1 /* SPDX-License-Identifier: MIT */
2 #ifndef _INTEL_RINGBUFFER_H_
3 #define _INTEL_RINGBUFFER_H_
4 
5 #include <drm/drm_util.h>
6 
7 #include <linux/hashtable.h>
8 #include <linux/irq_work.h>
9 #include <linux/random.h>
10 #include <linux/seqlock.h>
11 
12 #include "i915_pmu.h"
13 #include "i915_reg.h"
14 #include "i915_request.h"
15 #include "i915_selftest.h"
16 #include "gt/intel_timeline.h"
17 #include "intel_engine_types.h"
18 #include "intel_gpu_commands.h"
19 #include "intel_workarounds.h"
20 
21 struct drm_printer;
22 
23 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
24  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
25  * to give some inclination as to some of the magic values used in the various
26  * workarounds!
27  */
28 #define CACHELINE_BYTES 64
29 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32))
30 
31 /*
32  * The register defines to be used with the following macros need to accept a
33  * base param, e.g:
34  *
35  * REG_FOO(base) _MMIO((base) + <relative offset>)
36  * ENGINE_READ(engine, REG_FOO);
37  *
38  * register arrays are to be defined and accessed as follows:
39  *
40  * REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>)
41  * ENGINE_READ_IDX(engine, REG_BAR, i)
42  */
43 
44 #define __ENGINE_REG_OP(op__, engine__, ...) \
45 	intel_uncore_##op__((engine__)->uncore, __VA_ARGS__)
46 
47 #define __ENGINE_READ_OP(op__, engine__, reg__) \
48 	__ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base))
49 
50 #define ENGINE_READ16(...)	__ENGINE_READ_OP(read16, __VA_ARGS__)
51 #define ENGINE_READ(...)	__ENGINE_READ_OP(read, __VA_ARGS__)
52 #define ENGINE_READ_FW(...)	__ENGINE_READ_OP(read_fw, __VA_ARGS__)
53 #define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read_fw, __VA_ARGS__)
54 #define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__)
55 
56 #define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \
57 	__ENGINE_REG_OP(read64_2x32, (engine__), \
58 			lower_reg__((engine__)->mmio_base), \
59 			upper_reg__((engine__)->mmio_base))
60 
61 #define ENGINE_READ_IDX(engine__, reg__, idx__) \
62 	__ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__)))
63 
64 #define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \
65 	__ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__))
66 
67 #define ENGINE_WRITE16(...)	__ENGINE_WRITE_OP(write16, __VA_ARGS__)
68 #define ENGINE_WRITE(...)	__ENGINE_WRITE_OP(write, __VA_ARGS__)
69 #define ENGINE_WRITE_FW(...)	__ENGINE_WRITE_OP(write_fw, __VA_ARGS__)
70 
71 #define GEN6_RING_FAULT_REG_READ(engine__) \
72 	intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__))
73 
74 #define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \
75 	intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__))
76 
77 #define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \
78 ({ \
79 	u32 __val; \
80 \
81 	__val = intel_uncore_read((engine__)->uncore, \
82 				  RING_FAULT_REG(engine__)); \
83 	__val &= ~(clear__); \
84 	__val |= (set__); \
85 	intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \
86 			   __val); \
87 })
88 
89 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
90  * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
91  */
92 enum intel_engine_hangcheck_action {
93 	ENGINE_IDLE = 0,
94 	ENGINE_WAIT,
95 	ENGINE_ACTIVE_SEQNO,
96 	ENGINE_ACTIVE_HEAD,
97 	ENGINE_ACTIVE_SUBUNITS,
98 	ENGINE_WAIT_KICK,
99 	ENGINE_DEAD,
100 };
101 
