeendpoint(urb->pipe);
3981 if (usb_pipein(urb->pipe))
3982 ep = urb->dev->ep_in[epnum];
3983 else
3984 ep = urb->dev->ep_out[epnum];
3985
3986 spin_lock_irqsave(&fotg210->lock, flags);
3987 stream = ep->hcpriv;
3988
3989 if (unlikely(stream == NULL)) {
3990 stream = iso_stream_alloc(GFP_ATOMIC);
3991 if (likely(stream != NULL)) {
3992 ep->hcpriv = stream;
3993 stream->ep = ep;
3994 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3995 urb->interval);
3996 }
3997
3998 /* if dev->ep[epnum] is a QH, hw is set */
3999 } else if (unlikely(stream->hw != NULL)) {
4000 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4001 urb->dev->devpath, epnum,
4002 usb_pipein(urb->pipe) ? "in" : "out");
4003 stream = NULL;
4004 }
4005
4006 spin_unlock_irqrestore(&fotg210->lock, flags);
4007 return stream;
4008 }
4009
4010 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4011
iso_sched_alloc(unsigned packets,gfp_t mem_flags)4012 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4013 gfp_t mem_flags)
4014 {
4015 struct fotg210_iso_sched *iso_sched;
4016
4017 iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
4018 if (likely(iso_sched != NULL))
4019 INIT_LIST_HEAD(&iso_sched->td_list);
4020
4021 return iso_sched;
4022 }
4023
itd_sched_init(struct fotg210_hcd * fotg210,struct fotg210_iso_sched * iso_sched,struct fotg210_iso_stream * stream,struct urb * urb)4024 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4025 struct fotg210_iso_sched *iso_sched,
4026 struct fotg210_iso_stream *stream, struct urb *urb)
4027 {
4028 unsigned i;
4029 dma_addr_t dma = urb->transfer_dma;
4030
4031 /* how many uframes are needed for these transfers */
4032 iso_sched->span = urb->number_of_packets * stream->interval;
4033
4034 /* figure out per-uframe itd fields that we'll need later
4035 * when we fit new itds into the schedule.
4036 */
4037 for (i = 0; i < urb->number_of_packets; i++) {
4038 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4039 unsigned length;
4040 dma_addr_t buf;
4041 u32 trans;
4042
4043 length = urb->iso_frame_desc[i].length;
4044 buf = dma + urb->iso_frame_desc[i].offset;
4045
4046 trans = FOTG210_ISOC_ACTIVE;
4047 trans |= buf & 0x0fff;
4048 if (unlikely(((i + 1) == urb->number_of_packets))
4049 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4050 trans |= FOTG210_ITD_IOC;
4051 trans |= length << 16;
4052 uframe->transaction = cpu_to_hc32(fotg210, trans);
4053
4054 /* might need to cross a buffer page within a uframe */
4055 uframe->bufp = (buf & ~(u64)0x0fff);
4056 buf += length;
4057 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4058 uframe->cross = 1;
4059 }
4060 }
4061
iso_sched_free(struct fotg210_iso_stream * stream,struct fotg210_iso_sched * iso_sched)4062 static void iso_sched_free(struct fotg210_iso_stream *stream,
4063 struct fotg210_iso_sched *iso_sched)
4064 {
4065 if (!iso_sched)
4066 return;
4067 /* caller must hold fotg210->lock!*/
4068 list_splice(&iso_sched->td_list, &stream->free_list);
4069 kfree(iso_sched);
4070 }
4071
itd_urb_transaction(struct fotg210_iso_stream * stream,struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4072 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4073 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4074 {
4075 struct fotg210_itd *itd;
4076 dma_addr_t itd_dma;
4077 int i;
4078 unsigned num_itds;
4079 struct fotg210_iso_sched *sched;
4080 unsigned long flags;
4081
4082 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4083 if (unlikely(sched == NULL))
4084 return -ENOMEM;
4085
4086 itd_sched_init(fotg210, sched, stream, urb);
4087
4088 if (urb->interval < 8)
4089 num_itds = 1 + (sched->span + 7) / 8;
4090 else
4091 num_itds = urb->number_of_packets;
4092
4093 /* allocate/init ITDs */
4094 spin_lock_irqsave(&fotg210->lock, flags);
4095 for (i = 0; i < num_itds; i++) {
4096
4097 /*
4098 * Use iTDs from the free list, but not iTDs that may
4099 * still be in use by the hardware.
4100 */
4101 if (likely(!list_empty(&stream->free_list))) {
4102 itd = list_first_entry(&stream->free_list,
4103 struct fotg210_itd, itd_list);
4104 if (itd->frame == fotg210->now_frame)
4105 goto alloc_itd;
4106 list_del(&itd->itd_list);
4107 itd_dma = itd->itd_dma;
4108 } else {
4109 alloc_itd:
4110 spin_unlock_irqrestore(&fotg210->lock, flags);
4111 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4112 &itd_dma);
4113 spin_lock_irqsave(&fotg210->lock, flags);
4114 if (!itd) {
4115 iso_sched_free(stream, sched);
4116 spin_unlock_irqrestore(&fotg210->lock, flags);
4117 return -ENOMEM;
4118 }
4119 }
4120
4121 memset(itd, 0, sizeof(*itd));
4122 itd->itd_dma = itd_dma;
4123 list_add(&itd->itd_list, &sched->td_list);
4124 }
4125 spin_unlock_irqrestore(&fotg210->lock, flags);
4126
4127 /* temporarily store schedule info in hcpriv */
4128 urb->hcpriv = sched;
4129 urb->error_count = 0;
4130 return 0;
4131 }
4132
itd_slot_ok(struct fotg210_hcd * fotg210,u32 mod,u32 uframe,u8 usecs,u32 period)4133 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4134 u8 usecs, u32 period)
4135 {
4136 uframe %= period;
4137 do {
4138 /* can't commit more than uframe_periodic_max usec */
4139 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4140 > (fotg210->uframe_periodic_max - usecs))
4141 return 0;
4142
4143 /* we know urb->interval is 2^N uframes */
4144 uframe += period;
4145 } while (uframe < mod);
4146 return 1;
4147 }
4148
4149 /* This scheduler plans almost as far into the future as it has actual
4150 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4151 * "as small as possible" to be cache-friendlier.) That limits the size
4152 * transfers you can stream reliably; avoid more than 64 msec per urb.
4153 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4154 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4155 * and other factors); or more than about 230 msec total (for portability,
4156 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4157 */
4158
4159 #define SCHEDULE_SLOP 80 /* microframes */
4160
iso_stream_schedule(struct fotg210_hcd * fotg210,struct urb * urb,struct fotg210_iso_stream * stream)4161 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4162 struct fotg210_iso_stream *stream)
4163 {
4164 u32 now, next, start, period, span;
4165 int status;
4166 unsigned mod = fotg210->periodic_size << 3;
4167 struct fotg210_iso_sched *sched = urb->hcpriv;
4168
4169 period = urb->interval;
4170 span = sched->span;
4171
4172 if (span > mod - SCHEDULE_SLOP) {
4173 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4174 status = -EFBIG;
4175 goto fail;
4176 }
4177
4178 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4179
4180 /* Typical case: reuse current schedule, stream is still active.
