1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * fs/f2fs/f2fs.h
4   *
5   * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6   *             http://www.samsung.com/
7   */
8  #ifndef _LINUX_F2FS_H
9  #define _LINUX_F2FS_H
10  
11  #include <linux/uio.h>
12  #include <linux/types.h>
13  #include <linux/page-flags.h>
14  #include <linux/buffer_head.h>
15  #include <linux/slab.h>
16  #include <linux/crc32.h>
17  #include <linux/magic.h>
18  #include <linux/kobject.h>
19  #include <linux/sched.h>
20  #include <linux/cred.h>
21  #include <linux/vmalloc.h>
22  #include <linux/bio.h>
23  #include <linux/blkdev.h>
24  #include <linux/quotaops.h>
25  #include <linux/part_stat.h>
26  #include <crypto/hash.h>
27  
28  #include <linux/fscrypt.h>
29  #include <linux/fsverity.h>
30  
31  #ifdef CONFIG_F2FS_CHECK_FS
32  #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33  #else
34  #define f2fs_bug_on(sbi, condition)					\
35  	do {								\
36  		if (unlikely(condition)) {				\
37  			WARN_ON(1);					\
38  			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39  		}							\
40  	} while (0)
41  #endif
42  
43  enum {
44  	FAULT_KMALLOC,
45  	FAULT_KVMALLOC,
46  	FAULT_PAGE_ALLOC,
47  	FAULT_PAGE_GET,
48  	FAULT_ALLOC_BIO,
49  	FAULT_ALLOC_NID,
50  	FAULT_ORPHAN,
51  	FAULT_BLOCK,
52  	FAULT_DIR_DEPTH,
53  	FAULT_EVICT_INODE,
54  	FAULT_TRUNCATE,
55  	FAULT_READ_IO,
56  	FAULT_CHECKPOINT,
57  	FAULT_DISCARD,
58  	FAULT_WRITE_IO,
59  	FAULT_MAX,
60  };
61  
62  #ifdef CONFIG_F2FS_FAULT_INJECTION
63  #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64  
65  struct f2fs_fault_info {
66  	atomic_t inject_ops;
67  	unsigned int inject_rate;
68  	unsigned int inject_type;
69  };
70  
71  extern const char *f2fs_fault_name[FAULT_MAX];
72  #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73  #endif
74  
75  /*
76   * For mount options
77   */
78  #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79  #define F2FS_MOUNT_DISCARD		0x00000004
80  #define F2FS_MOUNT_NOHEAP		0x00000008
81  #define F2FS_MOUNT_XATTR_USER		0x00000010
82  #define F2FS_MOUNT_POSIX_ACL		0x00000020
83  #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84  #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85  #define F2FS_MOUNT_INLINE_DATA		0x00000100
86  #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87  #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88  #define F2FS_MOUNT_NOBARRIER		0x00000800
89  #define F2FS_MOUNT_FASTBOOT		0x00001000
90  #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91  #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92  #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93  #define F2FS_MOUNT_USRQUOTA		0x00080000
94  #define F2FS_MOUNT_GRPQUOTA		0x00100000
95  #define F2FS_MOUNT_PRJQUOTA		0x00200000
96  #define F2FS_MOUNT_QUOTA		0x00400000
97  #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
98  #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
99  #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
100  #define F2FS_MOUNT_NORECOVERY		0x04000000
101  #define F2FS_MOUNT_ATGC			0x08000000
102  
103  #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104  #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105  #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106  #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107  
108  #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109  		typecheck(unsigned long long, b) &&			\
110  		((long long)((a) - (b)) > 0))
111  
112  typedef u32 block_t;	/*
113  			 * should not change u32, since it is the on-disk block
114  			 * address format, __le32.
115  			 */
116  typedef u32 nid_t;
117  
118  #define COMPRESS_EXT_NUM		16
119  
120  struct f2fs_mount_info {
121  	unsigned int opt;
122  	int write_io_size_bits;		/* Write IO size bits */
123  	block_t root_reserved_blocks;	/* root reserved blocks */
124  	kuid_t s_resuid;		/* reserved blocks for uid */
125  	kgid_t s_resgid;		/* reserved blocks for gid */
126  	int active_logs;		/* # of active logs */
127  	int inline_xattr_size;		/* inline xattr size */
128  #ifdef CONFIG_F2FS_FAULT_INJECTION
129  	struct f2fs_fault_info fault_info;	/* For fault injection */
130  #endif
131  #ifdef CONFIG_QUOTA
132  	/* Names of quota files with journalled quota */
133  	char *s_qf_names[MAXQUOTAS];
134  	int s_jquota_fmt;			/* Format of quota to use */
135  #endif
136  	/* For which write hints are passed down to block layer */
137  	int whint_mode;
138  	int alloc_mode;			/* segment allocation policy */
139  	int fsync_mode;			/* fsync policy */
140  	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
141  	int bggc_mode;			/* bggc mode: off, on or sync */
142  	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
143  	block_t unusable_cap_perc;	/* percentage for cap */
144  	block_t unusable_cap;		/* Amount of space allowed to be
145  					 * unusable when disabling checkpoint
146  					 */
147  
148  	/* For compression */
149  	unsigned char compress_algorithm;	/* algorithm type */
150  	unsigned compress_log_size;		/* cluster log size */
151  	unsigned char compress_ext_cnt;		/* extension count */
152  	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
153  };
154  
155  #define F2FS_FEATURE_ENCRYPT		0x0001
156  #define F2FS_FEATURE_BLKZONED		0x0002
157  #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
158  #define F2FS_FEATURE_EXTRA_ATTR		0x0008
159  #define F2FS_FEATURE_PRJQUOTA		0x0010
160  #define F2FS_FEATURE_INODE_CHKSUM	0x0020
161  #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
162  #define F2FS_FEATURE_QUOTA_INO		0x0080
163  #define F2FS_FEATURE_INODE_CRTIME	0x0100
164  #define F2FS_FEATURE_LOST_FOUND		0x0200
165  #define F2FS_FEATURE_VERITY		0x0400
166  #define F2FS_FEATURE_SB_CHKSUM		0x0800
167  #define F2FS_FEATURE_CASEFOLD		0x1000
168  #define F2FS_FEATURE_COMPRESSION	0x2000
169  
170  #define __F2FS_HAS_FEATURE(raw_super, mask)				\
171  	((raw_super->feature & cpu_to_le32(mask)) != 0)
172  #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
173  #define F2FS_SET_FEATURE(sbi, mask)					\
174  	(sbi->raw_super->feature |= cpu_to_le32(mask))
175  #define F2FS_CLEAR_FEATURE(sbi, mask)					\
176  	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
177  
178  /*
179   * Default values for user and/or group using reserved blocks
180   */
181  #define	F2FS_DEF_RESUID		0
182  #define	F2FS_DEF_RESGID		0
183  
184  /*
185   * For checkpoint manager
186   */
187  enum {
188  	NAT_BITMAP,
189  	SIT_BITMAP
190  };
191  
192  #define	CP_UMOUNT	0x00000001
193  #define	CP_FASTBOOT	0x00000002
194  #define	CP_SYNC		0x00000004
195  #define	CP_RECOVERY	0x00000008
196  #define	CP_DISCARD	0x00000010
197  #define CP_TRIMMED	0x00000020
198  #define CP_PAUSE	0x00000040
199  #define CP_RESIZE 	0x00000080
200  
201  #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
202  #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
203  #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
204  #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
205  #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
206  #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
207  #define DEF_CP_INTERVAL			60	/* 60 secs */
208  #define DEF_IDLE_INTERVAL		5	/* 5 secs */
209  #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
210  #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
211  #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
212  
213  struct cp_control {
214  	int reason;
215  	__u64 trim_start;
216  	__u64 trim_end;
217  	__u64 trim_minlen;
218  };
219  
220  /*
221   * indicate meta/data type
222   */
223  enum {
224  	META_CP,
225  	META_NAT,
226  	META_SIT,
227  	META_SSA,
228  	META_MAX,
229  	META_POR,
230  	DATA_GENERIC,		/* check range only */
231  	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
232  	DATA_GENERIC_ENHANCE_READ,	/*
233  					 * strong check on range and segment
234  					 * bitmap but no warning due to race
235  					 * condition of read on truncated area
236  					 * by extent_cache
237  					 */
238  	META_GENERIC,
239  };
240  
241  /* for the list of ino */
242  enum {
243  	ORPHAN_INO,		/* for orphan ino list */
244  	APPEND_INO,		/* for append ino list */
245  	UPDATE_INO,		/* for update ino list */
246  	TRANS_DIR_INO,		/* for trasactions dir ino list */
247  	FLUSH_INO,		/* for multiple device flushing */
248  	MAX_INO_ENTRY,		/* max. list */
249  };
250  
251  struct ino_entry {
252  	struct list_head list;		/* list head */
253  	nid_t ino;			/* inode number */
254  	unsigned int dirty_device;	/* dirty device bitmap */
255  };
256  
257  /* for the list of inodes to be GCed */
258  struct inode_entry {
259  	struct list_head list;	/* list head */
260  	struct inode *inode;	/* vfs inode pointer */
261  };
262  
263  struct fsync_node_entry {
264  	struct list_head list;	/* list head */
265  	struct page *page;	/* warm node page pointer */
266  	unsigned int seq_id;	/* sequence id */
267  };
268  
269  /* for the bitmap indicate blocks to be discarded */
270  struct discard_entry {
271  	struct list_head list;	/* list head */
272  	block_t start_blkaddr;	/* start blockaddr of current segment */
273  	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
274  };
275  
276  /* default discard granularity of inner discard thread, unit: block count */
277  #define DEFAULT_DISCARD_GRANULARITY		16
278  
279  /* max discard pend list number */
280  #define MAX_PLIST_NUM		512
281  #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
282  					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283  
284  enum {
285  	D_PREP,			/* initial */
286  	D_PARTIAL,		/* partially submitted */
287  	D_SUBMIT,		/* all submitted */
288  	D_DONE,			/* finished */
289  };
290  
291  struct discard_info {
292  	block_t lstart;			/* logical start address */
293  	block_t len;			/* length */
294  	block_t start;			/* actual start address in dev */
295  };
296  
297  struct discard_cmd {
298  	struct rb_node rb_node;		/* rb node located in rb-tree */
299  	union {
300  		struct {
301  			block_t lstart;	/* logical start address */
302  			block_t len;	/* length */
303  			block_t start;	/* actual start address in dev */
304  		};
305  		struct discard_info di;	/* discard info */
306  
307  	};
308  	struct list_head list;		/* command list */
309  	struct completion wait;		/* compleation */
310  	struct block_device *bdev;	/* bdev */
311  	unsigned short ref;		/* reference count */
312  	unsigned char state;		/* state */
313  	unsigned char queued;		/* queued discard */
314  	int error;			/* bio error */
315  	spinlock_t lock;		/* for state/bio_ref updating */
316  	unsigned short bio_ref;		/* bio reference count */
317  };
318  
319  enum {
320  	DPOLICY_BG,
321  	DPOLICY_FORCE,
322  	DPOLICY_FSTRIM,
323  	DPOLICY_UMOUNT,
324  	MAX_DPOLICY,
325  };
326  
327  struct discard_policy {
328  	int type;			/* type of discard */
329  	unsigned int min_interval;	/* used for candidates exist */
330  	unsigned int mid_interval;	/* used for device busy */
331  	unsigned int max_interval;	/* used for candidates not exist */
332  	unsigned int max_requests;	/* # of discards issued per round */
333  	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
334  	bool io_aware;			/* issue discard in idle time */
335  	bool sync;			/* submit discard with REQ_SYNC flag */
336  	bool ordered;			/* issue discard by lba order */
337  	bool timeout;			/* discard timeout for put_super */
338  	unsigned int granularity;	/* discard granularity */
339  };
340  
341  struct discard_cmd_control {
342  	struct task_struct *f2fs_issue_discard;	/* discard thread */
343  	struct list_head entry_list;		/* 4KB discard entry list */
344  	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345  	struct list_head wait_list;		/* store on-flushing entries */
346  	struct list_head fstrim_list;		/* in-flight discard from fstrim */
347  	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
348  	unsigned int discard_wake;		/* to wake up discard thread */
349  	struct mutex cmd_lock;
350  	unsigned int nr_discards;		/* # of discards in the list */
351  	unsigned int max_discards;		/* max. discards to be issued */
352  	unsigned int discard_granularity;	/* discard granularity */
353  	unsigned int undiscard_blks;		/* # of undiscard blocks */
354  	unsigned int next_pos;			/* next discard position */
355  	atomic_t issued_discard;		/* # of issued discard */
356  	atomic_t queued_discard;		/* # of queued discard */
357  	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
358  	struct rb_root_cached root;		/* root of discard rb-tree */
359  	bool rbtree_check;			/* config for consistence check */
360  };
361  
362  /* for the list of fsync inodes, used only during recovery */
363  struct fsync_inode_entry {
364  	struct list_head list;	/* list head */
365  	struct inode *inode;	/* vfs inode pointer */
366  	block_t blkaddr;	/* block address locating the last fsync */
367  	block_t last_dentry;	/* block address locating the last dentry */
368  };
369  
370  #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
371  #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
372  
373  #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
374  #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
375  #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
376  #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
377  
378  #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379  #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380  
update_nats_in_cursum(struct f2fs_journal * journal,int i)381  static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382  {
383  	int before = nats_in_cursum(journal);
384  
385  	journal->n_nats = cpu_to_le16(before + i);
386  	return before;
387  }
388  
update_sits_in_cursum(struct f2fs_journal * journal,int i)389  static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390  {
391  	int before = sits_in_cursum(journal);
392  
393  	journal->n_sits = cpu_to_le16(before + i);
394  	return before;
395  }
396  
__has_cursum_space(struct f2fs_journal * journal,int size,int type)397  static inline bool __has_cursum_space(struct f2fs_journal *journal,
398  							int size, int type)
399  {
400  	if (type == NAT_JOURNAL)
401  		return size <= MAX_NAT_JENTRIES(journal);
402  	return size <= MAX_SIT_JENTRIES(journal);
403  }
404  
405  /*
406   * f2fs-specific ioctl commands
407   */
408  #define F2FS_IOCTL_MAGIC		0xf5
409  #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
410  #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
411  #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
412  #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
413  #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
414  #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
415  #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
416  #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
417  						struct f2fs_defragment)
418  #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
419  						struct f2fs_move_range)
420  #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
421  						struct f2fs_flush_device)
422  #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
423  						struct f2fs_gc_range)
424  #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
425  #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
426  #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
427  #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
428  #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
429  #define F2FS_IOC_GET_COMPRESS_BLOCKS	_IOR(F2FS_IOCTL_MAGIC, 17, __u64)
430  #define F2FS_IOC_RELEASE_COMPRESS_BLOCKS				\
431  					_IOR(F2FS_IOCTL_MAGIC, 18, __u64)
432  #define F2FS_IOC_RESERVE_COMPRESS_BLOCKS				\
433  					_IOR(F2FS_IOCTL_MAGIC, 19, __u64)
434  #define F2FS_IOC_SEC_TRIM_FILE		_IOW(F2FS_IOCTL_MAGIC, 20,	\
435  						struct f2fs_sectrim_range)
436  
437  /*
438   * should be same as XFS_IOC_GOINGDOWN.
439   * Flags for going down operation used by FS_IOC_GOINGDOWN
440   */
441  #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
442  #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
443  #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
444  #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
445  #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
446  #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
447  
448  /*
449   * Flags used by F2FS_IOC_SEC_TRIM_FILE
450   */
451  #define F2FS_TRIM_FILE_DISCARD		0x1	/* send discard command */
452  #define F2FS_TRIM_FILE_ZEROOUT		0x2	/* zero out */
453  #define F2FS_TRIM_FILE_MASK		0x3
454  
455  struct f2fs_gc_range {
456  	u32 sync;
457  	u64 start;
458  	u64 len;
459  };
460  
461  struct f2fs_defragment {
462  	u64 start;
463  	u64 len;
464  };
465  
466  struct f2fs_move_range {
467  	u32 dst_fd;		/* destination fd */
468  	u64 pos_in;		/* start position in src_fd */
469  	u64 pos_out;		/* start position in dst_fd */
470  	u64 len;		/* size to move */
471  };
472  
473  struct f2fs_flush_device {
474  	u32 dev_num;		/* device number to flush */
475  	u32 segments;		/* # of segments to flush */
476  };
477  
478  struct f2fs_sectrim_range {
479  	u64 start;
480  	u64 len;
481  	u64 flags;
482  };
483  
484  /* for inline stuff */
485  #define DEF_INLINE_RESERVED_SIZE	1
486  static inline int get_extra_isize(struct inode *inode);
487  static inline int get_inline_xattr_addrs(struct inode *inode);
488  #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
489  				(CUR_ADDRS_PER_INODE(inode) -		\
490  				get_inline_xattr_addrs(inode) -	\
491  				DEF_INLINE_RESERVED_SIZE))
492  
493  /* for inline dir */
494  #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
495  				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
496  				BITS_PER_BYTE + 1))
497  #define INLINE_DENTRY_BITMAP_SIZE(inode) \
498  	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
499  #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
500  				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
501  				NR_INLINE_DENTRY(inode) + \
502  				INLINE_DENTRY_BITMAP_SIZE(inode)))
503  
504  /*
505   * For INODE and NODE manager
506   */
507  /* for directory operations */
508  
509  struct f2fs_filename {
510  	/*
511  	 * The filename the user specified.  This is NULL for some
512  	 * filesystem-internal operations, e.g. converting an inline directory
513  	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
514  	 */
515  	const struct qstr *usr_fname;
516  
517  	/*
518  	 * The on-disk filename.  For encrypted directories, this is encrypted.