102 static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)103 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
104 {
105 	switch (a) {
106 	case ENGINE_IDLE:
107 		return "idle";
108 	case ENGINE_WAIT:
109 		return "wait";
110 	case ENGINE_ACTIVE_SEQNO:
111 		return "active seqno";
112 	case ENGINE_ACTIVE_HEAD:
113 		return "active head";
114 	case ENGINE_ACTIVE_SUBUNITS:
115 		return "active subunits";
116 	case ENGINE_WAIT_KICK:
117 		return "wait kick";
118 	case ENGINE_DEAD:
119 		return "dead";
120 	}
121 
122 	return "unknown";
123 }
124 
125 static inline unsigned int
execlists_num_ports(const struct intel_engine_execlists * const execlists)126 execlists_num_ports(const struct intel_engine_execlists * const execlists)
127 {
128 	return execlists->port_mask + 1;
129 }
130 
131 static inline struct i915_request *
execlists_active(const struct intel_engine_execlists * execlists)132 execlists_active(const struct intel_engine_execlists *execlists)
133 {
134 	GEM_BUG_ON(execlists->active - execlists->inflight >
135 		   execlists_num_ports(execlists));
136 	return READ_ONCE(*execlists->active);
137 }
138 
139 static inline void
execlists_active_lock_bh(struct intel_engine_execlists * execlists)140 execlists_active_lock_bh(struct intel_engine_execlists *execlists)
141 {
142 	local_bh_disable(); /* prevent local softirq and lock recursion */
143 	tasklet_lock(&execlists->tasklet);
144 }
145 
146 static inline void
execlists_active_unlock_bh(struct intel_engine_execlists * execlists)147 execlists_active_unlock_bh(struct intel_engine_execlists *execlists)
148 {
149 	tasklet_unlock(&execlists->tasklet);
150 	local_bh_enable(); /* restore softirq, and kick ksoftirqd! */
151 }
152 
153 struct i915_request *
154 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
155 
156 static inline u32
intel_read_status_page(const struct intel_engine_cs * engine,int reg)157 intel_read_status_page(const struct intel_engine_cs *engine, int reg)
158 {
159 	/* Ensure that the compiler doesn't optimize away the load. */
160 	return READ_ONCE(engine->status_page.addr[reg]);
161 }
162 
163 static inline void
intel_write_status_page(struct intel_engine_cs * engine,int reg,u32 value)164 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
165 {
166 	/* Writing into the status page should be done sparingly. Since
167 	 * we do when we are uncertain of the device state, we take a bit
168 	 * of extra paranoia to try and ensure that the HWS takes the value
169 	 * we give and that it doesn't end up trapped inside the CPU!
170 	 */
171 	if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
172 		mb();
173 		clflush(&engine->status_page.addr[reg]);
174 		engine->status_page.addr[reg] = value;
175 		clflush(&engine->status_page.addr[reg]);
176 		mb();
177 	} else {
178 		WRITE_ONCE(engine->status_page.addr[reg], value);
179 	}
180 }
181 
182 /*
183  * Reads a dword out of the status page, which is written to from the command
184  * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
185  * MI_STORE_DATA_IMM.
186  *
187  * The following dwords have a reserved meaning:
188  * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
189  * 0x04: ring 0 head pointer
190  * 0x05: ring 1 head pointer (915-class)
191  * 0x06: ring 2 head pointer (915-class)
192  * 0x10-0x1b: Context status DWords (GM45)
193  * 0x1f: Last written status offset. (GM45)
194  * 0x20-0x2f: Reserved (Gen6+)
195  *
196  * The area from dword 0x30 to 0x3ff is available for driver usage.