4181 * Hopefully there are no gaps from the host falling behind
4182 * (irq delays etc), but if there are we'll take the next
4183 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4184 */
4185 if (likely(!list_empty(&stream->td_list))) {
4186 u32 excess;
4187
4188 /* For high speed devices, allow scheduling within the
4189 * isochronous scheduling threshold. For full speed devices
4190 * and Intel PCI-based controllers, don't (work around for
4191 * Intel ICH9 bug).
4192 */
4193 if (!stream->highspeed && fotg210->fs_i_thresh)
4194 next = now + fotg210->i_thresh;
4195 else
4196 next = now;
4197
4198 /* Fell behind (by up to twice the slop amount)?
4199 * We decide based on the time of the last currently-scheduled
4200 * slot, not the time of the next available slot.
4201 */
4202 excess = (stream->next_uframe - period - next) & (mod - 1);
4203 if (excess >= mod - 2 * SCHEDULE_SLOP)
4204 start = next + excess - mod + period *
4205 DIV_ROUND_UP(mod - excess, period);
4206 else
4207 start = next + excess + period;
4208 if (start - now >= mod) {
4209 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4210 urb, start - now - period, period,
4211 mod);
4212 status = -EFBIG;
4213 goto fail;
4214 }
4215 }
4216
4217 /* need to schedule; when's the next (u)frame we could start?
4218 * this is bigger than fotg210->i_thresh allows; scheduling itself
4219 * isn't free, the slop should handle reasonably slow cpus. it
4220 * can also help high bandwidth if the dma and irq loads don't
4221 * jump until after the queue is primed.
4222 */
4223 else {
4224 int done = 0;
4225
4226 start = SCHEDULE_SLOP + (now & ~0x07);
4227
4228 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4229
4230 /* find a uframe slot with enough bandwidth.
4231 * Early uframes are more precious because full-speed
4232 * iso IN transfers can't use late uframes,
4233 * and therefore they should be allocated last.
4234 */
4235 next = start;
4236 start += period;
4237 do {
4238 start--;
4239 /* check schedule: enough space? */
4240 if (itd_slot_ok(fotg210, mod, start,
4241 stream->usecs, period))
4242 done = 1;
4243 } while (start > next && !done);
4244
4245 /* no room in the schedule */
4246 if (!done) {
4247 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4248 urb, now, now + mod);
4249 status = -ENOSPC;
4250 goto fail;
4251 }
4252 }
4253
4254 /* Tried to schedule too far into the future? */
4255 if (unlikely(start - now + span - period >=
4256 mod - 2 * SCHEDULE_SLOP)) {
4257 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4258 urb, start - now, span - period,
4259 mod - 2 * SCHEDULE_SLOP);
4260 status = -EFBIG;
4261 goto fail;
4262 }
4263
4264 stream->next_uframe = start & (mod - 1);
4265
4266 /* report high speed start in uframes; full speed, in frames */
4267 urb->start_frame = stream->next_uframe;
4268 if (!stream->highspeed)
4269 urb->start_frame >>= 3;
4270
4271 /* Make sure scan_isoc() sees these */
4272 if (fotg210->isoc_count == 0)
4273 fotg210->next_frame = now >> 3;
4274 return 0;
4275
4276 fail:
4277 iso_sched_free(stream, sched);
4278 urb->hcpriv = NULL;
4279 return status;
4280 }
4281
itd_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct fotg210_itd * itd)4282 static inline void itd_init(struct fotg210_hcd *fotg210,
4283 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4284 {
4285 int i;
4286
4287 /* it's been recently zeroed */
4288 itd->hw_next = FOTG210_LIST_END(fotg210);
4289 itd->hw_bufp[0] = stream->buf0;
4290 itd->hw_bufp[1] = stream->buf1;
4291 itd->hw_bufp[2] = stream->buf2;
4292
4293 for (i = 0; i < 8; i++)
4294 itd->index[i] = -1;
4295
4296 /* All other fields are filled when scheduling */
4297 }
4298
itd_patch(struct fotg210_hcd * fotg210,struct fotg210_itd * itd,struct fotg210_iso_sched * iso_sched,unsigned index,u16 uframe)4299 static inline void itd_patch(struct fotg210_hcd *fotg210,
4300 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4301 unsigned index, u16 uframe)
4302 {
4303 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4304 unsigned pg = itd->pg;
4305
4306 uframe &= 0x07;
4307 itd->index[uframe] = index;
4308
4309 itd->hw_transaction[uframe] = uf->transaction;
4310 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4311 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4312 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4313
4314 /* iso_frame_desc[].offset must be strictly increasing */
4315 if (unlikely(uf->cross)) {
4316 u64 bufp = uf->bufp + 4096;
4317
4318 itd->pg = ++pg;
4319 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4320 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4321 }
4322 }
4323
itd_link(struct fotg210_hcd * fotg210,unsigned frame,struct fotg210_itd * itd)4324 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4325 struct fotg210_itd *itd)
4326 {
4327 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4328 __hc32 *hw_p = &fotg210->periodic[frame];
4329 union fotg210_shadow here = *prev;
4330 __hc32 type = 0;
4331
4332 /* skip any iso nodes which might belong to previous microframes */
4333 while (here.ptr) {
4334 type = Q_NEXT_TYPE(fotg210, *hw_p);
4335 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4336 break;
4337 prev = periodic_next_shadow(fotg210, prev, type);
4338 hw_p = shadow_next_periodic(fotg210, &here, type);
4339 here = *prev;
4340 }
4341
4342 itd->itd_next = here;
4343 itd->hw_next = *hw_p;
4344 prev->itd = itd;
4345 itd->frame = frame;
4346 wmb();
4347 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4348 }
4349
4350 /* fit urb's itds into the selected schedule slot; activate as needed */
itd_link_urb(struct fotg210_hcd * fotg210,struct urb * urb,unsigned mod,struct fotg210_iso_stream * stream)4351 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4352 unsigned mod, struct fotg210_iso_stream *stream)
4353 {
4354 int packet;
4355 unsigned next_uframe, uframe, frame;
4356 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4357 struct fotg210_itd *itd;
4358
4359 next_uframe = stream->next_uframe & (mod - 1);
4360
4361 if (unlikely(list_empty(&stream->td_list))) {
4362 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4363 += stream->bandwidth;
4364 fotg210_dbg(fotg210,
4365 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4366 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4367 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4368 urb->interval,
4369 next_uframe >> 3, next_uframe & 0x7);
4370 }
4371
4372 /* fill iTDs uframe by uframe */
4373 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4374 if (itd == NULL) {
4375 /* ASSERT: we have all necessary itds */
4376
4377 /* ASSERT: no itds for this endpoint in this uframe */
4378
4379 itd = list_entry(iso_sched->td_list.next,
4380 struct fotg210_itd, itd_list);
4381 list_move_tail(&itd->itd_list, &stream->td_list);
4382 itd->stream = stream;
4383 itd->urb = urb;
4384 itd_init(fotg210, stream, itd);
4385 }
4386
4387 uframe = next_uframe & 0x07;
4388 frame = next_uframe >> 3;
4389
4390 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4391
4392 next_uframe += stream->interval;
4393 next_uframe &= mod - 1;
4394 packet++;
4395
4396 /* link completed itds into the schedule */
4397 if (((next_uframe >> 3) != frame)
4398 || packet == urb->number_of_packets) {
4399 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4400 itd);
4401 itd = NULL;
4402 }
4403 }
4404 stream->next_uframe = next_uframe;
4405
4406 /* don't need that schedule data any more */
4407 iso_sched_free(stream, iso_sched);
4408 urb->hcpriv = NULL;
4409
4410 ++fotg210->isoc_count;
4411 enable_periodic(fotg210);
4412 }
4413
4414 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4415 FOTG210_ISOC_XACTERR)
4416
4417 /* Process and recycle a completed ITD. Return true iff its urb completed,
4418 * and hence its completion callback probably added things to the hardware
4419 * schedule.
