1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO,
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_MAX,
60 };
61
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65 struct f2fs_fault_info {
66 atomic_t inject_ops;
67 unsigned int inject_rate;
68 unsigned int inject_type;
69 };
70
71 extern char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74
75 /*
76 * For mount options
77 */
78 #define F2FS_MOUNT_BG_GC 0x00000001
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
80 #define F2FS_MOUNT_DISCARD 0x00000004
81 #define F2FS_MOUNT_NOHEAP 0x00000008
82 #define F2FS_MOUNT_XATTR_USER 0x00000010
83 #define F2FS_MOUNT_POSIX_ACL 0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
86 #define F2FS_MOUNT_INLINE_DATA 0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
89 #define F2FS_MOUNT_NOBARRIER 0x00000800
90 #define F2FS_MOUNT_FASTBOOT 0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
92 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
93 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
94 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
95 #define F2FS_MOUNT_ADAPTIVE 0x00020000
96 #define F2FS_MOUNT_LFS 0x00040000
97 #define F2FS_MOUNT_USRQUOTA 0x00080000
98 #define F2FS_MOUNT_GRPQUOTA 0x00100000
99 #define F2FS_MOUNT_PRJQUOTA 0x00200000
100 #define F2FS_MOUNT_QUOTA 0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
103
104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108
109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
110 typecheck(unsigned long long, b) && \
111 ((long long)((a) - (b)) > 0))
112
113 typedef u32 block_t; /*
114 * should not change u32, since it is the on-disk block
115 * address format, __le32.
116 */
117 typedef u32 nid_t;
118
119 struct f2fs_mount_info {
120 unsigned int opt;
121 int write_io_size_bits; /* Write IO size bits */
122 block_t root_reserved_blocks; /* root reserved blocks */
123 kuid_t s_resuid; /* reserved blocks for uid */
124 kgid_t s_resgid; /* reserved blocks for gid */
125 int active_logs; /* # of active logs */
126 int inline_xattr_size; /* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 struct f2fs_fault_info fault_info; /* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 /* Names of quota files with journalled quota */
132 char *s_qf_names[MAXQUOTAS];
133 int s_jquota_fmt; /* Format of quota to use */
134 #endif
135 /* For which write hints are passed down to block layer */
136 int whint_mode;
137 int alloc_mode; /* segment allocation policy */
138 int fsync_mode; /* fsync policy */
139 bool test_dummy_encryption; /* test dummy encryption */
140 };
141
142 #define F2FS_FEATURE_ENCRYPT 0x0001
143 #define F2FS_FEATURE_BLKZONED 0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
146 #define F2FS_FEATURE_PRJQUOTA 0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
149 #define F2FS_FEATURE_QUOTA_INO 0x0080
150 #define F2FS_FEATURE_INODE_CRTIME 0x0100
151 #define F2FS_FEATURE_LOST_FOUND 0x0200
152 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */
153
154 #define F2FS_HAS_FEATURE(sb, mask) \
155 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
156 #define F2FS_SET_FEATURE(sb, mask) \
157 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
158 #define F2FS_CLEAR_FEATURE(sb, mask) \
159 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
160
161 /*
162 * Default values for user and/or group using reserved blocks
163 */
164 #define F2FS_DEF_RESUID 0
165 #define F2FS_DEF_RESGID 0
166
167 /*
168 * For checkpoint manager
169 */
170 enum {
171 NAT_BITMAP,
172 SIT_BITMAP
173 };
174
175 #define CP_UMOUNT 0x00000001
176 #define CP_FASTBOOT 0x00000002
177 #define CP_SYNC 0x00000004
178 #define CP_RECOVERY 0x00000008
179 #define CP_DISCARD 0x00000010
180 #define CP_TRIMMED 0x00000020
181
182 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
183 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
184 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
185 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
186 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
187 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
188 #define DEF_CP_INTERVAL 60 /* 60 secs */
189 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
190
191 struct cp_control {
192 int reason;
193 __u64 trim_start;
194 __u64 trim_end;
195 __u64 trim_minlen;
196 };
197
198 /*
199 * indicate meta/data type
200 */
201 enum {
202 META_CP,
203 META_NAT,
204 META_SIT,
205 META_SSA,
206 META_POR,
207 DATA_GENERIC,
208 META_GENERIC,
209 };
210
211 /* for the list of ino */
212 enum {
213 ORPHAN_INO, /* for orphan ino list */
214 APPEND_INO, /* for append ino list */
215 UPDATE_INO, /* for update ino list */
216 TRANS_DIR_INO, /* for trasactions dir ino list */
217 FLUSH_INO, /* for multiple device flushing */
218 MAX_INO_ENTRY, /* max. list */
219 };
220
221 struct ino_entry {
222 struct list_head list; /* list head */
223 nid_t ino; /* inode number */
224 unsigned int dirty_device; /* dirty device bitmap */
225 };
226
227 /* for the list of inodes to be GCed */
228 struct inode_entry {
229 struct list_head list; /* list head */
230 struct inode *inode; /* vfs inode pointer */
231 };
232
233 struct fsync_node_entry {
234 struct list_head list; /* list head */
235 struct page *page; /* warm node page pointer */
236 unsigned int seq_id; /* sequence id */
237 };
238
239 /* for the bitmap indicate blocks to be discarded */
240 struct discard_entry {
241 struct list_head list; /* list head */
242 block_t start_blkaddr; /* start blockaddr of current segment */
243 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
244 };
245
246 /* default discard granularity of inner discard thread, unit: block count */
247 #define DEFAULT_DISCARD_GRANULARITY 16
248
249 /* max discard pend list number */
250 #define MAX_PLIST_NUM 512
251 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
252 (MAX_PLIST_NUM - 1) : (blk_num - 1))
253
254 enum {
255 D_PREP, /* initial */
256 D_PARTIAL, /* partially submitted */
257 D_SUBMIT, /* all submitted */
258 D_DONE, /* finished */
259 };
260
261 struct discard_info {
262 block_t lstart; /* logical start address */
263 block_t len; /* length */
264 block_t start; /* actual start address in dev */
265 };
266
267 struct discard_cmd {
268 struct rb_node rb_node; /* rb node located in rb-tree */
269 union {
270 struct {
271 block_t lstart; /* logical start address */
272 block_t len; /* length */
273 block_t start; /* actual start address in dev */
274 };
275 struct discard_info di; /* discard info */
276
277 };
278 struct list_head list; /* command list */
279 struct completion wait; /* compleation */
280 struct block_device *bdev; /* bdev */
281 unsigned short ref; /* reference count */
282 unsigned char state; /* state */
283 unsigned char issuing; /* issuing discard */
284 int error; /* bio error */
285 spinlock_t lock; /* for state/bio_ref updating */
286 unsigned short bio_ref; /* bio reference count */
287 };
288
289 enum {
290 DPOLICY_BG,
291 DPOLICY_FORCE,
292 DPOLICY_FSTRIM,
293 DPOLICY_UMOUNT,
294 MAX_DPOLICY,
295 };
296
297 struct discard_policy {
298 int type; /* type of discard */
299 unsigned int min_interval; /* used for candidates exist */
300 unsigned int mid_interval; /* used for device busy */
301 unsigned int max_interval; /* used for candidates not exist */
302 unsigned int max_requests; /* # of discards issued per round */
303 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
304 bool io_aware; /* issue discard in idle time */
305 bool sync; /* submit discard with REQ_SYNC flag */
306 bool ordered; /* issue discard by lba order */
307 unsigned int granularity; /* discard granularity */
308 };
309
310 struct discard_cmd_control {
311 struct task_struct *f2fs_issue_discard; /* discard thread */
312 struct list_head entry_list; /* 4KB discard entry list */
313 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
314 struct list_head wait_list; /* store on-flushing entries */
315 struct list_head fstrim_list; /* in-flight discard from fstrim */
316 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
317 unsigned int discard_wake; /* to wake up discard thread */
318 struct mutex cmd_lock;
319 unsigned int nr_discards; /* # of discards in the list */
320 unsigned int max_discards; /* max. discards to be issued */
321 unsigned int discard_granularity; /* discard granularity */
322 unsigned int undiscard_blks; /* # of undiscard blocks */
323 unsigned int next_pos; /* next discard position */
324 atomic_t issued_discard; /* # of issued discard */
325 atomic_t issing_discard; /* # of issing discard */
326 atomic_t discard_cmd_cnt; /* # of cached cmd count */
327 struct rb_root root; /* root of discard rb-tree */
328 bool rbtree_check; /* config for consistence check */
329 };
330
331 /* for the list of fsync inodes, used only during recovery */
332 struct fsync_inode_entry {
333 struct list_head list; /* list head */
334 struct inode *inode; /* vfs inode pointer */
335 block_t blkaddr; /* block address locating the last fsync */
336 block_t last_dentry; /* block address locating the last dentry */
337 };
338
339 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
340 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
341
342 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
343 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
344 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
345 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
346
347 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
348 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
349
update_nats_in_cursum(struct f2fs_journal * journal,int i)350 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
351 {
352 int before = nats_in_cursum(journal);
353
354 journal->n_nats = cpu_to_le16(before + i);
355 return before;
356 }
357
update_sits_in_cursum(struct f2fs_journal * journal,int i)358 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
359 {
360 int before = sits_in_cursum(journal);
361
362 journal->n_sits = cpu_to_le16(before + i);
363 return before;
364 }
365
__has_cursum_space(struct f2fs_journal * journal,int size,int type)366 static inline bool __has_cursum_space(struct f2fs_journal *journal,
367 int size, int type)
368 {
369 if (type == NAT_JOURNAL)
370 return size <= MAX_NAT_JENTRIES(journal);
371 return size <= MAX_SIT_JENTRIES(journal);
372 }
373
374 /*
375 * ioctl commands
376 */
377 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
378 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
379 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
380
381 #define F2FS_IOCTL_MAGIC 0xf5
382 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
383 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
384 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
385 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
386 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
387 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
388 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
389 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
390 struct f2fs_defragment)
391 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
392 struct f2fs_move_range)
393 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
394 struct f2fs_flush_device)
395 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
396 struct f2fs_gc_range)
397 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
398 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
399 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
400 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
401
402 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
403 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
404 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
405
406 /*
407 * should be same as XFS_IOC_GOINGDOWN.
408 * Flags for going down operation used by FS_IOC_GOINGDOWN
409 */
410 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
411 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
412 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
413 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
414 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
415
416 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
417 /*
418 * ioctl commands in 32 bit emulation
419 */
420 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
421 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
422 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
423 #endif
424
425 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
426 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
427
428 struct f2fs_gc_range {
429 u32 sync;
430 u64 start;
431 u64 len;
432 };
433
434 struct f2fs_defragment {
435 u64 start;
436 u64 len;
437 };
438
439 struct f2fs_move_range {
440 u32 dst_fd; /* destination fd */
441 u64 pos_in; /* start position in src_fd */
442 u64 pos_out; /* start position in dst_fd */
443 u64 len; /* size to move */
444 };
445
446 struct f2fs_flush_device {
447 u32 dev_num; /* device number to flush */
448 u32 segments; /* # of segments to flush */
449 };
450
451 /* for inline stuff */
452 #define DEF_INLINE_RESERVED_SIZE 1
453 #define DEF_MIN_INLINE_SIZE 1
454 static inline int get_extra_isize(struct inode *inode);
455 static inline int get_inline_xattr_addrs(struct inode *inode);
456 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
457 (CUR_ADDRS_PER_INODE(inode) - \
458 get_inline_xattr_addrs(inode) - \
459 DEF_INLINE_RESERVED_SIZE))
460
461 /* for inline dir */
462 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
463 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
464 BITS_PER_BYTE + 1))
465 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
466 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
467 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
468 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
469 NR_INLINE_DENTRY(inode) + \
470 INLINE_DENTRY_BITMAP_SIZE(inode)))
471
472 /*
473 * For INODE and NODE manager
474 */
475 /* for directory operations */
476 struct f2fs_dentry_ptr {
477 struct inode *inode;
478 void *bitmap;
479 struct f2fs_dir_entry *dentry;
480 __u8 (*filename)[F2FS_SLOT_LEN];
481 int max;
482 int nr_bitmap;
483 };
484
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)485 static inline void make_dentry_ptr_block(struct inode *inode,
486 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
487 {
488 d->inode = inode;
489 d->max = NR_DENTRY_IN_BLOCK;
490 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
491 d->bitmap = t->dentry_bitmap;
492 d->dentry = t->dentry;
493 d->filename = t->filename;
494 }
495
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)496 static inline void make_dentry_ptr_inline(struct inode *inode,
497 struct f2fs_dentry_ptr *d, void *t)
498 {
499 int entry_cnt = NR_INLINE_DENTRY(inode);
500 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
501 int reserved_size = INLINE_RESERVED_SIZE(inode);
502
503 d->inode = inode;
504 d->max = entry_cnt;
505 d->nr_bitmap = bitmap_size;
506 d->bitmap = t;
507 d->dentry = t + bitmap_size + reserved_size;
508 d->filename = t + bitmap_size + reserved_size +
509 SIZE_OF_DIR_ENTRY * entry_cnt;
510 }
511
512 /*
513 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
514 * as its node offset to distinguish from index node blocks.
