1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
4 * Author: Chao Xie <chao.xie@marvell.com>
5 * Neil Zhang <zhangwm@marvell.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/ioport.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/moduleparam.h>
23 #include <linux/device.h>
24 #include <linux/usb/ch9.h>
25 #include <linux/usb/gadget.h>
26 #include <linux/usb/otg.h>
27 #include <linux/pm.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/clk.h>
32 #include <linux/platform_data/mv_usb.h>
33 #include <asm/unaligned.h>
34
35 #include "mv_udc.h"
36
37 #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
38
39 #define ep_dir(ep) (((ep)->ep_num == 0) ? \
40 ((ep)->udc->ep0_dir) : ((ep)->direction))
41
42 /* timeout value -- usec */
43 #define RESET_TIMEOUT 10000
44 #define FLUSH_TIMEOUT 10000
45 #define EPSTATUS_TIMEOUT 10000
46 #define PRIME_TIMEOUT 10000
47 #define READSAFE_TIMEOUT 1000
48
49 #define LOOPS_USEC_SHIFT 1
50 #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
51 #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
52
53 static DECLARE_COMPLETION(release_done);
54
55 static const char driver_name[] = "mv_udc";
56
57 static void nuke(struct mv_ep *ep, int status);
58 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
59
60 /* for endpoint 0 operations */
61 static const struct usb_endpoint_descriptor mv_ep0_desc = {
62 .bLength = USB_DT_ENDPOINT_SIZE,
63 .bDescriptorType = USB_DT_ENDPOINT,
64 .bEndpointAddress = 0,
65 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
66 .wMaxPacketSize = EP0_MAX_PKT_SIZE,
67 };
68
ep0_reset(struct mv_udc * udc)69 static void ep0_reset(struct mv_udc *udc)
70 {
71 struct mv_ep *ep;
72 u32 epctrlx;
73 int i = 0;
74
75 /* ep0 in and out */
76 for (i = 0; i < 2; i++) {
77 ep = &udc->eps[i];
78 ep->udc = udc;
79
80 /* ep0 dQH */
81 ep->dqh = &udc->ep_dqh[i];
82
83 /* configure ep0 endpoint capabilities in dQH */
84 ep->dqh->max_packet_length =
85 (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
86 | EP_QUEUE_HEAD_IOS;
87
88 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
89
90 epctrlx = readl(&udc->op_regs->epctrlx[0]);
91 if (i) { /* TX */
92 epctrlx |= EPCTRL_TX_ENABLE
93 | (USB_ENDPOINT_XFER_CONTROL
94 << EPCTRL_TX_EP_TYPE_SHIFT);
95
96 } else { /* RX */
97 epctrlx |= EPCTRL_RX_ENABLE
98 | (USB_ENDPOINT_XFER_CONTROL
99 << EPCTRL_RX_EP_TYPE_SHIFT);
100 }
101
102 writel(epctrlx, &udc->op_regs->epctrlx[0]);
103 }
104 }
105
106 /* protocol ep0 stall, will automatically be cleared on new transaction */
ep0_stall(struct mv_udc * udc)107 static void ep0_stall(struct mv_udc *udc)
108 {
109 u32 epctrlx;
110
111 /* set TX and RX to stall */
112 epctrlx = readl(&udc->op_regs->epctrlx[0]);
113 epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
114 writel(epctrlx, &udc->op_regs->epctrlx[0]);
115
116 /* update ep0 state */
117 udc->ep0_state = WAIT_FOR_SETUP;
118 udc->ep0_dir = EP_DIR_OUT;
119 }
120
process_ep_req(struct mv_udc * udc,int index,struct mv_req * curr_req)121 static int process_ep_req(struct mv_udc *udc, int index,
122 struct mv_req *curr_req)
123 {
124 struct mv_dtd *curr_dtd;
125 struct mv_dqh *curr_dqh;
126 int actual, remaining_length;
127 int i, direction;
128 int retval = 0;
129 u32 errors;
130 u32 bit_pos;
131
132 curr_dqh = &udc->ep_dqh[index];
133 direction = index % 2;
134
135 curr_dtd = curr_req->head;
136 actual = curr_req->req.length;
137
138 for (i = 0; i < curr_req->dtd_count; i++) {
139 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
140 dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
141 udc->eps[index].name);
142 return 1;
143 }
144
145 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
146 if (!errors) {
147 remaining_length =
148 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
149 >> DTD_LENGTH_BIT_POS;
150 actual -= remaining_length;
151
152 if (remaining_length) {
153 if (direction) {
154 dev_dbg(&udc->dev->dev,
155 "TX dTD remains data\n");
156 retval = -EPROTO;
157 break;
158 } else
159 break;
160 }
161 } else {
162 dev_info(&udc->dev->dev,
163 "complete_tr error: ep=%d %s: error = 0x%x\n",
164 index >> 1, direction ? "SEND" : "RECV",
165 errors);
166 if (errors & DTD_STATUS_HALTED) {
167 /* Clear the errors and Halt condition */
168 curr_dqh->size_ioc_int_sts &= ~errors;
169 retval = -EPIPE;
170 } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
171 retval = -EPROTO;
172 } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
173 retval = -EILSEQ;
174 }
175 }
176 if (i != curr_req->dtd_count - 1)
177 curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
178 }
179 if (retval)
180 return retval;
181
182 if (direction == EP_DIR_OUT)
183 bit_pos = 1 << curr_req->ep->ep_num;
184 else
185 bit_pos = 1 << (16 + curr_req->ep->ep_num);
186
187 while (curr_dqh->curr_dtd_ptr == curr_dtd->td_dma) {
188 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
189 while (readl(&udc->op_regs->epstatus) & bit_pos)
190 udelay(1);
191 break;
192 }
193 udelay(1);
194 }
195
196 curr_req->req.actual = actual;
197
198 return 0;
199 }
200
201 /*
202 * done() - retire a request; caller blocked irqs
203 * @status : request status to be set, only works when
204 * request is still in progress.
205 */
done(struct mv_ep * ep,struct mv_req * req,int status)206 static void done(struct mv_ep *ep, struct mv_req *req, int status)
207 __releases(&ep->udc->lock)
208 __acquires(&ep->udc->lock)
209 {
210 struct mv_udc *udc = NULL;
211 unsigned char stopped = ep->stopped;
212 struct mv_dtd *curr_td, *next_td;
213 int j;
214
215 udc = (struct mv_udc *)ep->udc;
216 /* Removed the req from fsl_ep->queue */
217 list_del_init(&req->queue);
218
219 /* req.status should be set as -EINPROGRESS in ep_queue() */
220 if (req->req.status == -EINPROGRESS)
221 req->req.status = status;
222 else
223 status = req->req.status;
224
225 /* Free dtd for the request */
226 next_td = req->head;
227 for (j = 0; j < req->dtd_count; j++) {
228 curr_td = next_td;
229 if (j != req->dtd_count - 1)
230 next_td = curr_td->next_dtd_virt;
231 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
232 }
233
234 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
235
236 if (status && (status != -ESHUTDOWN))
237 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
238 ep->ep.name, &req->req, status,
239 req->req.actual, req->req.length);
240
241 ep->stopped = 1;
242
243 spin_unlock(&ep->udc->lock);
244
245 usb_gadget_giveback_request(&ep->ep, &req->req);
246
247 spin_lock(&ep->udc->lock);
248 ep->stopped = stopped;
249 }
250
queue_dtd(struct mv_ep * ep,struct mv_req * req)251 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
252 {
253 struct mv_udc *udc;
254 struct mv_dqh *dqh;
255 u32 bit_pos, direction;
256 u32 usbcmd, epstatus;
257 unsigned int loops;
258 int retval = 0;
259
260 udc = ep->udc;
261 direction = ep_dir(ep);
262 dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
263 bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
264
265 /* check if the pipe is empty */
266 if (!(list_empty(&ep->queue))) {
267 struct mv_req *lastreq;
268 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
269 lastreq->tail->dtd_next =
270 req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
271
272 wmb();
273
274 if (readl(&udc->op_regs->epprime) & bit_pos)
275 goto done;
276
277 loops = LOOPS(READSAFE_TIMEOUT);
278 while (1) {
279 /* start with setting the semaphores */
280 usbcmd = readl(&udc->op_regs->usbcmd);
281 usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
282 writel(usbcmd, &udc->op_regs->usbcmd);
283
284 /* read the endpoint status */
285 epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
286
287 /*
288 * Reread the ATDTW semaphore bit to check if it is
289 * cleared. When hardware see a hazard, it will clear
290 * the bit or else we remain set to 1 and we can
291 * proceed with priming of endpoint if not already
292 * primed.