4420 *
4421 * Note that we carefully avoid recycling this descriptor until after any
4422 * completion callback runs, so that it won't be reused quickly. That is,
4423 * assuming (a) no more than two urbs per frame on this endpoint, and also
4424 * (b) only this endpoint's completions submit URBs. It seems some silicon
4425 * corrupts things if you reuse completed descriptors very quickly...
4426 */
itd_complete(struct fotg210_hcd * fotg210,struct fotg210_itd * itd)4427 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4428 {
4429 struct urb *urb = itd->urb;
4430 struct usb_iso_packet_descriptor *desc;
4431 u32 t;
4432 unsigned uframe;
4433 int urb_index = -1;
4434 struct fotg210_iso_stream *stream = itd->stream;
4435 struct usb_device *dev;
4436 bool retval = false;
4437
4438 /* for each uframe with a packet */
4439 for (uframe = 0; uframe < 8; uframe++) {
4440 if (likely(itd->index[uframe] == -1))
4441 continue;
4442 urb_index = itd->index[uframe];
4443 desc = &urb->iso_frame_desc[urb_index];
4444
4445 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4446 itd->hw_transaction[uframe] = 0;
4447
4448 /* report transfer status */
4449 if (unlikely(t & ISO_ERRS)) {
4450 urb->error_count++;
4451 if (t & FOTG210_ISOC_BUF_ERR)
4452 desc->status = usb_pipein(urb->pipe)
4453 ? -ENOSR /* hc couldn't read */
4454 : -ECOMM; /* hc couldn't write */
4455 else if (t & FOTG210_ISOC_BABBLE)
4456 desc->status = -EOVERFLOW;
4457 else /* (t & FOTG210_ISOC_XACTERR) */
4458 desc->status = -EPROTO;
4459
4460 /* HC need not update length with this error */
4461 if (!(t & FOTG210_ISOC_BABBLE)) {
4462 desc->actual_length = FOTG210_ITD_LENGTH(t);
4463 urb->actual_length += desc->actual_length;
4464 }
4465 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4466 desc->status = 0;
4467 desc->actual_length = FOTG210_ITD_LENGTH(t);
4468 urb->actual_length += desc->actual_length;
4469 } else {
4470 /* URB was too late */
4471 desc->status = -EXDEV;
4472 }
4473 }
4474
4475 /* handle completion now? */
4476 if (likely((urb_index + 1) != urb->number_of_packets))
4477 goto done;
4478
4479 /* ASSERT: it's really the last itd for this urb
4480 * list_for_each_entry (itd, &stream->td_list, itd_list)
4481 * BUG_ON (itd->urb == urb);
4482 */
4483
4484 /* give urb back to the driver; completion often (re)submits */
4485 dev = urb->dev;
4486 fotg210_urb_done(fotg210, urb, 0);
4487 retval = true;
4488 urb = NULL;
4489
4490 --fotg210->isoc_count;
4491 disable_periodic(fotg210);
4492
4493 if (unlikely(list_is_singular(&stream->td_list))) {
4494 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4495 -= stream->bandwidth;
4496 fotg210_dbg(fotg210,
4497 "deschedule devp %s ep%d%s-iso\n",
4498 dev->devpath, stream->bEndpointAddress & 0x0f,
4499 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4500 }
4501
4502 done:
4503 itd->urb = NULL;
4504
4505 /* Add to the end of the free list for later reuse */
4506 list_move_tail(&itd->itd_list, &stream->free_list);
4507
4508 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4509 if (list_empty(&stream->td_list)) {
4510 list_splice_tail_init(&stream->free_list,
4511 &fotg210->cached_itd_list);
4512 start_free_itds(fotg210);
4513 }
4514
4515 return retval;
4516 }
4517
itd_submit(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4518 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4519 gfp_t mem_flags)
4520 {
4521 int status = -EINVAL;
4522 unsigned long flags;
4523 struct fotg210_iso_stream *stream;
4524
4525 /* Get iso_stream head */
4526 stream = iso_stream_find(fotg210, urb);
4527 if (unlikely(stream == NULL)) {
4528 fotg210_dbg(fotg210, "can't get iso stream\n");
4529 return -ENOMEM;
4530 }
4531 if (unlikely(urb->interval != stream->interval &&
4532 fotg210_port_speed(fotg210, 0) ==
4533 USB_PORT_STAT_HIGH_SPEED)) {
4534 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4535 stream->interval, urb->interval);
4536 goto done;
4537 }
4538
4539 #ifdef FOTG210_URB_TRACE
4540 fotg210_dbg(fotg210,
4541 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4542 __func__, urb->dev->devpath, urb,
4543 usb_pipeendpoint(urb->pipe),
4544 usb_pipein(urb->pipe) ? "in" : "out",
4545 urb->transfer_buffer_length,
4546 urb->number_of_packets, urb->interval,
4547 stream);
4548 #endif
4549
4550 /* allocate ITDs w/o locking anything */
4551 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4552 if (unlikely(status < 0)) {
4553 fotg210_dbg(fotg210, "can't init itds\n");
4554 goto done;
4555 }
4556
4557 /* schedule ... need to lock */
4558 spin_lock_irqsave(&fotg210->lock, flags);
4559 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4560 status = -ESHUTDOWN;
4561 goto done_not_linked;
4562 }
4563 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4564 if (unlikely(status))
4565 goto done_not_linked;
4566 status = iso_stream_schedule(fotg210, urb, stream);
4567 if (likely(status == 0))
4568 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4569 else
4570 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4571 done_not_linked:
4572 spin_unlock_irqrestore(&fotg210->lock, flags);
4573 done:
4574 return status;
4575 }
4576
scan_frame_queue(struct fotg210_hcd * fotg210,unsigned frame,unsigned now_frame,bool live)4577 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4578 unsigned now_frame, bool live)
4579 {
4580 unsigned uf;
4581 bool modified;
4582 union fotg210_shadow q, *q_p;
4583 __hc32 type, *hw_p;
4584
4585 /* scan each element in frame's queue for completions */
4586 q_p = &fotg210->pshadow[frame];
4587 hw_p = &fotg210->periodic[frame];
4588 q.ptr = q_p->ptr;
4589 type = Q_NEXT_TYPE(fotg210, *hw_p);
4590 modified = false;
4591
4592 while (q.ptr) {
4593 switch (hc32_to_cpu(fotg210, type)) {
4594 case Q_TYPE_ITD:
4595 /* If this ITD is still active, leave it for
4596 * later processing ... check the next entry.