515 * But some bits are used to mark the node block.
516 */
517 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
518 >> OFFSET_BIT_SHIFT)
519 enum {
520 ALLOC_NODE, /* allocate a new node page if needed */
521 LOOKUP_NODE, /* look up a node without readahead */
522 LOOKUP_NODE_RA, /*
523 * look up a node with readahead called
524 * by get_data_block.
525 */
526 };
527
528 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
529
530 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
531
532 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
533
534 /* for in-memory extent cache entry */
535 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
536
537 /* number of extent info in extent cache we try to shrink */
538 #define EXTENT_CACHE_SHRINK_NUMBER 128
539
540 struct rb_entry {
541 struct rb_node rb_node; /* rb node located in rb-tree */
542 unsigned int ofs; /* start offset of the entry */
543 unsigned int len; /* length of the entry */
544 };
545
546 struct extent_info {
547 unsigned int fofs; /* start offset in a file */
548 unsigned int len; /* length of the extent */
549 u32 blk; /* start block address of the extent */
550 };
551
552 struct extent_node {
553 struct rb_node rb_node;
554 union {
555 struct {
556 unsigned int fofs;
557 unsigned int len;
558 u32 blk;
559 };
560 struct extent_info ei; /* extent info */
561
562 };
563 struct list_head list; /* node in global extent list of sbi */
564 struct extent_tree *et; /* extent tree pointer */
565 };
566
567 struct extent_tree {
568 nid_t ino; /* inode number */
569 struct rb_root root; /* root of extent info rb-tree */
570 struct extent_node *cached_en; /* recently accessed extent node */
571 struct extent_info largest; /* largested extent info */
572 struct list_head list; /* to be used by sbi->zombie_list */
573 rwlock_t lock; /* protect extent info rb-tree */
574 atomic_t node_cnt; /* # of extent node in rb-tree*/
575 };
576
577 /*
578 * This structure is taken from ext4_map_blocks.
579 *
580 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
581 */
582 #define F2FS_MAP_NEW (1 << BH_New)
583 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
584 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
585 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
586 F2FS_MAP_UNWRITTEN)
587
588 struct f2fs_map_blocks {
589 block_t m_pblk;
590 block_t m_lblk;
591 unsigned int m_len;
592 unsigned int m_flags;
593 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
594 pgoff_t *m_next_extent; /* point to next possible extent */
595 int m_seg_type;
596 };
597
598 /* for flag in get_data_block */
599 enum {
600 F2FS_GET_BLOCK_DEFAULT,
601 F2FS_GET_BLOCK_FIEMAP,
602 F2FS_GET_BLOCK_BMAP,
603 F2FS_GET_BLOCK_PRE_DIO,
604 F2FS_GET_BLOCK_PRE_AIO,
605 F2FS_GET_BLOCK_PRECACHE,
606 };
607
608 /*
609 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
610 */
611 #define FADVISE_COLD_BIT 0x01
612 #define FADVISE_LOST_PINO_BIT 0x02
613 #define FADVISE_ENCRYPT_BIT 0x04
614 #define FADVISE_ENC_NAME_BIT 0x08
615 #define FADVISE_KEEP_SIZE_BIT 0x10
616 #define FADVISE_HOT_BIT 0x20
617 #define FADVISE_VERITY_BIT 0x40 /* reserved */
618
619 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
620
621 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
622 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
623 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
624 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
625 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
626 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
627 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
628 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
629 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
630 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
631 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
632 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
633 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
634 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
635 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
636 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
637
638 #define DEF_DIR_LEVEL 0
639
640 enum {
641 GC_FAILURE_PIN,
642 GC_FAILURE_ATOMIC,
643 MAX_GC_FAILURE
644 };
645
646 struct f2fs_inode_info {
647 struct inode vfs_inode; /* serve a vfs inode */
648 unsigned long i_flags; /* keep an inode flags for ioctl */
649 unsigned char i_advise; /* use to give file attribute hints */
650 unsigned char i_dir_level; /* use for dentry level for large dir */
651 unsigned int i_current_depth; /* only for directory depth */
652 /* for gc failure statistic */
653 unsigned int i_gc_failures[MAX_GC_FAILURE];
654 unsigned int i_pino; /* parent inode number */
655 umode_t i_acl_mode; /* keep file acl mode temporarily */
656
657 /* Use below internally in f2fs*/
658 unsigned long flags; /* use to pass per-file flags */
659 struct rw_semaphore i_sem; /* protect fi info */
660 atomic_t dirty_pages; /* # of dirty pages */
661 f2fs_hash_t chash; /* hash value of given file name */
662 unsigned int clevel; /* maximum level of given file name */
663 struct task_struct *task; /* lookup and create consistency */
664 struct task_struct *cp_task; /* separate cp/wb IO stats*/
665 nid_t i_xattr_nid; /* node id that contains xattrs */
666 loff_t last_disk_size; /* lastly written file size */
667
668 #ifdef CONFIG_QUOTA
669 struct dquot *i_dquot[MAXQUOTAS];
670
671 /* quota space reservation, managed internally by quota code */
672 qsize_t i_reserved_quota;
673 #endif
674 struct list_head dirty_list; /* dirty list for dirs and files */
675 struct list_head gdirty_list; /* linked in global dirty list */
676 struct list_head inmem_ilist; /* list for inmem inodes */
677 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
678 struct task_struct *inmem_task; /* store inmemory task */
679 struct mutex inmem_lock; /* lock for inmemory pages */
680 struct extent_tree *extent_tree; /* cached extent_tree entry */
681
682 /* avoid racing between foreground op and gc */
683 struct rw_semaphore i_gc_rwsem[2];
684 struct rw_semaphore i_mmap_sem;
685 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
686
687 int i_extra_isize; /* size of extra space located in i_addr */
688 kprojid_t i_projid; /* id for project quota */
689 int i_inline_xattr_size; /* inline xattr size */
690 struct timespec64 i_crtime; /* inode creation time */
691 struct timespec64 i_disk_time[4];/* inode disk times */
692 };
693
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)694 static inline void get_extent_info(struct extent_info *ext,
695 struct f2fs_extent *i_ext)
696 {
697 ext->fofs = le32_to_cpu(i_ext->fofs);
698 ext->blk = le32_to_cpu(i_ext->blk);
699 ext->len = le32_to_cpu(i_ext->len);
700 }
701
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)702 static inline void set_raw_extent(struct extent_info *ext,
703 struct f2fs_extent *i_ext)
704 {
705 i_ext->fofs = cpu_to_le32(ext->fofs);
706 i_ext->blk = cpu_to_le32(ext->blk);
707 i_ext->len = cpu_to_le32(ext->len);
708 }
709
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)710 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
711 u32 blk, unsigned int len)
712 {
713 ei->fofs = fofs;
714 ei->blk = blk;
715 ei->len = len;
716 }
717
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)718 static inline bool __is_discard_mergeable(struct discard_info *back,
719 struct discard_info *front, unsigned int max_len)
720 {
721 return (back->lstart + back->len == front->lstart) &&
722 (back->len + front->len <= max_len);
723 }
724
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)725 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
726 struct discard_info *back, unsigned int max_len)
727 {
728 return __is_discard_mergeable(back, cur, max_len);
729 }
730
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)731 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
732 struct discard_info *front, unsigned int max_len)
733 {
734 return __is_discard_mergeable(cur, front, max_len);
735 }
736
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)737 static inline bool __is_extent_mergeable(struct extent_info *back,
738 struct extent_info *front)
739 {
740 return (back->fofs + back->len == front->fofs &&
741 back->blk + back->len == front->blk);
742 }
743
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)744 static inline bool __is_back_mergeable(struct extent_info *cur,
745 struct extent_info *back)
746 {
747 return __is_extent_mergeable(back, cur);
748 }
749
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)750 static inline bool __is_front_mergeable(struct extent_info *cur,
751 struct extent_info *front)
752 {
753 return __is_extent_mergeable(cur, front);
754 }
755
756 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct inode * inode,struct extent_tree * et,struct extent_node * en)757 static inline void __try_update_largest_extent(struct inode *inode,
758 struct extent_tree *et, struct extent_node *en)
759 {
760 if (en->ei.len > et->largest.len) {
761 et->largest = en->ei;
762 f2fs_mark_inode_dirty_sync(inode, true);
763 }
764 }
765
766 /*
767 * For free nid management
768 */
769 enum nid_state {
770 FREE_NID, /* newly added to free nid list */
771 PREALLOC_NID, /* it is preallocated */
772 MAX_NID_STATE,
773 };
774
775 struct f2fs_nm_info {
776 block_t nat_blkaddr; /* base disk address of NAT */
777 nid_t max_nid; /* maximum possible node ids */
778 nid_t available_nids; /* # of available node ids */
779 nid_t next_scan_nid; /* the next nid to be scanned */
780 unsigned int ram_thresh; /* control the memory footprint */
781 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
782 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
783
784 /* NAT cache management */
785 struct radix_tree_root nat_root;/* root of the nat entry cache */
786 struct radix_tree_root nat_set_root;/* root of the nat set cache */
787 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
788 struct list_head nat_entries; /* cached nat entry list (clean) */
789 spinlock_t nat_list_lock; /* protect clean nat entry list */
790 unsigned int nat_cnt; /* the # of cached nat entries */
791 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
792 unsigned int nat_blocks; /* # of nat blocks */
793
794 /* free node ids management */
795 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
796 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
797 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
798 spinlock_t nid_list_lock; /* protect nid lists ops */
799 struct mutex build_lock; /* lock for build free nids */
800 unsigned char **free_nid_bitmap;
801 unsigned char *nat_block_bitmap;
802 unsigned short *free_nid_count; /* free nid count of NAT block */
803
804 /* for checkpoint */
805 char *nat_bitmap; /* NAT bitmap pointer */
806
807 unsigned int nat_bits_blocks; /* # of nat bits blocks */
808 unsigned char *nat_bits; /* NAT bits blocks */
809 unsigned char *full_nat_bits; /* full NAT pages */
810 unsigned char *empty_nat_bits; /* empty NAT pages */
811 #ifdef CONFIG_F2FS_CHECK_FS
812 char *nat_bitmap_mir; /* NAT bitmap mirror */
813 #endif
814 int bitmap_size; /* bitmap size */
815 };
816
817 /*
818 * this structure is used as one of function parameters.
819 * all the information are dedicated to a given direct node block determined
820 * by the data offset in a file.
821 */
822 struct dnode_of_data {
823 struct inode *inode; /* vfs inode pointer */
824 struct page *inode_page; /* its inode page, NULL is possible */
825 struct page *node_page; /* cached direct node page */
826 nid_t nid; /* node id of the direct node block */
827 unsigned int ofs_in_node; /* data offset in the node page */
828 bool inode_page_locked; /* inode page is locked or not */
829 bool node_changed; /* is node block changed */
830 char cur_level; /* level of hole node page */
831 char max_level; /* level of current page located */
832 block_t data_blkaddr; /* block address of the node block */
833 };
834
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)835 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
836 struct page *ipage, struct page *npage, nid_t nid)
837 {
838 memset(dn, 0, sizeof(*dn));
839 dn->inode = inode;
840 dn->inode_page = ipage;
841 dn->node_page = npage;
842 dn->nid = nid;
843 }
844
845 /*
846 * For SIT manager
847 *
848 * By default, there are 6 active log areas across the whole main area.
849 * When considering hot and cold data separation to reduce cleaning overhead,
850 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
851 * respectively.
852 * In the current design, you should not change the numbers intentionally.
853 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
854 * logs individually according to the underlying devices. (default: 6)
855 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
856 * data and 8 for node logs.