197  */
198 #define I915_GEM_HWS_PREEMPT		0x32
199 #define I915_GEM_HWS_PREEMPT_ADDR	(I915_GEM_HWS_PREEMPT * sizeof(u32))
200 #define I915_GEM_HWS_SEQNO		0x40
201 #define I915_GEM_HWS_SEQNO_ADDR		(I915_GEM_HWS_SEQNO * sizeof(u32))
202 #define I915_GEM_HWS_SCRATCH		0x80
203 #define I915_GEM_HWS_SCRATCH_ADDR	(I915_GEM_HWS_SCRATCH * sizeof(u32))
204 
205 #define I915_HWS_CSB_BUF0_INDEX		0x10
206 #define I915_HWS_CSB_WRITE_INDEX	0x1f
207 #define CNL_HWS_CSB_WRITE_INDEX		0x2f
208 
209 struct intel_ring *
210 intel_engine_create_ring(struct intel_engine_cs *engine, int size);
211 int intel_ring_pin(struct intel_ring *ring);
212 void intel_ring_reset(struct intel_ring *ring, u32 tail);
213 unsigned int intel_ring_update_space(struct intel_ring *ring);
214 void intel_ring_unpin(struct intel_ring *ring);
215 void intel_ring_free(struct kref *ref);
216 
intel_ring_get(struct intel_ring * ring)217 static inline struct intel_ring *intel_ring_get(struct intel_ring *ring)
218 {
219 	kref_get(&ring->ref);
220 	return ring;
221 }
222 
intel_ring_put(struct intel_ring * ring)223 static inline void intel_ring_put(struct intel_ring *ring)
224 {
225 	kref_put(&ring->ref, intel_ring_free);
226 }
227 
228 void intel_engine_stop(struct intel_engine_cs *engine);
229 void intel_engine_cleanup(struct intel_engine_cs *engine);
230 
231 int __must_check intel_ring_cacheline_align(struct i915_request *rq);
232 
233 u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
234 
intel_ring_advance(struct i915_request * rq,u32 * cs)235 static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
236 {
237 	/* Dummy function.
238 	 *
239 	 * This serves as a placeholder in the code so that the reader
240 	 * can compare against the preceding intel_ring_begin() and
241 	 * check that the number of dwords emitted matches the space
242 	 * reserved for the command packet (i.e. the value passed to
243 	 * intel_ring_begin()).
244 	 */
245 	GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
246 }
247 
intel_ring_wrap(const struct intel_ring * ring,u32 pos)248 static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
249 {
250 	return pos & (ring->size - 1);
251 }
252 
253 static inline bool
intel_ring_offset_valid(const struct intel_ring * ring,unsigned int pos)254 intel_ring_offset_valid(const struct intel_ring *ring,
255 			unsigned int pos)
256 {
257 	if (pos & -ring->size) /* must be strictly within the ring */
258 		return false;
259 
260 	if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */
261 		return false;
262 
263 	return true;
264 }
265 
intel_ring_offset(const struct i915_request * rq,void * addr)266 static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
267 {
268 	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
269 	u32 offset = addr - rq->ring->vaddr;
270 	GEM_BUG_ON(offset > rq->ring->size);
271 	return intel_ring_wrap(rq->ring, offset);
272 }
273 
274 static inline void
assert_ring_tail_valid(const struct intel_ring * ring,unsigned int tail)275 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
276 {
277 	GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
278 
279 	/*
280 	 * "Ring Buffer Use"
281 	 *	Gen2 BSpec "1. Programming Environment" / 1.4.4.6
282 	 *	Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
283 	 *	Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
284 	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
285 	 * same cacheline, the Head Pointer must not be greater than the Tail
286 	 * Pointer."
287 	 *
288 	 * We use ring->head as the last known location of the actual RING_HEAD,
289 	 * it may have advanced but in the worst case it is equally the same
290 	 * as ring->head and so we should never program RING_TAIL to advance
291 	 * into the same cacheline as ring->head.
292 	 */
293 #define cacheline(a) round_down(a, CACHELINE_BYTES)
294 	GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
295 		   tail < ring->head);
296 #undef cacheline
297 }
298 
299 static inline unsigned int
intel_ring_set_tail(struct intel_ring * ring,unsigned int tail)300 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
301 {
302 	/* Whilst writes to the tail are strictly order, there is no
303 	 * serialisation between readers and the writers. The tail may be
304 	 * read by i915_request_retire() just as it is being updated
305 	 * by execlists, as although the breadcrumb is complete, the context
306 	 * switch hasn't been seen.