293 */
294 if (readl(&udc->op_regs->usbcmd)
295 & USBCMD_ATDTW_TRIPWIRE_SET)
296 break;
297
298 loops--;
299 if (loops == 0) {
300 dev_err(&udc->dev->dev,
301 "Timeout for ATDTW_TRIPWIRE...\n");
302 retval = -ETIME;
303 goto done;
304 }
305 udelay(LOOPS_USEC);
306 }
307
308 /* Clear the semaphore */
309 usbcmd = readl(&udc->op_regs->usbcmd);
310 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
311 writel(usbcmd, &udc->op_regs->usbcmd);
312
313 if (epstatus)
314 goto done;
315 }
316
317 /* Write dQH next pointer and terminate bit to 0 */
318 dqh->next_dtd_ptr = req->head->td_dma
319 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
320
321 /* clear active and halt bit, in case set from a previous error */
322 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
323
324 /* Ensure that updates to the QH will occur before priming. */
325 wmb();
326
327 /* Prime the Endpoint */
328 writel(bit_pos, &udc->op_regs->epprime);
329
330 done:
331 return retval;
332 }
333
build_dtd(struct mv_req * req,unsigned * length,dma_addr_t * dma,int * is_last)334 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
335 dma_addr_t *dma, int *is_last)
336 {
337 struct mv_dtd *dtd;
338 struct mv_udc *udc;
339 struct mv_dqh *dqh;
340 u32 temp, mult = 0;
341
342 /* how big will this transfer be? */
343 if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
344 dqh = req->ep->dqh;
345 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
346 & 0x3;
347 *length = min(req->req.length - req->req.actual,
348 (unsigned)(mult * req->ep->ep.maxpacket));
349 } else
350 *length = min(req->req.length - req->req.actual,
351 (unsigned)EP_MAX_LENGTH_TRANSFER);
352
353 udc = req->ep->udc;
354
355 /*
356 * Be careful that no _GFP_HIGHMEM is set,
357 * or we can not use dma_to_virt
358 */
359 dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
360 if (dtd == NULL)
361 return dtd;
362
363 dtd->td_dma = *dma;
364 /* initialize buffer page pointers */
365 temp = (u32)(req->req.dma + req->req.actual);
366 dtd->buff_ptr0 = cpu_to_le32(temp);
367 temp &= ~0xFFF;
368 dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
369 dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
370 dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
371 dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
372
373 req->req.actual += *length;
374
375 /* zlp is needed if req->req.zero is set */
376 if (req->req.zero) {
377 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
378 *is_last = 1;
379 else
380 *is_last = 0;
381 } else if (req->req.length == req->req.actual)
382 *is_last = 1;
383 else
384 *is_last = 0;
385
386 /* Fill in the transfer size; set active bit */
387 temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
388
389 /* Enable interrupt for the last dtd of a request */
390 if (*is_last && !req->req.no_interrupt)
391 temp |= DTD_IOC;
392
393 temp |= mult << 10;
394
395 dtd->size_ioc_sts = temp;
396
397 mb();
398
399 return dtd;
400 }
401
402 /* generate dTD linked list for a request */
req_to_dtd(struct mv_req * req)403 static int req_to_dtd(struct mv_req *req)
404 {
405 unsigned count;
406 int is_last, is_first = 1;
407 struct mv_dtd *dtd, *last_dtd = NULL;
408 dma_addr_t dma;
409
410 do {
411 dtd = build_dtd(req, &count, &dma, &is_last);
412 if (dtd == NULL)
413 return -ENOMEM;
414
415 if (is_first) {
416 is_first = 0;
417 req->head = dtd;
418 } else {
419 last_dtd->dtd_next = dma;
420 last_dtd->next_dtd_virt = dtd;
421 }
422 last_dtd = dtd;
423 req->dtd_count++;
424 } while (!is_last);
425
426 /* set terminate bit to 1 for the last dTD */
427 dtd->dtd_next = DTD_NEXT_TERMINATE;
428
429 req->tail = dtd;
430
431 return 0;
432 }
433
mv_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)434 static int mv_ep_enable(struct usb_ep *_ep,
435 const struct usb_endpoint_descriptor *desc)
436 {
437 struct mv_udc *udc;
438 struct mv_ep *ep;
439 struct mv_dqh *dqh;
440 u16 max = 0;
441 u32 bit_pos, epctrlx, direction;
442 const unsigned char zlt = 1;
443 unsigned char ios, mult;
444 unsigned long flags;
445
446 ep = container_of(_ep, struct mv_ep, ep);
447 udc = ep->udc;
448
449 if (!_ep || !desc
450 || desc->bDescriptorType != USB_DT_ENDPOINT)
451 return -EINVAL;
452
453 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
454 return -ESHUTDOWN;
455
456 direction = ep_dir(ep);
457 max = usb_endpoint_maxp(desc);
458
459 /*
460 * disable HW zero length termination select
461 * driver handles zero length packet through req->req.zero
462 */
463 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
464
465 /* Check if the Endpoint is Primed */
466 if ((readl(&udc->op_regs->epprime) & bit_pos)
467 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
468 dev_info(&udc->dev->dev,
469 "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
470 " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
471 (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
472 (unsigned)readl(&udc->op_regs->epprime),
473 (unsigned)readl(&udc->op_regs->epstatus),
474 (unsigned)bit_pos);
475 goto en_done;
476 }
477
478 /* Set the max packet length, interrupt on Setup and Mult fields */
479 ios = 0;
480 mult = 0;
481 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
482 case USB_ENDPOINT_XFER_BULK:
483 case USB_ENDPOINT_XFER_INT:
484 break;
485 case USB_ENDPOINT_XFER_CONTROL:
486 ios = 1;
487 break;
488 case USB_ENDPOINT_XFER_ISOC:
489 /* Calculate transactions needed for high bandwidth iso */
490 mult = usb_endpoint_maxp_mult(desc);
491 /* 3 transactions at most */
492 if (mult > 3)
493 goto en_done;
494 break;
495 default:
496 goto en_done;
497 }
498
499 spin_lock_irqsave(&udc->lock, flags);
500 /* Get the endpoint queue head address */
501 dqh = ep->dqh;
502 dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
503 | (mult << EP_QUEUE_HEAD_MULT_POS)
504 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
505 | (ios ? EP_QUEUE_HEAD_IOS : 0);
506 dqh->next_dtd_ptr = 1;
507 dqh->size_ioc_int_sts = 0;
508
509 ep->ep.maxpacket = max;
510 ep->ep.desc = desc;
511 ep->stopped = 0;
512
513 /* Enable the endpoint for Rx or Tx and set the endpoint type */
514 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
515 if (direction == EP_DIR_IN) {
516 epctrlx &= ~EPCTRL_TX_ALL_MASK;
517 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
518 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
519 << EPCTRL_TX_EP_TYPE_SHIFT);
520 } else {
521 epctrlx &= ~EPCTRL_RX_ALL_MASK;
522 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
523 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
524 << EPCTRL_RX_EP_TYPE_SHIFT);
525 }
526 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
527
528 /*
529 * Implement Guideline (GL# USB-7) The unused endpoint type must
530 * be programmed to bulk.
531 */
532 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
533 if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
534 epctrlx |= (USB_ENDPOINT_XFER_BULK
535 << EPCTRL_RX_EP_TYPE_SHIFT);
536 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
537 }
538
539 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
540 if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
541 epctrlx |= (USB_ENDPOINT_XFER_BULK
542 << EPCTRL_TX_EP_TYPE_SHIFT);
543 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
544 }
545
546 spin_unlock_irqrestore(&udc->lock, flags);
547
548 return 0;
549 en_done:
550 return -EINVAL;
551 }
552
mv_ep_disable(struct usb_ep * _ep)553 static int mv_ep_disable(struct usb_ep *_ep)
554 {
555 struct mv_udc *udc;
556 struct mv_ep *ep;
557 struct mv_dqh *dqh;
558 u32 epctrlx, direction;
559 unsigned long flags;
560
561 ep = container_of(_ep, struct mv_ep, ep);
562 if ((_ep == NULL) || !ep->ep.desc)
563 return -EINVAL;
564
565 udc = ep->udc;
566
567 /* Get the endpoint queue head address */
568 dqh = ep->dqh;
569
570 spin_lock_irqsave(&udc->lock, flags);
571
572 direction = ep_dir(ep);
573
574 /* Reset the max packet length and the interrupt on Setup */
575 dqh->max_packet_length = 0;
576
577 /* Disable the endpoint for Rx or Tx and reset the endpoint type */
578 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
579 epctrlx &= ~((direction == EP_DIR_IN)
580 ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
581 : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
582 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
583
584 /* nuke all pending requests (does flush) */
585 nuke(ep, -ESHUTDOWN);
586
587 ep->ep.desc = NULL;
588 ep->stopped = 1;
589
590 spin_unlock_irqrestore(&udc->lock, flags);
591
592 return 0;
593 }
594
595 static struct usb_request *