857 */
858 #define NR_CURSEG_DATA_TYPE (3)
859 #define NR_CURSEG_NODE_TYPE (3)
860 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
861
862 enum {
863 CURSEG_HOT_DATA = 0, /* directory entry blocks */
864 CURSEG_WARM_DATA, /* data blocks */
865 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
866 CURSEG_HOT_NODE, /* direct node blocks of directory files */
867 CURSEG_WARM_NODE, /* direct node blocks of normal files */
868 CURSEG_COLD_NODE, /* indirect node blocks */
869 NO_CHECK_TYPE,
870 };
871
872 struct flush_cmd {
873 struct completion wait;
874 struct llist_node llnode;
875 nid_t ino;
876 int ret;
877 };
878
879 struct flush_cmd_control {
880 struct task_struct *f2fs_issue_flush; /* flush thread */
881 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
882 atomic_t issued_flush; /* # of issued flushes */
883 atomic_t issing_flush; /* # of issing flushes */
884 struct llist_head issue_list; /* list for command issue */
885 struct llist_node *dispatch_list; /* list for command dispatch */
886 };
887
888 struct f2fs_sm_info {
889 struct sit_info *sit_info; /* whole segment information */
890 struct free_segmap_info *free_info; /* free segment information */
891 struct dirty_seglist_info *dirty_info; /* dirty segment information */
892 struct curseg_info *curseg_array; /* active segment information */
893
894 struct rw_semaphore curseg_lock; /* for preventing curseg change */
895
896 block_t seg0_blkaddr; /* block address of 0'th segment */
897 block_t main_blkaddr; /* start block address of main area */
898 block_t ssa_blkaddr; /* start block address of SSA area */
899
900 unsigned int segment_count; /* total # of segments */
901 unsigned int main_segments; /* # of segments in main area */
902 unsigned int reserved_segments; /* # of reserved segments */
903 unsigned int ovp_segments; /* # of overprovision segments */
904
905 /* a threshold to reclaim prefree segments */
906 unsigned int rec_prefree_segments;
907
908 /* for batched trimming */
909 unsigned int trim_sections; /* # of sections to trim */
910
911 struct list_head sit_entry_set; /* sit entry set list */
912
913 unsigned int ipu_policy; /* in-place-update policy */
914 unsigned int min_ipu_util; /* in-place-update threshold */
915 unsigned int min_fsync_blocks; /* threshold for fsync */
916 unsigned int min_seq_blocks; /* threshold for sequential blocks */
917 unsigned int min_hot_blocks; /* threshold for hot block allocation */
918 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
919
920 /* for flush command control */
921 struct flush_cmd_control *fcc_info;
922
923 /* for discard command control */
924 struct discard_cmd_control *dcc_info;
925 };
926
927 /*
928 * For superblock
929 */
930 /*
931 * COUNT_TYPE for monitoring
932 *
933 * f2fs monitors the number of several block types such as on-writeback,
934 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
935 */
936 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
937 enum count_type {
938 F2FS_DIRTY_DENTS,
939 F2FS_DIRTY_DATA,
940 F2FS_DIRTY_QDATA,
941 F2FS_DIRTY_NODES,
942 F2FS_DIRTY_META,
943 F2FS_INMEM_PAGES,
944 F2FS_DIRTY_IMETA,
945 F2FS_WB_CP_DATA,
946 F2FS_WB_DATA,
947 NR_COUNT_TYPE,
948 };
949
950 /*
951 * The below are the page types of bios used in submit_bio().
952 * The available types are:
953 * DATA User data pages. It operates as async mode.
954 * NODE Node pages. It operates as async mode.
955 * META FS metadata pages such as SIT, NAT, CP.
956 * NR_PAGE_TYPE The number of page types.
957 * META_FLUSH Make sure the previous pages are written
958 * with waiting the bio's completion
959 * ... Only can be used with META.
960 */
961 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
962 enum page_type {
963 DATA,
964 NODE,
965 META,
966 NR_PAGE_TYPE,
967 META_FLUSH,
968 INMEM, /* the below types are used by tracepoints only. */
969 INMEM_DROP,
970 INMEM_INVALIDATE,
971 INMEM_REVOKE,
972 IPU,
973 OPU,
974 };
975
976 enum temp_type {
977 HOT = 0, /* must be zero for meta bio */
978 WARM,
979 COLD,
980 NR_TEMP_TYPE,
981 };
982
983 enum need_lock_type {
984 LOCK_REQ = 0,
985 LOCK_DONE,
986 LOCK_RETRY,
987 };
988
989 enum cp_reason_type {
990 CP_NO_NEEDED,
991 CP_NON_REGULAR,
992 CP_HARDLINK,
993 CP_SB_NEED_CP,
994 CP_WRONG_PINO,
995 CP_NO_SPC_ROLL,
996 CP_NODE_NEED_CP,
997 CP_FASTBOOT_MODE,
998 CP_SPEC_LOG_NUM,
999 CP_RECOVER_DIR,
1000 };
1001
1002 enum iostat_type {
1003 APP_DIRECT_IO, /* app direct IOs */
1004 APP_BUFFERED_IO, /* app buffered IOs */
1005 APP_WRITE_IO, /* app write IOs */
1006 APP_MAPPED_IO, /* app mapped IOs */
1007 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1008 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1009 FS_META_IO, /* meta IOs from kworker/reclaimer */
1010 FS_GC_DATA_IO, /* data IOs from forground gc */
1011 FS_GC_NODE_IO, /* node IOs from forground gc */
1012 FS_CP_DATA_IO, /* data IOs from checkpoint */
1013 FS_CP_NODE_IO, /* node IOs from checkpoint */
1014 FS_CP_META_IO, /* meta IOs from checkpoint */
1015 FS_DISCARD, /* discard */
1016 NR_IO_TYPE,
1017 };
1018
1019 struct f2fs_io_info {
1020 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1021 nid_t ino; /* inode number */
1022 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1023 enum temp_type temp; /* contains HOT/WARM/COLD */
1024 int op; /* contains REQ_OP_ */
1025 int op_flags; /* req_flag_bits */
1026 block_t new_blkaddr; /* new block address to be written */
1027 block_t old_blkaddr; /* old block address before Cow */
1028 struct page *page; /* page to be written */
1029 struct page *encrypted_page; /* encrypted page */
1030 struct list_head list; /* serialize IOs */
1031 bool submitted; /* indicate IO submission */
1032 int need_lock; /* indicate we need to lock cp_rwsem */
1033 bool in_list; /* indicate fio is in io_list */
1034 bool is_meta; /* indicate borrow meta inode mapping or not */
1035 bool retry; /* need to reallocate block address */
1036 enum iostat_type io_type; /* io type */
1037 struct writeback_control *io_wbc; /* writeback control */
1038 unsigned char version; /* version of the node */
1039 };
1040
1041 #define is_read_io(rw) ((rw) == READ)
1042 struct f2fs_bio_info {
1043 struct f2fs_sb_info *sbi; /* f2fs superblock */
1044 struct bio *bio; /* bios to merge */
1045 sector_t last_block_in_bio; /* last block number */
1046 struct f2fs_io_info fio; /* store buffered io info. */
1047 struct rw_semaphore io_rwsem; /* blocking op for bio */
1048 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1049 struct list_head io_list; /* track fios */
1050 };
1051
1052 #define FDEV(i) (sbi->devs[i])
1053 #define RDEV(i) (raw_super->devs[i])
1054 struct f2fs_dev_info {
1055 struct block_device *bdev;
1056 char path[MAX_PATH_LEN];
1057 unsigned int total_segments;
1058 block_t start_blk;
1059 block_t end_blk;
1060 #ifdef CONFIG_BLK_DEV_ZONED
1061 unsigned int nr_blkz; /* Total number of zones */
1062 u8 *blkz_type; /* Array of zones type */
1063 #endif
1064 };
1065
1066 enum inode_type {
1067 DIR_INODE, /* for dirty dir inode */
1068 FILE_INODE, /* for dirty regular/symlink inode */
1069 DIRTY_META, /* for all dirtied inode metadata */
1070 ATOMIC_FILE, /* for all atomic files */
1071 NR_INODE_TYPE,
1072 };
1073
1074 /* for inner inode cache management */
1075 struct inode_management {
1076 struct radix_tree_root ino_root; /* ino entry array */
1077 spinlock_t ino_lock; /* for ino entry lock */
1078 struct list_head ino_list; /* inode list head */
1079 unsigned long ino_num; /* number of entries */
1080 };
1081
1082 /* For s_flag in struct f2fs_sb_info */
1083 enum {
1084 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1085 SBI_IS_CLOSE, /* specify unmounting */
1086 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1087 SBI_POR_DOING, /* recovery is doing or not */
1088 SBI_NEED_SB_WRITE, /* need to recover superblock */
1089 SBI_NEED_CP, /* need to checkpoint */
1090 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1091 };
1092
1093 enum {
1094 CP_TIME,
1095 REQ_TIME,
1096 MAX_TIME,
1097 };
1098
1099 enum {
1100 GC_NORMAL,
1101 GC_IDLE_CB,
1102 GC_IDLE_GREEDY,
1103 GC_URGENT,
1104 };
1105
1106 enum {
1107 WHINT_MODE_OFF, /* not pass down write hints */
1108 WHINT_MODE_USER, /* try to pass down hints given by users */
1109 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1110 };
1111
1112 enum {
1113 ALLOC_MODE_DEFAULT, /* stay default */
1114 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1115 };
1116
1117 enum fsync_mode {
1118 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1119 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1120 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1121 };
1122
1123 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1124 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1125 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1126 #else
1127 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1128 #endif
1129
1130 struct f2fs_sb_info {
1131 struct super_block *sb; /* pointer to VFS super block */
1132 struct proc_dir_entry *s_proc; /* proc entry */
1133 struct f2fs_super_block *raw_super; /* raw super block pointer */
1134 struct rw_semaphore sb_lock; /* lock for raw super block */
1135 int valid_super_block; /* valid super block no */
1136 unsigned long s_flag; /* flags for sbi */
1137 struct mutex writepages; /* mutex for writepages() */
1138
1139 #ifdef CONFIG_BLK_DEV_ZONED
1140 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1141 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1142 #endif
1143
1144 /* for node-related operations */
1145 struct f2fs_nm_info *nm_info; /* node manager */
1146 struct inode *node_inode; /* cache node blocks */
1147
1148 /* for segment-related operations */
1149 struct f2fs_sm_info *sm_info; /* segment manager */
1150
1151 /* for bio operations */
1152 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1153 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1154 /* bio ordering for NODE/DATA */
1155 /* keep migration IO order for LFS mode */
1156 struct rw_semaphore io_order_lock;
1157 mempool_t *write_io_dummy; /* Dummy pages */
1158
1159 /* for checkpoint */
1160 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1161 int cur_cp_pack; /* remain current cp pack */
1162 spinlock_t cp_lock; /* for flag in ckpt */
1163 struct inode *meta_inode; /* cache meta blocks */
1164 struct mutex cp_mutex; /* checkpoint procedure lock */
1165 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1166 struct rw_semaphore node_write; /* locking node writes */
1167 struct rw_semaphore node_change; /* locking node change */
1168 wait_queue_head_t cp_wait;
1169 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1170 long interval_time[MAX_TIME]; /* to store thresholds */
1171
1172 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1173
1174 spinlock_t fsync_node_lock; /* for node entry lock */
1175 struct list_head fsync_node_list; /* node list head */
1176 unsigned int fsync_seg_id; /* sequence id */
1177 unsigned int fsync_node_num; /* number of node entries */
1178
1179 /* for orphan inode, use 0'th array */
1180 unsigned int max_orphans; /* max orphan inodes */
1181
1182 /* for inode management */
1183 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1184 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1185
1186 /* for extent tree cache */
1187 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1188 struct mutex extent_tree_lock; /* locking extent radix tree */
1189 struct list_head extent_list; /* lru list for shrinker */
1190 spinlock_t extent_lock; /* locking extent lru list */
1191 atomic_t total_ext_tree; /* extent tree count */
1192 struct list_head zombie_list; /* extent zombie tree list */
1193 atomic_t total_zombie_tree; /* extent zombie tree count */
1194 atomic_t total_ext_node; /* extent info count */
1195
1196 /* basic filesystem units */
1197 unsigned int log_sectors_per_block; /* log2 sectors per block */
1198 unsigned int log_blocksize; /* log2 block size */
1199 unsigned int blocksize; /* block size */
1200 unsigned int root_ino_num; /* root inode number*/
1201 unsigned int node_ino_num; /* node inode number*/
1202 unsigned int meta_ino_num; /* meta inode number*/
1203 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1204 unsigned int blocks_per_seg; /* blocks per segment */
1205 unsigned int segs_per_sec; /* segments per section */
1206 unsigned int secs_per_zone; /* sections per zone */
1207 unsigned int total_sections; /* total section count */
1208 unsigned int total_node_count; /* total node block count */
1209 unsigned int total_valid_node_count; /* valid node block count */
1210 loff_t max_file_blocks; /* max block index of file */
1211 int dir_level; /* directory level */
1212 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */
1213 int readdir_ra; /* readahead inode in readdir */
1214
1215 block_t user_block_count; /* # of user blocks */
1216 block_t total_valid_block_count; /* # of valid blocks */
1217 block_t discard_blks; /* discard command candidats */
1218 block_t last_valid_block_count; /* for recovery */
1219 block_t reserved_blocks; /* configurable reserved blocks */
1220 block_t current_reserved_blocks; /* current reserved blocks */
1221
1222 unsigned int nquota_files; /* # of quota sysfile */
1223
1224 u32 s_next_generation; /* for NFS support */
1225
1226 /* # of pages, see count_type */
1227 atomic_t nr_pages[NR_COUNT_TYPE];
1228 /* # of allocated blocks */
1229 struct percpu_counter alloc_valid_block_count;
1230
1231 /* writeback control */
1232 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1233
1234 /* valid inode count */
1235 struct percpu_counter total_valid_inode_count;
1236
1237 struct f2fs_mount_info mount_opt; /* mount options */
1238
1239 /* for cleaning operations */
1240 struct mutex gc_mutex; /* mutex for GC */
1241 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1242 unsigned int cur_victim_sec; /* current victim section num */
1243 unsigned int gc_mode; /* current GC state */
1244 /* for skip statistic */
1245 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1246 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1247
1248 /* threshold for gc trials on pinned files */
1249 u64 gc_pin_file_threshold;
1250
1251 /* maximum # of trials to find a victim segment for SSR and GC */
1252 unsigned int max_victim_search;
1253
1254 /*
1255 * for stat information.