307 	 */
308 	assert_ring_tail_valid(ring, tail);
309 	ring->tail = tail;
310 	return tail;
311 }
312 
313 static inline unsigned int
__intel_ring_space(unsigned int head,unsigned int tail,unsigned int size)314 __intel_ring_space(unsigned int head, unsigned int tail, unsigned int size)
315 {
316 	/*
317 	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
318 	 * same cacheline, the Head Pointer must not be greater than the Tail
319 	 * Pointer."
320 	 */
321 	GEM_BUG_ON(!is_power_of_2(size));
322 	return (head - tail - CACHELINE_BYTES) & (size - 1);
323 }
324 
325 int intel_engines_init_mmio(struct drm_i915_private *i915);
326 int intel_engines_setup(struct drm_i915_private *i915);
327 int intel_engines_init(struct drm_i915_private *i915);
328 void intel_engines_cleanup(struct drm_i915_private *i915);
329 
330 int intel_engine_init_common(struct intel_engine_cs *engine);
331 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
332 
333 int intel_ring_submission_setup(struct intel_engine_cs *engine);
334 int intel_ring_submission_init(struct intel_engine_cs *engine);
335 
336 int intel_engine_stop_cs(struct intel_engine_cs *engine);
337 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
338 
339 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask);
340 
341 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
342 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
343 
344 void intel_engine_get_instdone(struct intel_engine_cs *engine,
345 			       struct intel_instdone *instdone);
346 
347 void intel_engine_init_execlists(struct intel_engine_cs *engine);
348 
349 void intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
350 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
351 
352 void intel_engine_signal_breadcrumbs(struct intel_engine_cs *engine);
353 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
354 
355 static inline void
intel_engine_queue_breadcrumbs(struct intel_engine_cs * engine)356 intel_engine_queue_breadcrumbs(struct intel_engine_cs *engine)
357 {
358 	irq_work_queue(&engine->breadcrumbs.irq_work);
359 }
360 
361 void intel_engine_breadcrumbs_irq(struct intel_engine_cs *engine);
362 
363 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
364 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
365 
366 void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine,
367 				    struct drm_printer *p);
368 
gen8_emit_pipe_control(u32 * batch,u32 flags,u32 offset)369 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
370 {
371 	memset(batch, 0, 6 * sizeof(u32));
372 
373 	batch[0] = GFX_OP_PIPE_CONTROL(6);
374 	batch[1] = flags;
375 	batch[2] = offset;
376 
377 	return batch + 6;
378 }
379 
380 static inline u32 *
gen8_emit_ggtt_write_rcs(u32 * cs,u32 value,u32 gtt_offset,u32 flags)381 gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
382 {
383 	/* We're using qword write, offset should be aligned to 8 bytes. */
384 	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
385 
386 	/* w/a for post sync ops following a GPGPU operation we
387 	 * need a prior CS_STALL, which is emitted by the flush
388 	 * following the batch.