519  	 * This may be NULL for lookups in an encrypted dir without the key.
520  	 */
521  	struct fscrypt_str disk_name;
522  
523  	/* The dirhash of this filename */
524  	f2fs_hash_t hash;
525  
526  #ifdef CONFIG_FS_ENCRYPTION
527  	/*
528  	 * For lookups in encrypted directories: either the buffer backing
529  	 * disk_name, or a buffer that holds the decoded no-key name.
530  	 */
531  	struct fscrypt_str crypto_buf;
532  #endif
533  #ifdef CONFIG_UNICODE
534  	/*
535  	 * For casefolded directories: the casefolded name, but it's left NULL
536  	 * if the original name is not valid Unicode or if the filesystem is
537  	 * doing an internal operation where usr_fname is also NULL.  In these
538  	 * cases we fall back to treating the name as an opaque byte sequence.
539  	 */
540  	struct fscrypt_str cf_name;
541  #endif
542  };
543  
544  struct f2fs_dentry_ptr {
545  	struct inode *inode;
546  	void *bitmap;
547  	struct f2fs_dir_entry *dentry;
548  	__u8 (*filename)[F2FS_SLOT_LEN];
549  	int max;
550  	int nr_bitmap;
551  };
552  
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)553  static inline void make_dentry_ptr_block(struct inode *inode,
554  		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
555  {
556  	d->inode = inode;
557  	d->max = NR_DENTRY_IN_BLOCK;
558  	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
559  	d->bitmap = t->dentry_bitmap;
560  	d->dentry = t->dentry;
561  	d->filename = t->filename;
562  }
563  
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)564  static inline void make_dentry_ptr_inline(struct inode *inode,
565  					struct f2fs_dentry_ptr *d, void *t)
566  {
567  	int entry_cnt = NR_INLINE_DENTRY(inode);
568  	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
569  	int reserved_size = INLINE_RESERVED_SIZE(inode);
570  
571  	d->inode = inode;
572  	d->max = entry_cnt;
573  	d->nr_bitmap = bitmap_size;
574  	d->bitmap = t;
575  	d->dentry = t + bitmap_size + reserved_size;
576  	d->filename = t + bitmap_size + reserved_size +
577  					SIZE_OF_DIR_ENTRY * entry_cnt;
578  }
579  
580  /*
581   * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
582   * as its node offset to distinguish from index node blocks.
583   * But some bits are used to mark the node block.
584   */
585  #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
586  				>> OFFSET_BIT_SHIFT)
587  enum {
588  	ALLOC_NODE,			/* allocate a new node page if needed */
589  	LOOKUP_NODE,			/* look up a node without readahead */
590  	LOOKUP_NODE_RA,			/*
591  					 * look up a node with readahead called
592  					 * by get_data_block.
593  					 */
594  };
595  
596  #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
597  
598  /* congestion wait timeout value, default: 20ms */
599  #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
600  
601  /* maximum retry quota flush count */
602  #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
603  
604  #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
605  
606  #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
607  
608  /* for in-memory extent cache entry */
609  #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
610  
611  /* number of extent info in extent cache we try to shrink */
612  #define EXTENT_CACHE_SHRINK_NUMBER	128
613  
614  struct rb_entry {
615  	struct rb_node rb_node;		/* rb node located in rb-tree */
616  	union {
617  		struct {
618  			unsigned int ofs;	/* start offset of the entry */
619  			unsigned int len;	/* length of the entry */
620  		};
621  		unsigned long long key;		/* 64-bits key */
622  	} __packed;
623  };
624  
625  struct extent_info {
626  	unsigned int fofs;		/* start offset in a file */
627  	unsigned int len;		/* length of the extent */
628  	u32 blk;			/* start block address of the extent */
629  };
630  
631  struct extent_node {
632  	struct rb_node rb_node;		/* rb node located in rb-tree */
633  	struct extent_info ei;		/* extent info */
634  	struct list_head list;		/* node in global extent list of sbi */
635  	struct extent_tree *et;		/* extent tree pointer */
636  };
637  
638  struct extent_tree {
639  	nid_t ino;			/* inode number */
640  	struct rb_root_cached root;	/* root of extent info rb-tree */
641  	struct extent_node *cached_en;	/* recently accessed extent node */
642  	struct extent_info largest;	/* largested extent info */
643  	struct list_head list;		/* to be used by sbi->zombie_list */
644  	rwlock_t lock;			/* protect extent info rb-tree */
645  	atomic_t node_cnt;		/* # of extent node in rb-tree*/
646  	bool largest_updated;		/* largest extent updated */
647  };
648  
649  /*
650   * This structure is taken from ext4_map_blocks.
651   *
652   * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
653   */
654  #define F2FS_MAP_NEW		(1 << BH_New)
655  #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
656  #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
657  #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
658  				F2FS_MAP_UNWRITTEN)
659  
660  struct f2fs_map_blocks {
661  	block_t m_pblk;
662  	block_t m_lblk;
663  	unsigned int m_len;
664  	unsigned int m_flags;
665  	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
666  	pgoff_t *m_next_extent;		/* point to next possible extent */
667  	int m_seg_type;
668  	bool m_may_create;		/* indicate it is from write path */
669  };
670  
671  /* for flag in get_data_block */
672  enum {
673  	F2FS_GET_BLOCK_DEFAULT,
674  	F2FS_GET_BLOCK_FIEMAP,
675  	F2FS_GET_BLOCK_BMAP,
676  	F2FS_GET_BLOCK_DIO,
677  	F2FS_GET_BLOCK_PRE_DIO,
678  	F2FS_GET_BLOCK_PRE_AIO,
679  	F2FS_GET_BLOCK_PRECACHE,
680  };
681  
682  /*
683   * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
684   */
685  #define FADVISE_COLD_BIT	0x01
686  #define FADVISE_LOST_PINO_BIT	0x02
687  #define FADVISE_ENCRYPT_BIT	0x04
688  #define FADVISE_ENC_NAME_BIT	0x08
689  #define FADVISE_KEEP_SIZE_BIT	0x10
690  #define FADVISE_HOT_BIT		0x20
691  #define FADVISE_VERITY_BIT	0x40
692  
693  #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
694  
695  #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
696  #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
697  #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
698  #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
699  #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
700  #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
701  #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
702  #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
703  #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
704  #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
705  #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
706  #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
707  #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
708  #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
709  #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
710  #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
711  #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
712  #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
713  
714  #define DEF_DIR_LEVEL		0
715  
716  enum {
717  	GC_FAILURE_PIN,
718  	GC_FAILURE_ATOMIC,
719  	MAX_GC_FAILURE
720  };
721  
722  /* used for f2fs_inode_info->flags */
723  enum {
724  	FI_NEW_INODE,		/* indicate newly allocated inode */
725  	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
726  	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
727  	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
728  	FI_INC_LINK,		/* need to increment i_nlink */
729  	FI_ACL_MODE,		/* indicate acl mode */
730  	FI_NO_ALLOC,		/* should not allocate any blocks */
731  	FI_FREE_NID,		/* free allocated nide */
732  	FI_NO_EXTENT,		/* not to use the extent cache */
733  	FI_INLINE_XATTR,	/* used for inline xattr */
734  	FI_INLINE_DATA,		/* used for inline data*/
735  	FI_INLINE_DENTRY,	/* used for inline dentry */
736  	FI_APPEND_WRITE,	/* inode has appended data */
737  	FI_UPDATE_WRITE,	/* inode has in-place-update data */
738  	FI_NEED_IPU,		/* used for ipu per file */
739  	FI_ATOMIC_FILE,		/* indicate atomic file */
740  	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
741  	FI_VOLATILE_FILE,	/* indicate volatile file */
742  	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
743  	FI_DROP_CACHE,		/* drop dirty page cache */
744  	FI_DATA_EXIST,		/* indicate data exists */
745  	FI_INLINE_DOTS,		/* indicate inline dot dentries */
746  	FI_DO_DEFRAG,		/* indicate defragment is running */
747  	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
748  	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
749  	FI_HOT_DATA,		/* indicate file is hot */
750  	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
751  	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
752  	FI_PIN_FILE,		/* indicate file should not be gced */
753  	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
754  	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
755  	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
756  	FI_MMAP_FILE,		/* indicate file was mmapped */
757  	FI_MAX,			/* max flag, never be used */
758  };
759  
760  struct f2fs_inode_info {
761  	struct inode vfs_inode;		/* serve a vfs inode */
762  	unsigned long i_flags;		/* keep an inode flags for ioctl */
763  	unsigned char i_advise;		/* use to give file attribute hints */
764  	unsigned char i_dir_level;	/* use for dentry level for large dir */
765  	unsigned int i_current_depth;	/* only for directory depth */
766  	/* for gc failure statistic */
767  	unsigned int i_gc_failures[MAX_GC_FAILURE];
768  	unsigned int i_pino;		/* parent inode number */
769  	umode_t i_acl_mode;		/* keep file acl mode temporarily */
770  
771  	/* Use below internally in f2fs*/
772  	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
773  	struct rw_semaphore i_sem;	/* protect fi info */
774  	atomic_t dirty_pages;		/* # of dirty pages */
775  	f2fs_hash_t chash;		/* hash value of given file name */
776  	unsigned int clevel;		/* maximum level of given file name */
777  	struct task_struct *task;	/* lookup and create consistency */
778  	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
779  	nid_t i_xattr_nid;		/* node id that contains xattrs */
780  	loff_t	last_disk_size;		/* lastly written file size */
781  	spinlock_t i_size_lock;		/* protect last_disk_size */
782  
783  #ifdef CONFIG_QUOTA
784  	struct dquot *i_dquot[MAXQUOTAS];
785  
786  	/* quota space reservation, managed internally by quota code */
787  	qsize_t i_reserved_quota;
788  #endif
789  	struct list_head dirty_list;	/* dirty list for dirs and files */
790  	struct list_head gdirty_list;	/* linked in global dirty list */
791  	struct list_head inmem_ilist;	/* list for inmem inodes */
792  	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
793  	struct task_struct *inmem_task;	/* store inmemory task */
794  	struct mutex inmem_lock;	/* lock for inmemory pages */
795  	pgoff_t ra_offset;		/* ongoing readahead offset */
796  	struct extent_tree *extent_tree;	/* cached extent_tree entry */
797  
798  	/* avoid racing between foreground op and gc */
799  	struct rw_semaphore i_gc_rwsem[2];
800  	struct rw_semaphore i_mmap_sem;
801  	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
802  
803  	int i_extra_isize;		/* size of extra space located in i_addr */
804  	kprojid_t i_projid;		/* id for project quota */
805  	int i_inline_xattr_size;	/* inline xattr size */
806  	struct timespec64 i_crtime;	/* inode creation time */
807  	struct timespec64 i_disk_time[4];/* inode disk times */
808  
809  	/* for file compress */
810  	atomic_t i_compr_blocks;		/* # of compressed blocks */
811  	unsigned char i_compress_algorithm;	/* algorithm type */
812  	unsigned char i_log_cluster_size;	/* log of cluster size */
813  	unsigned int i_cluster_size;		/* cluster size */
814  };
815  
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)816  static inline void get_extent_info(struct extent_info *ext,
817  					struct f2fs_extent *i_ext)
818  {
819  	ext->fofs = le32_to_cpu(i_ext->fofs);
820  	ext->blk = le32_to_cpu(i_ext->blk);
821  	ext->len = le32_to_cpu(i_ext->len);
822  }
823  
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)824  static inline void set_raw_extent(struct extent_info *ext,
825  					struct f2fs_extent *i_ext)
826  {
827  	i_ext->fofs = cpu_to_le32(ext->fofs);
828  	i_ext->blk = cpu_to_le32(ext->blk);
829  	i_ext->len = cpu_to_le32(ext->len);
830  }
831  
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)832  static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
833  						u32 blk, unsigned int len)
834  {
835  	ei->fofs = fofs;
836  	ei->blk = blk;
837  	ei->len = len;
838  }
839  
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)840  static inline bool __is_discard_mergeable(struct discard_info *back,
841  			struct discard_info *front, unsigned int max_len)
842  {
843  	return (back->lstart + back->len == front->lstart) &&
844  		(back->len + front->len <= max_len);
845  }
846  
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)847  static inline bool __is_discard_back_mergeable(struct discard_info *cur,
848  			struct discard_info *back, unsigned int max_len)
849  {
850  	return __is_discard_mergeable(back, cur, max_len);
851  }
852  
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)853  static inline bool __is_discard_front_mergeable(struct discard_info *cur,
854  			struct discard_info *front, unsigned int max_len)
855  {
856  	return __is_discard_mergeable(cur, front, max_len);
857  }
858  
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)859  static inline bool __is_extent_mergeable(struct extent_info *back,
860  						struct extent_info *front)
861  {
862  	return (back->fofs + back->len == front->fofs &&
863  			back->blk + back->len == front->blk);
864  }
865  
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)866  static inline bool __is_back_mergeable(struct extent_info *cur,
867  						struct extent_info *back)
868  {
869  	return __is_extent_mergeable(back, cur);
870  }
871  
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)872  static inline bool __is_front_mergeable(struct extent_info *cur,
873  						struct extent_info *front)
874  {
875  	return __is_extent_mergeable(cur, front);
876  }
877  
878  extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)879  static inline void __try_update_largest_extent(struct extent_tree *et,
880  						struct extent_node *en)
881  {
882  	if (en->ei.len > et->largest.len) {
883  		et->largest = en->ei;
884  		et->largest_updated = true;
885  	}
886  }
887  
888  /*
889   * For free nid management
890   */
891  enum nid_state {
892  	FREE_NID,		/* newly added to free nid list */
893  	PREALLOC_NID,		/* it is preallocated */
894  	MAX_NID_STATE,
895  };
896  
897  struct f2fs_nm_info {
898  	block_t nat_blkaddr;		/* base disk address of NAT */
899  	nid_t max_nid;			/* maximum possible node ids */
900  	nid_t available_nids;		/* # of available node ids */
901  	nid_t next_scan_nid;		/* the next nid to be scanned */
902  	unsigned int ram_thresh;	/* control the memory footprint */
903  	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
904  	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
905  
906  	/* NAT cache management */
907  	struct radix_tree_root nat_root;/* root of the nat entry cache */
908  	struct radix_tree_root nat_set_root;/* root of the nat set cache */
909  	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
910  	struct list_head nat_entries;	/* cached nat entry list (clean) */
911  	spinlock_t nat_list_lock;	/* protect clean nat entry list */
912  	unsigned int nat_cnt;		/* the # of cached nat entries */
913  	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
914  	unsigned int nat_blocks;	/* # of nat blocks */
915  
916  	/* free node ids management */
917  	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
918  	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
919  	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
920  	spinlock_t nid_list_lock;	/* protect nid lists ops */
921  	struct mutex build_lock;	/* lock for build free nids */
922  	unsigned char **free_nid_bitmap;
923  	unsigned char *nat_block_bitmap;
924  	unsigned short *free_nid_count;	/* free nid count of NAT block */
925  
926  	/* for checkpoint */
927  	char *nat_bitmap;		/* NAT bitmap pointer */
928  
929  	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
930  	unsigned char *nat_bits;	/* NAT bits blocks */
931  	unsigned char *full_nat_bits;	/* full NAT pages */
932  	unsigned char *empty_nat_bits;	/* empty NAT pages */
933  #ifdef CONFIG_F2FS_CHECK_FS
934  	char *nat_bitmap_mir;		/* NAT bitmap mirror */
935  #endif
936  	int bitmap_size;		/* bitmap size */
937  };
938  
939  /*
940   * this structure is used as one of function parameters.
941   * all the information are dedicated to a given direct node block determined
942   * by the data offset in a file.
943   */
944  struct dnode_of_data {
945  	struct inode *inode;		/* vfs inode pointer */
946  	struct page *inode_page;	/* its inode page, NULL is possible */
947  	struct page *node_page;		/* cached direct node page */
948  	nid_t nid;			/* node id of the direct node block */
949  	unsigned int ofs_in_node;	/* data offset in the node page */
950  	bool inode_page_locked;		/* inode page is locked or not */
951  	bool node_changed;		/* is node block changed */
952  	char cur_level;			/* level of hole node page */
953  	char max_level;			/* level of current page located */
954  	block_t	data_blkaddr;		/* block address of the node block */
955  };
956  
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)957  static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
958  		struct page *ipage, struct page *npage, nid_t nid)
959  {
960  	memset(dn, 0, sizeof(*dn));
961  	dn->inode = inode;
962  	dn->inode_page = ipage;
963  	dn->node_page = npage;
964  	dn->nid = nid;
965  }
966  
967  /*
968   * For SIT manager
969   *
970   * By default, there are 6 active log areas across the whole main area.
971   * When considering hot and cold data separation to reduce cleaning overhead,
972   * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
973   * respectively.
974   * In the current design, you should not change the numbers intentionally.
975   * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
976   * logs individually according to the underlying devices. (default: 6)
977   * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
978   * data and 8 for node logs.