1256 * one is for the LFS mode, and the other is for the SSR mode.
1257 */
1258 #ifdef CONFIG_F2FS_STAT_FS
1259 struct f2fs_stat_info *stat_info; /* FS status information */
1260 unsigned int segment_count[2]; /* # of allocated segments */
1261 unsigned int block_count[2]; /* # of allocated blocks */
1262 atomic_t inplace_count; /* # of inplace update */
1263 atomic64_t total_hit_ext; /* # of lookup extent cache */
1264 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1265 atomic64_t read_hit_largest; /* # of hit largest extent node */
1266 atomic64_t read_hit_cached; /* # of hit cached extent node */
1267 atomic_t inline_xattr; /* # of inline_xattr inodes */
1268 atomic_t inline_inode; /* # of inline_data inodes */
1269 atomic_t inline_dir; /* # of inline_dentry inodes */
1270 atomic_t aw_cnt; /* # of atomic writes */
1271 atomic_t vw_cnt; /* # of volatile writes */
1272 atomic_t max_aw_cnt; /* max # of atomic writes */
1273 atomic_t max_vw_cnt; /* max # of volatile writes */
1274 int bg_gc; /* background gc calls */
1275 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1276 #endif
1277 spinlock_t stat_lock; /* lock for stat operations */
1278
1279 /* For app/fs IO statistics */
1280 spinlock_t iostat_lock;
1281 unsigned long long write_iostat[NR_IO_TYPE];
1282 bool iostat_enable;
1283
1284 /* For sysfs suppport */
1285 struct kobject s_kobj;
1286 struct completion s_kobj_unregister;
1287
1288 /* For shrinker support */
1289 struct list_head s_list;
1290 int s_ndevs; /* number of devices */
1291 struct f2fs_dev_info *devs; /* for device list */
1292 unsigned int dirty_device; /* for checkpoint data flush */
1293 spinlock_t dev_lock; /* protect dirty_device */
1294 struct mutex umount_mutex;
1295 unsigned int shrinker_run_no;
1296
1297 /* For write statistics */
1298 u64 sectors_written_start;
1299 u64 kbytes_written;
1300
1301 /* Reference to checksum algorithm driver via cryptoapi */
1302 struct crypto_shash *s_chksum_driver;
1303
1304 /* Precomputed FS UUID checksum for seeding other checksums */
1305 __u32 s_chksum_seed;
1306 };
1307
1308 #ifdef CONFIG_F2FS_FAULT_INJECTION
1309 #define f2fs_show_injection_info(type) \
1310 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1311 KERN_INFO, f2fs_fault_name[type], \
1312 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1313 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1314 {
1315 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1316
1317 if (!ffi->inject_rate)
1318 return false;
1319
1320 if (!IS_FAULT_SET(ffi, type))
1321 return false;
1322
1323 atomic_inc(&ffi->inject_ops);
1324 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1325 atomic_set(&ffi->inject_ops, 0);
1326 return true;
1327 }
1328 return false;
1329 }
1330 #else
1331 #define f2fs_show_injection_info(type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1332 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1333 {
1334 return false;
1335 }
1336 #endif
1337
1338 /* For write statistics. Suppose sector size is 512 bytes,
1339 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1340 */
1341 #define BD_PART_WRITTEN(s) \
1342 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1343 (s)->sectors_written_start) >> 1)
1344
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1345 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1346 {
1347 sbi->last_time[type] = jiffies;
1348 }
1349
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1350 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1351 {
1352 unsigned long interval = sbi->interval_time[type] * HZ;
1353
1354 return time_after(jiffies, sbi->last_time[type] + interval);
1355 }
1356
is_idle(struct f2fs_sb_info * sbi)1357 static inline bool is_idle(struct f2fs_sb_info *sbi)
1358 {
1359 struct block_device *bdev = sbi->sb->s_bdev;
1360 struct request_queue *q = bdev_get_queue(bdev);
1361 struct request_list *rl = &q->root_rl;
1362
1363 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1364 return false;
1365
1366 return f2fs_time_over(sbi, REQ_TIME);
1367 }
1368
1369 /*
1370 * Inline functions
1371 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1372 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1373 const void *address, unsigned int length)
1374 {
1375 struct {
1376 struct shash_desc shash;
1377 char ctx[4];
1378 } desc;
1379 int err;
1380
1381 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1382
1383 desc.shash.tfm = sbi->s_chksum_driver;
1384 desc.shash.flags = 0;
1385 *(u32 *)desc.ctx = crc;
1386
1387 err = crypto_shash_update(&desc.shash, address, length);
1388 BUG_ON(err);
1389
1390 return *(u32 *)desc.ctx;
1391 }
1392
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1393 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1394 unsigned int length)
1395 {
1396 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1397 }
1398
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1399 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1400 void *buf, size_t buf_size)
1401 {
1402 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1403 }
1404
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1405 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1406 const void *address, unsigned int length)
1407 {
1408 return __f2fs_crc32(sbi, crc, address, length);
1409 }
1410
F2FS_I(struct inode * inode)1411 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1412 {
1413 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1414 }
1415
F2FS_SB(struct super_block * sb)1416 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1417 {
1418 return sb->s_fs_info;
1419 }
1420
F2FS_I_SB(struct inode * inode)1421 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1422 {
1423 return F2FS_SB(inode->i_sb);
1424 }
1425
F2FS_M_SB(struct address_space * mapping)1426 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1427 {
1428 return F2FS_I_SB(mapping->host);
1429 }
1430
F2FS_P_SB(struct page * page)1431 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1432 {
1433 return F2FS_M_SB(page->mapping);
1434 }
1435
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1436 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1437 {
1438 return (struct f2fs_super_block *)(sbi->raw_super);
1439 }
1440
F2FS_CKPT(struct f2fs_sb_info * sbi)1441 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1442 {
1443 return (struct f2fs_checkpoint *)(sbi->ckpt);
1444 }
1445
F2FS_NODE(struct page * page)1446 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1447 {
1448 return (struct f2fs_node *)page_address(page);
1449 }
1450
F2FS_INODE(struct page * page)1451 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1452 {
1453 return &((struct f2fs_node *)page_address(page))->i;
1454 }
1455
NM_I(struct f2fs_sb_info * sbi)1456 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1457 {
1458 return (struct f2fs_nm_info *)(sbi->nm_info);
1459 }
1460
SM_I(struct f2fs_sb_info * sbi)1461 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1462 {
1463 return (struct f2fs_sm_info *)(sbi->sm_info);
1464 }
1465
SIT_I(struct f2fs_sb_info * sbi)1466 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1467 {
1468 return (struct sit_info *)(SM_I(sbi)->sit_info);
1469 }
1470
FREE_I(struct f2fs_sb_info * sbi)1471 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1472 {
1473 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1474 }
1475
DIRTY_I(struct f2fs_sb_info * sbi)1476 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1477 {
1478 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1479 }
1480
META_MAPPING(struct f2fs_sb_info * sbi)1481 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1482 {
1483 return sbi->meta_inode->i_mapping;
1484 }
1485
NODE_MAPPING(struct f2fs_sb_info * sbi)1486 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1487 {
1488 return sbi->node_inode->i_mapping;
1489 }
1490
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1491 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1492 {
1493 return test_bit(type, &sbi->s_flag);
1494 }
1495
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1496 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1497 {
1498 set_bit(type, &sbi->s_flag);
1499 }
1500
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1501 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1502 {
1503 clear_bit(type, &sbi->s_flag);
1504 }
1505
cur_cp_version(struct f2fs_checkpoint * cp)1506 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1507 {
1508 return le64_to_cpu(cp->checkpoint_ver);
1509 }
1510
f2fs_qf_ino(struct super_block * sb,int type)1511 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1512 {
1513 if (type < F2FS_MAX_QUOTAS)
1514 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1515 return 0;
1516 }
1517
cur_cp_crc(struct f2fs_checkpoint * cp)1518 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1519 {
1520 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1521 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1522 }
1523
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1524 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1525 {
1526 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1527
1528 return ckpt_flags & f;
1529 }
1530
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1531 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1532 {
1533 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1534 }
1535
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1536 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1537 {
1538 unsigned int ckpt_flags;
1539
1540 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1541 ckpt_flags |= f;
1542 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1543 }
1544
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1545 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1546 {
1547 unsigned long flags;
1548
1549 spin_lock_irqsave(&sbi->cp_lock, flags);
1550 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1551 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1552 }
1553
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1554 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1555 {
1556 unsigned int ckpt_flags;
1557
1558 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1559 ckpt_flags &= (~f);
1560 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1561 }
1562
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1563 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1564 {
1565 unsigned long flags;
1566
1567 spin_lock_irqsave(&sbi->cp_lock, flags);
1568 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1569 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1570 }
1571
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1572 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1573 {
1574 unsigned long flags;
1575
1576 set_sbi_flag(sbi, SBI_NEED_FSCK);
1577
1578 if (lock)
1579 spin_lock_irqsave(&sbi->cp_lock, flags);
1580 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1581 kfree(NM_I(sbi)->nat_bits);
1582 NM_I(sbi)->nat_bits = NULL;
1583 if (lock)
1584 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1585 }
1586
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1587 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1588 struct cp_control *cpc)
1589 {
1590 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1591
1592 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1593 }
1594
f2fs_lock_op(struct f2fs_sb_info * sbi)1595 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1596 {
1597 down_read(&sbi->cp_rwsem);
1598 }
1599
f2fs_trylock_op(struct f2fs_sb_info * sbi)1600 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1601 {
1602 return down_read_trylock(&sbi->cp_rwsem);
1603 }
1604
f2fs_unlock_op(struct f2fs_sb_info * sbi)1605 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1606 {
1607 up_read(&sbi->cp_rwsem);
1608 }
1609
f2fs_lock_all(struct f2fs_sb_info * sbi)1610 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1611 {
1612 down_write(&sbi->cp_rwsem);
1613 }
1614
f2fs_unlock_all(struct f2fs_sb_info * sbi)1615 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1616 {
1617 up_write(&sbi->cp_rwsem);
1618 }
1619
__get_cp_reason(struct f2fs_sb_info * sbi)1620 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1621 {
1622 int reason = CP_SYNC;
1623
1624 if (test_opt(sbi, FASTBOOT))
1625 reason = CP_FASTBOOT;
1626 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1627 reason = CP_UMOUNT;
1628 return reason;
1629 }
1630
__remain_node_summaries(int reason)1631 static inline bool __remain_node_summaries(int reason)
1632 {
1633 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1634 }
1635
__exist_node_summaries(struct f2fs_sb_info * sbi)1636 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1637 {
1638 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1639 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1640 }
1641
1642 /*
1643 * Check whether the inode has blocks or not
1644 */
F2FS_HAS_BLOCKS(struct inode * inode)1645 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1646 {
1647 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1648
1649 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1650 }
1651
f2fs_has_xattr_block(unsigned int ofs)1652 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1653 {
1654 return ofs == XATTR_NODE_OFFSET;
1655 }
1656
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1657 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1658 struct inode *inode, bool cap)
1659 {
1660 if (!inode)
1661 return true;
1662 if (!test_opt(sbi, RESERVE_ROOT))
1663 return false;
1664 if (IS_NOQUOTA(inode))
1665 return true;
1666 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1667 return true;
1668 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1669 in_group_p(F2FS_OPTION(sbi).s_resgid))
1670 return true;
1671 if (cap && capable(CAP_SYS_RESOURCE))
1672 return true;
1673 return false;
1674 }
1675
1676 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1677 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1678 struct inode *inode, blkcnt_t *count)
1679 {
1680 blkcnt_t diff = 0, release = 0;
1681 block_t avail_user_block_count;
1682 int ret;
1683
1684 ret = dquot_reserve_block(inode, *count);
1685 if (ret)
1686 return ret;
1687
1688 if (time_to_inject(sbi, FAULT_BLOCK)) {
1689 f2fs_show_injection_info(FAULT_BLOCK);
1690 release = *count;
1691 goto enospc;
1692 }
1693
1694 /*
1695 * let's increase this in prior to actual block count change in order
1696 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1697 */
1698 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1699
1700 spin_lock(&sbi->stat_lock);
1701 sbi->total_valid_block_count += (block_t)(*count);
1702 avail_user_block_count = sbi->user_block_count -
1703 sbi->current_reserved_blocks;
1704
1705 if (!__allow_reserved_blocks(sbi, inode, true))
1706 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1707
1708 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1709 diff = sbi->total_valid_block_count - avail_user_block_count;
1710 if (diff > *count)
1711 diff = *count;
1712 *count -= diff;
1713 release = diff;
1714 sbi->total_valid_block_count -= diff;
1715 if (!*count) {
1716 spin_unlock(&sbi->stat_lock);
1717 goto enospc;
1718 }
1719 }
1720 spin_unlock(&sbi->stat_lock);
1721
1722 if (unlikely(release)) {
1723 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1724 dquot_release_reservation_block(inode, release);
1725 }
1726 f2fs_i_blocks_write(inode, *count, true, true);
1727 return 0;
1728
1729 enospc:
1730 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1731 dquot_release_reservation_block(inode, release);
1732 return -ENOSPC;
1733 }
1734
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1735 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1736 struct inode *inode,
1737 block_t count)
1738 {
1739 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1740
1741 spin_lock(&sbi->stat_lock);
1742 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1743 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1744 sbi->total_valid_block_count -= (block_t)count;
1745 if (sbi->reserved_blocks &&
1746 sbi->current_reserved_blocks < sbi->reserved_blocks)
1747 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1748 sbi->current_reserved_blocks + count);
1749 spin_unlock(&sbi->stat_lock);
1750 f2fs_i_blocks_write(inode, count, false, true);
1751 }
1752
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1753 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1754 {
1755 atomic_inc(&sbi->nr_pages[count_type]);
1756
1757 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1758 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1759 return;
1760
1761 set_sbi_flag(sbi, SBI_IS_DIRTY);
1762 }
1763
inode_inc_dirty_pages(struct inode * inode)1764 static inline void inode_inc_dirty_pages(struct inode *inode)
1765 {
1766 atomic_inc(&F2FS_I(inode)->dirty_pages);
1767 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1768 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1769 if (IS_NOQUOTA(inode))
1770 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1771 }
1772
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1773 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1774 {
1775 atomic_dec(&sbi->nr_pages[count_type]);
1776 }
1777
inode_dec_dirty_pages(struct inode * inode)1778 static inline void inode_dec_dirty_pages(struct inode *inode)
1779 {
1780 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1781 !S_ISLNK(inode->i_mode))
1782 return;
1783
1784 atomic_dec(&F2FS_I(inode)->dirty_pages);
1785 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1786 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1787 if (IS_NOQUOTA(inode))
1788 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1789 }
1790
get_pages(struct f2fs_sb_info * sbi,int count_type)1791 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1792 {
1793 return atomic_read(&sbi->nr_pages[count_type]);
1794 }
1795
get_dirty_pages(struct inode * inode)1796 static inline int get_dirty_pages(struct inode *inode)
1797 {
1798 return atomic_read(&F2FS_I(inode)->dirty_pages);
1799 }
1800
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1801 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1802 {
1803 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1804 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1805 sbi->log_blocks_per_seg;
1806
1807 return segs / sbi->segs_per_sec;
1808 }
1809
valid_user_blocks(struct f2fs_sb_info * sbi)1810 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1811 {
1812 return sbi->total_valid_block_count;
1813 }
1814
discard_blocks(struct f2fs_sb_info * sbi)1815 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1816 {
1817 return sbi->discard_blks;
1818 }
1819
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1820 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1821 {
1822 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1823
1824 /* return NAT or SIT bitmap */
1825 if (flag == NAT_BITMAP)
1826 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1827 else if (flag == SIT_BITMAP)
1828 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1829
1830 return 0;
1831 }
1832
__cp_payload(struct f2fs_sb_info * sbi)1833 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1834 {
1835 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1836 }
1837
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1838 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1839 {
1840 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1841 int offset;
1842
1843 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1844 offset = (flag == SIT_BITMAP) ?