4597 * No need to check for activity unless the
4598 * frame is current.
4599 */
4600 if (frame == now_frame && live) {
4601 rmb();
4602 for (uf = 0; uf < 8; uf++) {
4603 if (q.itd->hw_transaction[uf] &
4604 ITD_ACTIVE(fotg210))
4605 break;
4606 }
4607 if (uf < 8) {
4608 q_p = &q.itd->itd_next;
4609 hw_p = &q.itd->hw_next;
4610 type = Q_NEXT_TYPE(fotg210,
4611 q.itd->hw_next);
4612 q = *q_p;
4613 break;
4614 }
4615 }
4616
4617 /* Take finished ITDs out of the schedule
4618 * and process them: recycle, maybe report
4619 * URB completion. HC won't cache the
4620 * pointer for much longer, if at all.
4621 */
4622 *q_p = q.itd->itd_next;
4623 *hw_p = q.itd->hw_next;
4624 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4625 wmb();
4626 modified = itd_complete(fotg210, q.itd);
4627 q = *q_p;
4628 break;
4629 default:
4630 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4631 type, frame, q.ptr);
4632 fallthrough;
4633 case Q_TYPE_QH:
4634 case Q_TYPE_FSTN:
4635 /* End of the iTDs and siTDs */
4636 q.ptr = NULL;
4637 break;
4638 }
4639
4640 /* assume completion callbacks modify the queue */
4641 if (unlikely(modified && fotg210->isoc_count > 0))
4642 return -EINVAL;
4643 }
4644 return 0;
4645 }
4646
scan_isoc(struct fotg210_hcd * fotg210)4647 static void scan_isoc(struct fotg210_hcd *fotg210)
4648 {
4649 unsigned uf, now_frame, frame, ret;
4650 unsigned fmask = fotg210->periodic_size - 1;
4651 bool live;
4652
4653 /*
4654 * When running, scan from last scan point up to "now"
4655 * else clean up by scanning everything that's left.
4656 * Touches as few pages as possible: cache-friendly.
4657 */
4658 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4659 uf = fotg210_read_frame_index(fotg210);
4660 now_frame = (uf >> 3) & fmask;
4661 live = true;
4662 } else {
4663 now_frame = (fotg210->next_frame - 1) & fmask;
4664 live = false;
4665 }
4666 fotg210->now_frame = now_frame;
4667
4668 frame = fotg210->next_frame;
4669 for (;;) {
4670 ret = 1;
4671 while (ret != 0)
4672 ret = scan_frame_queue(fotg210, frame,
4673 now_frame, live);
4674
4675 /* Stop when we have reached the current frame */
4676 if (frame == now_frame)
4677 break;
4678 frame = (frame + 1) & fmask;
4679 }
4680 fotg210->next_frame = now_frame;
4681 }
4682
4683 /* Display / Set uframe_periodic_max
4684 */
uframe_periodic_max_show(struct device * dev,struct device_attribute * attr,char * buf)4685 static ssize_t uframe_periodic_max_show(struct device *dev,
4686 struct device_attribute *attr, char *buf)
4687 {
4688 struct fotg210_hcd *fotg210;
4689
4690 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4691 return sysfs_emit(buf, "%d\n", fotg210->uframe_periodic_max);
4692 }
4693
uframe_periodic_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4694 static ssize_t uframe_periodic_max_store(struct device *dev,
4695 struct device_attribute *attr, const char *buf, size_t count)
4696 {
4697 struct fotg210_hcd *fotg210;
4698 unsigned uframe_periodic_max;
4699 unsigned frame, uframe;
4700 unsigned short allocated_max;
4701 unsigned long flags;
4702 ssize_t ret;
4703
4704 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4705
4706 ret = kstrtouint(buf, 0, &uframe_periodic_max);
4707 if (ret)
4708 return ret;
4709
4710 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4711 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4712 uframe_periodic_max);
4713 return -EINVAL;
4714 }
4715
4716 ret = -EINVAL;
4717
4718 /*
4719 * lock, so that our checking does not race with possible periodic
4720 * bandwidth allocation through submitting new urbs.
4721 */
4722 spin_lock_irqsave(&fotg210->lock, flags);
4723
4724 /*
4725 * for request to decrease max periodic bandwidth, we have to check
4726 * every microframe in the schedule to see whether the decrease is
4727 * possible.
4728 */
4729 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4730 allocated_max = 0;
4731
4732 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4733 for (uframe = 0; uframe < 7; ++uframe)
4734 allocated_max = max(allocated_max,
4735 periodic_usecs(fotg210, frame,
4736 uframe));
4737
4738 if (allocated_max > uframe_periodic_max) {
4739 fotg210_info(fotg210,
4740 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4741 allocated_max, uframe_periodic_max);
4742 goto out_unlock;
4743 }
4744 }
4745
4746 /* increasing is always ok */
4747
4748 fotg210_info(fotg210,
4749 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4750 100 * uframe_periodic_max/125, uframe_periodic_max);
4751
4752 if (uframe_periodic_max != 100)
4753 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4754
4755 fotg210->uframe_periodic_max = uframe_periodic_max;
4756 ret = count;
4757
4758 out_unlock:
4759 spin_unlock_irqrestore(&fotg210->lock, flags);
4760 return ret;
4761 }
4762
4763 static DEVICE_ATTR_RW(uframe_periodic_max);
4764
create_sysfs_files(struct fotg210_hcd * fotg210)4765 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4766 {
4767 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4768
4769 return device_create_file(controller, &dev_attr_uframe_periodic_max);
4770 }
4771
remove_sysfs_files(struct fotg210_hcd * fotg210)4772 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4773 {
4774 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4775
4776 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4777 }
4778 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4779 * The firmware seems to think that powering off is a wakeup event!
4780 * This routine turns off remote wakeup and everything else, on all ports.
4781 */
fotg210_turn_off_all_ports(struct fotg210_hcd * fotg210)4782 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4783 {
4784 u32 __iomem *status_reg = &fotg210->regs->port_status;
4785
4786 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4787 }
4788
4789 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4790 * Must be called with interrupts enabled and the lock not held.
4791 */
fotg210_silence_controller(struct fotg210_hcd * fotg210)4792 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4793 {
4794 fotg210_halt(fotg210);
4795
4796 spin_lock_irq(&fotg210->lock);
4797 fotg210->rh_state = FOTG210_RH_HALTED;
4798 fotg210_turn_off_all_ports(fotg210);
4799 spin_unlock_irq(&fotg210->lock);
4800 }
4801
4802 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4803 * This forcibly disables dma and IRQs, helping kexec and other cases
4804 * where the next system software may expect clean state.