mv_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)596 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
597 {
598 struct mv_req *req = NULL;
599
600 req = kzalloc(sizeof *req, gfp_flags);
601 if (!req)
602 return NULL;
603
604 req->req.dma = DMA_ADDR_INVALID;
605 INIT_LIST_HEAD(&req->queue);
606
607 return &req->req;
608 }
609
mv_free_request(struct usb_ep * _ep,struct usb_request * _req)610 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
611 {
612 struct mv_req *req = NULL;
613
614 req = container_of(_req, struct mv_req, req);
615
616 if (_req)
617 kfree(req);
618 }
619
mv_ep_fifo_flush(struct usb_ep * _ep)620 static void mv_ep_fifo_flush(struct usb_ep *_ep)
621 {
622 struct mv_udc *udc;
623 u32 bit_pos, direction;
624 struct mv_ep *ep;
625 unsigned int loops;
626
627 if (!_ep)
628 return;
629
630 ep = container_of(_ep, struct mv_ep, ep);
631 if (!ep->ep.desc)
632 return;
633
634 udc = ep->udc;
635 direction = ep_dir(ep);
636
637 if (ep->ep_num == 0)
638 bit_pos = (1 << 16) | 1;
639 else if (direction == EP_DIR_OUT)
640 bit_pos = 1 << ep->ep_num;
641 else
642 bit_pos = 1 << (16 + ep->ep_num);
643
644 loops = LOOPS(EPSTATUS_TIMEOUT);
645 do {
646 unsigned int inter_loops;
647
648 if (loops == 0) {
649 dev_err(&udc->dev->dev,
650 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
651 (unsigned)readl(&udc->op_regs->epstatus),
652 (unsigned)bit_pos);
653 return;
654 }
655 /* Write 1 to the Flush register */
656 writel(bit_pos, &udc->op_regs->epflush);
657
658 /* Wait until flushing completed */
659 inter_loops = LOOPS(FLUSH_TIMEOUT);
660 while (readl(&udc->op_regs->epflush)) {
661 /*
662 * ENDPTFLUSH bit should be cleared to indicate this
663 * operation is complete
664 */
665 if (inter_loops == 0) {
666 dev_err(&udc->dev->dev,
667 "TIMEOUT for ENDPTFLUSH=0x%x,"
668 "bit_pos=0x%x\n",
669 (unsigned)readl(&udc->op_regs->epflush),
670 (unsigned)bit_pos);
671 return;
672 }
673 inter_loops--;
674 udelay(LOOPS_USEC);
675 }
676 loops--;
677 } while (readl(&udc->op_regs->epstatus) & bit_pos);
678 }
679
680 /* queues (submits) an I/O request to an endpoint */
681 static int
mv_ep_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)682 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
683 {
684 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
685 struct mv_req *req = container_of(_req, struct mv_req, req);
686 struct mv_udc *udc = ep->udc;
687 unsigned long flags;
688 int retval;
689
690 /* catch various bogus parameters */
691 if (!_req || !req->req.complete || !req->req.buf
692 || !list_empty(&req->queue)) {
693 dev_err(&udc->dev->dev, "%s, bad params", __func__);
694 return -EINVAL;
695 }
696 if (unlikely(!_ep || !ep->ep.desc)) {
697 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
698 return -EINVAL;
699 }
700
701 udc = ep->udc;
702 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
703 return -ESHUTDOWN;
704
705 req->ep = ep;
706
707 /* map virtual address to hardware */
708 retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
709 if (retval)
710 return retval;
711
712 req->req.status = -EINPROGRESS;
713 req->req.actual = 0;
714 req->dtd_count = 0;
715
716 spin_lock_irqsave(&udc->lock, flags);
717
718 /* build dtds and push them to device queue */
719 if (!req_to_dtd(req)) {
720 retval = queue_dtd(ep, req);
721 if (retval) {
722 spin_unlock_irqrestore(&udc->lock, flags);
723 dev_err(&udc->dev->dev, "Failed to queue dtd\n");
724 goto err_unmap_dma;
725 }
726 } else {
727 spin_unlock_irqrestore(&udc->lock, flags);
728 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
729 retval = -ENOMEM;
730 goto err_unmap_dma;
731 }
732
733 /* Update ep0 state */
734 if (ep->ep_num == 0)
735 udc->ep0_state = DATA_STATE_XMIT;
736
737 /* irq handler advances the queue */
738 list_add_tail(&req->queue, &ep->queue);
739 spin_unlock_irqrestore(&udc->lock, flags);
740
741 return 0;
742
743 err_unmap_dma:
744 usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
745
746 return retval;
747 }
748
mv_prime_ep(struct mv_ep * ep,struct mv_req * req)749 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
750 {
751 struct mv_dqh *dqh = ep->dqh;
752 u32 bit_pos;
753
754 /* Write dQH next pointer and terminate bit to 0 */
755 dqh->next_dtd_ptr = req->head->td_dma
756 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
757
758 /* clear active and halt bit, in case set from a previous error */
759 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
760
761 /* Ensure that updates to the QH will occure before priming. */
762 wmb();
763
764 bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
765
766 /* Prime the Endpoint */
767 writel(bit_pos, &ep->udc->op_regs->epprime);
768 }
769
770 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
mv_ep_dequeue(struct usb_ep * _ep,struct usb_request * _req)771 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
772 {
773 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
774 struct mv_req *req = NULL, *iter;
775 struct mv_udc *udc = ep->udc;
776 unsigned long flags;
777 int stopped, ret = 0;
778 u32 epctrlx;
779
780 if (!_ep || !_req)
781 return -EINVAL;
782
783 spin_lock_irqsave(&ep->udc->lock, flags);
784 stopped = ep->stopped;
785
786 /* Stop the ep before we deal with the queue */
787 ep->stopped = 1;
788 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
789 if (ep_dir(ep) == EP_DIR_IN)
790 epctrlx &= ~EPCTRL_TX_ENABLE;
791 else
792 epctrlx &= ~EPCTRL_RX_ENABLE;
793 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
794
795 /* make sure it's actually queued on this endpoint */
796 list_for_each_entry(iter, &ep->queue, queue) {
797 if (&iter->req != _req)
798 continue;
799 req = iter;
800 break;
801 }
802 if (!req) {
803 ret = -EINVAL;
804 goto out;
805 }
806
807 /* The request is in progress, or completed but not dequeued */
808 if (ep->queue.next == &req->queue) {
809 _req->status = -ECONNRESET;
810 mv_ep_fifo_flush(_ep); /* flush current transfer */
811
812 /* The request isn't the last request in this ep queue */
813 if (req->queue.next != &ep->queue) {
814 struct mv_req *next_req;
815
816 next_req = list_entry(req->queue.next,
817 struct mv_req, queue);
818
819 /* Point the QH to the first TD of next request */
820 mv_prime_ep(ep, next_req);
821 } else {
822 struct mv_dqh *qh;
823
824 qh = ep->dqh;
825 qh->next_dtd_ptr = 1;
826 qh->size_ioc_int_sts = 0;
827 }
828
829 /* The request hasn't been processed, patch up the TD chain */
830 } else {
831 struct mv_req *prev_req;
832
833 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
834 writel(readl(&req->tail->dtd_next),
835 &prev_req->tail->dtd_next);
836
837 }
838
839 done(ep, req, -ECONNRESET);
840
841 /* Enable EP */
842 out:
843 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
844 if (ep_dir(ep) == EP_DIR_IN)
845 epctrlx |= EPCTRL_TX_ENABLE;
846 else
847 epctrlx |= EPCTRL_RX_ENABLE;
848 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
849 ep->stopped = stopped;
850
851 spin_unlock_irqrestore(&ep->udc->lock, flags);
852 return ret;
853 }
854
ep_set_stall(struct mv_udc * udc,u8 ep_num,u8 direction,int stall)855 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
856 {
857 u32 epctrlx;
858
859 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
860
861 if (stall) {
862 if (direction == EP_DIR_IN)
863 epctrlx |= EPCTRL_TX_EP_STALL;
864 else
865 epctrlx |= EPCTRL_RX_EP_STALL;
866 } else {
867 if (direction == EP_DIR_IN) {
868 epctrlx &= ~EPCTRL_TX_EP_STALL;
869 epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
870 } else {
871 epctrlx &= ~EPCTRL_RX_EP_STALL;
872 epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
873 }
874 }
875 writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
876 }
877
ep_is_stall(struct mv_udc * udc,u8 ep_num,u8 direction)878 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
879 {
880 u32 epctrlx;
881
882 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
883
884 if (direction == EP_DIR_OUT)
885 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
886 else
887 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
888 }
889
mv_ep_set_halt_wedge(struct usb_ep * _ep,int halt,int wedge)890 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
891 {
892 struct mv_ep *ep;
893 unsigned long flags;
894 int status = 0;
895 struct mv_udc *udc;
896
897 ep = container_of(_ep, struct mv_ep, ep);
898 udc = ep->udc;
899 if (!_ep || !ep->ep.desc) {
900 status = -EINVAL;
901 goto out;
902 }
903
904 if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
905 status = -EOPNOTSUPP;
906 goto out;
907 }
908
909 /*
910 * Attempt to halt IN ep will fail if any transfer requests
911 * are still queue
912 */