979   */
980  #define	NR_CURSEG_DATA_TYPE	(3)
981  #define NR_CURSEG_NODE_TYPE	(3)
982  #define NR_CURSEG_INMEM_TYPE	(2)
983  #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
984  #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
985  
986  enum {
987  	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
988  	CURSEG_WARM_DATA,	/* data blocks */
989  	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
990  	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
991  	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
992  	CURSEG_COLD_NODE,	/* indirect node blocks */
993  	NR_PERSISTENT_LOG,	/* number of persistent log */
994  	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
995  				/* pinned file that needs consecutive block address */
996  	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
997  	NO_CHECK_TYPE,		/* number of persistent & inmem log */
998  };
999  
1000  struct flush_cmd {
1001  	struct completion wait;
1002  	struct llist_node llnode;
1003  	nid_t ino;
1004  	int ret;
1005  };
1006  
1007  struct flush_cmd_control {
1008  	struct task_struct *f2fs_issue_flush;	/* flush thread */
1009  	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1010  	atomic_t issued_flush;			/* # of issued flushes */
1011  	atomic_t queued_flush;			/* # of queued flushes */
1012  	struct llist_head issue_list;		/* list for command issue */
1013  	struct llist_node *dispatch_list;	/* list for command dispatch */
1014  };
1015  
1016  struct f2fs_sm_info {
1017  	struct sit_info *sit_info;		/* whole segment information */
1018  	struct free_segmap_info *free_info;	/* free segment information */
1019  	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1020  	struct curseg_info *curseg_array;	/* active segment information */
1021  
1022  	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
1023  
1024  	block_t seg0_blkaddr;		/* block address of 0'th segment */
1025  	block_t main_blkaddr;		/* start block address of main area */
1026  	block_t ssa_blkaddr;		/* start block address of SSA area */
1027  
1028  	unsigned int segment_count;	/* total # of segments */
1029  	unsigned int main_segments;	/* # of segments in main area */
1030  	unsigned int reserved_segments;	/* # of reserved segments */
1031  	unsigned int ovp_segments;	/* # of overprovision segments */
1032  
1033  	/* a threshold to reclaim prefree segments */
1034  	unsigned int rec_prefree_segments;
1035  
1036  	/* for batched trimming */
1037  	unsigned int trim_sections;		/* # of sections to trim */
1038  
1039  	struct list_head sit_entry_set;	/* sit entry set list */
1040  
1041  	unsigned int ipu_policy;	/* in-place-update policy */
1042  	unsigned int min_ipu_util;	/* in-place-update threshold */
1043  	unsigned int min_fsync_blocks;	/* threshold for fsync */
1044  	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1045  	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1046  	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1047  
1048  	/* for flush command control */
1049  	struct flush_cmd_control *fcc_info;
1050  
1051  	/* for discard command control */
1052  	struct discard_cmd_control *dcc_info;
1053  };
1054  
1055  /*
1056   * For superblock
1057   */
1058  /*
1059   * COUNT_TYPE for monitoring
1060   *
1061   * f2fs monitors the number of several block types such as on-writeback,
1062   * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1063   */
1064  #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1065  enum count_type {
1066  	F2FS_DIRTY_DENTS,
1067  	F2FS_DIRTY_DATA,
1068  	F2FS_DIRTY_QDATA,
1069  	F2FS_DIRTY_NODES,
1070  	F2FS_DIRTY_META,
1071  	F2FS_INMEM_PAGES,
1072  	F2FS_DIRTY_IMETA,
1073  	F2FS_WB_CP_DATA,
1074  	F2FS_WB_DATA,
1075  	F2FS_RD_DATA,
1076  	F2FS_RD_NODE,
1077  	F2FS_RD_META,
1078  	F2FS_DIO_WRITE,
1079  	F2FS_DIO_READ,
1080  	NR_COUNT_TYPE,
1081  };
1082  
1083  /*
1084   * The below are the page types of bios used in submit_bio().
1085   * The available types are:
1086   * DATA			User data pages. It operates as async mode.
1087   * NODE			Node pages. It operates as async mode.
1088   * META			FS metadata pages such as SIT, NAT, CP.
1089   * NR_PAGE_TYPE		The number of page types.
1090   * META_FLUSH		Make sure the previous pages are written
1091   *			with waiting the bio's completion
1092   * ...			Only can be used with META.
1093   */
1094  #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1095  enum page_type {
1096  	DATA,
1097  	NODE,
1098  	META,
1099  	NR_PAGE_TYPE,
1100  	META_FLUSH,
1101  	INMEM,		/* the below types are used by tracepoints only. */
1102  	INMEM_DROP,
1103  	INMEM_INVALIDATE,
1104  	INMEM_REVOKE,
1105  	IPU,
1106  	OPU,
1107  };
1108  
1109  enum temp_type {
1110  	HOT = 0,	/* must be zero for meta bio */
1111  	WARM,
1112  	COLD,
1113  	NR_TEMP_TYPE,
1114  };
1115  
1116  enum need_lock_type {
1117  	LOCK_REQ = 0,
1118  	LOCK_DONE,
1119  	LOCK_RETRY,
1120  };
1121  
1122  enum cp_reason_type {
1123  	CP_NO_NEEDED,
1124  	CP_NON_REGULAR,
1125  	CP_COMPRESSED,
1126  	CP_HARDLINK,
1127  	CP_SB_NEED_CP,
1128  	CP_WRONG_PINO,
1129  	CP_NO_SPC_ROLL,
1130  	CP_NODE_NEED_CP,
1131  	CP_FASTBOOT_MODE,
1132  	CP_SPEC_LOG_NUM,
1133  	CP_RECOVER_DIR,
1134  };
1135  
1136  enum iostat_type {
1137  	/* WRITE IO */
1138  	APP_DIRECT_IO,			/* app direct write IOs */
1139  	APP_BUFFERED_IO,		/* app buffered write IOs */
1140  	APP_WRITE_IO,			/* app write IOs */
1141  	APP_MAPPED_IO,			/* app mapped IOs */
1142  	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1143  	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1144  	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1145  	FS_GC_DATA_IO,			/* data IOs from forground gc */
1146  	FS_GC_NODE_IO,			/* node IOs from forground gc */
1147  	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1148  	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1149  	FS_CP_META_IO,			/* meta IOs from checkpoint */
1150  
1151  	/* READ IO */
1152  	APP_DIRECT_READ_IO,		/* app direct read IOs */
1153  	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1154  	APP_READ_IO,			/* app read IOs */
1155  	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1156  	FS_DATA_READ_IO,		/* data read IOs */
1157  	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1158  	FS_CDATA_READ_IO,		/* compressed data read IOs */
1159  	FS_NODE_READ_IO,		/* node read IOs */
1160  	FS_META_READ_IO,		/* meta read IOs */
1161  
1162  	/* other */
1163  	FS_DISCARD,			/* discard */
1164  	NR_IO_TYPE,
1165  };
1166  
1167  struct f2fs_io_info {
1168  	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1169  	nid_t ino;		/* inode number */
1170  	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1171  	enum temp_type temp;	/* contains HOT/WARM/COLD */
1172  	int op;			/* contains REQ_OP_ */
1173  	int op_flags;		/* req_flag_bits */
1174  	block_t new_blkaddr;	/* new block address to be written */
1175  	block_t old_blkaddr;	/* old block address before Cow */
1176  	struct page *page;	/* page to be written */
1177  	struct page *encrypted_page;	/* encrypted page */
1178  	struct page *compressed_page;	/* compressed page */
1179  	struct list_head list;		/* serialize IOs */
1180  	bool submitted;		/* indicate IO submission */
1181  	int need_lock;		/* indicate we need to lock cp_rwsem */
1182  	bool in_list;		/* indicate fio is in io_list */
1183  	bool is_por;		/* indicate IO is from recovery or not */
1184  	bool retry;		/* need to reallocate block address */
1185  	int compr_blocks;	/* # of compressed block addresses */
1186  	bool encrypted;		/* indicate file is encrypted */
1187  	enum iostat_type io_type;	/* io type */
1188  	struct writeback_control *io_wbc; /* writeback control */
1189  	struct bio **bio;		/* bio for ipu */
1190  	sector_t *last_block;		/* last block number in bio */
1191  	unsigned char version;		/* version of the node */
1192  };
1193  
1194  struct bio_entry {
1195  	struct bio *bio;
1196  	struct list_head list;
1197  };
1198  
1199  #define is_read_io(rw) ((rw) == READ)
1200  struct f2fs_bio_info {
1201  	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1202  	struct bio *bio;		/* bios to merge */
1203  	sector_t last_block_in_bio;	/* last block number */
1204  	struct f2fs_io_info fio;	/* store buffered io info. */
1205  	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1206  	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1207  	struct list_head io_list;	/* track fios */
1208  	struct list_head bio_list;	/* bio entry list head */
1209  	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1210  };
1211  
1212  #define FDEV(i)				(sbi->devs[i])
1213  #define RDEV(i)				(raw_super->devs[i])
1214  struct f2fs_dev_info {
1215  	struct block_device *bdev;
1216  	char path[MAX_PATH_LEN];
1217  	unsigned int total_segments;
1218  	block_t start_blk;
1219  	block_t end_blk;
1220  #ifdef CONFIG_BLK_DEV_ZONED
1221  	unsigned int nr_blkz;		/* Total number of zones */
1222  	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1223  	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1224  #endif
1225  };
1226  
1227  enum inode_type {
1228  	DIR_INODE,			/* for dirty dir inode */
1229  	FILE_INODE,			/* for dirty regular/symlink inode */
1230  	DIRTY_META,			/* for all dirtied inode metadata */
1231  	ATOMIC_FILE,			/* for all atomic files */
1232  	NR_INODE_TYPE,
1233  };
1234  
1235  /* for inner inode cache management */
1236  struct inode_management {
1237  	struct radix_tree_root ino_root;	/* ino entry array */
1238  	spinlock_t ino_lock;			/* for ino entry lock */
1239  	struct list_head ino_list;		/* inode list head */
1240  	unsigned long ino_num;			/* number of entries */
1241  };
1242  
1243  /* for GC_AT */
1244  struct atgc_management {
1245  	bool atgc_enabled;			/* ATGC is enabled or not */
1246  	struct rb_root_cached root;		/* root of victim rb-tree */
1247  	struct list_head victim_list;		/* linked with all victim entries */
1248  	unsigned int victim_count;		/* victim count in rb-tree */
1249  	unsigned int candidate_ratio;		/* candidate ratio */
1250  	unsigned int max_candidate_count;	/* max candidate count */
1251  	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1252  	unsigned long long age_threshold;	/* age threshold */
1253  };
1254  
1255  /* For s_flag in struct f2fs_sb_info */
1256  enum {
1257  	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1258  	SBI_IS_CLOSE,				/* specify unmounting */
1259  	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1260  	SBI_POR_DOING,				/* recovery is doing or not */
1261  	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1262  	SBI_NEED_CP,				/* need to checkpoint */
1263  	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1264  	SBI_IS_RECOVERED,			/* recovered orphan/data */
1265  	SBI_CP_DISABLED,			/* CP was disabled last mount */
1266  	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1267  	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1268  	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1269  	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1270  	SBI_IS_RESIZEFS,			/* resizefs is in process */
1271  };
1272  
1273  enum {
1274  	CP_TIME,
1275  	REQ_TIME,
1276  	DISCARD_TIME,
1277  	GC_TIME,
1278  	DISABLE_TIME,
1279  	UMOUNT_DISCARD_TIMEOUT,
1280  	MAX_TIME,
1281  };
1282  
1283  enum {
1284  	GC_NORMAL,
1285  	GC_IDLE_CB,
1286  	GC_IDLE_GREEDY,
1287  	GC_IDLE_AT,
1288  	GC_URGENT_HIGH,
1289  	GC_URGENT_LOW,
1290  };
1291  
1292  enum {
1293  	BGGC_MODE_ON,		/* background gc is on */
1294  	BGGC_MODE_OFF,		/* background gc is off */
1295  	BGGC_MODE_SYNC,		/*
1296  				 * background gc is on, migrating blocks
1297  				 * like foreground gc
1298  				 */
1299  };
1300  
1301  enum {
1302  	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1303  	FS_MODE_LFS,		/* use lfs allocation only */
1304  };
1305  
1306  enum {
1307  	WHINT_MODE_OFF,		/* not pass down write hints */
1308  	WHINT_MODE_USER,	/* try to pass down hints given by users */
1309  	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1310  };
1311  
1312  enum {
1313  	ALLOC_MODE_DEFAULT,	/* stay default */
1314  	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1315  };
1316  
1317  enum fsync_mode {
1318  	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1319  	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1320  	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1321  };
1322  
1323  /*
1324   * this value is set in page as a private data which indicate that
1325   * the page is atomically written, and it is in inmem_pages list.