4805 */
fotg210_shutdown(struct usb_hcd * hcd)4806 static void fotg210_shutdown(struct usb_hcd *hcd)
4807 {
4808 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4809
4810 spin_lock_irq(&fotg210->lock);
4811 fotg210->shutdown = true;
4812 fotg210->rh_state = FOTG210_RH_STOPPING;
4813 fotg210->enabled_hrtimer_events = 0;
4814 spin_unlock_irq(&fotg210->lock);
4815
4816 fotg210_silence_controller(fotg210);
4817
4818 hrtimer_cancel(&fotg210->hrtimer);
4819 }
4820
4821 /* fotg210_work is called from some interrupts, timers, and so on.
4822 * it calls driver completion functions, after dropping fotg210->lock.
4823 */
fotg210_work(struct fotg210_hcd * fotg210)4824 static void fotg210_work(struct fotg210_hcd *fotg210)
4825 {
4826 /* another CPU may drop fotg210->lock during a schedule scan while
4827 * it reports urb completions. this flag guards against bogus
4828 * attempts at re-entrant schedule scanning.
4829 */
4830 if (fotg210->scanning) {
4831 fotg210->need_rescan = true;
4832 return;
4833 }
4834 fotg210->scanning = true;
4835
4836 rescan:
4837 fotg210->need_rescan = false;
4838 if (fotg210->async_count)
4839 scan_async(fotg210);
4840 if (fotg210->intr_count > 0)
4841 scan_intr(fotg210);
4842 if (fotg210->isoc_count > 0)
4843 scan_isoc(fotg210);
4844 if (fotg210->need_rescan)
4845 goto rescan;
4846 fotg210->scanning = false;
4847
4848 /* the IO watchdog guards against hardware or driver bugs that
4849 * misplace IRQs, and should let us run completely without IRQs.
4850 * such lossage has been observed on both VT6202 and VT8235.
4851 */
4852 turn_on_io_watchdog(fotg210);
4853 }
4854
4855 /* Called when the fotg210_hcd module is removed.
4856 */
fotg210_stop(struct usb_hcd * hcd)4857 static void fotg210_stop(struct usb_hcd *hcd)
4858 {
4859 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4860
4861 fotg210_dbg(fotg210, "stop\n");
4862
4863 /* no more interrupts ... */
4864
4865 spin_lock_irq(&fotg210->lock);
4866 fotg210->enabled_hrtimer_events = 0;
4867 spin_unlock_irq(&fotg210->lock);
4868
4869 fotg210_quiesce(fotg210);
4870 fotg210_silence_controller(fotg210);
4871 fotg210_reset(fotg210);
4872
4873 hrtimer_cancel(&fotg210->hrtimer);
4874 remove_sysfs_files(fotg210);
4875 remove_debug_files(fotg210);
4876
4877 /* root hub is shut down separately (first, when possible) */
4878 spin_lock_irq(&fotg210->lock);
4879 end_free_itds(fotg210);
4880 spin_unlock_irq(&fotg210->lock);
4881 fotg210_mem_cleanup(fotg210);
4882
4883 #ifdef FOTG210_STATS
4884 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4885 fotg210->stats.normal, fotg210->stats.error,
4886 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4887 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4888 fotg210->stats.complete, fotg210->stats.unlink);
4889 #endif
4890
4891 dbg_status(fotg210, "fotg210_stop completed",
4892 fotg210_readl(fotg210, &fotg210->regs->status));
4893 }
4894
4895 /* one-time init, only for memory state */
hcd_fotg210_init(struct usb_hcd * hcd)4896 static int hcd_fotg210_init(struct usb_hcd *hcd)
4897 {
4898 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4899 u32 temp;
4900 int retval;
4901 u32 hcc_params;
4902 struct fotg210_qh_hw *hw;
4903
4904 spin_lock_init(&fotg210->lock);
4905
4906 /*
4907 * keep io watchdog by default, those good HCDs could turn off it later
4908 */
4909 fotg210->need_io_watchdog = 1;
4910
4911 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4912 fotg210->hrtimer.function = fotg210_hrtimer_func;
4913 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4914
4915 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4916
4917 /*
4918 * by default set standard 80% (== 100 usec/uframe) max periodic
4919 * bandwidth as required by USB 2.0
4920 */
4921 fotg210->uframe_periodic_max = 100;
4922
4923 /*
4924 * hw default: 1K periodic list heads, one per frame.
4925 * periodic_size can shrink by USBCMD update if hcc_params allows.
4926 */
4927 fotg210->periodic_size = DEFAULT_I_TDPS;
4928 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4929 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4930
4931 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4932 /* periodic schedule size can be smaller than default */
4933 switch (FOTG210_TUNE_FLS) {
4934 case 0:
4935 fotg210->periodic_size = 1024;
4936 break;
4937 case 1:
4938 fotg210->periodic_size = 512;
4939 break;
4940 case 2:
4941 fotg210->periodic_size = 256;
4942 break;
4943 default:
4944 BUG();
4945 }
4946 }
4947 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4948 if (retval < 0)
4949 return retval;
4950
4951 /* controllers may cache some of the periodic schedule ... */
4952 fotg210->i_thresh = 2;
4953
4954 /*
4955 * dedicate a qh for the async ring head, since we couldn't unlink
4956 * a 'real' qh without stopping the async schedule [4.8]. use it
4957 * as the 'reclamation list head' too.
4958 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4959 * from automatically advancing to the next td after short reads.
4960 */
4961 fotg210->async->qh_next.qh = NULL;
4962 hw = fotg210->async->hw;
4963 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4964 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4965 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4966 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4967 fotg210->async->qh_state = QH_STATE_LINKED;
4968 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4969
4970 /* clear interrupt enables, set irq latency */
4971 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4972 log2_irq_thresh = 0;
4973 temp = 1 << (16 + log2_irq_thresh);
4974 if (HCC_CANPARK(hcc_params)) {
4975 /* HW default park == 3, on hardware that supports it (like
4976 * NVidia and ALI silicon), maximizes throughput on the async
4977 * schedule by avoiding QH fetches between transfers.
4978 *
4979 * With fast usb storage devices and NForce2, "park" seems to
4980 * make problems: throughput reduction (!), data errors...
4981 */
4982 if (park) {
4983 park = min_t(unsigned, park, 3);
4984 temp |= CMD_PARK;
4985 temp |= park << 8;
4986 }
4987 fotg210_dbg(fotg210, "park %d\n", park);
4988 }
4989 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4990 /* periodic schedule size can be smaller than default */
4991 temp &= ~(3 << 2);
4992 temp |= (FOTG210_TUNE_FLS << 2);
4993 }
4994 fotg210->command = temp;
4995
4996 /* Accept arbitrarily long scatter-gather lists */
4997 if (!hcd->localmem_pool)
4998 hcd->self.sg_tablesize = ~0;
4999 return 0;
5000 }
5001
5002 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
fotg210_run(struct usb_hcd * hcd)5003 static int fotg210_run(struct usb_hcd *hcd)
5004 {
5005 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5006 u32 temp;
5007
5008 hcd->uses_new_polling = 1;
5009
5010 /* EHCI spec section 4.1 */
5011
5012 fotg210_writel(fotg210, fotg210->periodic_dma,
5013 &fotg210->regs->frame_list);
5014 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5015 &fotg210->regs->async_next);
5016
5017 /*
5018 * hcc_params controls whether fotg210->regs->segment must (!!!)