389 	 */
390 	*cs++ = GFX_OP_PIPE_CONTROL(6);
391 	*cs++ = flags | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_GLOBAL_GTT_IVB;
392 	*cs++ = gtt_offset;
393 	*cs++ = 0;
394 	*cs++ = value;
395 	/* We're thrashing one dword of HWS. */
396 	*cs++ = 0;
397 
398 	return cs;
399 }
400 
401 static inline u32 *
gen8_emit_ggtt_write(u32 * cs,u32 value,u32 gtt_offset,u32 flags)402 gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
403 {
404 	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
405 	GEM_BUG_ON(gtt_offset & (1 << 5));
406 	/* Offset should be aligned to 8 bytes for both (QW/DW) write types */
407 	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
408 
409 	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW | flags;
410 	*cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
411 	*cs++ = 0;
412 	*cs++ = value;
413 
414 	return cs;
415 }
416 
__intel_engine_reset(struct intel_engine_cs * engine,bool stalled)417 static inline void __intel_engine_reset(struct intel_engine_cs *engine,
418 					bool stalled)
419 {
420 	if (engine->reset.reset)
421 		engine->reset.reset(engine, stalled);
422 	engine->serial++; /* contexts lost */
423 }
424 
425 bool intel_engine_is_idle(struct intel_engine_cs *engine);
426 bool intel_engines_are_idle(struct intel_gt *gt);
427 
428 void intel_engines_reset_default_submission(struct intel_gt *gt);
429 
430 bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
431 
432 __printf(3, 4)
433 void intel_engine_dump(struct intel_engine_cs *engine,
434 		       struct drm_printer *m,
435 		       const char *header, ...);
436 
intel_engine_context_in(struct intel_engine_cs * engine)437 static inline void intel_engine_context_in(struct intel_engine_cs *engine)
438 {
439 	unsigned long flags;
440 
441 	if (READ_ONCE(engine->stats.enabled) == 0)
442 		return;
443 
444 	write_seqlock_irqsave(&engine->stats.lock, flags);
445 
446 	if (engine->stats.enabled > 0) {
447 		if (engine->stats.active++ == 0)
448 			engine->stats.start = ktime_get();
449 		GEM_BUG_ON(engine->stats.active == 0);
450 	}
451 
452 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
453 }
454 
intel_engine_context_out(struct intel_engine_cs * engine)455 static inline void intel_engine_context_out(struct intel_engine_cs *engine)
456 {
457 	unsigned long flags;
458 
459 	if (READ_ONCE(engine->stats.enabled) == 0)
460 		return;
461 
462 	write_seqlock_irqsave(&engine->stats.lock, flags);
463 
464 	if (engine->stats.enabled > 0) {
465 		ktime_t last;
466 
467 		if (engine->stats.active && --engine->stats.active == 0) {
468 			/*
469 			 * Decrement the active context count and in case GPU
470 			 * is now idle add up to the running total.
471 			 */
472 			last = ktime_sub(ktime_get(), engine->stats.start);
473 
474 			engine->stats.total = ktime_add(engine->stats.total,
475 							last);
476 		} else if (engine->stats.active == 0) {
477 			/*
478 			 * After turning on engine stats, context out might be
479 			 * the first event in which case we account from the
480 			 * time stats gathering was turned on.
481 			 */
482 			last = ktime_sub(ktime_get(), engine->stats.enabled_at);
483 
484 			engine->stats.total = ktime_add(engine->stats.total,
485 							last);
486 		}
487 	}
488 
489 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
490 }
491 
492 int intel_enable_engine_stats(struct intel_engine_cs *engine);
493 void intel_disable_engine_stats(struct intel_engine_cs *engine);
494 
495 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
496 
497 struct i915_request *
498 intel_engine_find_active_request(struct intel_engine_cs *engine);
499 
500 u32 intel_engine_context_size(struct drm_i915_private *i915, u8 class);
501 
502 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
503 
inject_preempt_hang(struct intel_engine_execlists * execlists)504 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
505 {
506 	if (!execlists->preempt_hang.inject_hang)
507 		return false;
508 
509 	complete(&execlists->preempt_hang.completion);
510 	return true;
511 }
512 
513 #else
514 
inject_preempt_hang(struct intel_engine_execlists * execlists)515 static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
516 {
517 	return false;
518 }
519 
520 #endif
521 
522 void intel_engine_init_active(struct intel_engine_cs *engine,
523 			      unsigned int subclass);
524 #define ENGINE_PHYSICAL	0
525 #define ENGINE_MOCK	1
526 #define ENGINE_VIRTUAL	2
527 
528 #endif /* _INTEL_RINGBUFFER_H_ */
529