1326   */
1327  #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1328  #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1329  
1330  #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1331  		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1332  #define IS_DUMMY_WRITTEN_PAGE(page)			\
1333  		(page_private(page) == DUMMY_WRITTEN_PAGE)
1334  
1335  #ifdef CONFIG_F2FS_IO_TRACE
1336  #define IS_IO_TRACED_PAGE(page)			\
1337  		(page_private(page) > 0 &&		\
1338  		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1339  #else
1340  #define IS_IO_TRACED_PAGE(page) (0)
1341  #endif
1342  
1343  /* For compression */
1344  enum compress_algorithm_type {
1345  	COMPRESS_LZO,
1346  	COMPRESS_LZ4,
1347  	COMPRESS_ZSTD,
1348  	COMPRESS_LZORLE,
1349  	COMPRESS_MAX,
1350  };
1351  
1352  #define COMPRESS_DATA_RESERVED_SIZE		5
1353  struct compress_data {
1354  	__le32 clen;			/* compressed data size */
1355  	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1356  	u8 cdata[];			/* compressed data */
1357  };
1358  
1359  #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1360  
1361  #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1362  
1363  /* compress context */
1364  struct compress_ctx {
1365  	struct inode *inode;		/* inode the context belong to */
1366  	pgoff_t cluster_idx;		/* cluster index number */
1367  	unsigned int cluster_size;	/* page count in cluster */
1368  	unsigned int log_cluster_size;	/* log of cluster size */
1369  	struct page **rpages;		/* pages store raw data in cluster */
1370  	unsigned int nr_rpages;		/* total page number in rpages */
1371  	struct page **cpages;		/* pages store compressed data in cluster */
1372  	unsigned int nr_cpages;		/* total page number in cpages */
1373  	void *rbuf;			/* virtual mapped address on rpages */
1374  	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1375  	size_t rlen;			/* valid data length in rbuf */
1376  	size_t clen;			/* valid data length in cbuf */
1377  	void *private;			/* payload buffer for specified compression algorithm */
1378  	void *private2;			/* extra payload buffer */
1379  };
1380  
1381  /* compress context for write IO path */
1382  struct compress_io_ctx {
1383  	u32 magic;			/* magic number to indicate page is compressed */
1384  	struct inode *inode;		/* inode the context belong to */
1385  	struct page **rpages;		/* pages store raw data in cluster */
1386  	unsigned int nr_rpages;		/* total page number in rpages */
1387  	atomic_t pending_pages;		/* in-flight compressed page count */
1388  };
1389  
1390  /* decompress io context for read IO path */
1391  struct decompress_io_ctx {
1392  	u32 magic;			/* magic number to indicate page is compressed */
1393  	struct inode *inode;		/* inode the context belong to */
1394  	pgoff_t cluster_idx;		/* cluster index number */
1395  	unsigned int cluster_size;	/* page count in cluster */
1396  	unsigned int log_cluster_size;	/* log of cluster size */
1397  	struct page **rpages;		/* pages store raw data in cluster */
1398  	unsigned int nr_rpages;		/* total page number in rpages */
1399  	struct page **cpages;		/* pages store compressed data in cluster */
1400  	unsigned int nr_cpages;		/* total page number in cpages */
1401  	struct page **tpages;		/* temp pages to pad holes in cluster */
1402  	void *rbuf;			/* virtual mapped address on rpages */
1403  	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1404  	size_t rlen;			/* valid data length in rbuf */
1405  	size_t clen;			/* valid data length in cbuf */
1406  	atomic_t pending_pages;		/* in-flight compressed page count */
1407  	bool failed;			/* indicate IO error during decompression */
1408  	void *private;			/* payload buffer for specified decompression algorithm */
1409  	void *private2;			/* extra payload buffer */
1410  };
1411  
1412  #define NULL_CLUSTER			((unsigned int)(~0))
1413  #define MIN_COMPRESS_LOG_SIZE		2
1414  #define MAX_COMPRESS_LOG_SIZE		8
1415  #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1416  
1417  struct f2fs_sb_info {
1418  	struct super_block *sb;			/* pointer to VFS super block */
1419  	struct proc_dir_entry *s_proc;		/* proc entry */
1420  	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1421  	struct rw_semaphore sb_lock;		/* lock for raw super block */
1422  	int valid_super_block;			/* valid super block no */
1423  	unsigned long s_flag;				/* flags for sbi */
1424  	struct mutex writepages;		/* mutex for writepages() */
1425  
1426  #ifdef CONFIG_BLK_DEV_ZONED
1427  	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1428  	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1429  #endif
1430  
1431  	/* for node-related operations */
1432  	struct f2fs_nm_info *nm_info;		/* node manager */
1433  	struct inode *node_inode;		/* cache node blocks */
1434  
1435  	/* for segment-related operations */
1436  	struct f2fs_sm_info *sm_info;		/* segment manager */
1437  
1438  	/* for bio operations */
1439  	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1440  	/* keep migration IO order for LFS mode */
1441  	struct rw_semaphore io_order_lock;
1442  	mempool_t *write_io_dummy;		/* Dummy pages */
1443  
1444  	/* for checkpoint */
1445  	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1446  	int cur_cp_pack;			/* remain current cp pack */
1447  	spinlock_t cp_lock;			/* for flag in ckpt */
1448  	struct inode *meta_inode;		/* cache meta blocks */
1449  	struct mutex cp_mutex;			/* checkpoint procedure lock */
1450  	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1451  	struct rw_semaphore node_write;		/* locking node writes */
1452  	struct rw_semaphore node_change;	/* locking node change */
1453  	wait_queue_head_t cp_wait;
1454  	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1455  	long interval_time[MAX_TIME];		/* to store thresholds */
1456  
1457  	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1458  
1459  	spinlock_t fsync_node_lock;		/* for node entry lock */
1460  	struct list_head fsync_node_list;	/* node list head */
1461  	unsigned int fsync_seg_id;		/* sequence id */
1462  	unsigned int fsync_node_num;		/* number of node entries */
1463  
1464  	/* for orphan inode, use 0'th array */
1465  	unsigned int max_orphans;		/* max orphan inodes */
1466  
1467  	/* for inode management */
1468  	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1469  	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1470  	struct mutex flush_lock;		/* for flush exclusion */
1471  
1472  	/* for extent tree cache */
1473  	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1474  	struct mutex extent_tree_lock;	/* locking extent radix tree */
1475  	struct list_head extent_list;		/* lru list for shrinker */
1476  	spinlock_t extent_lock;			/* locking extent lru list */
1477  	atomic_t total_ext_tree;		/* extent tree count */
1478  	struct list_head zombie_list;		/* extent zombie tree list */
1479  	atomic_t total_zombie_tree;		/* extent zombie tree count */
1480  	atomic_t total_ext_node;		/* extent info count */
1481  
1482  	/* basic filesystem units */
1483  	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1484  	unsigned int log_blocksize;		/* log2 block size */
1485  	unsigned int blocksize;			/* block size */
1486  	unsigned int root_ino_num;		/* root inode number*/
1487  	unsigned int node_ino_num;		/* node inode number*/
1488  	unsigned int meta_ino_num;		/* meta inode number*/
1489  	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1490  	unsigned int blocks_per_seg;		/* blocks per segment */
1491  	unsigned int segs_per_sec;		/* segments per section */
1492  	unsigned int secs_per_zone;		/* sections per zone */
1493  	unsigned int total_sections;		/* total section count */
1494  	unsigned int total_node_count;		/* total node block count */
1495  	unsigned int total_valid_node_count;	/* valid node block count */
1496  	loff_t max_file_blocks;			/* max block index of file */
1497  	int dir_level;				/* directory level */
1498  	int readdir_ra;				/* readahead inode in readdir */
1499  
1500  	block_t user_block_count;		/* # of user blocks */
1501  	block_t total_valid_block_count;	/* # of valid blocks */
1502  	block_t discard_blks;			/* discard command candidats */
1503  	block_t last_valid_block_count;		/* for recovery */
1504  	block_t reserved_blocks;		/* configurable reserved blocks */
1505  	block_t current_reserved_blocks;	/* current reserved blocks */
1506  
1507  	/* Additional tracking for no checkpoint mode */
1508  	block_t unusable_block_count;		/* # of blocks saved by last cp */
1509  
1510  	unsigned int nquota_files;		/* # of quota sysfile */
1511  	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1512  
1513  	/* # of pages, see count_type */
1514  	atomic_t nr_pages[NR_COUNT_TYPE];
1515  	/* # of allocated blocks */
1516  	struct percpu_counter alloc_valid_block_count;
1517  
1518  	/* writeback control */
1519  	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1520  
1521  	/* valid inode count */
1522  	struct percpu_counter total_valid_inode_count;
1523  
1524  	struct f2fs_mount_info mount_opt;	/* mount options */
1525  
1526  	/* for cleaning operations */
1527  	struct rw_semaphore gc_lock;		/*
1528  						 * semaphore for GC, avoid
1529  						 * race between GC and GC or CP
1530  						 */
1531  	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1532  	struct atgc_management am;		/* atgc management */
1533  	unsigned int cur_victim_sec;		/* current victim section num */
1534  	unsigned int gc_mode;			/* current GC state */
1535  	unsigned int next_victim_seg[2];	/* next segment in victim section */
1536  
1537  	/* for skip statistic */
1538  	unsigned int atomic_files;		/* # of opened atomic file */
1539  	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1540  	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1541  
1542  	/* threshold for gc trials on pinned files */
1543  	u64 gc_pin_file_threshold;
1544  	struct rw_semaphore pin_sem;
1545  
1546  	/* maximum # of trials to find a victim segment for SSR and GC */
1547  	unsigned int max_victim_search;
1548  	/* migration granularity of garbage collection, unit: segment */
1549  	unsigned int migration_granularity;
1550  
1551  	/*
1552  	 * for stat information.
1553  	 * one is for the LFS mode, and the other is for the SSR mode.
1554  	 */
1555  #ifdef CONFIG_F2FS_STAT_FS
1556  	struct f2fs_stat_info *stat_info;	/* FS status information */
1557  	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1558  	unsigned int segment_count[2];		/* # of allocated segments */
1559  	unsigned int block_count[2];		/* # of allocated blocks */
1560  	atomic_t inplace_count;		/* # of inplace update */
1561  	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1562  	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1563  	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1564  	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1565  	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1566  	atomic_t inline_inode;			/* # of inline_data inodes */
1567  	atomic_t inline_dir;			/* # of inline_dentry inodes */
1568  	atomic_t compr_inode;			/* # of compressed inodes */
1569  	atomic64_t compr_blocks;		/* # of compressed blocks */
1570  	atomic_t vw_cnt;			/* # of volatile writes */
1571  	atomic_t max_aw_cnt;			/* max # of atomic writes */
1572  	atomic_t max_vw_cnt;			/* max # of volatile writes */
1573  	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1574  	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1575  	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1576  #endif
1577  	spinlock_t stat_lock;			/* lock for stat operations */
1578  
1579  	/* For app/fs IO statistics */
1580  	spinlock_t iostat_lock;
1581  	unsigned long long rw_iostat[NR_IO_TYPE];
1582  	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1583  	bool iostat_enable;
1584  	unsigned long iostat_next_period;
1585  	unsigned int iostat_period_ms;
1586  
1587  	/* to attach REQ_META|REQ_FUA flags */
1588  	unsigned int data_io_flag;
1589  	unsigned int node_io_flag;
1590  
1591  	/* For sysfs suppport */
1592  	struct kobject s_kobj;
1593  	struct completion s_kobj_unregister;
1594  
1595  	/* For shrinker support */
1596  	struct list_head s_list;
1597  	int s_ndevs;				/* number of devices */
1598  	struct f2fs_dev_info *devs;		/* for device list */
1599  	unsigned int dirty_device;		/* for checkpoint data flush */
1600  	spinlock_t dev_lock;			/* protect dirty_device */
1601  	struct mutex umount_mutex;
1602  	unsigned int shrinker_run_no;
1603  
1604  	/* For write statistics */
1605  	u64 sectors_written_start;
1606  	u64 kbytes_written;
1607  
1608  	/* Reference to checksum algorithm driver via cryptoapi */
1609  	struct crypto_shash *s_chksum_driver;
1610  
1611  	/* Precomputed FS UUID checksum for seeding other checksums */
1612  	__u32 s_chksum_seed;
1613  
1614  	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1615  
1616  	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1617  	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1618  
1619  #ifdef CONFIG_F2FS_FS_COMPRESSION
1620  	struct kmem_cache *page_array_slab;	/* page array entry */
1621  	unsigned int page_array_slab_size;	/* default page array slab size */
1622  #endif
1623  };
1624  
1625  struct f2fs_private_dio {
1626  	struct inode *inode;
1627  	void *orig_private;
1628  	bio_end_io_t *orig_end_io;
1629  	bool write;
1630  };
1631  
1632  #ifdef CONFIG_F2FS_FAULT_INJECTION
1633  #define f2fs_show_injection_info(sbi, type)					\
1634  	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1635  		KERN_INFO, sbi->sb->s_id,				\
1636  		f2fs_fault_name[type],					\
1637  		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1638  static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1639  {
1640  	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1641  
1642  	if (!ffi->inject_rate)
1643  		return false;
1644  
1645  	if (!IS_FAULT_SET(ffi, type))
1646  		return false;
1647  
1648  	atomic_inc(&ffi->inject_ops);
1649  	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1650  		atomic_set(&ffi->inject_ops, 0);
1651  		return true;
1652  	}
1653  	return false;
1654  }
1655  #else
1656  #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1657  static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1658  {
1659  	return false;
1660  }
1661  #endif
1662  
1663  /*
1664   * Test if the mounted volume is a multi-device volume.
1665   *   - For a single regular disk volume, sbi->s_ndevs is 0.
1666   *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1667   *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1668   */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1669  static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1670  {
1671  	return sbi->s_ndevs > 1;
1672  }
1673  
1674  /* For write statistics. Suppose sector size is 512 bytes,
1675   * and the return value is in kbytes. s is of struct f2fs_sb_info.
1676   */
1677  #define BD_PART_WRITTEN(s)						 \
1678  (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1679  		(s)->sectors_written_start) >> 1)
1680  
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1681  static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1682  {
1683  	unsigned long now = jiffies;
1684  
1685  	sbi->last_time[type] = now;
1686  
1687  	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1688  	if (type == REQ_TIME) {
1689  		sbi->last_time[DISCARD_TIME] = now;
1690  		sbi->last_time[GC_TIME] = now;
1691  	}
1692  }
1693  
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1694  static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1695  {
1696  	unsigned long interval = sbi->interval_time[type] * HZ;
1697  
1698  	return time_after(jiffies, sbi->last_time[type] + interval);
1699  }
1700  
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1701  static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1702  						int type)
1703  {
1704  	unsigned long interval = sbi->interval_time[type] * HZ;
1705  	unsigned int wait_ms = 0;
1706  	long delta;
1707  
1708  	delta = (sbi->last_time[type] + interval) - jiffies;
1709  	if (delta > 0)
1710  		wait_ms = jiffies_to_msecs(delta);
1711  
1712  	return wait_ms;
1713  }
1714  
1715  /*
1716   * Inline functions
1717   */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1718  static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1719  			      const void *address, unsigned int length)
1720  {
1721  	struct {
1722  		struct shash_desc shash;
1723  		char ctx[4];
1724  	} desc;
1725  	int err;
1726  
1727  	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1728  
1729  	desc.shash.tfm = sbi->s_chksum_driver;
1730  	*(u32 *)desc.ctx = crc;
1731  
1732  	err = crypto_shash_update(&desc.shash, address, length);
1733  	BUG_ON(err);
1734  
1735  	return *(u32 *)desc.ctx;
1736  }
1737  
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1738  static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1739  			   unsigned int length)
1740  {
1741  	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1742  }
1743  
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1744  static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1745  				  void *buf, size_t buf_size)
1746  {
1747  	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1748  }
1749  
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1750  static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1751  			      const void *address, unsigned int length)
1752  {
1753  	return __f2fs_crc32(sbi, crc, address, length);
1754  }
1755  
F2FS_I(struct inode * inode)1756  static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1757  {
1758  	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1759  }
1760  
F2FS_SB(struct super_block * sb)1761  static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1762  {
1763  	return sb->s_fs_info;
1764  }
1765  
F2FS_I_SB(struct inode * inode)1766  static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1767  {
1768  	return F2FS_SB(inode->i_sb);
1769  }
1770  
F2FS_M_SB(struct address_space * mapping)1771  static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1772  {
1773  	return F2FS_I_SB(mapping->host);
1774  }
1775  
F2FS_P_SB(struct page * page)1776  static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1777  {
1778  	return F2FS_M_SB(page_file_mapping(page));
1779  }
1780  
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1781  static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1782  {
1783  	return (struct f2fs_super_block *)(sbi->raw_super);
1784  }
1785  
F2FS_CKPT(struct f2fs_sb_info * sbi)1786  static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1787  {
1788  	return (struct f2fs_checkpoint *)(sbi->ckpt);
1789  }
1790  
F2FS_NODE(struct page * page)1791  static inline struct f2fs_node *F2FS_NODE(struct page *page)
1792  {
1793  	return (struct f2fs_node *)page_address(page);
1794  }
1795  
F2FS_INODE(struct page * page)1796  static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1797  {
1798  	return &((struct f2fs_node *)page_address(page))->i;
1799  }
1800  
NM_I(struct f2fs_sb_info * sbi)1801  static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1802  {
1803  	return (struct f2fs_nm_info *)(sbi->nm_info);
1804  }
1805  
SM_I(struct f2fs_sb_info * sbi)1806  static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1807  {
1808  	return (struct f2fs_sm_info *)(sbi->sm_info);
1809  }
1810  
SIT_I(struct f2fs_sb_info * sbi)1811  static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1812  {
1813  	return (struct sit_info *)(SM_I(sbi)->sit_info);
1814  }
1815  
FREE_I(struct f2fs_sb_info * sbi)1816  static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1817  {
1818  	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1819  }
1820  
DIRTY_I(struct f2fs_sb_info * sbi)1821  static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1822  {
1823  	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1824  }
1825  
META_MAPPING(struct f2fs_sb_info * sbi)1826  static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1827  {
1828  	return sbi->meta_inode->i_mapping;
1829  }
1830  
NODE_MAPPING(struct f2fs_sb_info * sbi)1831  static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1832  {
1833  	return sbi->node_inode->i_mapping;
1834  }
1835  
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1836  static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1837  {
1838  	return test_bit(type, &sbi->s_flag);
1839  }
1840  
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1841  static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1842  {
1843  	set_bit(type, &sbi->s_flag);
1844  }
1845  
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1846  static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1847  {
1848  	clear_bit(type, &sbi->s_flag);
1849  }
1850  
cur_cp_version(struct f2fs_checkpoint * cp)1851  static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1852  {
1853  	return le64_to_cpu(cp->checkpoint_ver);
1854  }
1855  
f2fs_qf_ino(struct super_block * sb,int type)1856  static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1857  {
1858  	if (type < F2FS_MAX_QUOTAS)
1859  		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1860  	return 0;
1861  }
1862  
cur_cp_crc(struct f2fs_checkpoint * cp)1863  static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1864  {
1865  	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1866  	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1867  }
1868  
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1869  static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1870  {
1871  	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1872  
1873  	return ckpt_flags & f;
1874  }
1875  
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1876  static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1877  {
1878  	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1879  }
1880  
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1881  static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1882  {
1883  	unsigned int ckpt_flags;
1884  
1885  	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1886  	ckpt_flags |= f;
1887  	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1888  }
1889  
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1890  static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1891  {
1892  	unsigned long flags;
1893  
1894  	spin_lock_irqsave(&sbi->cp_lock, flags);
1895  	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1896  	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1897  }
1898  
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1899  static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1900  {
1901  	unsigned int ckpt_flags;
1902  
1903  	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1904  	ckpt_flags &= (~f);
1905  	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1906  }
1907  
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1908  static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1909  {
1910  	unsigned long flags;
1911  
1912  	spin_lock_irqsave(&sbi->cp_lock, flags);
1913  	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1914  	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1915  }
1916  
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1917  static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1918  {
1919  	unsigned long flags;
1920  	unsigned char *nat_bits;
1921  
1922  	/*
1923  	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1924  	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1925  	 * so let's rely on regular fsck or unclean shutdown.