5019 * be used; it constrains QH/ITD/SITD and QTD locations.
5020 * dma_pool consistent memory always uses segment zero.
5021 * streaming mappings for I/O buffers, like dma_map_single(),
5022 * can return segments above 4GB, if the device allows.
5023 *
5024 * NOTE: the dma mask is visible through dev->dma_mask, so
5025 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5026 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5027 * host side drivers though.
5028 */
5029 fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5030
5031 /*
5032 * Philips, Intel, and maybe others need CMD_RUN before the
5033 * root hub will detect new devices (why?); NEC doesn't
5034 */
5035 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5036 fotg210->command |= CMD_RUN;
5037 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5038 dbg_cmd(fotg210, "init", fotg210->command);
5039
5040 /*
5041 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5042 * are explicitly handed to companion controller(s), so no TT is
5043 * involved with the root hub. (Except where one is integrated,
5044 * and there's no companion controller unless maybe for USB OTG.)
5045 *
5046 * Turning on the CF flag will transfer ownership of all ports
5047 * from the companions to the EHCI controller. If any of the
5048 * companions are in the middle of a port reset at the time, it
5049 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5050 * guarantees that no resets are in progress. After we set CF,
5051 * a short delay lets the hardware catch up; new resets shouldn't
5052 * be started before the port switching actions could complete.
5053 */
5054 down_write(&ehci_cf_port_reset_rwsem);
5055 fotg210->rh_state = FOTG210_RH_RUNNING;
5056 /* unblock posted writes */
5057 fotg210_readl(fotg210, &fotg210->regs->command);
5058 usleep_range(5000, 10000);
5059 up_write(&ehci_cf_port_reset_rwsem);
5060 fotg210->last_periodic_enable = ktime_get_real();
5061
5062 temp = HC_VERSION(fotg210,
5063 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5064 fotg210_info(fotg210,
5065 "USB %x.%x started, EHCI %x.%02x\n",
5066 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5067 temp >> 8, temp & 0xff);
5068
5069 fotg210_writel(fotg210, INTR_MASK,
5070 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5071
5072 /* GRR this is run-once init(), being done every time the HC starts.
5073 * So long as they're part of class devices, we can't do it init()
5074 * since the class device isn't created that early.
5075 */
5076 create_debug_files(fotg210);
5077 create_sysfs_files(fotg210);
5078
5079 return 0;
5080 }
5081
fotg210_setup(struct usb_hcd * hcd)5082 static int fotg210_setup(struct usb_hcd *hcd)
5083 {
5084 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5085 int retval;
5086
5087 fotg210->regs = (void __iomem *)fotg210->caps +
5088 HC_LENGTH(fotg210,
5089 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5090 dbg_hcs_params(fotg210, "reset");
5091 dbg_hcc_params(fotg210, "reset");
5092
5093 /* cache this readonly data; minimize chip reads */
5094 fotg210->hcs_params = fotg210_readl(fotg210,
5095 &fotg210->caps->hcs_params);
5096
5097 fotg210->sbrn = HCD_USB2;
5098
5099 /* data structure init */
5100 retval = hcd_fotg210_init(hcd);
5101 if (retval)
5102 return retval;
5103
5104 retval = fotg210_halt(fotg210);
5105 if (retval)
5106 return retval;
5107
5108 fotg210_reset(fotg210);
5109
5110 return 0;
5111 }
5112
fotg210_irq(struct usb_hcd * hcd)5113 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5114 {
5115 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5116 u32 status, masked_status, pcd_status = 0, cmd;
5117 int bh;
5118
5119 spin_lock(&fotg210->lock);
5120
5121 status = fotg210_readl(fotg210, &fotg210->regs->status);
5122
5123 /* e.g. cardbus physical eject */
5124 if (status == ~(u32) 0) {
5125 fotg210_dbg(fotg210, "device removed\n");
5126 goto dead;
5127 }
5128
5129 /*
5130 * We don't use STS_FLR, but some controllers don't like it to
5131 * remain on, so mask it out along with the other status bits.
5132 */
5133 masked_status = status & (INTR_MASK | STS_FLR);
5134
5135 /* Shared IRQ? */
5136 if (!masked_status ||
5137 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5138 spin_unlock(&fotg210->lock);
5139 return IRQ_NONE;
5140 }
5141
5142 /* clear (just) interrupts */
5143 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5144 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5145 bh = 0;
5146
5147 /* unrequested/ignored: Frame List Rollover */
5148 dbg_status(fotg210, "irq", status);
5149
5150 /* INT, ERR, and IAA interrupt rates can be throttled */
5151
5152 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5153 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5154 if (likely((status & STS_ERR) == 0))
5155 INCR(fotg210->stats.normal);
5156 else
5157 INCR(fotg210->stats.error);
5158 bh = 1;
5159 }
5160
5161 /* complete the unlinking of some qh [4.15.2.3] */
5162 if (status & STS_IAA) {
5163
5164 /* Turn off the IAA watchdog */
5165 fotg210->enabled_hrtimer_events &=
5166 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5167
5168 /*
5169 * Mild optimization: Allow another IAAD to reset the
5170 * hrtimer, if one occurs before the next expiration.
5171 * In theory we could always cancel the hrtimer, but
5172 * tests show that about half the time it will be reset
5173 * for some other event anyway.
5174 */
5175 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5176 ++fotg210->next_hrtimer_event;
5177
5178 /* guard against (alleged) silicon errata */
5179 if (cmd & CMD_IAAD)
5180 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5181 if (fotg210->async_iaa) {
5182 INCR(fotg210->stats.iaa);
5183 end_unlink_async(fotg210);
5184 } else
5185 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5186 }
5187
5188 /* remote wakeup [4.3.1] */
5189 if (status & STS_PCD) {
5190 int pstatus;
5191 u32 __iomem *status_reg = &fotg210->regs->port_status;
5192
5193 /* kick root hub later */
5194 pcd_status = status;
5195
5196 /* resume root hub? */
5197 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5198 usb_hcd_resume_root_hub(hcd);
5199
5200 pstatus = fotg210_readl(fotg210, status_reg);
5201
5202 if (test_bit(0, &fotg210->suspended_ports) &&
5203 ((pstatus & PORT_RESUME) ||
5204 !(pstatus & PORT_SUSPEND)) &&
5205 (pstatus & PORT_PE) &&
5206 fotg210->reset_done[0] == 0) {
5207
5208 /* start 20 msec resume signaling from this port,
5209 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5210 * stop that signaling. Use 5 ms extra for safety,
5211 * like usb_port_resume() does.