913 if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
914 status = -EAGAIN;
915 goto out;
916 }
917
918 spin_lock_irqsave(&ep->udc->lock, flags);
919 ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
920 if (halt && wedge)
921 ep->wedge = 1;
922 else if (!halt)
923 ep->wedge = 0;
924 spin_unlock_irqrestore(&ep->udc->lock, flags);
925
926 if (ep->ep_num == 0) {
927 udc->ep0_state = WAIT_FOR_SETUP;
928 udc->ep0_dir = EP_DIR_OUT;
929 }
930 out:
931 return status;
932 }
933
mv_ep_set_halt(struct usb_ep * _ep,int halt)934 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
935 {
936 return mv_ep_set_halt_wedge(_ep, halt, 0);
937 }
938
mv_ep_set_wedge(struct usb_ep * _ep)939 static int mv_ep_set_wedge(struct usb_ep *_ep)
940 {
941 return mv_ep_set_halt_wedge(_ep, 1, 1);
942 }
943
944 static const struct usb_ep_ops mv_ep_ops = {
945 .enable = mv_ep_enable,
946 .disable = mv_ep_disable,
947
948 .alloc_request = mv_alloc_request,
949 .free_request = mv_free_request,
950
951 .queue = mv_ep_queue,
952 .dequeue = mv_ep_dequeue,
953
954 .set_wedge = mv_ep_set_wedge,
955 .set_halt = mv_ep_set_halt,
956 .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
957 };
958
udc_clock_enable(struct mv_udc * udc)959 static int udc_clock_enable(struct mv_udc *udc)
960 {
961 return clk_prepare_enable(udc->clk);
962 }
963
udc_clock_disable(struct mv_udc * udc)964 static void udc_clock_disable(struct mv_udc *udc)
965 {
966 clk_disable_unprepare(udc->clk);
967 }
968
udc_stop(struct mv_udc * udc)969 static void udc_stop(struct mv_udc *udc)
970 {
971 u32 tmp;
972
973 /* Disable interrupts */
974 tmp = readl(&udc->op_regs->usbintr);
975 tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
976 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
977 writel(tmp, &udc->op_regs->usbintr);
978
979 udc->stopped = 1;
980
981 /* Reset the Run the bit in the command register to stop VUSB */
982 tmp = readl(&udc->op_regs->usbcmd);
983 tmp &= ~USBCMD_RUN_STOP;
984 writel(tmp, &udc->op_regs->usbcmd);
985 }
986
udc_start(struct mv_udc * udc)987 static void udc_start(struct mv_udc *udc)
988 {
989 u32 usbintr;
990
991 usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
992 | USBINTR_PORT_CHANGE_DETECT_EN
993 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
994 /* Enable interrupts */
995 writel(usbintr, &udc->op_regs->usbintr);
996
997 udc->stopped = 0;
998
999 /* Set the Run bit in the command register */
1000 writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1001 }
1002
udc_reset(struct mv_udc * udc)1003 static int udc_reset(struct mv_udc *udc)
1004 {
1005 unsigned int loops;
1006 u32 tmp, portsc;
1007
1008 /* Stop the controller */
1009 tmp = readl(&udc->op_regs->usbcmd);
1010 tmp &= ~USBCMD_RUN_STOP;
1011 writel(tmp, &udc->op_regs->usbcmd);
1012
1013 /* Reset the controller to get default values */
1014 writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1015
1016 /* wait for reset to complete */
1017 loops = LOOPS(RESET_TIMEOUT);
1018 while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1019 if (loops == 0) {
1020 dev_err(&udc->dev->dev,
1021 "Wait for RESET completed TIMEOUT\n");
1022 return -ETIMEDOUT;
1023 }
1024 loops--;
1025 udelay(LOOPS_USEC);
1026 }
1027
1028 /* set controller to device mode */
1029 tmp = readl(&udc->op_regs->usbmode);
1030 tmp |= USBMODE_CTRL_MODE_DEVICE;
1031
1032 /* turn setup lockout off, require setup tripwire in usbcmd */
1033 tmp |= USBMODE_SETUP_LOCK_OFF;
1034
1035 writel(tmp, &udc->op_regs->usbmode);
1036
1037 writel(0x0, &udc->op_regs->epsetupstat);
1038
1039 /* Configure the Endpoint List Address */
1040 writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1041 &udc->op_regs->eplistaddr);
1042
1043 portsc = readl(&udc->op_regs->portsc[0]);
1044 if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1045 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1046
1047 if (udc->force_fs)
1048 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1049 else
1050 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1051
1052 writel(portsc, &udc->op_regs->portsc[0]);
1053
1054 tmp = readl(&udc->op_regs->epctrlx[0]);
1055 tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1056 writel(tmp, &udc->op_regs->epctrlx[0]);
1057
1058 return 0;
1059 }
1060
mv_udc_enable_internal(struct mv_udc * udc)1061 static int mv_udc_enable_internal(struct mv_udc *udc)
1062 {
1063 int retval;
1064
1065 if (udc->active)
1066 return 0;
1067
1068 dev_dbg(&udc->dev->dev, "enable udc\n");
1069 retval = udc_clock_enable(udc);
1070 if (retval)
1071 return retval;
1072
1073 if (udc->pdata->phy_init) {
1074 retval = udc->pdata->phy_init(udc->phy_regs);
1075 if (retval) {
1076 dev_err(&udc->dev->dev,
1077 "init phy error %d\n", retval);
1078 udc_clock_disable(udc);
1079 return retval;
1080 }
1081 }
1082 udc->active = 1;
1083
1084 return 0;
1085 }
1086
mv_udc_enable(struct mv_udc * udc)1087 static int mv_udc_enable(struct mv_udc *udc)
1088 {
1089 if (udc->clock_gating)
1090 return mv_udc_enable_internal(udc);
1091
1092 return 0;
1093 }
1094
mv_udc_disable_internal(struct mv_udc * udc)1095 static void mv_udc_disable_internal(struct mv_udc *udc)
1096 {
1097 if (udc->active) {
1098 dev_dbg(&udc->dev->dev, "disable udc\n");
1099 if (udc->pdata->phy_deinit)
1100 udc->pdata->phy_deinit(udc->phy_regs);
1101 udc_clock_disable(udc);
1102 udc->active = 0;
1103 }
1104 }
1105
mv_udc_disable(struct mv_udc * udc)1106 static void mv_udc_disable(struct mv_udc *udc)
1107 {
1108 if (udc->clock_gating)
1109 mv_udc_disable_internal(udc);
1110 }
1111
mv_udc_get_frame(struct usb_gadget * gadget)1112 static int mv_udc_get_frame(struct usb_gadget *gadget)
1113 {
1114 struct mv_udc *udc;
1115 u16 retval;
1116
1117 if (!gadget)
1118 return -ENODEV;
1119
1120 udc = container_of(gadget, struct mv_udc, gadget);
1121
1122 retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1123
1124 return retval;
1125 }
1126
1127 /* Tries to wake up the host connected to this gadget */
mv_udc_wakeup(struct usb_gadget * gadget)1128 static int mv_udc_wakeup(struct usb_gadget *gadget)
1129 {
1130 struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1131 u32 portsc;
1132
1133 /* Remote wakeup feature not enabled by host */
1134 if (!udc->remote_wakeup)
1135 return -ENOTSUPP;
1136
1137 portsc = readl(&udc->op_regs->portsc);
1138 /* not suspended? */
1139 if (!(portsc & PORTSCX_PORT_SUSPEND))
1140 return 0;
1141 /* trigger force resume */
1142 portsc |= PORTSCX_PORT_FORCE_RESUME;
1143 writel(portsc, &udc->op_regs->portsc[0]);
1144 return 0;
1145 }
1146
mv_udc_vbus_session(struct usb_gadget * gadget,int is_active)1147 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1148 {
1149 struct mv_udc *udc;
1150 unsigned long flags;
1151 int retval = 0;
1152
1153 udc = container_of(gadget, struct mv_udc, gadget);
1154 spin_lock_irqsave(&udc->lock, flags);
1155
1156 udc->vbus_active = (is_active != 0);
1157
1158 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1159 __func__, udc->softconnect, udc->vbus_active);
1160
1161 if (udc->driver && udc->softconnect && udc->vbus_active) {
1162 retval = mv_udc_enable(udc);
1163 if (retval == 0) {
1164 /* Clock is disabled, need re-init registers */
1165 udc_reset(udc);
1166 ep0_reset(udc);
1167 udc_start(udc);
1168 }
1169 } else if (udc->driver && udc->softconnect) {
1170 if (!udc->active)
1171 goto out;
1172
1173 /* stop all the transfer in queue*/
1174 stop_activity(udc, udc->driver);
1175 udc_stop(udc);
1176 mv_udc_disable(udc);
1177 }
1178
1179 out:
1180 spin_unlock_irqrestore(&udc->lock, flags);
1181 return retval;
1182 }
1183
mv_udc_pullup(struct usb_gadget * gadget,int is_on)1184 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1185 {
1186 struct mv_udc *udc;
1187 unsigned long flags;
1188 int retval = 0;
1189
1190 udc = container_of(gadget, struct mv_udc, gadget);
1191 spin_lock_irqsave(&udc->lock, flags);
1192
1193 udc->softconnect = (is_on != 0);
1194
1195 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1196 __func__, udc->softconnect, udc->vbus_active);
1197
1198 if (udc->driver && udc->softconnect && udc->vbus_active) {
1199 retval = mv_udc_enable(udc);
1200 if (retval == 0) {
1201 /* Clock is disabled, need re-init registers */
1202 udc_reset(udc);
1203 ep0_reset(udc);
1204 udc_start(udc);
1205 }
1206 } else if (udc->driver && udc->vbus_active) {
1207 /* stop all the transfer in queue*/
1208 stop_activity(udc, udc->driver);
1209 udc_stop(udc);
1210 mv_udc_disable(udc);
1211 }
1212
1213 spin_unlock_irqrestore(&udc->lock, flags);
1214 return retval;
1215 }
1216
1217 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1218 static int mv_udc_stop(struct usb_gadget *);