1926  	 */
1927  
1928  	if (lock)
1929  		spin_lock_irqsave(&sbi->cp_lock, flags);
1930  	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1931  	nat_bits = NM_I(sbi)->nat_bits;
1932  	NM_I(sbi)->nat_bits = NULL;
1933  	if (lock)
1934  		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1935  
1936  	kvfree(nat_bits);
1937  }
1938  
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1939  static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1940  					struct cp_control *cpc)
1941  {
1942  	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1943  
1944  	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1945  }
1946  
f2fs_lock_op(struct f2fs_sb_info * sbi)1947  static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1948  {
1949  	down_read(&sbi->cp_rwsem);
1950  }
1951  
f2fs_trylock_op(struct f2fs_sb_info * sbi)1952  static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1953  {
1954  	return down_read_trylock(&sbi->cp_rwsem);
1955  }
1956  
f2fs_unlock_op(struct f2fs_sb_info * sbi)1957  static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1958  {
1959  	up_read(&sbi->cp_rwsem);
1960  }
1961  
f2fs_lock_all(struct f2fs_sb_info * sbi)1962  static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1963  {
1964  	down_write(&sbi->cp_rwsem);
1965  }
1966  
f2fs_unlock_all(struct f2fs_sb_info * sbi)1967  static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1968  {
1969  	up_write(&sbi->cp_rwsem);
1970  }
1971  
__get_cp_reason(struct f2fs_sb_info * sbi)1972  static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1973  {
1974  	int reason = CP_SYNC;
1975  
1976  	if (test_opt(sbi, FASTBOOT))
1977  		reason = CP_FASTBOOT;
1978  	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1979  		reason = CP_UMOUNT;
1980  	return reason;
1981  }
1982  
__remain_node_summaries(int reason)1983  static inline bool __remain_node_summaries(int reason)
1984  {
1985  	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1986  }
1987  
__exist_node_summaries(struct f2fs_sb_info * sbi)1988  static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1989  {
1990  	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1991  			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1992  }
1993  
1994  /*
1995   * Check whether the inode has blocks or not
1996   */
F2FS_HAS_BLOCKS(struct inode * inode)1997  static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1998  {
1999  	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2000  
2001  	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2002  }
2003  
f2fs_has_xattr_block(unsigned int ofs)2004  static inline bool f2fs_has_xattr_block(unsigned int ofs)
2005  {
2006  	return ofs == XATTR_NODE_OFFSET;
2007  }
2008  
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2009  static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2010  					struct inode *inode, bool cap)
2011  {
2012  	if (!inode)
2013  		return true;
2014  	if (!test_opt(sbi, RESERVE_ROOT))
2015  		return false;
2016  	if (IS_NOQUOTA(inode))
2017  		return true;
2018  	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2019  		return true;
2020  	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2021  					in_group_p(F2FS_OPTION(sbi).s_resgid))
2022  		return true;
2023  	if (cap && capable(CAP_SYS_RESOURCE))
2024  		return true;
2025  	return false;
2026  }
2027  
2028  static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2029  static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2030  				 struct inode *inode, blkcnt_t *count)
2031  {
2032  	blkcnt_t diff = 0, release = 0;
2033  	block_t avail_user_block_count;
2034  	int ret;
2035  
2036  	ret = dquot_reserve_block(inode, *count);
2037  	if (ret)
2038  		return ret;
2039  
2040  	if (time_to_inject(sbi, FAULT_BLOCK)) {
2041  		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2042  		release = *count;
2043  		goto release_quota;
2044  	}
2045  
2046  	/*
2047  	 * let's increase this in prior to actual block count change in order
2048  	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2049  	 */
2050  	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2051  
2052  	spin_lock(&sbi->stat_lock);
2053  	sbi->total_valid_block_count += (block_t)(*count);
2054  	avail_user_block_count = sbi->user_block_count -
2055  					sbi->current_reserved_blocks;
2056  
2057  	if (!__allow_reserved_blocks(sbi, inode, true))
2058  		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2059  	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2060  		if (avail_user_block_count > sbi->unusable_block_count)
2061  			avail_user_block_count -= sbi->unusable_block_count;
2062  		else
2063  			avail_user_block_count = 0;
2064  	}
2065  	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2066  		diff = sbi->total_valid_block_count - avail_user_block_count;
2067  		if (diff > *count)
2068  			diff = *count;
2069  		*count -= diff;
2070  		release = diff;
2071  		sbi->total_valid_block_count -= diff;
2072  		if (!*count) {
2073  			spin_unlock(&sbi->stat_lock);
2074  			goto enospc;
2075  		}
2076  	}
2077  	spin_unlock(&sbi->stat_lock);
2078  
2079  	if (unlikely(release)) {
2080  		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2081  		dquot_release_reservation_block(inode, release);
2082  	}
2083  	f2fs_i_blocks_write(inode, *count, true, true);
2084  	return 0;
2085  
2086  enospc:
2087  	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2088  release_quota:
2089  	dquot_release_reservation_block(inode, release);
2090  	return -ENOSPC;
2091  }
2092  
2093  __printf(2, 3)
2094  void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2095  
2096  #define f2fs_err(sbi, fmt, ...)						\
2097  	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2098  #define f2fs_warn(sbi, fmt, ...)					\
2099  	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2100  #define f2fs_notice(sbi, fmt, ...)					\
2101  	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2102  #define f2fs_info(sbi, fmt, ...)					\
2103  	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2104  #define f2fs_debug(sbi, fmt, ...)					\
2105  	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2106  
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2107  static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2108  						struct inode *inode,
2109  						block_t count)
2110  {
2111  	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2112  
2113  	spin_lock(&sbi->stat_lock);
2114  	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2115  	sbi->total_valid_block_count -= (block_t)count;
2116  	if (sbi->reserved_blocks &&
2117  		sbi->current_reserved_blocks < sbi->reserved_blocks)
2118  		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2119  					sbi->current_reserved_blocks + count);
2120  	spin_unlock(&sbi->stat_lock);
2121  	if (unlikely(inode->i_blocks < sectors)) {
2122  		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2123  			  inode->i_ino,
2124  			  (unsigned long long)inode->i_blocks,
2125  			  (unsigned long long)sectors);
2126  		set_sbi_flag(sbi, SBI_NEED_FSCK);
2127  		return;
2128  	}
2129  	f2fs_i_blocks_write(inode, count, false, true);
2130  }
2131  
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2132  static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2133  {
2134  	atomic_inc(&sbi->nr_pages[count_type]);
2135  
2136  	if (count_type == F2FS_DIRTY_DENTS ||
2137  			count_type == F2FS_DIRTY_NODES ||
2138  			count_type == F2FS_DIRTY_META ||
2139  			count_type == F2FS_DIRTY_QDATA ||
2140  			count_type == F2FS_DIRTY_IMETA)
2141  		set_sbi_flag(sbi, SBI_IS_DIRTY);
2142  }
2143  
inode_inc_dirty_pages(struct inode * inode)2144  static inline void inode_inc_dirty_pages(struct inode *inode)
2145  {
2146  	atomic_inc(&F2FS_I(inode)->dirty_pages);
2147  	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2148  				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2149  	if (IS_NOQUOTA(inode))
2150  		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2151  }
2152  
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2153  static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2154  {
2155  	atomic_dec(&sbi->nr_pages[count_type]);
2156  }
2157  
inode_dec_dirty_pages(struct inode * inode)2158  static inline void inode_dec_dirty_pages(struct inode *inode)
2159  {
2160  	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2161  			!S_ISLNK(inode->i_mode))
2162  		return;
2163  
2164  	atomic_dec(&F2FS_I(inode)->dirty_pages);
2165  	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2166  				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2167  	if (IS_NOQUOTA(inode))
2168  		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2169  }
2170  
get_pages(struct f2fs_sb_info * sbi,int count_type)2171  static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2172  {
2173  	return atomic_read(&sbi->nr_pages[count_type]);
2174  }
2175  
get_dirty_pages(struct inode * inode)2176  static inline int get_dirty_pages(struct inode *inode)
2177  {
2178  	return atomic_read(&F2FS_I(inode)->dirty_pages);
2179  }
2180  
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2181  static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2182  {
2183  	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2184  	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2185  						sbi->log_blocks_per_seg;
2186  
2187  	return segs / sbi->segs_per_sec;
2188  }
2189  
valid_user_blocks(struct f2fs_sb_info * sbi)2190  static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2191  {
2192  	return sbi->total_valid_block_count;
2193  }
2194  
discard_blocks(struct f2fs_sb_info * sbi)2195  static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2196  {
2197  	return sbi->discard_blks;
2198  }
2199  
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2200  static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2201  {
2202  	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2203  
2204  	/* return NAT or SIT bitmap */
2205  	if (flag == NAT_BITMAP)
2206  		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2207  	else if (flag == SIT_BITMAP)
2208  		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2209  
2210  	return 0;
2211  }
2212  
__cp_payload(struct f2fs_sb_info * sbi)2213  static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2214  {
2215  	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2216  }
2217  
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2218  static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2219  {
2220  	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2221  	int offset;
2222  
2223  	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2224  		offset = (flag == SIT_BITMAP) ?
2225  			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2226  		/*
2227  		 * if large_nat_bitmap feature is enabled, leave checksum
2228  		 * protection for all nat/sit bitmaps.
2229  		 */
2230  		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2231  	}
2232  
2233  	if (__cp_payload(sbi) > 0) {
2234  		if (flag == NAT_BITMAP)
2235  			return &ckpt->sit_nat_version_bitmap;
2236  		else
2237  			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2238  	} else {
2239  		offset = (flag == NAT_BITMAP) ?
2240  			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2241  		return &ckpt->sit_nat_version_bitmap + offset;
2242  	}
2243  }
2244  
__start_cp_addr(struct f2fs_sb_info * sbi)2245  static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2246  {
2247  	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2248  
2249  	if (sbi->cur_cp_pack == 2)
2250  		start_addr += sbi->blocks_per_seg;
2251  	return start_addr;
2252  }
2253  
__start_cp_next_addr(struct f2fs_sb_info * sbi)2254  static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2255  {
2256  	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2257  
2258  	if (sbi->cur_cp_pack == 1)
2259  		start_addr += sbi->blocks_per_seg;
2260  	return start_addr;
2261  }
2262  
__set_cp_next_pack(struct f2fs_sb_info * sbi)2263  static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2264  {
2265  	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2266  }
2267  
__start_sum_addr(struct f2fs_sb_info * sbi)2268  static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2269  {
2270  	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2271  }
2272  
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2273  static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2274  					struct inode *inode, bool is_inode)
2275  {
2276  	block_t	valid_block_count;
2277  	unsigned int valid_node_count, user_block_count;
2278  	int err;
2279  
2280  	if (is_inode) {
2281  		if (inode) {
2282  			err = dquot_alloc_inode(inode);
2283  			if (err)
2284  				return err;
2285  		}
2286  	} else {
2287  		err = dquot_reserve_block(inode, 1);
2288  		if (err)
2289  			return err;
2290  	}
2291  
2292  	if (time_to_inject(sbi, FAULT_BLOCK)) {
2293  		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2294  		goto enospc;
2295  	}
2296  
2297  	spin_lock(&sbi->stat_lock);
2298  
2299  	valid_block_count = sbi->total_valid_block_count +
2300  					sbi->current_reserved_blocks + 1;
2301  
2302  	if (!__allow_reserved_blocks(sbi, inode, false))
2303  		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2304  	user_block_count = sbi->user_block_count;
2305  	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2306  		user_block_count -= sbi->unusable_block_count;
2307  
2308  	if (unlikely(valid_block_count > user_block_count)) {
2309  		spin_unlock(&sbi->stat_lock);
2310  		goto enospc;
2311  	}
2312  
2313  	valid_node_count = sbi->total_valid_node_count + 1;
2314  	if (unlikely(valid_node_count > sbi->total_node_count)) {
2315  		spin_unlock(&sbi->stat_lock);
2316  		goto enospc;
2317  	}
2318  
2319  	sbi->total_valid_node_count++;
2320  	sbi->total_valid_block_count++;
2321  	spin_unlock(&sbi->stat_lock);
2322  
2323  	if (inode) {
2324  		if (is_inode)
2325  			f2fs_mark_inode_dirty_sync(inode, true);
2326  		else
2327  			f2fs_i_blocks_write(inode, 1, true, true);
2328  	}
2329  
2330  	percpu_counter_inc(&sbi->alloc_valid_block_count);
2331  	return 0;
2332  
2333  enospc:
2334  	if (is_inode) {
2335  		if (inode)
2336  			dquot_free_inode(inode);
2337  	} else {
2338  		dquot_release_reservation_block(inode, 1);
2339  	}
2340  	return -ENOSPC;
2341  }
2342  
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2343  static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2344  					struct inode *inode, bool is_inode)
2345  {
2346  	spin_lock(&sbi->stat_lock);
2347  
2348  	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2349  	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2350  
2351  	sbi->total_valid_node_count--;
2352  	sbi->total_valid_block_count--;
2353  	if (sbi->reserved_blocks &&
2354  		sbi->current_reserved_blocks < sbi->reserved_blocks)
2355  		sbi->current_reserved_blocks++;
2356  
2357  	spin_unlock(&sbi->stat_lock);
2358  
2359  	if (is_inode) {
2360  		dquot_free_inode(inode);
2361  	} else {
2362  		if (unlikely(inode->i_blocks == 0)) {
2363  			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2364  				  inode->i_ino,
2365  				  (unsigned long long)inode->i_blocks);
2366  			set_sbi_flag(sbi, SBI_NEED_FSCK);
2367  			return;
2368  		}
2369  		f2fs_i_blocks_write(inode, 1, false, true);
2370  	}
2371  }
2372  
valid_node_count(struct f2fs_sb_info * sbi)2373  static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2374  {
2375  	return sbi->total_valid_node_count;
2376  }
2377  
inc_valid_inode_count(struct f2fs_sb_info * sbi)2378  static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2379  {
2380  	percpu_counter_inc(&sbi->total_valid_inode_count);
2381  }
2382  
dec_valid_inode_count(struct f2fs_sb_info * sbi)2383  static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2384  {
2385  	percpu_counter_dec(&sbi->total_valid_inode_count);
2386  }
2387  
valid_inode_count(struct f2fs_sb_info * sbi)2388  static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2389  {
2390  	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2391  }
2392  
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2393  static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2394  						pgoff_t index, bool for_write)
2395  {
2396  	struct page *page;
2397  
2398  	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2399  		if (!for_write)
2400  			page = find_get_page_flags(mapping, index,
2401  							FGP_LOCK | FGP_ACCESSED);
2402  		else
2403  			page = find_lock_page(mapping, index);
2404  		if (page)
2405  			return page;
2406  
2407  		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2408  			f2fs_show_injection_info(F2FS_M_SB(mapping),
2409  							FAULT_PAGE_ALLOC);
2410  			return NULL;
2411  		}
2412  	}
2413  
2414  	if (!for_write)
2415  		return grab_cache_page(mapping, index);
2416  	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2417  }
2418  
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2419  static inline struct page *f2fs_pagecache_get_page(
2420  				struct address_space *mapping, pgoff_t index,
2421  				int fgp_flags, gfp_t gfp_mask)
2422  {
2423  	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2424  		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2425  		return NULL;
2426  	}
2427  
2428  	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2429  }
2430  
f2fs_copy_page(struct page * src,struct page * dst)2431  static inline void f2fs_copy_page(struct page *src, struct page *dst)
2432  {
2433  	char *src_kaddr = kmap(src);
2434  	char *dst_kaddr = kmap(dst);
2435  
2436  	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2437  	kunmap(dst);
2438  	kunmap(src);
2439  }
2440  
f2fs_put_page(struct page * page,int unlock)2441  static inline void f2fs_put_page(struct page *page, int unlock)
2442  {
2443  	if (!page)
2444  		return;
2445  
2446  	if (unlock) {
2447  		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2448  		unlock_page(page);
2449  	}
2450  	put_page(page);
2451  }
2452  
f2fs_put_dnode(struct dnode_of_data * dn)2453  static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2454  {
2455  	if (dn->node_page)
2456  		f2fs_put_page(dn->node_page, 1);
2457  	if (dn->inode_page && dn->node_page != dn->inode_page)
2458  		f2fs_put_page(dn->inode_page, 0);
2459  	dn->node_page = NULL;
2460  	dn->inode_page = NULL;
2461  }
2462  
f2fs_kmem_cache_create(const char * name,size_t size)2463  static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2464  					size_t size)
2465  {
2466  	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2467  }
2468  
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2469  static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2470  						gfp_t flags)
2471  {
2472  	void *entry;
2473  
2474  	entry = kmem_cache_alloc(cachep, flags);
2475  	if (!entry)
2476  		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2477  	return entry;
2478  }
2479  
is_idle(struct f2fs_sb_info * sbi,int type)2480  static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2481  {