5212 */
5213 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5214 set_bit(0, &fotg210->resuming_ports);
5215 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5216 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5217 }
5218 }
5219
5220 /* PCI errors [4.15.2.4] */
5221 if (unlikely((status & STS_FATAL) != 0)) {
5222 fotg210_err(fotg210, "fatal error\n");
5223 dbg_cmd(fotg210, "fatal", cmd);
5224 dbg_status(fotg210, "fatal", status);
5225 dead:
5226 usb_hc_died(hcd);
5227
5228 /* Don't let the controller do anything more */
5229 fotg210->shutdown = true;
5230 fotg210->rh_state = FOTG210_RH_STOPPING;
5231 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5232 fotg210_writel(fotg210, fotg210->command,
5233 &fotg210->regs->command);
5234 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5235 fotg210_handle_controller_death(fotg210);
5236
5237 /* Handle completions when the controller stops */
5238 bh = 0;
5239 }
5240
5241 if (bh)
5242 fotg210_work(fotg210);
5243 spin_unlock(&fotg210->lock);
5244 if (pcd_status)
5245 usb_hcd_poll_rh_status(hcd);
5246 return IRQ_HANDLED;
5247 }
5248
5249 /* non-error returns are a promise to giveback() the urb later
5250 * we drop ownership so next owner (or urb unlink) can get it
5251 *
5252 * urb + dev is in hcd.self.controller.urb_list
5253 * we're queueing TDs onto software and hardware lists
5254 *
5255 * hcd-specific init for hcpriv hasn't been done yet
5256 *
5257 * NOTE: control, bulk, and interrupt share the same code to append TDs
5258 * to a (possibly active) QH, and the same QH scanning code.
5259 */
fotg210_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)5260 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5261 gfp_t mem_flags)
5262 {
5263 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5264 struct list_head qtd_list;
5265
5266 INIT_LIST_HEAD(&qtd_list);
5267
5268 switch (usb_pipetype(urb->pipe)) {
5269 case PIPE_CONTROL:
5270 /* qh_completions() code doesn't handle all the fault cases
5271 * in multi-TD control transfers. Even 1KB is rare anyway.
5272 */
5273 if (urb->transfer_buffer_length > (16 * 1024))
5274 return -EMSGSIZE;
5275 fallthrough;
5276 /* case PIPE_BULK: */
5277 default:
5278 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5279 return -ENOMEM;
5280 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5281
5282 case PIPE_INTERRUPT:
5283 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5284 return -ENOMEM;
5285 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5286
5287 case PIPE_ISOCHRONOUS:
5288 return itd_submit(fotg210, urb, mem_flags);
5289 }
5290 }
5291
5292 /* remove from hardware lists
5293 * completions normally happen asynchronously
5294 */
5295
fotg210_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)5296 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5297 {
5298 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5299 struct fotg210_qh *qh;
5300 unsigned long flags;
5301 int rc;
5302
5303 spin_lock_irqsave(&fotg210->lock, flags);
5304 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5305 if (rc)
5306 goto done;
5307
5308 switch (usb_pipetype(urb->pipe)) {
5309 /* case PIPE_CONTROL: */
5310 /* case PIPE_BULK:*/
5311 default:
5312 qh = (struct fotg210_qh *) urb->hcpriv;
5313 if (!qh)
5314 break;
5315 switch (qh->qh_state) {
5316 case QH_STATE_LINKED:
5317 case QH_STATE_COMPLETING:
5318 start_unlink_async(fotg210, qh);
5319 break;
5320 case QH_STATE_UNLINK:
5321 case QH_STATE_UNLINK_WAIT:
5322 /* already started */
5323 break;
5324 case QH_STATE_IDLE:
5325 /* QH might be waiting for a Clear-TT-Buffer */
5326 qh_completions(fotg210, qh);
5327 break;
5328 }
5329 break;
5330
5331 case PIPE_INTERRUPT:
5332 qh = (struct fotg210_qh *) urb->hcpriv;
5333 if (!qh)
5334 break;
5335 switch (qh->qh_state) {
5336 case QH_STATE_LINKED:
5337 case QH_STATE_COMPLETING:
5338 start_unlink_intr(fotg210, qh);
5339 break;
5340 case QH_STATE_IDLE:
5341 qh_completions(fotg210, qh);
5342 break;
5343 default:
5344 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5345 qh, qh->qh_state);
5346 goto done;
5347 }
5348 break;
5349
5350 case PIPE_ISOCHRONOUS:
5351 /* itd... */
5352
5353 /* wait till next completion, do it then. */
5354 /* completion irqs can wait up to 1024 msec, */
5355 break;
5356 }
5357 done:
5358 spin_unlock_irqrestore(&fotg210->lock, flags);
5359 return rc;
5360 }
5361
5362 /* bulk qh holds the data toggle */
5363
fotg210_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5364 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5365 struct usb_host_endpoint *ep)
5366 {
5367 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5368 unsigned long flags;
5369 struct fotg210_qh *qh, *tmp;
5370
5371 /* ASSERT: any requests/urbs are being unlinked */
5372 /* ASSERT: nobody can be submitting urbs for this any more */
5373
5374 rescan:
5375 spin_lock_irqsave(&fotg210->lock, flags);
5376 qh = ep->hcpriv;
5377 if (!qh)
5378 goto done;
5379
5380 /* endpoints can be iso streams. for now, we don't
5381 * accelerate iso completions ... so spin a while.
5382 */
5383 if (qh->hw == NULL) {
5384 struct fotg210_iso_stream *stream = ep->hcpriv;
5385
5386 if (!list_empty(&stream->td_list))
5387 goto idle_timeout;
5388
5389 /* BUG_ON(!list_empty(&stream->free_list)); */
5390 kfree(stream);
5391 goto done;
5392 }
5393
5394 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5395 qh->qh_state = QH_STATE_IDLE;
5396 switch (qh->qh_state) {
5397 case QH_STATE_LINKED:
5398 case QH_STATE_COMPLETING:
5399 for (tmp = fotg210->async->qh_next.qh;
5400 tmp && tmp != qh;
5401 tmp = tmp->qh_next.qh)
5402 continue;
5403 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5404 * may already be unlinked.
5405 */
5406 if (tmp)
5407 start_unlink_async(fotg210, qh);
5408 fallthrough;
5409 case QH_STATE_UNLINK: /* wait for hw to finish? */
5410 case QH_STATE_UNLINK_WAIT:
5411 idle_timeout:
5412 spin_unlock_irqrestore(&fotg210->lock, flags);
5413 schedule_timeout_uninterruptible(1);
5414 goto rescan;
5415 case QH_STATE_IDLE: /* fully unlinked */
5416 if (qh->clearing_tt)
5417 goto idle_timeout;
5418 if (list_empty(&qh->qtd_list)) {
5419 qh_destroy(fotg210, qh);
5420 break;
5421 }
5422 fallthrough;
5423 default:
5424 /* caller was supposed to have unlinked any requests;
5425 * that's not our job. just leak this memory.
5426 */
5427 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5428 qh, ep->desc.bEndpointAddress, qh->qh_state,
5429 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5430 break;
5431 }
5432 done:
5433 ep->hcpriv = NULL;
5434 spin_unlock_irqrestore(&fotg210->lock, flags);
5435 }
5436
fotg210_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5437 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5438 struct usb_host_endpoint *ep)
5439 {
5440 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5441 struct fotg210_qh *qh;
5442 int eptype = usb_endpoint_type(&ep->desc);
5443 int epnum = usb_endpoint_num(&ep->desc);
5444 int is_out = usb_endpoint_dir_out(&ep->desc);
5445 unsigned long flags;
5446
5447 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5448 return;
5449
5450 spin_lock_irqsave(&fotg210->lock, flags);
5451 qh = ep->hcpriv;
5452
5453 /* For Bulk and Interrupt endpoints we maintain the toggle state
5454 * in the hardware; the toggle bits in udev aren't used at all.