1845 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1846 return &ckpt->sit_nat_version_bitmap + offset;
1847 }
1848
1849 if (__cp_payload(sbi) > 0) {
1850 if (flag == NAT_BITMAP)
1851 return &ckpt->sit_nat_version_bitmap;
1852 else
1853 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1854 } else {
1855 offset = (flag == NAT_BITMAP) ?
1856 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1857 return &ckpt->sit_nat_version_bitmap + offset;
1858 }
1859 }
1860
__start_cp_addr(struct f2fs_sb_info * sbi)1861 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1862 {
1863 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1864
1865 if (sbi->cur_cp_pack == 2)
1866 start_addr += sbi->blocks_per_seg;
1867 return start_addr;
1868 }
1869
__start_cp_next_addr(struct f2fs_sb_info * sbi)1870 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1871 {
1872 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1873
1874 if (sbi->cur_cp_pack == 1)
1875 start_addr += sbi->blocks_per_seg;
1876 return start_addr;
1877 }
1878
__set_cp_next_pack(struct f2fs_sb_info * sbi)1879 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1880 {
1881 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1882 }
1883
__start_sum_addr(struct f2fs_sb_info * sbi)1884 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1885 {
1886 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1887 }
1888
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1889 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1890 struct inode *inode, bool is_inode)
1891 {
1892 block_t valid_block_count;
1893 unsigned int valid_node_count;
1894 bool quota = inode && !is_inode;
1895
1896 if (quota) {
1897 int ret = dquot_reserve_block(inode, 1);
1898 if (ret)
1899 return ret;
1900 }
1901
1902 if (time_to_inject(sbi, FAULT_BLOCK)) {
1903 f2fs_show_injection_info(FAULT_BLOCK);
1904 goto enospc;
1905 }
1906
1907 spin_lock(&sbi->stat_lock);
1908
1909 valid_block_count = sbi->total_valid_block_count +
1910 sbi->current_reserved_blocks + 1;
1911
1912 if (!__allow_reserved_blocks(sbi, inode, false))
1913 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1914
1915 if (unlikely(valid_block_count > sbi->user_block_count)) {
1916 spin_unlock(&sbi->stat_lock);
1917 goto enospc;
1918 }
1919
1920 valid_node_count = sbi->total_valid_node_count + 1;
1921 if (unlikely(valid_node_count > sbi->total_node_count)) {
1922 spin_unlock(&sbi->stat_lock);
1923 goto enospc;
1924 }
1925
1926 sbi->total_valid_node_count++;
1927 sbi->total_valid_block_count++;
1928 spin_unlock(&sbi->stat_lock);
1929
1930 if (inode) {
1931 if (is_inode)
1932 f2fs_mark_inode_dirty_sync(inode, true);
1933 else
1934 f2fs_i_blocks_write(inode, 1, true, true);
1935 }
1936
1937 percpu_counter_inc(&sbi->alloc_valid_block_count);
1938 return 0;
1939
1940 enospc:
1941 if (quota)
1942 dquot_release_reservation_block(inode, 1);
1943 return -ENOSPC;
1944 }
1945
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1946 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1947 struct inode *inode, bool is_inode)
1948 {
1949 spin_lock(&sbi->stat_lock);
1950
1951 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1952 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1953 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1954
1955 sbi->total_valid_node_count--;
1956 sbi->total_valid_block_count--;
1957 if (sbi->reserved_blocks &&
1958 sbi->current_reserved_blocks < sbi->reserved_blocks)
1959 sbi->current_reserved_blocks++;
1960
1961 spin_unlock(&sbi->stat_lock);
1962
1963 if (!is_inode)
1964 f2fs_i_blocks_write(inode, 1, false, true);
1965 }
1966
valid_node_count(struct f2fs_sb_info * sbi)1967 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1968 {
1969 return sbi->total_valid_node_count;
1970 }
1971
inc_valid_inode_count(struct f2fs_sb_info * sbi)1972 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1973 {
1974 percpu_counter_inc(&sbi->total_valid_inode_count);
1975 }
1976
dec_valid_inode_count(struct f2fs_sb_info * sbi)1977 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1978 {
1979 percpu_counter_dec(&sbi->total_valid_inode_count);
1980 }
1981
valid_inode_count(struct f2fs_sb_info * sbi)1982 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1983 {
1984 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1985 }
1986
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)1987 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1988 pgoff_t index, bool for_write)
1989 {
1990 struct page *page;
1991
1992 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
1993 if (!for_write)
1994 page = find_get_page_flags(mapping, index,
1995 FGP_LOCK | FGP_ACCESSED);
1996 else
1997 page = find_lock_page(mapping, index);
1998 if (page)
1999 return page;
2000
2001 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2002 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2003 return NULL;
2004 }
2005 }
2006
2007 if (!for_write)
2008 return grab_cache_page(mapping, index);
2009 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2010 }
2011
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2012 static inline struct page *f2fs_pagecache_get_page(
2013 struct address_space *mapping, pgoff_t index,
2014 int fgp_flags, gfp_t gfp_mask)
2015 {
2016 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2017 f2fs_show_injection_info(FAULT_PAGE_GET);
2018 return NULL;
2019 }
2020
2021 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2022 }
2023
f2fs_copy_page(struct page * src,struct page * dst)2024 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2025 {
2026 char *src_kaddr = kmap(src);
2027 char *dst_kaddr = kmap(dst);
2028
2029 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2030 kunmap(dst);
2031 kunmap(src);
2032 }
2033
f2fs_put_page(struct page * page,int unlock)2034 static inline void f2fs_put_page(struct page *page, int unlock)
2035 {
2036 if (!page)
2037 return;
2038
2039 if (unlock) {
2040 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2041 unlock_page(page);
2042 }
2043 put_page(page);
2044 }
2045
f2fs_put_dnode(struct dnode_of_data * dn)2046 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2047 {
2048 if (dn->node_page)
2049 f2fs_put_page(dn->node_page, 1);
2050 if (dn->inode_page && dn->node_page != dn->inode_page)
2051 f2fs_put_page(dn->inode_page, 0);
2052 dn->node_page = NULL;
2053 dn->inode_page = NULL;
2054 }
2055
f2fs_kmem_cache_create(const char * name,size_t size)2056 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2057 size_t size)
2058 {
2059 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2060 }
2061
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2062 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2063 gfp_t flags)
2064 {
2065 void *entry;
2066
2067 entry = kmem_cache_alloc(cachep, flags);
2068 if (!entry)
2069 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2070 return entry;
2071 }
2072
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2073 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2074 int npages, bool no_fail)
2075 {
2076 struct bio *bio;
2077
2078 if (no_fail) {
2079 /* No failure on bio allocation */
2080 bio = bio_alloc(GFP_NOIO, npages);
2081 if (!bio)
2082 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2083 return bio;
2084 }
2085 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2086 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2087 return NULL;
2088 }
2089
2090 return bio_alloc(GFP_KERNEL, npages);
2091 }
2092
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2093 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2094 unsigned long index, void *item)
2095 {
2096 while (radix_tree_insert(root, index, item))
2097 cond_resched();
2098 }
2099
2100 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2101
IS_INODE(struct page * page)2102 static inline bool IS_INODE(struct page *page)
2103 {
2104 struct f2fs_node *p = F2FS_NODE(page);
2105
2106 return RAW_IS_INODE(p);
2107 }
2108
offset_in_addr(struct f2fs_inode * i)2109 static inline int offset_in_addr(struct f2fs_inode *i)
2110 {
2111 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2112 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2113 }
2114
blkaddr_in_node(struct f2fs_node * node)2115 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2116 {
2117 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2118 }
2119
2120 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2121 static inline block_t datablock_addr(struct inode *inode,
2122 struct page *node_page, unsigned int offset)
2123 {
2124 struct f2fs_node *raw_node;
2125 __le32 *addr_array;
2126 int base = 0;
2127 bool is_inode = IS_INODE(node_page);
2128
2129 raw_node = F2FS_NODE(node_page);
2130
2131 /* from GC path only */
2132 if (is_inode) {
2133 if (!inode)
2134 base = offset_in_addr(&raw_node->i);
2135 else if (f2fs_has_extra_attr(inode))
2136 base = get_extra_isize(inode);
2137 }
2138
2139 addr_array = blkaddr_in_node(raw_node);
2140 return le32_to_cpu(addr_array[base + offset]);
2141 }
2142
f2fs_test_bit(unsigned int nr,char * addr)2143 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2144 {
2145 int mask;
2146
2147 addr += (nr >> 3);
2148 mask = 1 << (7 - (nr & 0x07));
2149 return mask & *addr;
2150 }
2151
f2fs_set_bit(unsigned int nr,char * addr)2152 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2153 {
2154 int mask;
2155
2156 addr += (nr >> 3);
2157 mask = 1 << (7 - (nr & 0x07));
2158 *addr |= mask;
2159 }
2160
f2fs_clear_bit(unsigned int nr,char * addr)2161 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2162 {
2163 int mask;
2164
2165 addr += (nr >> 3);
2166 mask = 1 << (7 - (nr & 0x07));
2167 *addr &= ~mask;
2168 }
2169
f2fs_test_and_set_bit(unsigned int nr,char * addr)2170 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2171 {
2172 int mask;
2173 int ret;
2174
2175 addr += (nr >> 3);
2176 mask = 1 << (7 - (nr & 0x07));
2177 ret = mask & *addr;
2178 *addr |= mask;
2179 return ret;
2180 }
2181
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2182 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2183 {
2184 int mask;
2185 int ret;
2186
2187 addr += (nr >> 3);
2188 mask = 1 << (7 - (nr & 0x07));
2189 ret = mask & *addr;
2190 *addr &= ~mask;
2191 return ret;
2192 }
2193
f2fs_change_bit(unsigned int nr,char * addr)2194 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2195 {
2196 int mask;
2197
2198 addr += (nr >> 3);
2199 mask = 1 << (7 - (nr & 0x07));
2200 *addr ^= mask;
2201 }
2202
2203 /*
2204 * Inode flags
2205 */
2206 #define F2FS_SECRM_FL 0x00000001 /* Secure deletion */
2207 #define F2FS_UNRM_FL 0x00000002 /* Undelete */
2208 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2209 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2210 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2211 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2212 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2213 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2214 /* Reserved for compression usage... */
2215 #define F2FS_DIRTY_FL 0x00000100
2216 #define F2FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */
2217 #define F2FS_NOCOMPR_FL 0x00000400 /* Don't compress */
2218 #define F2FS_ENCRYPT_FL 0x00000800 /* encrypted file */
2219 /* End compression flags --- maybe not all used */
2220 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2221 #define F2FS_IMAGIC_FL 0x00002000 /* AFS directory */
2222 #define F2FS_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */
2223 #define F2FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */
2224 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2225 #define F2FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/
2226 #define F2FS_HUGE_FILE_FL 0x00040000 /* Set to each huge file */
2227 #define F2FS_EXTENTS_FL 0x00080000 /* Inode uses extents */
2228 #define F2FS_EA_INODE_FL 0x00200000 /* Inode used for large EA */
2229 #define F2FS_EOFBLOCKS_FL 0x00400000 /* Blocks allocated beyond EOF */
2230 #define F2FS_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */
2231 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2232 #define F2FS_RESERVED_FL 0x80000000 /* reserved for ext4 lib */
2233
2234 #define F2FS_FL_USER_VISIBLE 0x304BDFFF /* User visible flags */
2235 #define F2FS_FL_USER_MODIFIABLE 0x204BC0FF /* User modifiable flags */
2236
2237 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2238 #define F2FS_FL_XFLAG_VISIBLE (F2FS_SYNC_FL | \
2239 F2FS_IMMUTABLE_FL | \
2240 F2FS_APPEND_FL | \
2241 F2FS_NODUMP_FL | \
2242 F2FS_NOATIME_FL | \
2243 F2FS_PROJINHERIT_FL)
2244
2245 /* Flags that should be inherited by new inodes from their parent. */
2246 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2247 F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2248 F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2249 F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2250 F2FS_PROJINHERIT_FL)