1219 /* device controller usb_gadget_ops structure */
1220 static const struct usb_gadget_ops mv_ops = {
1221
1222 /* returns the current frame number */
1223 .get_frame = mv_udc_get_frame,
1224
1225 /* tries to wake up the host connected to this gadget */
1226 .wakeup = mv_udc_wakeup,
1227
1228 /* notify controller that VBUS is powered or not */
1229 .vbus_session = mv_udc_vbus_session,
1230
1231 /* D+ pullup, software-controlled connect/disconnect to USB host */
1232 .pullup = mv_udc_pullup,
1233 .udc_start = mv_udc_start,
1234 .udc_stop = mv_udc_stop,
1235 };
1236
eps_init(struct mv_udc * udc)1237 static int eps_init(struct mv_udc *udc)
1238 {
1239 struct mv_ep *ep;
1240 char name[14];
1241 int i;
1242
1243 /* initialize ep0 */
1244 ep = &udc->eps[0];
1245 ep->udc = udc;
1246 strncpy(ep->name, "ep0", sizeof(ep->name));
1247 ep->ep.name = ep->name;
1248 ep->ep.ops = &mv_ep_ops;
1249 ep->wedge = 0;
1250 ep->stopped = 0;
1251 usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1252 ep->ep.caps.type_control = true;
1253 ep->ep.caps.dir_in = true;
1254 ep->ep.caps.dir_out = true;
1255 ep->ep_num = 0;
1256 ep->ep.desc = &mv_ep0_desc;
1257 INIT_LIST_HEAD(&ep->queue);
1258
1259 ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1260
1261 /* initialize other endpoints */
1262 for (i = 2; i < udc->max_eps * 2; i++) {
1263 ep = &udc->eps[i];
1264 if (i % 2) {
1265 snprintf(name, sizeof(name), "ep%din", i / 2);
1266 ep->direction = EP_DIR_IN;
1267 ep->ep.caps.dir_in = true;
1268 } else {
1269 snprintf(name, sizeof(name), "ep%dout", i / 2);
1270 ep->direction = EP_DIR_OUT;
1271 ep->ep.caps.dir_out = true;
1272 }
1273 ep->udc = udc;
1274 strncpy(ep->name, name, sizeof(ep->name));
1275 ep->ep.name = ep->name;
1276
1277 ep->ep.caps.type_iso = true;
1278 ep->ep.caps.type_bulk = true;
1279 ep->ep.caps.type_int = true;
1280
1281 ep->ep.ops = &mv_ep_ops;
1282 ep->stopped = 0;
1283 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1284 ep->ep_num = i / 2;
1285
1286 INIT_LIST_HEAD(&ep->queue);
1287 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1288
1289 ep->dqh = &udc->ep_dqh[i];
1290 }
1291
1292 return 0;
1293 }
1294
1295 /* delete all endpoint requests, called with spinlock held */
nuke(struct mv_ep * ep,int status)1296 static void nuke(struct mv_ep *ep, int status)
1297 {
1298 /* called with spinlock held */
1299 ep->stopped = 1;
1300
1301 /* endpoint fifo flush */
1302 mv_ep_fifo_flush(&ep->ep);
1303
1304 while (!list_empty(&ep->queue)) {
1305 struct mv_req *req = NULL;
1306 req = list_entry(ep->queue.next, struct mv_req, queue);
1307 done(ep, req, status);
1308 }
1309 }
1310
gadget_reset(struct mv_udc * udc,struct usb_gadget_driver * driver)1311 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1312 {
1313 struct mv_ep *ep;
1314
1315 nuke(&udc->eps[0], -ESHUTDOWN);
1316
1317 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1318 nuke(ep, -ESHUTDOWN);
1319 }
1320
1321 /* report reset; the driver is already quiesced */
1322 if (driver) {
1323 spin_unlock(&udc->lock);
1324 usb_gadget_udc_reset(&udc->gadget, driver);
1325 spin_lock(&udc->lock);
1326 }
1327 }
1328 /* stop all USB activities */
stop_activity(struct mv_udc * udc,struct usb_gadget_driver * driver)1329 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1330 {
1331 struct mv_ep *ep;
1332
1333 nuke(&udc->eps[0], -ESHUTDOWN);
1334
1335 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1336 nuke(ep, -ESHUTDOWN);
1337 }
1338
1339 /* report disconnect; the driver is already quiesced */
1340 if (driver) {
1341 spin_unlock(&udc->lock);
1342 driver->disconnect(&udc->gadget);
1343 spin_lock(&udc->lock);
1344 }
1345 }
1346
mv_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1347 static int mv_udc_start(struct usb_gadget *gadget,
1348 struct usb_gadget_driver *driver)
1349 {
1350 struct mv_udc *udc;
1351 int retval = 0;
1352 unsigned long flags;
1353
1354 udc = container_of(gadget, struct mv_udc, gadget);
1355
1356 if (udc->driver)
1357 return -EBUSY;
1358
1359 spin_lock_irqsave(&udc->lock, flags);
1360
1361 /* hook up the driver ... */
1362 driver->driver.bus = NULL;
1363 udc->driver = driver;
1364
1365 udc->usb_state = USB_STATE_ATTACHED;
1366 udc->ep0_state = WAIT_FOR_SETUP;
1367 udc->ep0_dir = EP_DIR_OUT;
1368
1369 spin_unlock_irqrestore(&udc->lock, flags);
1370
1371 if (udc->transceiver) {
1372 retval = otg_set_peripheral(udc->transceiver->otg,
1373 &udc->gadget);
1374 if (retval) {
1375 dev_err(&udc->dev->dev,
1376 "unable to register peripheral to otg\n");
1377 udc->driver = NULL;
1378 return retval;
1379 }
1380 }
1381
1382 /* When boot with cable attached, there will be no vbus irq occurred */
1383 if (udc->qwork)
1384 queue_work(udc->qwork, &udc->vbus_work);
1385
1386 return 0;
1387 }
1388
mv_udc_stop(struct usb_gadget * gadget)1389 static int mv_udc_stop(struct usb_gadget *gadget)
1390 {
1391 struct mv_udc *udc;
1392 unsigned long flags;
1393
1394 udc = container_of(gadget, struct mv_udc, gadget);
1395
1396 spin_lock_irqsave(&udc->lock, flags);
1397
1398 mv_udc_enable(udc);
1399 udc_stop(udc);
1400
1401 /* stop all usb activities */
1402 udc->gadget.speed = USB_SPEED_UNKNOWN;
1403 stop_activity(udc, NULL);
1404 mv_udc_disable(udc);
1405
1406 spin_unlock_irqrestore(&udc->lock, flags);
1407
1408 /* unbind gadget driver */
1409 udc->driver = NULL;
1410
1411 return 0;
1412 }
1413
mv_set_ptc(struct mv_udc * udc,u32 mode)1414 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1415 {
1416 u32 portsc;
1417
1418 portsc = readl(&udc->op_regs->portsc[0]);
1419 portsc |= mode << 16;
1420 writel(portsc, &udc->op_regs->portsc[0]);
1421 }
1422
prime_status_complete(struct usb_ep * ep,struct usb_request * _req)1423 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1424 {
1425 struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1426 struct mv_req *req = container_of(_req, struct mv_req, req);
1427 struct mv_udc *udc;
1428 unsigned long flags;
1429
1430 udc = mvep->udc;
1431
1432 dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1433
1434 spin_lock_irqsave(&udc->lock, flags);
1435 if (req->test_mode) {
1436 mv_set_ptc(udc, req->test_mode);
1437 req->test_mode = 0;
1438 }
1439 spin_unlock_irqrestore(&udc->lock, flags);
1440 }
1441
1442 static int
udc_prime_status(struct mv_udc * udc,u8 direction,u16 status,bool empty)1443 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1444 {
1445 int retval = 0;
1446 struct mv_req *req;
1447 struct mv_ep *ep;
1448
1449 ep = &udc->eps[0];
1450 udc->ep0_dir = direction;
1451 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1452
1453 req = udc->status_req;
1454
1455 /* fill in the reqest structure */
1456 if (empty == false) {
1457 *((u16 *) req->req.buf) = cpu_to_le16(status);
1458 req->req.length = 2;
1459 } else
1460 req->req.length = 0;
1461
1462 req->ep = ep;
1463 req->req.status = -EINPROGRESS;
1464 req->req.actual = 0;
1465 if (udc->test_mode) {
1466 req->req.complete = prime_status_complete;
1467 req->test_mode = udc->test_mode;
1468 udc->test_mode = 0;
1469 } else
1470 req->req.complete = NULL;
1471 req->dtd_count = 0;
1472
1473 if (req->req.dma == DMA_ADDR_INVALID) {
1474 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1475 req->req.buf, req->req.length,
1476 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1477 req->mapped = 1;
1478 }
1479
1480 /* prime the data phase */
1481 if (!req_to_dtd(req)) {
1482 retval = queue_dtd(ep, req);
1483 if (retval) {
1484 dev_err(&udc->dev->dev,
1485 "Failed to queue dtd when prime status\n");
1486 goto out;
1487 }
1488 } else{ /* no mem */
1489 retval = -ENOMEM;
1490 dev_err(&udc->dev->dev,
1491 "Failed to dma_pool_alloc when prime status\n");
1492 goto out;
1493 }
1494
1495 list_add_tail(&req->queue, &ep->queue);
1496
1497 return 0;
1498 out:
1499 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1500
1501 return retval;
1502 }
1503
mv_udc_testmode(struct mv_udc * udc,u16 index)1504 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1505 {
1506 if (index <= USB_TEST_FORCE_ENABLE) {
1507 udc->test_mode = index;
1508 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1509 ep0_stall(udc);
1510 } else
1511 dev_err(&udc->dev->dev,
1512 "This test mode(%d) is not supported\n", index);
1513 }
1514
ch9setaddress(struct mv_udc * udc,struct usb_ctrlrequest * setup)1515 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1516 {
1517 udc->dev_addr = (u8)setup->wValue;
1518
1519 /* update usb state */
1520 udc->usb_state = USB_STATE_ADDRESS;
1521
1522 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1523 ep0_stall(udc);
1524 }
1525