2482  	if (sbi->gc_mode == GC_URGENT_HIGH)
2483  		return true;
2484  
2485  	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2486  		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2487  		get_pages(sbi, F2FS_WB_CP_DATA) ||
2488  		get_pages(sbi, F2FS_DIO_READ) ||
2489  		get_pages(sbi, F2FS_DIO_WRITE))
2490  		return false;
2491  
2492  	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2493  			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2494  		return false;
2495  
2496  	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2497  			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2498  		return false;
2499  
2500  	if (sbi->gc_mode == GC_URGENT_LOW &&
2501  			(type == DISCARD_TIME || type == GC_TIME))
2502  		return true;
2503  
2504  	return f2fs_time_over(sbi, type);
2505  }
2506  
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2507  static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2508  				unsigned long index, void *item)
2509  {
2510  	while (radix_tree_insert(root, index, item))
2511  		cond_resched();
2512  }
2513  
2514  #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2515  
IS_INODE(struct page * page)2516  static inline bool IS_INODE(struct page *page)
2517  {
2518  	struct f2fs_node *p = F2FS_NODE(page);
2519  
2520  	return RAW_IS_INODE(p);
2521  }
2522  
offset_in_addr(struct f2fs_inode * i)2523  static inline int offset_in_addr(struct f2fs_inode *i)
2524  {
2525  	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2526  			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2527  }
2528  
blkaddr_in_node(struct f2fs_node * node)2529  static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2530  {
2531  	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2532  }
2533  
2534  static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2535  static inline block_t data_blkaddr(struct inode *inode,
2536  			struct page *node_page, unsigned int offset)
2537  {
2538  	struct f2fs_node *raw_node;
2539  	__le32 *addr_array;
2540  	int base = 0;
2541  	bool is_inode = IS_INODE(node_page);
2542  
2543  	raw_node = F2FS_NODE(node_page);
2544  
2545  	if (is_inode) {
2546  		if (!inode)
2547  			/* from GC path only */
2548  			base = offset_in_addr(&raw_node->i);
2549  		else if (f2fs_has_extra_attr(inode))
2550  			base = get_extra_isize(inode);
2551  	}
2552  
2553  	addr_array = blkaddr_in_node(raw_node);
2554  	return le32_to_cpu(addr_array[base + offset]);
2555  }
2556  
f2fs_data_blkaddr(struct dnode_of_data * dn)2557  static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2558  {
2559  	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2560  }
2561  
f2fs_test_bit(unsigned int nr,char * addr)2562  static inline int f2fs_test_bit(unsigned int nr, char *addr)
2563  {
2564  	int mask;
2565  
2566  	addr += (nr >> 3);
2567  	mask = 1 << (7 - (nr & 0x07));
2568  	return mask & *addr;
2569  }
2570  
f2fs_set_bit(unsigned int nr,char * addr)2571  static inline void f2fs_set_bit(unsigned int nr, char *addr)
2572  {
2573  	int mask;
2574  
2575  	addr += (nr >> 3);
2576  	mask = 1 << (7 - (nr & 0x07));
2577  	*addr |= mask;
2578  }
2579  
f2fs_clear_bit(unsigned int nr,char * addr)2580  static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2581  {
2582  	int mask;
2583  
2584  	addr += (nr >> 3);
2585  	mask = 1 << (7 - (nr & 0x07));
2586  	*addr &= ~mask;
2587  }
2588  
f2fs_test_and_set_bit(unsigned int nr,char * addr)2589  static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2590  {
2591  	int mask;
2592  	int ret;
2593  
2594  	addr += (nr >> 3);
2595  	mask = 1 << (7 - (nr & 0x07));
2596  	ret = mask & *addr;
2597  	*addr |= mask;
2598  	return ret;
2599  }
2600  
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2601  static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2602  {
2603  	int mask;
2604  	int ret;
2605  
2606  	addr += (nr >> 3);
2607  	mask = 1 << (7 - (nr & 0x07));
2608  	ret = mask & *addr;
2609  	*addr &= ~mask;
2610  	return ret;
2611  }
2612  
f2fs_change_bit(unsigned int nr,char * addr)2613  static inline void f2fs_change_bit(unsigned int nr, char *addr)
2614  {
2615  	int mask;
2616  
2617  	addr += (nr >> 3);
2618  	mask = 1 << (7 - (nr & 0x07));
2619  	*addr ^= mask;
2620  }
2621  
2622  /*
2623   * On-disk inode flags (f2fs_inode::i_flags)
2624   */
2625  #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2626  #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2627  #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2628  #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2629  #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2630  #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2631  #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2632  #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2633  #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2634  #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2635  #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2636  
2637  /* Flags that should be inherited by new inodes from their parent. */
2638  #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2639  			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2640  			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2641  
2642  /* Flags that are appropriate for regular files (all but dir-specific ones). */
2643  #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2644  				F2FS_CASEFOLD_FL))
2645  
2646  /* Flags that are appropriate for non-directories/regular files. */
2647  #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2648  
f2fs_mask_flags(umode_t mode,__u32 flags)2649  static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2650  {
2651  	if (S_ISDIR(mode))
2652  		return flags;
2653  	else if (S_ISREG(mode))
2654  		return flags & F2FS_REG_FLMASK;
2655  	else
2656  		return flags & F2FS_OTHER_FLMASK;
2657  }
2658  
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2659  static inline void __mark_inode_dirty_flag(struct inode *inode,
2660  						int flag, bool set)
2661  {
2662  	switch (flag) {
2663  	case FI_INLINE_XATTR:
2664  	case FI_INLINE_DATA:
2665  	case FI_INLINE_DENTRY:
2666  	case FI_NEW_INODE:
2667  		if (set)
2668  			return;
2669  		fallthrough;
2670  	case FI_DATA_EXIST:
2671  	case FI_INLINE_DOTS:
2672  	case FI_PIN_FILE:
2673  		f2fs_mark_inode_dirty_sync(inode, true);
2674  	}
2675  }
2676  
set_inode_flag(struct inode * inode,int flag)2677  static inline void set_inode_flag(struct inode *inode, int flag)
2678  {
2679  	set_bit(flag, F2FS_I(inode)->flags);
2680  	__mark_inode_dirty_flag(inode, flag, true);
2681  }
2682  
is_inode_flag_set(struct inode * inode,int flag)2683  static inline int is_inode_flag_set(struct inode *inode, int flag)
2684  {
2685  	return test_bit(flag, F2FS_I(inode)->flags);
2686  }
2687  
clear_inode_flag(struct inode * inode,int flag)2688  static inline void clear_inode_flag(struct inode *inode, int flag)
2689  {
2690  	clear_bit(flag, F2FS_I(inode)->flags);
2691  	__mark_inode_dirty_flag(inode, flag, false);
2692  }
2693  
f2fs_verity_in_progress(struct inode * inode)2694  static inline bool f2fs_verity_in_progress(struct inode *inode)
2695  {
2696  	return IS_ENABLED(CONFIG_FS_VERITY) &&
2697  	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2698  }
2699  
set_acl_inode(struct inode * inode,umode_t mode)2700  static inline void set_acl_inode(struct inode *inode, umode_t mode)
2701  {
2702  	F2FS_I(inode)->i_acl_mode = mode;
2703  	set_inode_flag(inode, FI_ACL_MODE);
2704  	f2fs_mark_inode_dirty_sync(inode, false);
2705  }
2706  
f2fs_i_links_write(struct inode * inode,bool inc)2707  static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2708  {
2709  	if (inc)
2710  		inc_nlink(inode);
2711  	else
2712  		drop_nlink(inode);
2713  	f2fs_mark_inode_dirty_sync(inode, true);
2714  }
2715  
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2716  static inline void f2fs_i_blocks_write(struct inode *inode,
2717  					block_t diff, bool add, bool claim)
2718  {
2719  	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2720  	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2721  
2722  	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2723  	if (add) {
2724  		if (claim)
2725  			dquot_claim_block(inode, diff);
2726  		else
2727  			dquot_alloc_block_nofail(inode, diff);
2728  	} else {
2729  		dquot_free_block(inode, diff);
2730  	}
2731  
2732  	f2fs_mark_inode_dirty_sync(inode, true);
2733  	if (clean || recover)
2734  		set_inode_flag(inode, FI_AUTO_RECOVER);
2735  }
2736  
f2fs_i_size_write(struct inode * inode,loff_t i_size)2737  static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2738  {
2739  	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2740  	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2741  
2742  	if (i_size_read(inode) == i_size)
2743  		return;
2744  
2745  	i_size_write(inode, i_size);
2746  	f2fs_mark_inode_dirty_sync(inode, true);
2747  	if (clean || recover)
2748  		set_inode_flag(inode, FI_AUTO_RECOVER);
2749  }
2750  
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2751  static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2752  {
2753  	F2FS_I(inode)->i_current_depth = depth;
2754  	f2fs_mark_inode_dirty_sync(inode, true);
2755  }
2756  
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2757  static inline void f2fs_i_gc_failures_write(struct inode *inode,
2758  					unsigned int count)
2759  {
2760  	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2761  	f2fs_mark_inode_dirty_sync(inode, true);
2762  }
2763  
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2764  static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2765  {
2766  	F2FS_I(inode)->i_xattr_nid = xnid;
2767  	f2fs_mark_inode_dirty_sync(inode, true);
2768  }
2769  
f2fs_i_pino_write(struct inode * inode,nid_t pino)2770  static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2771  {
2772  	F2FS_I(inode)->i_pino = pino;
2773  	f2fs_mark_inode_dirty_sync(inode, true);
2774  }
2775  
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2776  static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2777  {
2778  	struct f2fs_inode_info *fi = F2FS_I(inode);
2779  
2780  	if (ri->i_inline & F2FS_INLINE_XATTR)
2781  		set_bit(FI_INLINE_XATTR, fi->flags);
2782  	if (ri->i_inline & F2FS_INLINE_DATA)
2783  		set_bit(FI_INLINE_DATA, fi->flags);
2784  	if (ri->i_inline & F2FS_INLINE_DENTRY)
2785  		set_bit(FI_INLINE_DENTRY, fi->flags);
2786  	if (ri->i_inline & F2FS_DATA_EXIST)
2787  		set_bit(FI_DATA_EXIST, fi->flags);
2788  	if (ri->i_inline & F2FS_INLINE_DOTS)
2789  		set_bit(FI_INLINE_DOTS, fi->flags);
2790  	if (ri->i_inline & F2FS_EXTRA_ATTR)
2791  		set_bit(FI_EXTRA_ATTR, fi->flags);
2792  	if (ri->i_inline & F2FS_PIN_FILE)
2793  		set_bit(FI_PIN_FILE, fi->flags);
2794  }
2795  
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2796  static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2797  {
2798  	ri->i_inline = 0;
2799  
2800  	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2801  		ri->i_inline |= F2FS_INLINE_XATTR;
2802  	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2803  		ri->i_inline |= F2FS_INLINE_DATA;
2804  	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2805  		ri->i_inline |= F2FS_INLINE_DENTRY;
2806  	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2807  		ri->i_inline |= F2FS_DATA_EXIST;
2808  	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2809  		ri->i_inline |= F2FS_INLINE_DOTS;
2810  	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2811  		ri->i_inline |= F2FS_EXTRA_ATTR;
2812  	if (is_inode_flag_set(inode, FI_PIN_FILE))
2813  		ri->i_inline |= F2FS_PIN_FILE;
2814  }
2815  
f2fs_has_extra_attr(struct inode * inode)2816  static inline int f2fs_has_extra_attr(struct inode *inode)
2817  {
2818  	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2819  }
2820  
f2fs_has_inline_xattr(struct inode * inode)2821  static inline int f2fs_has_inline_xattr(struct inode *inode)
2822  {
2823  	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2824  }
2825  
f2fs_compressed_file(struct inode * inode)2826  static inline int f2fs_compressed_file(struct inode *inode)
2827  {
2828  	return S_ISREG(inode->i_mode) &&
2829  		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2830  }
2831  
addrs_per_inode(struct inode * inode)2832  static inline unsigned int addrs_per_inode(struct inode *inode)
2833  {
2834  	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2835  				get_inline_xattr_addrs(inode);
2836  
2837  	if (!f2fs_compressed_file(inode))
2838  		return addrs;
2839  	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2840  }
2841  
addrs_per_block(struct inode * inode)2842  static inline unsigned int addrs_per_block(struct inode *inode)
2843  {
2844  	if (!f2fs_compressed_file(inode))
2845  		return DEF_ADDRS_PER_BLOCK;
2846  	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2847  }
2848  
inline_xattr_addr(struct inode * inode,struct page * page)2849  static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2850  {
2851  	struct f2fs_inode *ri = F2FS_INODE(page);
2852  
2853  	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2854  					get_inline_xattr_addrs(inode)]);
2855  }
2856  
inline_xattr_size(struct inode * inode)2857  static inline int inline_xattr_size(struct inode *inode)
2858  {
2859  	if (f2fs_has_inline_xattr(inode))
2860  		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2861  	return 0;
2862  }
2863  
f2fs_has_inline_data(struct inode * inode)2864  static inline int f2fs_has_inline_data(struct inode *inode)
2865  {
2866  	return is_inode_flag_set(inode, FI_INLINE_DATA);
2867  }
2868  
f2fs_exist_data(struct inode * inode)2869  static inline int f2fs_exist_data(struct inode *inode)
2870  {
2871  	return is_inode_flag_set(inode, FI_DATA_EXIST);
2872  }
2873  
f2fs_has_inline_dots(struct inode * inode)2874  static inline int f2fs_has_inline_dots(struct inode *inode)
2875  {
2876  	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2877  }
2878  
f2fs_is_mmap_file(struct inode * inode)2879  static inline int f2fs_is_mmap_file(struct inode *inode)
2880  {
2881  	return is_inode_flag_set(inode, FI_MMAP_FILE);
2882  }
2883  
f2fs_is_pinned_file(struct inode * inode)2884  static inline bool f2fs_is_pinned_file(struct inode *inode)
2885  {
2886  	return is_inode_flag_set(inode, FI_PIN_FILE);
2887  }
2888  
f2fs_is_atomic_file(struct inode * inode)2889  static inline bool f2fs_is_atomic_file(struct inode *inode)
2890  {
2891  	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2892  }
2893  
f2fs_is_commit_atomic_write(struct inode * inode)2894  static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2895  {
2896  	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2897  }
2898  
f2fs_is_volatile_file(struct inode * inode)2899  static inline bool f2fs_is_volatile_file(struct inode *inode)
2900  {
2901  	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2902  }
2903  
f2fs_is_first_block_written(struct inode * inode)2904  static inline bool f2fs_is_first_block_written(struct inode *inode)
2905  {
2906  	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2907  }
2908  
f2fs_is_drop_cache(struct inode * inode)2909  static inline bool f2fs_is_drop_cache(struct inode *inode)
2910  {
2911  	return is_inode_flag_set(inode, FI_DROP_CACHE);
2912  }
2913  
inline_data_addr(struct inode * inode,struct page * page)2914  static inline void *inline_data_addr(struct inode *inode, struct page *page)
2915  {
2916  	struct f2fs_inode *ri = F2FS_INODE(page);
2917  	int extra_size = get_extra_isize(inode);
2918  
2919  	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2920  }
2921  
f2fs_has_inline_dentry(struct inode * inode)2922  static inline int f2fs_has_inline_dentry(struct inode *inode)
2923  {
2924  	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2925  }
2926  
is_file(struct inode * inode,int type)2927  static inline int is_file(struct inode *inode, int type)
2928  {
2929  	return F2FS_I(inode)->i_advise & type;
2930  }
2931  
set_file(struct inode * inode,int type)2932  static inline void set_file(struct inode *inode, int type)
2933  {
2934  	F2FS_I(inode)->i_advise |= type;
2935  	f2fs_mark_inode_dirty_sync(inode, true);
2936  }
2937  
clear_file(struct inode * inode,int type)2938  static inline void clear_file(struct inode *inode, int type)
2939  {
2940  	F2FS_I(inode)->i_advise &= ~type;
2941  	f2fs_mark_inode_dirty_sync(inode, true);
2942  }
2943  
f2fs_is_time_consistent(struct inode * inode)2944  static inline bool f2fs_is_time_consistent(struct inode *inode)
2945  {
2946  	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2947  		return false;
2948  	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2949  		return false;
2950  	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2951  		return false;
2952  	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2953  						&F2FS_I(inode)->i_crtime))
2954  		return false;
2955  	return true;
2956  }
2957  
f2fs_skip_inode_update(struct inode * inode,int dsync)2958  static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2959  {
2960  	bool ret;
2961  
2962  	if (dsync) {
2963  		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2964  
2965  		spin_lock(&sbi->inode_lock[DIRTY_META]);
2966  		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2967  		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2968  		return ret;
2969  	}
2970  	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2971  			file_keep_isize(inode) ||
2972  			i_size_read(inode) & ~PAGE_MASK)
2973  		return false;
2974  
2975  	if (!f2fs_is_time_consistent(inode))
2976  		return false;
2977  
2978  	spin_lock(&F2FS_I(inode)->i_size_lock);
2979  	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2980  	spin_unlock(&F2FS_I(inode)->i_size_lock);
2981  
2982  	return ret;
2983  }
2984  
f2fs_readonly(struct super_block * sb)2985  static inline bool f2fs_readonly(struct super_block *sb)
2986  {
2987  	return sb_rdonly(sb);
2988  }
2989  
f2fs_cp_error(struct f2fs_sb_info * sbi)2990  static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2991  {
2992  	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2993  }
2994  
is_dot_dotdot(const u8 * name,size_t len)2995  static inline bool is_dot_dotdot(const u8 *name, size_t len)
2996  {
2997  	if (len == 1 && name[0] == '.')
2998  		return true;
2999  
3000  	if (len == 2 && name[0] == '.' && name[1] == '.')
3001  		return true;
3002  
3003  	return false;
3004  }
3005  
f2fs_may_extent_tree(struct inode * inode)3006  static inline bool f2fs_may_extent_tree(struct inode *inode)
3007  {
3008  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3009  
3010  	if (!test_opt(sbi, EXTENT_CACHE) ||
3011  			is_inode_flag_set(inode, FI_NO_EXTENT) ||
3012  			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3013  		return false;
3014  
3015  	/*
3016  	 * for recovered files during mount do not create extents
3017  	 * if shrinker is not registered.