2251
2252 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2253 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2254
2255 /* Flags that are appropriate for non-directories/regular files. */
2256 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2257
f2fs_mask_flags(umode_t mode,__u32 flags)2258 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2259 {
2260 if (S_ISDIR(mode))
2261 return flags;
2262 else if (S_ISREG(mode))
2263 return flags & F2FS_REG_FLMASK;
2264 else
2265 return flags & F2FS_OTHER_FLMASK;
2266 }
2267
2268 /* used for f2fs_inode_info->flags */
2269 enum {
2270 FI_NEW_INODE, /* indicate newly allocated inode */
2271 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2272 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2273 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2274 FI_INC_LINK, /* need to increment i_nlink */
2275 FI_ACL_MODE, /* indicate acl mode */
2276 FI_NO_ALLOC, /* should not allocate any blocks */
2277 FI_FREE_NID, /* free allocated nide */
2278 FI_NO_EXTENT, /* not to use the extent cache */
2279 FI_INLINE_XATTR, /* used for inline xattr */
2280 FI_INLINE_DATA, /* used for inline data*/
2281 FI_INLINE_DENTRY, /* used for inline dentry */
2282 FI_APPEND_WRITE, /* inode has appended data */
2283 FI_UPDATE_WRITE, /* inode has in-place-update data */
2284 FI_NEED_IPU, /* used for ipu per file */
2285 FI_ATOMIC_FILE, /* indicate atomic file */
2286 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2287 FI_VOLATILE_FILE, /* indicate volatile file */
2288 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2289 FI_DROP_CACHE, /* drop dirty page cache */
2290 FI_DATA_EXIST, /* indicate data exists */
2291 FI_INLINE_DOTS, /* indicate inline dot dentries */
2292 FI_DO_DEFRAG, /* indicate defragment is running */
2293 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2294 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2295 FI_HOT_DATA, /* indicate file is hot */
2296 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2297 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2298 FI_PIN_FILE, /* indicate file should not be gced */
2299 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2300 };
2301
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2302 static inline void __mark_inode_dirty_flag(struct inode *inode,
2303 int flag, bool set)
2304 {
2305 switch (flag) {
2306 case FI_INLINE_XATTR:
2307 case FI_INLINE_DATA:
2308 case FI_INLINE_DENTRY:
2309 case FI_NEW_INODE:
2310 if (set)
2311 return;
2312 case FI_DATA_EXIST:
2313 case FI_INLINE_DOTS:
2314 case FI_PIN_FILE:
2315 f2fs_mark_inode_dirty_sync(inode, true);
2316 }
2317 }
2318
set_inode_flag(struct inode * inode,int flag)2319 static inline void set_inode_flag(struct inode *inode, int flag)
2320 {
2321 if (!test_bit(flag, &F2FS_I(inode)->flags))
2322 set_bit(flag, &F2FS_I(inode)->flags);
2323 __mark_inode_dirty_flag(inode, flag, true);
2324 }
2325
is_inode_flag_set(struct inode * inode,int flag)2326 static inline int is_inode_flag_set(struct inode *inode, int flag)
2327 {
2328 return test_bit(flag, &F2FS_I(inode)->flags);
2329 }
2330
clear_inode_flag(struct inode * inode,int flag)2331 static inline void clear_inode_flag(struct inode *inode, int flag)
2332 {
2333 if (test_bit(flag, &F2FS_I(inode)->flags))
2334 clear_bit(flag, &F2FS_I(inode)->flags);
2335 __mark_inode_dirty_flag(inode, flag, false);
2336 }
2337
set_acl_inode(struct inode * inode,umode_t mode)2338 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2339 {
2340 F2FS_I(inode)->i_acl_mode = mode;
2341 set_inode_flag(inode, FI_ACL_MODE);
2342 f2fs_mark_inode_dirty_sync(inode, false);
2343 }
2344
f2fs_i_links_write(struct inode * inode,bool inc)2345 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2346 {
2347 if (inc)
2348 inc_nlink(inode);
2349 else
2350 drop_nlink(inode);
2351 f2fs_mark_inode_dirty_sync(inode, true);
2352 }
2353
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2354 static inline void f2fs_i_blocks_write(struct inode *inode,
2355 block_t diff, bool add, bool claim)
2356 {
2357 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2358 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2359
2360 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2361 if (add) {
2362 if (claim)
2363 dquot_claim_block(inode, diff);
2364 else
2365 dquot_alloc_block_nofail(inode, diff);
2366 } else {
2367 dquot_free_block(inode, diff);
2368 }
2369
2370 f2fs_mark_inode_dirty_sync(inode, true);
2371 if (clean || recover)
2372 set_inode_flag(inode, FI_AUTO_RECOVER);
2373 }
2374
f2fs_i_size_write(struct inode * inode,loff_t i_size)2375 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2376 {
2377 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2378 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2379
2380 if (i_size_read(inode) == i_size)
2381 return;
2382
2383 i_size_write(inode, i_size);
2384 f2fs_mark_inode_dirty_sync(inode, true);
2385 if (clean || recover)
2386 set_inode_flag(inode, FI_AUTO_RECOVER);
2387 }
2388
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2389 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2390 {
2391 F2FS_I(inode)->i_current_depth = depth;
2392 f2fs_mark_inode_dirty_sync(inode, true);
2393 }
2394
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2395 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2396 unsigned int count)
2397 {
2398 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2399 f2fs_mark_inode_dirty_sync(inode, true);
2400 }
2401
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2402 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2403 {
2404 F2FS_I(inode)->i_xattr_nid = xnid;
2405 f2fs_mark_inode_dirty_sync(inode, true);
2406 }
2407
f2fs_i_pino_write(struct inode * inode,nid_t pino)2408 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2409 {
2410 F2FS_I(inode)->i_pino = pino;
2411 f2fs_mark_inode_dirty_sync(inode, true);
2412 }
2413
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2414 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2415 {
2416 struct f2fs_inode_info *fi = F2FS_I(inode);
2417
2418 if (ri->i_inline & F2FS_INLINE_XATTR)
2419 set_bit(FI_INLINE_XATTR, &fi->flags);
2420 if (ri->i_inline & F2FS_INLINE_DATA)
2421 set_bit(FI_INLINE_DATA, &fi->flags);
2422 if (ri->i_inline & F2FS_INLINE_DENTRY)
2423 set_bit(FI_INLINE_DENTRY, &fi->flags);
2424 if (ri->i_inline & F2FS_DATA_EXIST)
2425 set_bit(FI_DATA_EXIST, &fi->flags);
2426 if (ri->i_inline & F2FS_INLINE_DOTS)
2427 set_bit(FI_INLINE_DOTS, &fi->flags);
2428 if (ri->i_inline & F2FS_EXTRA_ATTR)
2429 set_bit(FI_EXTRA_ATTR, &fi->flags);
2430 if (ri->i_inline & F2FS_PIN_FILE)
2431 set_bit(FI_PIN_FILE, &fi->flags);
2432 }
2433
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2434 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2435 {
2436 ri->i_inline = 0;
2437
2438 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2439 ri->i_inline |= F2FS_INLINE_XATTR;
2440 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2441 ri->i_inline |= F2FS_INLINE_DATA;
2442 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2443 ri->i_inline |= F2FS_INLINE_DENTRY;
2444 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2445 ri->i_inline |= F2FS_DATA_EXIST;
2446 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2447 ri->i_inline |= F2FS_INLINE_DOTS;
2448 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2449 ri->i_inline |= F2FS_EXTRA_ATTR;
2450 if (is_inode_flag_set(inode, FI_PIN_FILE))
2451 ri->i_inline |= F2FS_PIN_FILE;
2452 }
2453
f2fs_has_extra_attr(struct inode * inode)2454 static inline int f2fs_has_extra_attr(struct inode *inode)
2455 {
2456 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2457 }
2458
f2fs_has_inline_xattr(struct inode * inode)2459 static inline int f2fs_has_inline_xattr(struct inode *inode)
2460 {
2461 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2462 }
2463
addrs_per_inode(struct inode * inode)2464 static inline unsigned int addrs_per_inode(struct inode *inode)
2465 {
2466 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2467 }
2468
inline_xattr_addr(struct inode * inode,struct page * page)2469 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2470 {
2471 struct f2fs_inode *ri = F2FS_INODE(page);
2472
2473 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2474 get_inline_xattr_addrs(inode)]);
2475 }
2476
inline_xattr_size(struct inode * inode)2477 static inline int inline_xattr_size(struct inode *inode)
2478 {
2479 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2480 }
2481
f2fs_has_inline_data(struct inode * inode)2482 static inline int f2fs_has_inline_data(struct inode *inode)
2483 {
2484 return is_inode_flag_set(inode, FI_INLINE_DATA);
2485 }
2486
f2fs_exist_data(struct inode * inode)2487 static inline int f2fs_exist_data(struct inode *inode)
2488 {
2489 return is_inode_flag_set(inode, FI_DATA_EXIST);
2490 }
2491
f2fs_has_inline_dots(struct inode * inode)2492 static inline int f2fs_has_inline_dots(struct inode *inode)
2493 {
2494 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2495 }
2496
f2fs_is_pinned_file(struct inode * inode)2497 static inline bool f2fs_is_pinned_file(struct inode *inode)
2498 {
2499 return is_inode_flag_set(inode, FI_PIN_FILE);
2500 }
2501
f2fs_is_atomic_file(struct inode * inode)2502 static inline bool f2fs_is_atomic_file(struct inode *inode)
2503 {
2504 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2505 }
2506
f2fs_is_commit_atomic_write(struct inode * inode)2507 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2508 {
2509 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2510 }
2511
f2fs_is_volatile_file(struct inode * inode)2512 static inline bool f2fs_is_volatile_file(struct inode *inode)
2513 {
2514 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2515 }
2516
f2fs_is_first_block_written(struct inode * inode)2517 static inline bool f2fs_is_first_block_written(struct inode *inode)
2518 {
2519 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2520 }
2521
f2fs_is_drop_cache(struct inode * inode)2522 static inline bool f2fs_is_drop_cache(struct inode *inode)
2523 {
2524 return is_inode_flag_set(inode, FI_DROP_CACHE);
2525 }
2526
inline_data_addr(struct inode * inode,struct page * page)2527 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2528 {
2529 struct f2fs_inode *ri = F2FS_INODE(page);
2530 int extra_size = get_extra_isize(inode);
2531
2532 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2533 }
2534
f2fs_has_inline_dentry(struct inode * inode)2535 static inline int f2fs_has_inline_dentry(struct inode *inode)
2536 {
2537 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2538 }
2539
is_file(struct inode * inode,int type)2540 static inline int is_file(struct inode *inode, int type)
2541 {
2542 return F2FS_I(inode)->i_advise & type;
2543 }
2544
set_file(struct inode * inode,int type)2545 static inline void set_file(struct inode *inode, int type)
2546 {
2547 F2FS_I(inode)->i_advise |= type;
2548 f2fs_mark_inode_dirty_sync(inode, true);
2549 }
2550
clear_file(struct inode * inode,int type)2551 static inline void clear_file(struct inode *inode, int type)
2552 {
2553 F2FS_I(inode)->i_advise &= ~type;
2554 f2fs_mark_inode_dirty_sync(inode, true);
2555 }
2556
f2fs_skip_inode_update(struct inode * inode,int dsync)2557 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2558 {
2559 bool ret;
2560
2561 if (dsync) {
2562 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2563
2564 spin_lock(&sbi->inode_lock[DIRTY_META]);
2565 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2566 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2567 return ret;
2568 }
2569 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2570 file_keep_isize(inode) ||
2571 i_size_read(inode) & ~PAGE_MASK)
2572 return false;
2573
2574 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2575 return false;
2576 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2577 return false;
2578 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2579 return false;
2580 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2581 &F2FS_I(inode)->i_crtime))
2582 return false;
2583
2584 down_read(&F2FS_I(inode)->i_sem);
2585 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2586 up_read(&F2FS_I(inode)->i_sem);
2587
2588 return ret;
2589 }
2590
f2fs_readonly(struct super_block * sb)2591 static inline bool f2fs_readonly(struct super_block *sb)
2592 {
2593 return sb_rdonly(sb);
2594 }
2595
f2fs_cp_error(struct f2fs_sb_info * sbi)2596 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2597 {
2598 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2599 }
2600
is_dot_dotdot(const struct qstr * str)2601 static inline bool is_dot_dotdot(const struct qstr *str)
2602 {
2603 if (str->len == 1 && str->name[0] == '.')