ch9getstatus(struct mv_udc * udc,u8 ep_num,struct usb_ctrlrequest * setup)1526 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1527 struct usb_ctrlrequest *setup)
1528 {
1529 u16 status = 0;
1530 int retval;
1531
1532 if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1533 != (USB_DIR_IN | USB_TYPE_STANDARD))
1534 return;
1535
1536 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1537 status = 1 << USB_DEVICE_SELF_POWERED;
1538 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1539 } else if ((setup->bRequestType & USB_RECIP_MASK)
1540 == USB_RECIP_INTERFACE) {
1541 /* get interface status */
1542 status = 0;
1543 } else if ((setup->bRequestType & USB_RECIP_MASK)
1544 == USB_RECIP_ENDPOINT) {
1545 u8 ep_num, direction;
1546
1547 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1548 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1549 ? EP_DIR_IN : EP_DIR_OUT;
1550 status = ep_is_stall(udc, ep_num, direction)
1551 << USB_ENDPOINT_HALT;
1552 }
1553
1554 retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1555 if (retval)
1556 ep0_stall(udc);
1557 else
1558 udc->ep0_state = DATA_STATE_XMIT;
1559 }
1560
ch9clearfeature(struct mv_udc * udc,struct usb_ctrlrequest * setup)1561 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1562 {
1563 u8 ep_num;
1564 u8 direction;
1565 struct mv_ep *ep;
1566
1567 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1568 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1569 switch (setup->wValue) {
1570 case USB_DEVICE_REMOTE_WAKEUP:
1571 udc->remote_wakeup = 0;
1572 break;
1573 default:
1574 goto out;
1575 }
1576 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1577 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1578 switch (setup->wValue) {
1579 case USB_ENDPOINT_HALT:
1580 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1581 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1582 ? EP_DIR_IN : EP_DIR_OUT;
1583 if (setup->wValue != 0 || setup->wLength != 0
1584 || ep_num > udc->max_eps)
1585 goto out;
1586 ep = &udc->eps[ep_num * 2 + direction];
1587 if (ep->wedge == 1)
1588 break;
1589 spin_unlock(&udc->lock);
1590 ep_set_stall(udc, ep_num, direction, 0);
1591 spin_lock(&udc->lock);
1592 break;
1593 default:
1594 goto out;
1595 }
1596 } else
1597 goto out;
1598
1599 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1600 ep0_stall(udc);
1601 out:
1602 return;
1603 }
1604
ch9setfeature(struct mv_udc * udc,struct usb_ctrlrequest * setup)1605 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1606 {
1607 u8 ep_num;
1608 u8 direction;
1609
1610 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1611 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1612 switch (setup->wValue) {
1613 case USB_DEVICE_REMOTE_WAKEUP:
1614 udc->remote_wakeup = 1;
1615 break;
1616 case USB_DEVICE_TEST_MODE:
1617 if (setup->wIndex & 0xFF
1618 || udc->gadget.speed != USB_SPEED_HIGH)
1619 ep0_stall(udc);
1620
1621 if (udc->usb_state != USB_STATE_CONFIGURED
1622 && udc->usb_state != USB_STATE_ADDRESS
1623 && udc->usb_state != USB_STATE_DEFAULT)
1624 ep0_stall(udc);
1625
1626 mv_udc_testmode(udc, (setup->wIndex >> 8));
1627 goto out;
1628 default:
1629 goto out;
1630 }
1631 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1632 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1633 switch (setup->wValue) {
1634 case USB_ENDPOINT_HALT:
1635 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1636 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1637 ? EP_DIR_IN : EP_DIR_OUT;
1638 if (setup->wValue != 0 || setup->wLength != 0
1639 || ep_num > udc->max_eps)
1640 goto out;
1641 spin_unlock(&udc->lock);
1642 ep_set_stall(udc, ep_num, direction, 1);
1643 spin_lock(&udc->lock);
1644 break;
1645 default:
1646 goto out;
1647 }
1648 } else
1649 goto out;
1650
1651 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1652 ep0_stall(udc);
1653 out:
1654 return;
1655 }
1656
handle_setup_packet(struct mv_udc * udc,u8 ep_num,struct usb_ctrlrequest * setup)1657 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1658 struct usb_ctrlrequest *setup)
1659 __releases(&ep->udc->lock)
1660 __acquires(&ep->udc->lock)
1661 {
1662 bool delegate = false;
1663
1664 nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1665
1666 dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1667 setup->bRequestType, setup->bRequest,
1668 setup->wValue, setup->wIndex, setup->wLength);
1669 /* We process some standard setup requests here */
1670 if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1671 switch (setup->bRequest) {
1672 case USB_REQ_GET_STATUS:
1673 ch9getstatus(udc, ep_num, setup);
1674 break;
1675
1676 case USB_REQ_SET_ADDRESS:
1677 ch9setaddress(udc, setup);
1678 break;
1679
1680 case USB_REQ_CLEAR_FEATURE:
1681 ch9clearfeature(udc, setup);
1682 break;
1683
1684 case USB_REQ_SET_FEATURE:
1685 ch9setfeature(udc, setup);
1686 break;
1687
1688 default:
1689 delegate = true;
1690 }
1691 } else
1692 delegate = true;
1693
1694 /* delegate USB standard requests to the gadget driver */
1695 if (delegate == true) {
1696 /* USB requests handled by gadget */
1697 if (setup->wLength) {
1698 /* DATA phase from gadget, STATUS phase from udc */
1699 udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1700 ? EP_DIR_IN : EP_DIR_OUT;
1701 spin_unlock(&udc->lock);
1702 if (udc->driver->setup(&udc->gadget,
1703 &udc->local_setup_buff) < 0)
1704 ep0_stall(udc);
1705 spin_lock(&udc->lock);
1706 udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1707 ? DATA_STATE_XMIT : DATA_STATE_RECV;
1708 } else {
1709 /* no DATA phase, IN STATUS phase from gadget */
1710 udc->ep0_dir = EP_DIR_IN;
1711 spin_unlock(&udc->lock);
1712 if (udc->driver->setup(&udc->gadget,
1713 &udc->local_setup_buff) < 0)
1714 ep0_stall(udc);
1715 spin_lock(&udc->lock);
1716 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1717 }
1718 }
1719 }
1720
1721 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
ep0_req_complete(struct mv_udc * udc,struct mv_ep * ep0,struct mv_req * req)1722 static void ep0_req_complete(struct mv_udc *udc,
1723 struct mv_ep *ep0, struct mv_req *req)
1724 {
1725 u32 new_addr;
1726
1727 if (udc->usb_state == USB_STATE_ADDRESS) {
1728 /* set the new address */
1729 new_addr = (u32)udc->dev_addr;
1730 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1731 &udc->op_regs->deviceaddr);
1732 }
1733
1734 done(ep0, req, 0);
1735
1736 switch (udc->ep0_state) {
1737 case DATA_STATE_XMIT:
1738 /* receive status phase */
1739 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1740 ep0_stall(udc);
1741 break;
1742 case DATA_STATE_RECV:
1743 /* send status phase */
1744 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1745 ep0_stall(udc);
1746 break;
1747 case WAIT_FOR_OUT_STATUS:
1748 udc->ep0_state = WAIT_FOR_SETUP;
1749 break;
1750 case WAIT_FOR_SETUP:
1751 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1752 break;
1753 default:
1754 ep0_stall(udc);
1755 break;
1756 }
1757 }
1758
get_setup_data(struct mv_udc * udc,u8 ep_num,u8 * buffer_ptr)1759 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1760 {
1761 u32 temp;
1762 struct mv_dqh *dqh;
1763
1764 dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1765
1766 /* Clear bit in ENDPTSETUPSTAT */
1767 writel((1 << ep_num), &udc->op_regs->epsetupstat);
1768
1769 /* while a hazard exists when setup package arrives */
1770 do {
1771 /* Set Setup Tripwire */
1772 temp = readl(&udc->op_regs->usbcmd);
1773 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1774
1775 /* Copy the setup packet to local buffer */
1776 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1777 } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1778
1779 /* Clear Setup Tripwire */
1780 temp = readl(&udc->op_regs->usbcmd);
1781 writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1782 }
1783
irq_process_tr_complete(struct mv_udc * udc)1784 static void irq_process_tr_complete(struct mv_udc *udc)
1785 {
1786 u32 tmp, bit_pos;
1787 int i, ep_num = 0, direction = 0;
1788 struct mv_ep *curr_ep;
1789 struct mv_req *curr_req, *temp_req;
1790 int status;
1791
1792 /*
1793 * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1794 * because the setup packets are to be read ASAP
1795 */
1796
1797 /* Process all Setup packet received interrupts */
1798 tmp = readl(&udc->op_regs->epsetupstat);
1799
1800 if (tmp) {
1801 for (i = 0; i < udc->max_eps; i++) {
1802 if (tmp & (1 << i)) {
1803 get_setup_data(udc, i,
1804 (u8 *)(&udc->local_setup_buff));
1805 handle_setup_packet(udc, i,
1806 &udc->local_setup_buff);
1807 }
1808 }
1809 }
1810
1811 /* Don't clear the endpoint setup status register here.