3018  	 */
3019  	if (list_empty(&sbi->s_list))
3020  		return false;
3021  
3022  	return S_ISREG(inode->i_mode);
3023  }
3024  
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3025  static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3026  					size_t size, gfp_t flags)
3027  {
3028  	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3029  		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3030  		return NULL;
3031  	}
3032  
3033  	return kmalloc(size, flags);
3034  }
3035  
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3036  static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3037  					size_t size, gfp_t flags)
3038  {
3039  	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3040  }
3041  
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3042  static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3043  					size_t size, gfp_t flags)
3044  {
3045  	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3046  		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3047  		return NULL;
3048  	}
3049  
3050  	return kvmalloc(size, flags);
3051  }
3052  
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3053  static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3054  					size_t size, gfp_t flags)
3055  {
3056  	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3057  }
3058  
get_extra_isize(struct inode * inode)3059  static inline int get_extra_isize(struct inode *inode)
3060  {
3061  	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3062  }
3063  
get_inline_xattr_addrs(struct inode * inode)3064  static inline int get_inline_xattr_addrs(struct inode *inode)
3065  {
3066  	return F2FS_I(inode)->i_inline_xattr_size;
3067  }
3068  
3069  #define f2fs_get_inode_mode(i) \
3070  	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3071  	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3072  
3073  #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3074  	(offsetof(struct f2fs_inode, i_extra_end) -	\
3075  	offsetof(struct f2fs_inode, i_extra_isize))	\
3076  
3077  #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3078  #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3079  		((offsetof(typeof(*(f2fs_inode)), field) +	\
3080  		sizeof((f2fs_inode)->field))			\
3081  		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3082  
3083  #define DEFAULT_IOSTAT_PERIOD_MS	3000
3084  #define MIN_IOSTAT_PERIOD_MS		100
3085  /* maximum period of iostat tracing is 1 day */
3086  #define MAX_IOSTAT_PERIOD_MS		8640000
3087  
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3088  static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3089  {
3090  	int i;
3091  
3092  	spin_lock(&sbi->iostat_lock);
3093  	for (i = 0; i < NR_IO_TYPE; i++) {
3094  		sbi->rw_iostat[i] = 0;
3095  		sbi->prev_rw_iostat[i] = 0;
3096  	}
3097  	spin_unlock(&sbi->iostat_lock);
3098  }
3099  
3100  extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3101  
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3102  static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3103  			enum iostat_type type, unsigned long long io_bytes)
3104  {
3105  	if (!sbi->iostat_enable)
3106  		return;
3107  	spin_lock(&sbi->iostat_lock);
3108  	sbi->rw_iostat[type] += io_bytes;
3109  
3110  	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3111  		sbi->rw_iostat[APP_BUFFERED_IO] =
3112  			sbi->rw_iostat[APP_WRITE_IO] -
3113  			sbi->rw_iostat[APP_DIRECT_IO];
3114  
3115  	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3116  		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3117  			sbi->rw_iostat[APP_READ_IO] -
3118  			sbi->rw_iostat[APP_DIRECT_READ_IO];
3119  	spin_unlock(&sbi->iostat_lock);
3120  
3121  	f2fs_record_iostat(sbi);
3122  }
3123  
3124  #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3125  
3126  #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3127  
3128  bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3129  					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3130  static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3131  					block_t blkaddr, int type)
3132  {
3133  	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3134  		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3135  			 blkaddr, type);
3136  		f2fs_bug_on(sbi, 1);
3137  	}
3138  }
3139  
__is_valid_data_blkaddr(block_t blkaddr)3140  static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3141  {
3142  	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3143  			blkaddr == COMPRESS_ADDR)
3144  		return false;
3145  	return true;
3146  }
3147  
f2fs_set_page_private(struct page * page,unsigned long data)3148  static inline void f2fs_set_page_private(struct page *page,
3149  						unsigned long data)
3150  {
3151  	if (PagePrivate(page))
3152  		return;
3153  
3154  	attach_page_private(page, (void *)data);
3155  }
3156  
f2fs_clear_page_private(struct page * page)3157  static inline void f2fs_clear_page_private(struct page *page)
3158  {
3159  	detach_page_private(page);
3160  }
3161  
3162  /*
3163   * file.c
3164   */
3165  int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3166  void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3167  int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3168  int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3169  int f2fs_truncate(struct inode *inode);
3170  int f2fs_getattr(const struct path *path, struct kstat *stat,
3171  			u32 request_mask, unsigned int flags);
3172  int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3173  int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3174  void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3175  int f2fs_precache_extents(struct inode *inode);
3176  long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3177  long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3178  int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3179  int f2fs_pin_file_control(struct inode *inode, bool inc);
3180  
3181  /*
3182   * inode.c
3183   */
3184  void f2fs_set_inode_flags(struct inode *inode);
3185  bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3186  void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3187  struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3188  struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3189  int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3190  void f2fs_update_inode(struct inode *inode, struct page *node_page);
3191  void f2fs_update_inode_page(struct inode *inode);
3192  int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3193  void f2fs_evict_inode(struct inode *inode);
3194  void f2fs_handle_failed_inode(struct inode *inode);
3195  
3196  /*
3197   * namei.c
3198   */
3199  int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3200  							bool hot, bool set);
3201  struct dentry *f2fs_get_parent(struct dentry *child);
3202  
3203  /*
3204   * dir.c
3205   */
3206  unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3207  int f2fs_init_casefolded_name(const struct inode *dir,
3208  			      struct f2fs_filename *fname);
3209  int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3210  			int lookup, struct f2fs_filename *fname);
3211  int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3212  			struct f2fs_filename *fname);
3213  void f2fs_free_filename(struct f2fs_filename *fname);
3214  struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3215  			const struct f2fs_filename *fname, int *max_slots);
3216  int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3217  			unsigned int start_pos, struct fscrypt_str *fstr);
3218  void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3219  			struct f2fs_dentry_ptr *d);
3220  struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3221  			const struct f2fs_filename *fname, struct page *dpage);
3222  void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3223  			unsigned int current_depth);
3224  int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3225  void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3226  struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3227  					 const struct f2fs_filename *fname,
3228  					 struct page **res_page);
3229  struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3230  			const struct qstr *child, struct page **res_page);
3231  struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3232  ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3233  			struct page **page);
3234  void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3235  			struct page *page, struct inode *inode);
3236  bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3237  			  const struct f2fs_filename *fname);
3238  void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3239  			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3240  			unsigned int bit_pos);
3241  int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3242  			struct inode *inode, nid_t ino, umode_t mode);
3243  int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3244  			struct inode *inode, nid_t ino, umode_t mode);
3245  int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3246  			struct inode *inode, nid_t ino, umode_t mode);
3247  void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3248  			struct inode *dir, struct inode *inode);
3249  int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3250  bool f2fs_empty_dir(struct inode *dir);
3251  
f2fs_add_link(struct dentry * dentry,struct inode * inode)3252  static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3253  {
3254  	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3255  				inode, inode->i_ino, inode->i_mode);
3256  }
3257  
3258  /*
3259   * super.c
3260   */
3261  int f2fs_inode_dirtied(struct inode *inode, bool sync);
3262  void f2fs_inode_synced(struct inode *inode);
3263  int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3264  int f2fs_quota_sync(struct super_block *sb, int type);
3265  void f2fs_quota_off_umount(struct super_block *sb);
3266  int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3267  int f2fs_sync_fs(struct super_block *sb, int sync);
3268  int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3269  
3270  /*
3271   * hash.c
3272   */
3273  void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3274  
3275  /*
3276   * node.c
3277   */
3278  struct dnode_of_data;
3279  struct node_info;
3280  
3281  int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3282  bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3283  bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3284  void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3285  void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3286  void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3287  int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3288  bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3289  bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3290  int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3291  						struct node_info *ni);
3292  pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3293  int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3294  int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3295  int f2fs_truncate_xattr_node(struct inode *inode);
3296  int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3297  					unsigned int seq_id);
3298  int f2fs_remove_inode_page(struct inode *inode);
3299  struct page *f2fs_new_inode_page(struct inode *inode);
3300  struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3301  void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3302  struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3303  struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3304  int f2fs_move_node_page(struct page *node_page, int gc_type);
3305  void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3306  int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3307  			struct writeback_control *wbc, bool atomic,
3308  			unsigned int *seq_id);
3309  int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3310  			struct writeback_control *wbc,
3311  			bool do_balance, enum iostat_type io_type);
3312  int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3313  bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3314  void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3315  void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3316  int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3317  int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3318  int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3319  int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3320  int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3321  			unsigned int segno, struct f2fs_summary_block *sum);
3322  int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3323  int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3324  void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3325  int __init f2fs_create_node_manager_caches(void);
3326  void f2fs_destroy_node_manager_caches(void);
3327  
3328  /*
3329   * segment.c
3330   */
3331  bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3332  void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3333  void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3334  void f2fs_drop_inmem_pages(struct inode *inode);
3335  void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3336  int f2fs_commit_inmem_pages(struct inode *inode);
3337  void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3338  void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3339  int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3340  int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3341  int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3342  void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3343  void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3344  bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3345  void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3346  void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3347  bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3348  void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3349  					struct cp_control *cpc);
3350  void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3351  block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3352  int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3353  void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3354  int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3355  void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3356  void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3357  void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3358  void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3359  			unsigned int *newseg, bool new_sec, int dir);
3360  void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3361  					unsigned int start, unsigned int end);
3362  void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3363  void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3364  int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3365  bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3366  					struct cp_control *cpc);
3367  struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3368  void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3369  					block_t blk_addr);
3370  void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3371  						enum iostat_type io_type);
3372  void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3373  void f2fs_outplace_write_data(struct dnode_of_data *dn,
3374  			struct f2fs_io_info *fio);
3375  int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3376  void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3377  			block_t old_blkaddr, block_t new_blkaddr,
3378  			bool recover_curseg, bool recover_newaddr,
3379  			bool from_gc);
3380  void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3381  			block_t old_addr, block_t new_addr,
3382  			unsigned char version, bool recover_curseg,
3383  			bool recover_newaddr);
3384  void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3385  			block_t old_blkaddr, block_t *new_blkaddr,
3386  			struct f2fs_summary *sum, int type,
3387  			struct f2fs_io_info *fio);
3388  void f2fs_wait_on_page_writeback(struct page *page,
3389  			enum page_type type, bool ordered, bool locked);
3390  void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3391  void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3392  								block_t len);
3393  void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3394  void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3395  int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3396  			unsigned int val, int alloc);
3397  void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3398  int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3399  int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3400  int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3401  void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3402  int __init f2fs_create_segment_manager_caches(void);
3403  void f2fs_destroy_segment_manager_caches(void);
3404  int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3405  enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3406  			enum page_type type, enum temp_type temp);
3407  unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3408  			unsigned int segno);
3409  unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3410  			unsigned int segno);
3411  
3412  /*
3413   * checkpoint.c
3414   */
3415  void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3416  struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3417  struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3418  struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3419  struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3420  bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3421  					block_t blkaddr, int type);
3422  int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3423  			int type, bool sync);
3424  void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3425  long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3426  			long nr_to_write, enum iostat_type io_type);
3427  void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3428  void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3429  void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3430  bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3431  void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3432  					unsigned int devidx, int type);
3433  bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3434  					unsigned int devidx, int type);
3435  int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3436  int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3437  void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3438  void f2fs_add_orphan_inode(struct inode *inode);
3439  void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3440  int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3441  int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3442  void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3443  void f2fs_remove_dirty_inode(struct inode *inode);
3444  int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3445  void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3446  int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3447  void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3448  int __init f2fs_create_checkpoint_caches(void);
3449  void f2fs_destroy_checkpoint_caches(void);
3450  
3451  /*
3452   * data.c
3453   */
3454  int __init f2fs_init_bioset(void);
3455  void f2fs_destroy_bioset(void);
3456  struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3457  int f2fs_init_bio_entry_cache(void);
3458  void f2fs_destroy_bio_entry_cache(void);
3459  void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3460  				struct bio *bio, enum page_type type);
3461  void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3462  void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3463  				struct inode *inode, struct page *page,
3464  				nid_t ino, enum page_type type);
3465  void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3466  					struct bio **bio, struct page *page);
3467  void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3468  int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3469  int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3470  void f2fs_submit_page_write(struct f2fs_io_info *fio);
3471  struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3472  			block_t blk_addr, struct bio *bio);
3473  int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3474  void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3475  void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3476  int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3477  int f2fs_reserve_new_block(struct dnode_of_data *dn);
3478  int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3479  int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3480  int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3481  struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3482  			int op_flags, bool for_write);
3483  struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3484  struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3485  			bool for_write);
3486  struct page *f2fs_get_new_data_page(struct inode *inode,
3487  			struct page *ipage, pgoff_t index, bool new_i_size);
3488  int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3489  void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3490  int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3491  			int create, int flag);
3492  int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3493  			u64 start, u64 len);
3494  int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3495  bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3496  bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3497  int f2fs_write_single_data_page(struct page *page, int *submitted,
3498  				struct bio **bio, sector_t *last_block,
3499  				struct writeback_control *wbc,
3500  				enum iostat_type io_type,
3501  				int compr_blocks);
3502  void f2fs_invalidate_page(struct page *page, unsigned int offset,
3503  			unsigned int length);
3504  int f2fs_release_page(struct page *page, gfp_t wait);
3505  #ifdef CONFIG_MIGRATION
3506  int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3507  			struct page *page, enum migrate_mode mode);
3508  #endif
3509  bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3510  void f2fs_clear_page_cache_dirty_tag(struct page *page);
3511  int f2fs_init_post_read_processing(void);
3512  void f2fs_destroy_post_read_processing(void);
3513  int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3514  void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3515  
3516  /*
3517   * gc.c
3518   */
3519  int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3520  void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3521  block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3522  int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3523  			unsigned int segno);
3524  void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3525  int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3526  int __init f2fs_create_garbage_collection_cache(void);
3527  void f2fs_destroy_garbage_collection_cache(void);
3528  
3529  /*
3530   * recovery.c
3531   */
3532  int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3533  bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3534  
3535  /*
3536   * debug.c
3537   */
3538  #ifdef CONFIG_F2FS_STAT_FS
3539  struct f2fs_stat_info {
3540  	struct list_head stat_list;
3541  	struct f2fs_sb_info *sbi;
3542  	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3543  	int main_area_segs, main_area_sections, main_area_zones;
3544  	unsigned long long hit_largest, hit_cached, hit_rbtree;
3545  	unsigned long long hit_total, total_ext;
3546  	int ext_tree, zombie_tree, ext_node;
3547  	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3548  	int ndirty_data, ndirty_qdata;
3549  	int inmem_pages;
3550  	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3551  	int nats, dirty_nats, sits, dirty_sits;
3552  	int free_nids, avail_nids, alloc_nids;
3553  	int total_count, utilization;
3554  	int bg_gc, nr_wb_cp_data, nr_wb_data;
3555  	int nr_rd_data, nr_rd_node, nr_rd_meta;
3556  	int nr_dio_read, nr_dio_write;
3557  	unsigned int io_skip_bggc, other_skip_bggc;
3558  	int nr_flushing, nr_flushed, flush_list_empty;
3559  	int nr_discarding, nr_discarded;
3560  	int nr_discard_cmd;
3561  	unsigned int undiscard_blks;
3562  	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3563  	int compr_inode;
3564  	unsigned long long compr_blocks;
3565  	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3566  	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3567  	unsigned int bimodal, avg_vblocks;
3568  	int util_free, util_valid, util_invalid;
3569  	int rsvd_segs, overp_segs;
3570  	int dirty_count, node_pages, meta_pages;
3571  	int prefree_count, call_count, cp_count, bg_cp_count;
3572  	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3573  	int bg_node_segs, bg_data_segs;
3574  	int tot_blks, data_blks, node_blks;