2604 return true;
2605
2606 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2607 return true;
2608
2609 return false;
2610 }
2611
f2fs_may_extent_tree(struct inode * inode)2612 static inline bool f2fs_may_extent_tree(struct inode *inode)
2613 {
2614 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2615 is_inode_flag_set(inode, FI_NO_EXTENT))
2616 return false;
2617
2618 return S_ISREG(inode->i_mode);
2619 }
2620
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2621 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2622 size_t size, gfp_t flags)
2623 {
2624 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2625 f2fs_show_injection_info(FAULT_KMALLOC);
2626 return NULL;
2627 }
2628
2629 return kmalloc(size, flags);
2630 }
2631
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2632 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2633 size_t size, gfp_t flags)
2634 {
2635 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2636 }
2637
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2638 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2639 size_t size, gfp_t flags)
2640 {
2641 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2642 f2fs_show_injection_info(FAULT_KVMALLOC);
2643 return NULL;
2644 }
2645
2646 return kvmalloc(size, flags);
2647 }
2648
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2649 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2650 size_t size, gfp_t flags)
2651 {
2652 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2653 }
2654
get_extra_isize(struct inode * inode)2655 static inline int get_extra_isize(struct inode *inode)
2656 {
2657 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2658 }
2659
get_inline_xattr_addrs(struct inode * inode)2660 static inline int get_inline_xattr_addrs(struct inode *inode)
2661 {
2662 return F2FS_I(inode)->i_inline_xattr_size;
2663 }
2664
2665 #define f2fs_get_inode_mode(i) \
2666 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2667 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2668
2669 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2670 (offsetof(struct f2fs_inode, i_extra_end) - \
2671 offsetof(struct f2fs_inode, i_extra_isize)) \
2672
2673 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2674 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2675 ((offsetof(typeof(*f2fs_inode), field) + \
2676 sizeof((f2fs_inode)->field)) \
2677 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2678
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2679 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2680 {
2681 int i;
2682
2683 spin_lock(&sbi->iostat_lock);
2684 for (i = 0; i < NR_IO_TYPE; i++)
2685 sbi->write_iostat[i] = 0;
2686 spin_unlock(&sbi->iostat_lock);
2687 }
2688
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2689 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2690 enum iostat_type type, unsigned long long io_bytes)
2691 {
2692 if (!sbi->iostat_enable)
2693 return;
2694 spin_lock(&sbi->iostat_lock);
2695 sbi->write_iostat[type] += io_bytes;
2696
2697 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2698 sbi->write_iostat[APP_BUFFERED_IO] =
2699 sbi->write_iostat[APP_WRITE_IO] -
2700 sbi->write_iostat[APP_DIRECT_IO];
2701 spin_unlock(&sbi->iostat_lock);
2702 }
2703
2704 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META && \
2705 (!is_read_io(fio->op) || fio->is_meta))
2706
2707 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2708 block_t blkaddr, int type);
2709 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)2710 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2711 block_t blkaddr, int type)
2712 {
2713 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2714 f2fs_msg(sbi->sb, KERN_ERR,
2715 "invalid blkaddr: %u, type: %d, run fsck to fix.",
2716 blkaddr, type);
2717 f2fs_bug_on(sbi, 1);
2718 }
2719 }
2720
__is_valid_data_blkaddr(block_t blkaddr)2721 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2722 {
2723 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2724 return false;
2725 return true;
2726 }
2727
is_valid_data_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)2728 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2729 block_t blkaddr)
2730 {
2731 if (!__is_valid_data_blkaddr(blkaddr))
2732 return false;
2733 verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2734 return true;
2735 }
2736
2737 /*
2738 * file.c
2739 */
2740 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2741 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2742 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2743 int f2fs_truncate(struct inode *inode);
2744 int f2fs_getattr(const struct path *path, struct kstat *stat,
2745 u32 request_mask, unsigned int flags);
2746 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2747 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2748 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2749 int f2fs_precache_extents(struct inode *inode);
2750 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2751 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2752 int f2fs_pin_file_control(struct inode *inode, bool inc);
2753
2754 /*
2755 * inode.c
2756 */
2757 void f2fs_set_inode_flags(struct inode *inode);
2758 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2759 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2760 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2761 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2762 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2763 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2764 void f2fs_update_inode_page(struct inode *inode);
2765 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2766 void f2fs_evict_inode(struct inode *inode);
2767 void f2fs_handle_failed_inode(struct inode *inode);
2768
2769 /*
2770 * namei.c
2771 */
2772 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2773 bool hot, bool set);
2774 struct dentry *f2fs_get_parent(struct dentry *child);
2775
2776 /*
2777 * dir.c
2778 */
2779 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2780 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2781 f2fs_hash_t namehash, int *max_slots,
2782 struct f2fs_dentry_ptr *d);
2783 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2784 unsigned int start_pos, struct fscrypt_str *fstr);
2785 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2786 struct f2fs_dentry_ptr *d);
2787 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2788 const struct qstr *new_name,
2789 const struct qstr *orig_name, struct page *dpage);
2790 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2791 unsigned int current_depth);
2792 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2793 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2794 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2795 struct fscrypt_name *fname, struct page **res_page);
2796 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2797 const struct qstr *child, struct page **res_page);
2798 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2799 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2800 struct page **page);
2801 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2802 struct page *page, struct inode *inode);
2803 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2804 const struct qstr *name, f2fs_hash_t name_hash,
2805 unsigned int bit_pos);
2806 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2807 const struct qstr *orig_name,
2808 struct inode *inode, nid_t ino, umode_t mode);
2809 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2810 struct inode *inode, nid_t ino, umode_t mode);
2811 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2812 struct inode *inode, nid_t ino, umode_t mode);
2813 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2814 struct inode *dir, struct inode *inode);
2815 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2816 bool f2fs_empty_dir(struct inode *dir);
2817
f2fs_add_link(struct dentry * dentry,struct inode * inode)2818 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2819 {
2820 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2821 inode, inode->i_ino, inode->i_mode);
2822 }
2823
2824 /*
2825 * super.c
2826 */
2827 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2828 void f2fs_inode_synced(struct inode *inode);
2829 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2830 void f2fs_quota_off_umount(struct super_block *sb);
2831 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2832 int f2fs_sync_fs(struct super_block *sb, int sync);
2833 extern __printf(3, 4)
2834 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2835 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2836
2837 /*
2838 * hash.c
2839 */
2840 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2841 struct fscrypt_name *fname);
2842
2843 /*
2844 * node.c
2845 */
2846 struct dnode_of_data;
2847 struct node_info;
2848
2849 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2850 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2851 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2852 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2853 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2854 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2855 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2856 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2857 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2858 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2859 struct node_info *ni);
2860 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2861 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2862 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2863 int f2fs_truncate_xattr_node(struct inode *inode);
2864 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2865 unsigned int seq_id);
2866 int f2fs_remove_inode_page(struct inode *inode);
2867 struct page *f2fs_new_inode_page(struct inode *inode);
2868 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2869 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2870 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2871 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2872 void f2fs_move_node_page(struct page *node_page, int gc_type);
2873 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2874 struct writeback_control *wbc, bool atomic,
2875 unsigned int *seq_id);
2876 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2877 struct writeback_control *wbc,
2878 bool do_balance, enum iostat_type io_type);
2879 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2880 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2881 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2882 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2883 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2884 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2885 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2886 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2887 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2888 unsigned int segno, struct f2fs_summary_block *sum);
2889 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2890 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2891 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2892 int __init f2fs_create_node_manager_caches(void);
2893 void f2fs_destroy_node_manager_caches(void);
2894
2895 /*
2896 * segment.c
2897 */
2898 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2899 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
2900 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
2901 void f2fs_drop_inmem_pages(struct inode *inode);
2902 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
2903 int f2fs_commit_inmem_pages(struct inode *inode);
2904 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2905 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2906 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2907 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
2908 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2909 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2910 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2911 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2912 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
2913 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
2914 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2915 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2916 struct cp_control *cpc);
2917 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
2918 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2919 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
2920 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2921 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2922 struct cp_control *cpc);
2923 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2924 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
2925 block_t blk_addr);
2926 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2927 enum iostat_type io_type);
2928 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2929 void f2fs_outplace_write_data(struct dnode_of_data *dn,
2930 struct f2fs_io_info *fio);
2931 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
2932 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2933 block_t old_blkaddr, block_t new_blkaddr,
2934 bool recover_curseg, bool recover_newaddr);
2935 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2936 block_t old_addr, block_t new_addr,
2937 unsigned char version, bool recover_curseg,
2938 bool recover_newaddr);
2939 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2940 block_t old_blkaddr, block_t *new_blkaddr,
2941 struct f2fs_summary *sum, int type,
2942 struct f2fs_io_info *fio, bool add_list);
2943 void f2fs_wait_on_page_writeback(struct page *page,
2944 enum page_type type, bool ordered);
2945 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2946 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2947 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2948 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2949 unsigned int val, int alloc);
2950 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2951 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
2952 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
2953 int __init f2fs_create_segment_manager_caches(void);
2954 void f2fs_destroy_segment_manager_caches(void);
2955 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
2956 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2957 enum page_type type, enum temp_type temp);
2958
2959 /*
2960 * checkpoint.c
2961 */
2962 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2963 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2964 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2965 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
2966 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2967 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2968 block_t blkaddr, int type);
2969 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2970 int type, bool sync);
2971 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2972 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2973 long nr_to_write, enum iostat_type io_type);
2974 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2975 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2976 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2977 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2978 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2979 unsigned int devidx, int type);
2980 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2981 unsigned int devidx, int type);
2982 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2983 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
2984 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
2985 void f2fs_add_orphan_inode(struct inode *inode);
2986 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2987 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
2988 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
2989 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
2990 void f2fs_remove_dirty_inode(struct inode *inode);
2991 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2992 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
2993 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2994 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
2995 int __init f2fs_create_checkpoint_caches(void);
2996 void f2fs_destroy_checkpoint_caches(void);
2997
2998 /*
2999 * data.c
3000 */
3001 int f2fs_init_post_read_processing(void);
3002 void f2fs_destroy_post_read_processing(void);
3003 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3004 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3005 struct inode *inode, nid_t ino, pgoff_t idx,
3006 enum page_type type);
3007 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3008 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3009 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3010 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3011 block_t blk_addr, struct bio *bio);