5455 * When an endpoint is reset by usb_clear_halt() we must reset
5456 * the toggle bit in the QH.
5457 */
5458 if (qh) {
5459 usb_settoggle(qh->dev, epnum, is_out, 0);
5460 if (!list_empty(&qh->qtd_list)) {
5461 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5462 } else if (qh->qh_state == QH_STATE_LINKED ||
5463 qh->qh_state == QH_STATE_COMPLETING) {
5464
5465 /* The toggle value in the QH can't be updated
5466 * while the QH is active. Unlink it now;
5467 * re-linking will call qh_refresh().
5468 */
5469 if (eptype == USB_ENDPOINT_XFER_BULK)
5470 start_unlink_async(fotg210, qh);
5471 else
5472 start_unlink_intr(fotg210, qh);
5473 }
5474 }
5475 spin_unlock_irqrestore(&fotg210->lock, flags);
5476 }
5477
fotg210_get_frame(struct usb_hcd * hcd)5478 static int fotg210_get_frame(struct usb_hcd *hcd)
5479 {
5480 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5481
5482 return (fotg210_read_frame_index(fotg210) >> 3) %
5483 fotg210->periodic_size;
5484 }
5485
5486 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5487 * because its registers (and irq) are shared between host/gadget/otg
5488 * functions and in order to facilitate role switching we cannot
5489 * give the fotg210 driver exclusive access to those.
5490 */
5491
5492 static const struct hc_driver fotg210_fotg210_hc_driver = {
5493 .description = hcd_name,
5494 .product_desc = "Faraday USB2.0 Host Controller",
5495 .hcd_priv_size = sizeof(struct fotg210_hcd),
5496
5497 /*
5498 * generic hardware linkage
5499 */
5500 .irq = fotg210_irq,
5501 .flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
5502
5503 /*
5504 * basic lifecycle operations
5505 */
5506 .reset = hcd_fotg210_init,
5507 .start = fotg210_run,
5508 .stop = fotg210_stop,
5509 .shutdown = fotg210_shutdown,
5510
5511 /*
5512 * managing i/o requests and associated device resources
5513 */
5514 .urb_enqueue = fotg210_urb_enqueue,
5515 .urb_dequeue = fotg210_urb_dequeue,
5516 .endpoint_disable = fotg210_endpoint_disable,
5517 .endpoint_reset = fotg210_endpoint_reset,
5518
5519 /*
5520 * scheduling support
5521 */
5522 .get_frame_number = fotg210_get_frame,
5523
5524 /*
5525 * root hub support
5526 */
5527 .hub_status_data = fotg210_hub_status_data,
5528 .hub_control = fotg210_hub_control,
5529 .bus_suspend = fotg210_bus_suspend,
5530 .bus_resume = fotg210_bus_resume,
5531
5532 .relinquish_port = fotg210_relinquish_port,
5533 .port_handed_over = fotg210_port_handed_over,
5534
5535 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5536 };
5537
fotg210_init(struct fotg210_hcd * fotg210)5538 static void fotg210_init(struct fotg210_hcd *fotg210)
5539 {
5540 u32 value;
5541
5542 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5543 &fotg210->regs->gmir);
5544
5545 value = ioread32(&fotg210->regs->otgcsr);
5546 value &= ~OTGCSR_A_BUS_DROP;
5547 value |= OTGCSR_A_BUS_REQ;
5548 iowrite32(value, &fotg210->regs->otgcsr);
5549 }
5550
5551 /*
5552 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5553 *
5554 * Allocates basic resources for this USB host controller, and
5555 * then invokes the start() method for the HCD associated with it
5556 * through the hotplug entry's driver_data.
5557 */
fotg210_hcd_probe(struct platform_device * pdev,struct fotg210 * fotg)5558 int fotg210_hcd_probe(struct platform_device *pdev, struct fotg210 *fotg)
5559 {
5560 struct device *dev = &pdev->dev;
5561 struct usb_hcd *hcd;
5562 int irq;
5563 int retval;
5564 struct fotg210_hcd *fotg210;
5565
5566 if (usb_disabled())
5567 return -ENODEV;
5568
5569 pdev->dev.power.power_state = PMSG_ON;
5570
5571 irq = platform_get_irq(pdev, 0);
5572 if (irq < 0)
5573 return irq;
5574
5575 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5576 dev_name(dev));
5577 if (!hcd) {
5578 retval = dev_err_probe(dev, -ENOMEM, "failed to create hcd\n");
5579 goto fail_create_hcd;
5580 }
5581
5582 hcd->has_tt = 1;
5583
5584 hcd->regs = fotg->base;
5585
5586 hcd->rsrc_start = fotg->res->start;
5587 hcd->rsrc_len = resource_size(fotg->res);
5588
5589 fotg210 = hcd_to_fotg210(hcd);
5590
5591 fotg210->fotg = fotg;
5592 fotg210->caps = hcd->regs;
5593
5594 retval = fotg210_setup(hcd);
5595 if (retval)
5596 goto failed_put_hcd;
5597
5598 fotg210_init(fotg210);
5599
5600 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5601 if (retval) {
5602 dev_err_probe(dev, retval, "failed to add hcd\n");
5603 goto failed_put_hcd;
5604 }
5605 device_wakeup_enable(hcd->self.controller);
5606 platform_set_drvdata(pdev, hcd);
5607
5608 return retval;
5609
5610 failed_put_hcd:
5611 usb_put_hcd(hcd);
5612 fail_create_hcd:
5613 return dev_err_probe(dev, retval, "init %s fail\n", dev_name(dev));
5614 }
5615
5616 /*
5617 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5618 * @dev: USB Host Controller being removed
5619 *
5620 */
fotg210_hcd_remove(struct platform_device * pdev)5621 int fotg210_hcd_remove(struct platform_device *pdev)
5622 {
5623 struct usb_hcd *hcd = platform_get_drvdata(pdev);
5624
5625 usb_remove_hcd(hcd);
5626 usb_put_hcd(hcd);
5627
5628 return 0;
5629 }
5630
fotg210_hcd_init(void)5631 int __init fotg210_hcd_init(void)
5632 {
5633 if (usb_disabled())
5634 return -ENODEV;
5635
5636 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5637 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5638 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5639 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5640
5641 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5642 hcd_name, sizeof(struct fotg210_qh),
5643 sizeof(struct fotg210_qtd),
5644 sizeof(struct fotg210_itd));
5645
5646 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5647
5648 return 0;
5649 }
5650
fotg210_hcd_cleanup(void)5651 void __exit fotg210_hcd_cleanup(void)
5652 {
5653 debugfs_remove(fotg210_debug_root);
5654 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5655 }
5656