3575  	int bg_data_blks, bg_node_blks;
3576  	unsigned long long skipped_atomic_files[2];
3577  	int curseg[NR_CURSEG_TYPE];
3578  	int cursec[NR_CURSEG_TYPE];
3579  	int curzone[NR_CURSEG_TYPE];
3580  	unsigned int dirty_seg[NR_CURSEG_TYPE];
3581  	unsigned int full_seg[NR_CURSEG_TYPE];
3582  	unsigned int valid_blks[NR_CURSEG_TYPE];
3583  
3584  	unsigned int meta_count[META_MAX];
3585  	unsigned int segment_count[2];
3586  	unsigned int block_count[2];
3587  	unsigned int inplace_count;
3588  	unsigned long long base_mem, cache_mem, page_mem;
3589  };
3590  
F2FS_STAT(struct f2fs_sb_info * sbi)3591  static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3592  {
3593  	return (struct f2fs_stat_info *)sbi->stat_info;
3594  }
3595  
3596  #define stat_inc_cp_count(si)		((si)->cp_count++)
3597  #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3598  #define stat_inc_call_count(si)		((si)->call_count++)
3599  #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3600  #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3601  #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3602  #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3603  #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3604  #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3605  #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3606  #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3607  #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3608  #define stat_inc_inline_xattr(inode)					\
3609  	do {								\
3610  		if (f2fs_has_inline_xattr(inode))			\
3611  			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3612  	} while (0)
3613  #define stat_dec_inline_xattr(inode)					\
3614  	do {								\
3615  		if (f2fs_has_inline_xattr(inode))			\
3616  			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3617  	} while (0)
3618  #define stat_inc_inline_inode(inode)					\
3619  	do {								\
3620  		if (f2fs_has_inline_data(inode))			\
3621  			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3622  	} while (0)
3623  #define stat_dec_inline_inode(inode)					\
3624  	do {								\
3625  		if (f2fs_has_inline_data(inode))			\
3626  			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3627  	} while (0)
3628  #define stat_inc_inline_dir(inode)					\
3629  	do {								\
3630  		if (f2fs_has_inline_dentry(inode))			\
3631  			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3632  	} while (0)
3633  #define stat_dec_inline_dir(inode)					\
3634  	do {								\
3635  		if (f2fs_has_inline_dentry(inode))			\
3636  			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3637  	} while (0)
3638  #define stat_inc_compr_inode(inode)					\
3639  	do {								\
3640  		if (f2fs_compressed_file(inode))			\
3641  			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3642  	} while (0)
3643  #define stat_dec_compr_inode(inode)					\
3644  	do {								\
3645  		if (f2fs_compressed_file(inode))			\
3646  			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3647  	} while (0)
3648  #define stat_add_compr_blocks(inode, blocks)				\
3649  		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3650  #define stat_sub_compr_blocks(inode, blocks)				\
3651  		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3652  #define stat_inc_meta_count(sbi, blkaddr)				\
3653  	do {								\
3654  		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3655  			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3656  		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3657  			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3658  		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3659  			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3660  		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3661  			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3662  	} while (0)
3663  #define stat_inc_seg_type(sbi, curseg)					\
3664  		((sbi)->segment_count[(curseg)->alloc_type]++)
3665  #define stat_inc_block_count(sbi, curseg)				\
3666  		((sbi)->block_count[(curseg)->alloc_type]++)
3667  #define stat_inc_inplace_blocks(sbi)					\
3668  		(atomic_inc(&(sbi)->inplace_count))
3669  #define stat_update_max_atomic_write(inode)				\
3670  	do {								\
3671  		int cur = F2FS_I_SB(inode)->atomic_files;	\
3672  		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3673  		if (cur > max)						\
3674  			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3675  	} while (0)
3676  #define stat_inc_volatile_write(inode)					\
3677  		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3678  #define stat_dec_volatile_write(inode)					\
3679  		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3680  #define stat_update_max_volatile_write(inode)				\
3681  	do {								\
3682  		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3683  		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3684  		if (cur > max)						\
3685  			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3686  	} while (0)
3687  #define stat_inc_seg_count(sbi, type, gc_type)				\
3688  	do {								\
3689  		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3690  		si->tot_segs++;						\
3691  		if ((type) == SUM_TYPE_DATA) {				\
3692  			si->data_segs++;				\
3693  			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3694  		} else {						\
3695  			si->node_segs++;				\
3696  			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3697  		}							\
3698  	} while (0)
3699  
3700  #define stat_inc_tot_blk_count(si, blks)				\
3701  	((si)->tot_blks += (blks))
3702  
3703  #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3704  	do {								\
3705  		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3706  		stat_inc_tot_blk_count(si, blks);			\
3707  		si->data_blks += (blks);				\
3708  		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3709  	} while (0)
3710  
3711  #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3712  	do {								\
3713  		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3714  		stat_inc_tot_blk_count(si, blks);			\
3715  		si->node_blks += (blks);				\
3716  		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3717  	} while (0)
3718  
3719  int f2fs_build_stats(struct f2fs_sb_info *sbi);
3720  void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3721  void __init f2fs_create_root_stats(void);
3722  void f2fs_destroy_root_stats(void);
3723  void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3724  #else
3725  #define stat_inc_cp_count(si)				do { } while (0)
3726  #define stat_inc_bg_cp_count(si)			do { } while (0)
3727  #define stat_inc_call_count(si)				do { } while (0)
3728  #define stat_inc_bggc_count(si)				do { } while (0)
3729  #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3730  #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3731  #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3732  #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3733  #define stat_inc_total_hit(sbi)				do { } while (0)
3734  #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3735  #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3736  #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3737  #define stat_inc_inline_xattr(inode)			do { } while (0)
3738  #define stat_dec_inline_xattr(inode)			do { } while (0)
3739  #define stat_inc_inline_inode(inode)			do { } while (0)
3740  #define stat_dec_inline_inode(inode)			do { } while (0)
3741  #define stat_inc_inline_dir(inode)			do { } while (0)
3742  #define stat_dec_inline_dir(inode)			do { } while (0)
3743  #define stat_inc_compr_inode(inode)			do { } while (0)
3744  #define stat_dec_compr_inode(inode)			do { } while (0)
3745  #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3746  #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3747  #define stat_inc_atomic_write(inode)			do { } while (0)
3748  #define stat_dec_atomic_write(inode)			do { } while (0)
3749  #define stat_update_max_atomic_write(inode)		do { } while (0)
3750  #define stat_inc_volatile_write(inode)			do { } while (0)
3751  #define stat_dec_volatile_write(inode)			do { } while (0)
3752  #define stat_update_max_volatile_write(inode)		do { } while (0)
3753  #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3754  #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3755  #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3756  #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3757  #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3758  #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3759  #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3760  #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3761  
f2fs_build_stats(struct f2fs_sb_info * sbi)3762  static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3763  static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3764  static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3765  static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3766  static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3767  #endif
3768  
3769  extern const struct file_operations f2fs_dir_operations;
3770  #ifdef CONFIG_UNICODE
3771  extern const struct dentry_operations f2fs_dentry_ops;
3772  #endif
3773  extern const struct file_operations f2fs_file_operations;
3774  extern const struct inode_operations f2fs_file_inode_operations;
3775  extern const struct address_space_operations f2fs_dblock_aops;
3776  extern const struct address_space_operations f2fs_node_aops;
3777  extern const struct address_space_operations f2fs_meta_aops;
3778  extern const struct inode_operations f2fs_dir_inode_operations;
3779  extern const struct inode_operations f2fs_symlink_inode_operations;
3780  extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3781  extern const struct inode_operations f2fs_special_inode_operations;
3782  extern struct kmem_cache *f2fs_inode_entry_slab;
3783  
3784  /*
3785   * inline.c
3786   */
3787  bool f2fs_may_inline_data(struct inode *inode);
3788  bool f2fs_may_inline_dentry(struct inode *inode);
3789  void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3790  void f2fs_truncate_inline_inode(struct inode *inode,
3791  						struct page *ipage, u64 from);
3792  int f2fs_read_inline_data(struct inode *inode, struct page *page);
3793  int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3794  int f2fs_convert_inline_inode(struct inode *inode);
3795  int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3796  int f2fs_write_inline_data(struct inode *inode, struct page *page);
3797  int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3798  struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3799  					const struct f2fs_filename *fname,
3800  					struct page **res_page);
3801  int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3802  			struct page *ipage);
3803  int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3804  			struct inode *inode, nid_t ino, umode_t mode);
3805  void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3806  				struct page *page, struct inode *dir,
3807  				struct inode *inode);
3808  bool f2fs_empty_inline_dir(struct inode *dir);
3809  int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3810  			struct fscrypt_str *fstr);
3811  int f2fs_inline_data_fiemap(struct inode *inode,
3812  			struct fiemap_extent_info *fieinfo,
3813  			__u64 start, __u64 len);
3814  
3815  /*
3816   * shrinker.c
3817   */
3818  unsigned long f2fs_shrink_count(struct shrinker *shrink,
3819  			struct shrink_control *sc);
3820  unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3821  			struct shrink_control *sc);
3822  void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3823  void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3824  
3825  /*
3826   * extent_cache.c
3827   */
3828  struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3829  				struct rb_entry *cached_re, unsigned int ofs);
3830  struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3831  				struct rb_root_cached *root,
3832  				struct rb_node **parent,
3833  				unsigned long long key, bool *left_most);
3834  struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3835  				struct rb_root_cached *root,
3836  				struct rb_node **parent,
3837  				unsigned int ofs, bool *leftmost);
3838  struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3839  		struct rb_entry *cached_re, unsigned int ofs,
3840  		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3841  		struct rb_node ***insert_p, struct rb_node **insert_parent,
3842  		bool force, bool *leftmost);
3843  bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3844  				struct rb_root_cached *root, bool check_key);
3845  unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3846  void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3847  void f2fs_drop_extent_tree(struct inode *inode);
3848  unsigned int f2fs_destroy_extent_node(struct inode *inode);
3849  void f2fs_destroy_extent_tree(struct inode *inode);
3850  bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3851  			struct extent_info *ei);
3852  void f2fs_update_extent_cache(struct dnode_of_data *dn);
3853  void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3854  			pgoff_t fofs, block_t blkaddr, unsigned int len);
3855  void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3856  int __init f2fs_create_extent_cache(void);
3857  void f2fs_destroy_extent_cache(void);
3858  
3859  /*
3860   * sysfs.c
3861   */
3862  int __init f2fs_init_sysfs(void);
3863  void f2fs_exit_sysfs(void);
3864  int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3865  void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3866  
3867  /* verity.c */
3868  extern const struct fsverity_operations f2fs_verityops;
3869  
3870  /*
3871   * crypto support
3872   */
f2fs_encrypted_file(struct inode * inode)3873  static inline bool f2fs_encrypted_file(struct inode *inode)
3874  {
3875  	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3876  }
3877  
f2fs_set_encrypted_inode(struct inode * inode)3878  static inline void f2fs_set_encrypted_inode(struct inode *inode)
3879  {
3880  #ifdef CONFIG_FS_ENCRYPTION
3881  	file_set_encrypt(inode);
3882  	f2fs_set_inode_flags(inode);
3883  #endif
3884  }
3885  
3886  /*
3887   * Returns true if the reads of the inode's data need to undergo some
3888   * postprocessing step, like decryption or authenticity verification.
3889   */
f2fs_post_read_required(struct inode * inode)3890  static inline bool f2fs_post_read_required(struct inode *inode)
3891  {
3892  	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3893  		f2fs_compressed_file(inode);
3894  }
3895  
3896  /*
3897   * compress.c
3898   */
3899  #ifdef CONFIG_F2FS_FS_COMPRESSION
3900  bool f2fs_is_compressed_page(struct page *page);
3901  struct page *f2fs_compress_control_page(struct page *page);
3902  int f2fs_prepare_compress_overwrite(struct inode *inode,
3903  			struct page **pagep, pgoff_t index, void **fsdata);
3904  bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3905  					pgoff_t index, unsigned copied);
3906  int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3907  void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3908  bool f2fs_is_compress_backend_ready(struct inode *inode);
3909  int f2fs_init_compress_mempool(void);
3910  void f2fs_destroy_compress_mempool(void);
3911  void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3912  bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3913  bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3914  void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3915  int f2fs_write_multi_pages(struct compress_ctx *cc,
3916  						int *submitted,
3917  						struct writeback_control *wbc,
3918  						enum iostat_type io_type);
3919  int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3920  int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3921  				unsigned nr_pages, sector_t *last_block_in_bio,
3922  				bool is_readahead, bool for_write);
3923  struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3924  void f2fs_free_dic(struct decompress_io_ctx *dic);
3925  void f2fs_decompress_end_io(struct page **rpages,
3926  			unsigned int cluster_size, bool err, bool verity);
3927  int f2fs_init_compress_ctx(struct compress_ctx *cc);
3928  void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3929  void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3930  int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3931  void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3932  int __init f2fs_init_compress_cache(void);
3933  void f2fs_destroy_compress_cache(void);
3934  #else
f2fs_is_compressed_page(struct page * page)3935  static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)3936  static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3937  {
3938  	if (!f2fs_compressed_file(inode))
3939  		return true;
3940  	/* not support compression */
3941  	return false;
3942  }
f2fs_compress_control_page(struct page * page)3943  static inline struct page *f2fs_compress_control_page(struct page *page)
3944  {
3945  	WARN_ON_ONCE(1);
3946  	return ERR_PTR(-EINVAL);
3947  }
f2fs_init_compress_mempool(void)3948  static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)3949  static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)3950  static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)3951  static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)3952  static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)3953  static inline void f2fs_destroy_compress_cache(void) { }
3954  #endif
3955  
set_compress_context(struct inode * inode)3956  static inline void set_compress_context(struct inode *inode)
3957  {
3958  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3959  
3960  	F2FS_I(inode)->i_compress_algorithm =
3961  			F2FS_OPTION(sbi).compress_algorithm;
3962  	F2FS_I(inode)->i_log_cluster_size =
3963  			F2FS_OPTION(sbi).compress_log_size;
3964  	F2FS_I(inode)->i_cluster_size =
3965  			1 << F2FS_I(inode)->i_log_cluster_size;
3966  	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3967  	set_inode_flag(inode, FI_COMPRESSED_FILE);
3968  	stat_inc_compr_inode(inode);
3969  	f2fs_mark_inode_dirty_sync(inode, true);
3970  }
3971  
f2fs_disable_compressed_file(struct inode * inode)3972  static inline bool f2fs_disable_compressed_file(struct inode *inode)
3973  {
3974  	struct f2fs_inode_info *fi = F2FS_I(inode);
3975  
3976  	if (!f2fs_compressed_file(inode))
3977  		return true;
3978  	if (S_ISREG(inode->i_mode) &&
3979  		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3980  		return false;
3981  
3982  	fi->i_flags &= ~F2FS_COMPR_FL;
3983  	stat_dec_compr_inode(inode);
3984  	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3985  	f2fs_mark_inode_dirty_sync(inode, true);
3986  	return true;
3987  }
3988  
3989  #define F2FS_FEATURE_FUNCS(name, flagname) \
3990  static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3991  { \
3992  	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3993  }
3994  
3995  F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3996  F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3997  F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3998  F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3999  F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4000  F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4001  F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4002  F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4003  F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4004  F2FS_FEATURE_FUNCS(verity, VERITY);
4005  F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4006  F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4007  F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4008  
4009  #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4010  static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4011  				    block_t blkaddr)
4012  {
4013  	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4014  
4015  	return test_bit(zno, FDEV(devi).blkz_seq);
4016  }
4017  #endif
4018  
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4019  static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4020  {
4021  	return f2fs_sb_has_blkzoned(sbi);
4022  }
4023  
f2fs_bdev_support_discard(struct block_device * bdev)4024  static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4025  {
4026  	return blk_queue_discard(bdev_get_queue(bdev)) ||
4027  	       bdev_is_zoned(bdev);
4028  }
4029  
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4030  static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4031  {
4032  	int i;
4033  
4034  	if (!f2fs_is_multi_device(sbi))
4035  		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4036  
4037  	for (i = 0; i < sbi->s_ndevs; i++)
4038  		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4039  			return true;
4040  	return false;
4041  }
4042  
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4043  static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4044  {
4045  	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4046  					f2fs_hw_should_discard(sbi);
4047  }
4048  
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4049  static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4050  {
4051  	int i;
4052  
4053  	if (!f2fs_is_multi_device(sbi))
4054  		return bdev_read_only(sbi->sb->s_bdev);
4055  
4056  	for (i = 0; i < sbi->s_ndevs; i++)
4057  		if (bdev_read_only(FDEV(i).bdev))
4058  			return true;
4059  	return false;
4060  }
4061  
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4062  static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4063  {
4064  	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4065  }
4066  
f2fs_may_compress(struct inode * inode)4067  static inline bool f2fs_may_compress(struct inode *inode)
4068  {
4069  	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4070  				f2fs_is_atomic_file(inode) ||
4071  				f2fs_is_volatile_file(inode))
4072  		return false;
4073  	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4074  }
4075  
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4076  static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4077  						u64 blocks, bool add)
4078  {
4079  	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4080  	struct f2fs_inode_info *fi = F2FS_I(inode);
4081  
4082  	/* don't update i_compr_blocks if saved blocks were released */
4083  	if (!add && !atomic_read(&fi->i_compr_blocks))
4084  		return;
4085  
4086  	if (add) {
4087  		atomic_add(diff, &fi->i_compr_blocks);
4088  		stat_add_compr_blocks(inode, diff);
4089  	} else {
4090  		atomic_sub(diff, &fi->i_compr_blocks);
4091  		stat_sub_compr_blocks(inode, diff);
4092  	}
4093  	f2fs_mark_inode_dirty_sync(inode, true);
4094  }
4095  
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4096  static inline int block_unaligned_IO(struct inode *inode,
4097  				struct kiocb *iocb, struct iov_iter *iter)
4098  {
4099  	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4100  	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4101  	loff_t offset = iocb->ki_pos;
4102  	unsigned long align = offset | iov_iter_alignment(iter);
4103  
4104  	return align & blocksize_mask;
4105  }
4106  
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4107  static inline int allow_outplace_dio(struct inode *inode,
4108  				struct kiocb *iocb, struct iov_iter *iter)
4109  {
4110  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4111  	int rw = iov_iter_rw(iter);
4112  
4113  	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4114  				!block_unaligned_IO(inode, iocb, iter));
4115  }
4116  
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4117  static inline bool f2fs_force_buffered_io(struct inode *inode,
4118  				struct kiocb *iocb, struct iov_iter *iter)
4119  {
4120  	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4121  	int rw = iov_iter_rw(iter);
4122  
4123  	if (f2fs_post_read_required(inode))
4124  		return true;
4125  	if (f2fs_is_multi_device(sbi))
4126  		return true;
4127  	/*
4128  	 * for blkzoned device, fallback direct IO to buffered IO, so
4129  	 * all IOs can be serialized by log-structured write.
4130  	 */
4131  	if (f2fs_sb_has_blkzoned(sbi))
4132  		return true;
4133  	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4134  		if (block_unaligned_IO(inode, iocb, iter))
4135  			return true;
4136  		if (F2FS_IO_ALIGNED(sbi))
4137  			return true;
4138  	}
4139  	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4140  					!IS_SWAPFILE(inode))
4141  		return true;
4142  
4143  	return false;
4144  }
4145  
4146  #ifdef CONFIG_F2FS_FAULT_INJECTION
4147  extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4148  							unsigned int type);
4149  #else
4150  #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4151  #endif
4152  
is_journalled_quota(struct f2fs_sb_info * sbi)4153  static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4154  {
4155  #ifdef CONFIG_QUOTA
4156  	if (f2fs_sb_has_quota_ino(sbi))
4157  		return true;
4158  	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4159  		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4160  		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4161  		return true;
4162  #endif
4163  	return false;
4164  }
4165  
4166  #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4167  #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4168  
4169  #endif /* _LINUX_F2FS_H */
4170