1812 * It is cleared as a setup packet is read out of the buffer
1813 */
1814
1815 /* Process non-setup transaction complete interrupts */
1816 tmp = readl(&udc->op_regs->epcomplete);
1817
1818 if (!tmp)
1819 return;
1820
1821 writel(tmp, &udc->op_regs->epcomplete);
1822
1823 for (i = 0; i < udc->max_eps * 2; i++) {
1824 ep_num = i >> 1;
1825 direction = i % 2;
1826
1827 bit_pos = 1 << (ep_num + 16 * direction);
1828
1829 if (!(bit_pos & tmp))
1830 continue;
1831
1832 if (i == 1)
1833 curr_ep = &udc->eps[0];
1834 else
1835 curr_ep = &udc->eps[i];
1836 /* process the req queue until an uncomplete request */
1837 list_for_each_entry_safe(curr_req, temp_req,
1838 &curr_ep->queue, queue) {
1839 status = process_ep_req(udc, i, curr_req);
1840 if (status)
1841 break;
1842
1843 /* write back status to req */
1844 curr_req->req.status = status;
1845
1846 /* ep0 request completion */
1847 if (ep_num == 0) {
1848 ep0_req_complete(udc, curr_ep, curr_req);
1849 break;
1850 } else {
1851 done(curr_ep, curr_req, status);
1852 }
1853 }
1854 }
1855 }
1856
irq_process_reset(struct mv_udc * udc)1857 static void irq_process_reset(struct mv_udc *udc)
1858 {
1859 u32 tmp;
1860 unsigned int loops;
1861
1862 udc->ep0_dir = EP_DIR_OUT;
1863 udc->ep0_state = WAIT_FOR_SETUP;
1864 udc->remote_wakeup = 0; /* default to 0 on reset */
1865
1866 /* The address bits are past bit 25-31. Set the address */
1867 tmp = readl(&udc->op_regs->deviceaddr);
1868 tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1869 writel(tmp, &udc->op_regs->deviceaddr);
1870
1871 /* Clear all the setup token semaphores */
1872 tmp = readl(&udc->op_regs->epsetupstat);
1873 writel(tmp, &udc->op_regs->epsetupstat);
1874
1875 /* Clear all the endpoint complete status bits */
1876 tmp = readl(&udc->op_regs->epcomplete);
1877 writel(tmp, &udc->op_regs->epcomplete);
1878
1879 /* wait until all endptprime bits cleared */
1880 loops = LOOPS(PRIME_TIMEOUT);
1881 while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1882 if (loops == 0) {
1883 dev_err(&udc->dev->dev,
1884 "Timeout for ENDPTPRIME = 0x%x\n",
1885 readl(&udc->op_regs->epprime));
1886 break;
1887 }
1888 loops--;
1889 udelay(LOOPS_USEC);
1890 }
1891
1892 /* Write 1s to the Flush register */
1893 writel((u32)~0, &udc->op_regs->epflush);
1894
1895 if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1896 dev_info(&udc->dev->dev, "usb bus reset\n");
1897 udc->usb_state = USB_STATE_DEFAULT;
1898 /* reset all the queues, stop all USB activities */
1899 gadget_reset(udc, udc->driver);
1900 } else {
1901 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1902 readl(&udc->op_regs->portsc));
1903
1904 /*
1905 * re-initialize
1906 * controller reset
1907 */
1908 udc_reset(udc);
1909
1910 /* reset all the queues, stop all USB activities */
1911 stop_activity(udc, udc->driver);
1912
1913 /* reset ep0 dQH and endptctrl */
1914 ep0_reset(udc);
1915
1916 /* enable interrupt and set controller to run state */
1917 udc_start(udc);
1918
1919 udc->usb_state = USB_STATE_ATTACHED;
1920 }
1921 }
1922
handle_bus_resume(struct mv_udc * udc)1923 static void handle_bus_resume(struct mv_udc *udc)
1924 {
1925 udc->usb_state = udc->resume_state;
1926 udc->resume_state = 0;
1927
1928 /* report resume to the driver */
1929 if (udc->driver) {
1930 if (udc->driver->resume) {
1931 spin_unlock(&udc->lock);
1932 udc->driver->resume(&udc->gadget);
1933 spin_lock(&udc->lock);
1934 }
1935 }
1936 }
1937
irq_process_suspend(struct mv_udc * udc)1938 static void irq_process_suspend(struct mv_udc *udc)
1939 {
1940 udc->resume_state = udc->usb_state;
1941 udc->usb_state = USB_STATE_SUSPENDED;
1942
1943 if (udc->driver->suspend) {
1944 spin_unlock(&udc->lock);
1945 udc->driver->suspend(&udc->gadget);
1946 spin_lock(&udc->lock);
1947 }
1948 }
1949
irq_process_port_change(struct mv_udc * udc)1950 static void irq_process_port_change(struct mv_udc *udc)
1951 {
1952 u32 portsc;
1953
1954 portsc = readl(&udc->op_regs->portsc[0]);
1955 if (!(portsc & PORTSCX_PORT_RESET)) {
1956 /* Get the speed */
1957 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1958 switch (speed) {
1959 case PORTSCX_PORT_SPEED_HIGH:
1960 udc->gadget.speed = USB_SPEED_HIGH;
1961 break;
1962 case PORTSCX_PORT_SPEED_FULL:
1963 udc->gadget.speed = USB_SPEED_FULL;
1964 break;
1965 case PORTSCX_PORT_SPEED_LOW:
1966 udc->gadget.speed = USB_SPEED_LOW;
1967 break;
1968 default:
1969 udc->gadget.speed = USB_SPEED_UNKNOWN;
1970 break;
1971 }
1972 }
1973
1974 if (portsc & PORTSCX_PORT_SUSPEND) {
1975 udc->resume_state = udc->usb_state;
1976 udc->usb_state = USB_STATE_SUSPENDED;
1977 if (udc->driver->suspend) {
1978 spin_unlock(&udc->lock);
1979 udc->driver->suspend(&udc->gadget);
1980 spin_lock(&udc->lock);
1981 }
1982 }
1983
1984 if (!(portsc & PORTSCX_PORT_SUSPEND)
1985 && udc->usb_state == USB_STATE_SUSPENDED) {
1986 handle_bus_resume(udc);
1987 }
1988
1989 if (!udc->resume_state)
1990 udc->usb_state = USB_STATE_DEFAULT;
1991 }
1992
irq_process_error(struct mv_udc * udc)1993 static void irq_process_error(struct mv_udc *udc)
1994 {
1995 /* Increment the error count */
1996 udc->errors++;
1997 }
1998
mv_udc_irq(int irq,void * dev)1999 static irqreturn_t mv_udc_irq(int irq, void *dev)
2000 {
2001 struct mv_udc *udc = (struct mv_udc *)dev;
2002 u32 status, intr;
2003
2004 /* Disable ISR when stopped bit is set */
2005 if (udc->stopped)
2006 return IRQ_NONE;
2007
2008 spin_lock(&udc->lock);
2009
2010 status = readl(&udc->op_regs->usbsts);
2011 intr = readl(&udc->op_regs->usbintr);
2012 status &= intr;
2013
2014 if (status == 0) {
2015 spin_unlock(&udc->lock);
2016 return IRQ_NONE;
2017 }
2018
2019 /* Clear all the interrupts occurred */
2020 writel(status, &udc->op_regs->usbsts);
2021
2022 if (status & USBSTS_ERR)
2023 irq_process_error(udc);
2024
2025 if (status & USBSTS_RESET)
2026 irq_process_reset(udc);
2027
2028 if (status & USBSTS_PORT_CHANGE)
2029 irq_process_port_change(udc);
2030
2031 if (status & USBSTS_INT)
2032 irq_process_tr_complete(udc);
2033
2034 if (status & USBSTS_SUSPEND)
2035 irq_process_suspend(udc);
2036
2037 spin_unlock(&udc->lock);
2038
2039 return IRQ_HANDLED;
2040 }
2041
mv_udc_vbus_irq(int irq,void * dev)2042 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2043 {
2044 struct mv_udc *udc = (struct mv_udc *)dev;
2045
2046 /* polling VBUS and init phy may cause too much time*/
2047 if (udc->qwork)
2048 queue_work(udc->qwork, &udc->vbus_work);
2049
2050 return IRQ_HANDLED;
2051 }
2052
mv_udc_vbus_work(struct work_struct * work)2053 static void mv_udc_vbus_work(struct work_struct *work)
2054 {
2055 struct mv_udc *udc;
2056 unsigned int vbus;
2057
2058 udc = container_of(work, struct mv_udc, vbus_work);
2059 if (!udc->pdata->vbus)
2060 return;
2061
2062 vbus = udc->pdata->vbus->poll();
2063 dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2064
2065 if (vbus == VBUS_HIGH)
2066 mv_udc_vbus_session(&udc->gadget, 1);
2067 else if (vbus == VBUS_LOW)
2068 mv_udc_vbus_session(&udc->gadget, 0);
2069 }
2070
2071 /* release device structure */
gadget_release(struct device * _dev)2072 static void gadget_release(struct device *_dev)
2073 {
2074 struct mv_udc *udc;
2075
2076 udc = dev_get_drvdata(_dev);
2077
2078 complete(udc->done);
2079 }
2080
mv_udc_remove(struct platform_device * pdev)2081 static int mv_udc_remove(struct platform_device *pdev)
2082 {
2083 struct mv_udc *udc;
2084
2085 udc = platform_get_drvdata(pdev);
2086
2087 usb_del_gadget_udc(&udc->gadget);
2088
2089 if (udc->qwork)
2090 destroy_workqueue(udc->qwork);
2091
2092 /* free memory allocated in probe */
2093 dma_pool_destroy(udc->dtd_pool);
2094
2095 if (udc->ep_dqh)
2096 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2097 udc->ep_dqh, udc->ep_dqh_dma);
2098
2099 mv_udc_disable(udc);
2100
2101 /* free dev, wait for the release() finished */
2102 wait_for_completion(udc->done);
2103
2104 return 0;
2105 }
2106
mv_udc_probe(struct platform_device * pdev)2107 static int mv_udc_probe(struct platform_device *pdev)
2108 {
2109 struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2110 struct mv_udc *udc;
2111 int retval = 0;
2112 struct resource *r;
2113 size_t size;
2114
2115 if (pdata == NULL) {
2116 dev_err(&pdev->dev, "missing platform_data\n");
2117 return -ENODEV;
2118 }
2119
2120 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2121 if (udc == NULL)
2122 return -ENOMEM;
2123
2124 udc->done = &release_done;
2125 udc->pdata = dev_get_platdata(&pdev->dev);
2126 spin_lock_init(&udc->lock);
2127
2128 udc->dev = pdev;
2129
2130 if (pdata->mode == MV_USB_MODE_OTG) {
2131 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2132 USB_PHY_TYPE_USB2);
2133 if (IS_ERR(udc->transceiver)) {
2134 retval = PTR_ERR(udc->transceiver);
2135
2136 if (retval == -ENXIO)
2137 return retval;
2138
2139 udc->transceiver = NULL;
2140 return -EPROBE_DEFER;
2141 }
2142 }
2143
2144 /* udc only have one sysclk. */
2145 udc->clk = devm_clk_get(&pdev->dev, NULL);
2146 if (IS_ERR(udc->clk))
2147 return PTR_ERR(udc->clk);
2148
2149 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2150 if (r == NULL) {
2151 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2152 return -ENODEV;
2153 }
2154
2155 udc->cap_regs = (struct mv_cap_regs __iomem *)
2156 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2157 if (udc->cap_regs == NULL) {
2158 dev_err(&pdev->dev, "failed to map I/O memory\n");
2159 return -EBUSY;
2160 }
2161
2162 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2163 if (r == NULL) {
2164 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2165 return -ENODEV;
2166 }
2167
2168 udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2169 if (udc->phy_regs == NULL) {
2170 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2171 return -EBUSY;
2172 }
2173
2174 /* we will acces controller register, so enable the clk */
2175 retval = mv_udc_enable_internal(udc);
2176 if (retval)
2177 return retval;
2178
2179 udc->op_regs =
2180 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2181 + (readl(&udc->cap_regs->caplength_hciversion)
2182 & CAPLENGTH_MASK));
2183 udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2184
2185 /*
2186 * some platform will use usb to download image, it may not disconnect
2187 * usb gadget before loading kernel. So first stop udc here.