3012 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3013 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3014 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3015 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3016 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3017 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3018 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3019 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3020 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3021 int op_flags, bool for_write);
3022 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3023 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3024 bool for_write);
3025 struct page *f2fs_get_new_data_page(struct inode *inode,
3026 struct page *ipage, pgoff_t index, bool new_i_size);
3027 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3028 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3029 int create, int flag);
3030 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3031 u64 start, u64 len);
3032 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3033 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3034 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3035 unsigned int length);
3036 int f2fs_release_page(struct page *page, gfp_t wait);
3037 #ifdef CONFIG_MIGRATION
3038 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3039 struct page *page, enum migrate_mode mode);
3040 #endif
3041 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3042 void f2fs_clear_radix_tree_dirty_tag(struct page *page);
3043
3044 /*
3045 * gc.c
3046 */
3047 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3048 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3049 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3050 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3051 unsigned int segno);
3052 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3053
3054 /*
3055 * recovery.c
3056 */
3057 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3058 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3059
3060 /*
3061 * debug.c
3062 */
3063 #ifdef CONFIG_F2FS_STAT_FS
3064 struct f2fs_stat_info {
3065 struct list_head stat_list;
3066 struct f2fs_sb_info *sbi;
3067 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3068 int main_area_segs, main_area_sections, main_area_zones;
3069 unsigned long long hit_largest, hit_cached, hit_rbtree;
3070 unsigned long long hit_total, total_ext;
3071 int ext_tree, zombie_tree, ext_node;
3072 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3073 int ndirty_data, ndirty_qdata;
3074 int inmem_pages;
3075 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3076 int nats, dirty_nats, sits, dirty_sits;
3077 int free_nids, avail_nids, alloc_nids;
3078 int total_count, utilization;
3079 int bg_gc, nr_wb_cp_data, nr_wb_data;
3080 int nr_flushing, nr_flushed, flush_list_empty;
3081 int nr_discarding, nr_discarded;
3082 int nr_discard_cmd;
3083 unsigned int undiscard_blks;
3084 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3085 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3086 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3087 unsigned int bimodal, avg_vblocks;
3088 int util_free, util_valid, util_invalid;
3089 int rsvd_segs, overp_segs;
3090 int dirty_count, node_pages, meta_pages;
3091 int prefree_count, call_count, cp_count, bg_cp_count;
3092 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3093 int bg_node_segs, bg_data_segs;
3094 int tot_blks, data_blks, node_blks;
3095 int bg_data_blks, bg_node_blks;
3096 unsigned long long skipped_atomic_files[2];
3097 int curseg[NR_CURSEG_TYPE];
3098 int cursec[NR_CURSEG_TYPE];
3099 int curzone[NR_CURSEG_TYPE];
3100
3101 unsigned int segment_count[2];
3102 unsigned int block_count[2];
3103 unsigned int inplace_count;
3104 unsigned long long base_mem, cache_mem, page_mem;
3105 };
3106
F2FS_STAT(struct f2fs_sb_info * sbi)3107 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3108 {
3109 return (struct f2fs_stat_info *)sbi->stat_info;
3110 }
3111
3112 #define stat_inc_cp_count(si) ((si)->cp_count++)
3113 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3114 #define stat_inc_call_count(si) ((si)->call_count++)
3115 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
3116 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3117 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3118 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3119 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3120 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3121 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3122 #define stat_inc_inline_xattr(inode) \
3123 do { \
3124 if (f2fs_has_inline_xattr(inode)) \
3125 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3126 } while (0)
3127 #define stat_dec_inline_xattr(inode) \
3128 do { \
3129 if (f2fs_has_inline_xattr(inode)) \
3130 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3131 } while (0)
3132 #define stat_inc_inline_inode(inode) \
3133 do { \
3134 if (f2fs_has_inline_data(inode)) \
3135 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3136 } while (0)
3137 #define stat_dec_inline_inode(inode) \
3138 do { \
3139 if (f2fs_has_inline_data(inode)) \
3140 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3141 } while (0)
3142 #define stat_inc_inline_dir(inode) \
3143 do { \
3144 if (f2fs_has_inline_dentry(inode)) \
3145 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3146 } while (0)
3147 #define stat_dec_inline_dir(inode) \
3148 do { \
3149 if (f2fs_has_inline_dentry(inode)) \
3150 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3151 } while (0)
3152 #define stat_inc_seg_type(sbi, curseg) \
3153 ((sbi)->segment_count[(curseg)->alloc_type]++)
3154 #define stat_inc_block_count(sbi, curseg) \
3155 ((sbi)->block_count[(curseg)->alloc_type]++)
3156 #define stat_inc_inplace_blocks(sbi) \
3157 (atomic_inc(&(sbi)->inplace_count))
3158 #define stat_inc_atomic_write(inode) \
3159 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3160 #define stat_dec_atomic_write(inode) \
3161 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3162 #define stat_update_max_atomic_write(inode) \
3163 do { \
3164 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
3165 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3166 if (cur > max) \
3167 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3168 } while (0)
3169 #define stat_inc_volatile_write(inode) \
3170 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3171 #define stat_dec_volatile_write(inode) \
3172 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3173 #define stat_update_max_volatile_write(inode) \
3174 do { \
3175 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3176 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3177 if (cur > max) \
3178 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3179 } while (0)
3180 #define stat_inc_seg_count(sbi, type, gc_type) \
3181 do { \
3182 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3183 si->tot_segs++; \
3184 if ((type) == SUM_TYPE_DATA) { \
3185 si->data_segs++; \
3186 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3187 } else { \
3188 si->node_segs++; \
3189 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3190 } \
3191 } while (0)
3192
3193 #define stat_inc_tot_blk_count(si, blks) \
3194 ((si)->tot_blks += (blks))
3195
3196 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3197 do { \
3198 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3199 stat_inc_tot_blk_count(si, blks); \
3200 si->data_blks += (blks); \
3201 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3202 } while (0)
3203
3204 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3205 do { \
3206 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3207 stat_inc_tot_blk_count(si, blks); \
3208 si->node_blks += (blks); \
3209 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3210 } while (0)
3211
3212 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3213 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3214 int __init f2fs_create_root_stats(void);
3215 void f2fs_destroy_root_stats(void);
3216 #else
3217 #define stat_inc_cp_count(si) do { } while (0)
3218 #define stat_inc_bg_cp_count(si) do { } while (0)
3219 #define stat_inc_call_count(si) do { } while (0)
3220 #define stat_inc_bggc_count(si) do { } while (0)
3221 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3222 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3223 #define stat_inc_total_hit(sb) do { } while (0)
3224 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
3225 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3226 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3227 #define stat_inc_inline_xattr(inode) do { } while (0)
3228 #define stat_dec_inline_xattr(inode) do { } while (0)
3229 #define stat_inc_inline_inode(inode) do { } while (0)
3230 #define stat_dec_inline_inode(inode) do { } while (0)
3231 #define stat_inc_inline_dir(inode) do { } while (0)
3232 #define stat_dec_inline_dir(inode) do { } while (0)
3233 #define stat_inc_atomic_write(inode) do { } while (0)
3234 #define stat_dec_atomic_write(inode) do { } while (0)
3235 #define stat_update_max_atomic_write(inode) do { } while (0)
3236 #define stat_inc_volatile_write(inode) do { } while (0)
3237 #define stat_dec_volatile_write(inode) do { } while (0)
3238 #define stat_update_max_volatile_write(inode) do { } while (0)
3239 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3240 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3241 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3242 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3243 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3244 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3245 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3246
f2fs_build_stats(struct f2fs_sb_info * sbi)3247 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3248 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3249 static inline int __init f2fs_create_root_stats(void) { return 0; }
f2fs_destroy_root_stats(void)3250 static inline void f2fs_destroy_root_stats(void) { }
3251 #endif
3252
3253 extern const struct file_operations f2fs_dir_operations;
3254 extern const struct file_operations f2fs_file_operations;
3255 extern const struct inode_operations f2fs_file_inode_operations;
3256 extern const struct address_space_operations f2fs_dblock_aops;
3257 extern const struct address_space_operations f2fs_node_aops;
3258 extern const struct address_space_operations f2fs_meta_aops;
3259 extern const struct inode_operations f2fs_dir_inode_operations;
3260 extern const struct inode_operations f2fs_symlink_inode_operations;
3261 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3262 extern const struct inode_operations f2fs_special_inode_operations;
3263 extern struct kmem_cache *f2fs_inode_entry_slab;
3264
3265 /*
3266 * inline.c
3267 */
3268 bool f2fs_may_inline_data(struct inode *inode);
3269 bool f2fs_may_inline_dentry(struct inode *inode);
3270 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3271 void f2fs_truncate_inline_inode(struct inode *inode,
3272 struct page *ipage, u64 from);
3273 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3274 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3275 int f2fs_convert_inline_inode(struct inode *inode);
3276 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3277 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3278 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3279 struct fscrypt_name *fname, struct page **res_page);
3280 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3281 struct page *ipage);
3282 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3283 const struct qstr *orig_name,
3284 struct inode *inode, nid_t ino, umode_t mode);
3285 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3286 struct page *page, struct inode *dir,
3287 struct inode *inode);
3288 bool f2fs_empty_inline_dir(struct inode *dir);
3289 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3290 struct fscrypt_str *fstr);
3291 int f2fs_inline_data_fiemap(struct inode *inode,
3292 struct fiemap_extent_info *fieinfo,
3293 __u64 start, __u64 len);
3294
3295 /*
3296 * shrinker.c
3297 */
3298 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3299 struct shrink_control *sc);
3300 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3301 struct shrink_control *sc);
3302 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3303 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3304
3305 /*
3306 * extent_cache.c
3307 */
3308 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root *root,
3309 struct rb_entry *cached_re, unsigned int ofs);
3310 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3311 struct rb_root *root, struct rb_node **parent,
3312 unsigned int ofs);
3313 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root *root,
3314 struct rb_entry *cached_re, unsigned int ofs,
3315 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3316 struct rb_node ***insert_p, struct rb_node **insert_parent,
3317 bool force);
3318 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3319 struct rb_root *root);
3320 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3321 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3322 void f2fs_drop_extent_tree(struct inode *inode);
3323 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3324 void f2fs_destroy_extent_tree(struct inode *inode);
3325 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3326 struct extent_info *ei);
3327 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3328 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3329 pgoff_t fofs, block_t blkaddr, unsigned int len);
3330 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3331 int __init f2fs_create_extent_cache(void);
3332 void f2fs_destroy_extent_cache(void);
3333
3334 /*
3335 * sysfs.c
3336 */
3337 int __init f2fs_init_sysfs(void);
3338 void f2fs_exit_sysfs(void);
3339 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3340 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3341
3342 /*
3343 * crypto support
3344 */
f2fs_encrypted_inode(struct inode * inode)3345 static inline bool f2fs_encrypted_inode(struct inode *inode)
3346 {
3347 return file_is_encrypt(inode);
3348 }
3349
f2fs_encrypted_file(struct inode * inode)3350 static inline bool f2fs_encrypted_file(struct inode *inode)
3351 {
3352 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3353 }
3354
f2fs_set_encrypted_inode(struct inode * inode)3355 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3356 {
3357 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3358 file_set_encrypt(inode);
3359 inode->i_flags |= S_ENCRYPTED;
3360 #endif
3361 }
3362
3363 /*
3364 * Returns true if the reads of the inode's data need to undergo some
3365 * postprocessing step, like decryption or authenticity verification.
3366 */
f2fs_post_read_required(struct inode * inode)3367 static inline bool f2fs_post_read_required(struct inode *inode)
3368 {
3369 return f2fs_encrypted_file(inode);
3370 }
3371
3372 #define F2FS_FEATURE_FUNCS(name, flagname) \
3373 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3374 { \
3375 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3376 }
3377
3378 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3379 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3380 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3381 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3382 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3383 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3384 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3385 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3386 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3387
3388 #ifdef CONFIG_BLK_DEV_ZONED
get_blkz_type(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkaddr)3389 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3390 struct block_device *bdev, block_t blkaddr)
3391 {
3392 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3393 int i;
3394
3395 for (i = 0; i < sbi->s_ndevs; i++)
3396 if (FDEV(i).bdev == bdev)
3397 return FDEV(i).blkz_type[zno];
3398 return -EINVAL;
3399 }
3400 #endif
3401
f2fs_discard_en(struct f2fs_sb_info * sbi)3402 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3403 {
3404 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3405
3406 return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3407 }
3408
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3409 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3410 {
3411 clear_opt(sbi, ADAPTIVE);
3412 clear_opt(sbi, LFS);
3413
3414 switch (mt) {
3415 case F2FS_MOUNT_ADAPTIVE:
3416 set_opt(sbi, ADAPTIVE);
3417 break;
3418 case F2FS_MOUNT_LFS:
3419 set_opt(sbi, LFS);
3420 break;
3421 }
3422 }
3423
f2fs_may_encrypt(struct inode * inode)3424 static inline bool f2fs_may_encrypt(struct inode *inode)
3425 {
3426 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3427 umode_t mode = inode->i_mode;
3428
3429 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3430 #else
3431 return false;
3432 #endif
3433 }
3434
f2fs_force_buffered_io(struct inode * inode,int rw)3435 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3436 {
3437 return (f2fs_post_read_required(inode) ||
3438 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3439 F2FS_I_SB(inode)->s_ndevs);
3440 }
3441
3442 #ifdef CONFIG_F2FS_FAULT_INJECTION
3443 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3444 unsigned int type);
3445 #else
3446 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
3447 #endif
3448
3449 #endif
3450