2188 */
2189 udc_stop(udc);
2190 writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2191
2192 size = udc->max_eps * sizeof(struct mv_dqh) *2;
2193 size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2194 udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2195 &udc->ep_dqh_dma, GFP_KERNEL);
2196
2197 if (udc->ep_dqh == NULL) {
2198 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2199 retval = -ENOMEM;
2200 goto err_disable_clock;
2201 }
2202 udc->ep_dqh_size = size;
2203
2204 /* create dTD dma_pool resource */
2205 udc->dtd_pool = dma_pool_create("mv_dtd",
2206 &pdev->dev,
2207 sizeof(struct mv_dtd),
2208 DTD_ALIGNMENT,
2209 DMA_BOUNDARY);
2210
2211 if (!udc->dtd_pool) {
2212 retval = -ENOMEM;
2213 goto err_free_dma;
2214 }
2215
2216 size = udc->max_eps * sizeof(struct mv_ep) *2;
2217 udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2218 if (udc->eps == NULL) {
2219 retval = -ENOMEM;
2220 goto err_destroy_dma;
2221 }
2222
2223 /* initialize ep0 status request structure */
2224 udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2225 GFP_KERNEL);
2226 if (!udc->status_req) {
2227 retval = -ENOMEM;
2228 goto err_destroy_dma;
2229 }
2230 INIT_LIST_HEAD(&udc->status_req->queue);
2231
2232 /* allocate a small amount of memory to get valid address */
2233 udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2234 udc->status_req->req.dma = DMA_ADDR_INVALID;
2235
2236 udc->resume_state = USB_STATE_NOTATTACHED;
2237 udc->usb_state = USB_STATE_POWERED;
2238 udc->ep0_dir = EP_DIR_OUT;
2239 udc->remote_wakeup = 0;
2240
2241 r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2242 if (r == NULL) {
2243 dev_err(&pdev->dev, "no IRQ resource defined\n");
2244 retval = -ENODEV;
2245 goto err_destroy_dma;
2246 }
2247 udc->irq = r->start;
2248 if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2249 IRQF_SHARED, driver_name, udc)) {
2250 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2251 udc->irq);
2252 retval = -ENODEV;
2253 goto err_destroy_dma;
2254 }
2255
2256 /* initialize gadget structure */
2257 udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
2258 udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
2259 INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
2260 udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
2261 udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2262
2263 /* the "gadget" abstracts/virtualizes the controller */
2264 udc->gadget.name = driver_name; /* gadget name */
2265
2266 eps_init(udc);
2267
2268 /* VBUS detect: we can disable/enable clock on demand.*/
2269 if (udc->transceiver)
2270 udc->clock_gating = 1;
2271 else if (pdata->vbus) {
2272 udc->clock_gating = 1;
2273 retval = devm_request_threaded_irq(&pdev->dev,
2274 pdata->vbus->irq, NULL,
2275 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2276 if (retval) {
2277 dev_info(&pdev->dev,
2278 "Can not request irq for VBUS, "
2279 "disable clock gating\n");
2280 udc->clock_gating = 0;
2281 }
2282
2283 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2284 if (!udc->qwork) {
2285 dev_err(&pdev->dev, "cannot create workqueue\n");
2286 retval = -ENOMEM;
2287 goto err_destroy_dma;
2288 }
2289
2290 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2291 }
2292
2293 /*
2294 * When clock gating is supported, we can disable clk and phy.
2295 * If not, it means that VBUS detection is not supported, we
2296 * have to enable vbus active all the time to let controller work.
2297 */
2298 if (udc->clock_gating)
2299 mv_udc_disable_internal(udc);
2300 else
2301 udc->vbus_active = 1;
2302
2303 retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2304 gadget_release);
2305 if (retval)
2306 goto err_create_workqueue;
2307
2308 platform_set_drvdata(pdev, udc);
2309 dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2310 udc->clock_gating ? "with" : "without");
2311
2312 return 0;
2313
2314 err_create_workqueue:
2315 if (udc->qwork)
2316 destroy_workqueue(udc->qwork);
2317 err_destroy_dma:
2318 dma_pool_destroy(udc->dtd_pool);
2319 err_free_dma:
2320 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2321 udc->ep_dqh, udc->ep_dqh_dma);
2322 err_disable_clock:
2323 mv_udc_disable_internal(udc);
2324
2325 return retval;
2326 }
2327
2328 #ifdef CONFIG_PM
mv_udc_suspend(struct device * dev)2329 static int mv_udc_suspend(struct device *dev)
2330 {
2331 struct mv_udc *udc;
2332
2333 udc = dev_get_drvdata(dev);
2334
2335 /* if OTG is enabled, the following will be done in OTG driver*/
2336 if (udc->transceiver)
2337 return 0;
2338
2339 if (udc->pdata->vbus && udc->pdata->vbus->poll)
2340 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2341 dev_info(&udc->dev->dev, "USB cable is connected!\n");
2342 return -EAGAIN;
2343 }
2344
2345 /*
2346 * only cable is unplugged, udc can suspend.
2347 * So do not care about clock_gating == 1.
2348 */
2349 if (!udc->clock_gating) {
2350 udc_stop(udc);
2351
2352 spin_lock_irq(&udc->lock);
2353 /* stop all usb activities */
2354 stop_activity(udc, udc->driver);
2355 spin_unlock_irq(&udc->lock);
2356
2357 mv_udc_disable_internal(udc);
2358 }
2359
2360 return 0;
2361 }
2362
mv_udc_resume(struct device * dev)2363 static int mv_udc_resume(struct device *dev)
2364 {
2365 struct mv_udc *udc;
2366 int retval;
2367
2368 udc = dev_get_drvdata(dev);
2369
2370 /* if OTG is enabled, the following will be done in OTG driver*/
2371 if (udc->transceiver)
2372 return 0;
2373
2374 if (!udc->clock_gating) {
2375 retval = mv_udc_enable_internal(udc);
2376 if (retval)
2377 return retval;
2378
2379 if (udc->driver && udc->softconnect) {
2380 udc_reset(udc);
2381 ep0_reset(udc);
2382 udc_start(udc);
2383 }
2384 }
2385
2386 return 0;
2387 }
2388
2389 static const struct dev_pm_ops mv_udc_pm_ops = {
2390 .suspend = mv_udc_suspend,
2391 .resume = mv_udc_resume,
2392 };
2393 #endif
2394
mv_udc_shutdown(struct platform_device * pdev)2395 static void mv_udc_shutdown(struct platform_device *pdev)
2396 {
2397 struct mv_udc *udc;
2398 u32 mode;
2399
2400 udc = platform_get_drvdata(pdev);
2401 /* reset controller mode to IDLE */
2402 mv_udc_enable(udc);
2403 mode = readl(&udc->op_regs->usbmode);
2404 mode &= ~3;
2405 writel(mode, &udc->op_regs->usbmode);
2406 mv_udc_disable(udc);
2407 }
2408
2409 static struct platform_driver udc_driver = {
2410 .probe = mv_udc_probe,
2411 .remove = mv_udc_remove,
2412 .shutdown = mv_udc_shutdown,
2413 .driver = {
2414 .name = "mv-udc",
2415 #ifdef CONFIG_PM
2416 .pm = &mv_udc_pm_ops,
2417 #endif
2418 },
2419 };
2420
2421 module_platform_driver(udc_driver);
2422 MODULE_ALIAS("platform:mv-udc");
2423 MODULE_DESCRIPTION(DRIVER_DESC);
2424 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2425 MODULE_LICENSE("GPL");
2426