1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 /* Common definitions for all Efx net driver code */
12
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/rwsem.h>
29 #include <linux/vmalloc.h>
30 #include <linux/i2c.h>
31 #include <linux/mtd/mtd.h>
32 #include <net/busy_poll.h>
33
34 #include "enum.h"
35 #include "bitfield.h"
36 #include "filter.h"
37
38 /**************************************************************************
39 *
40 * Build definitions
41 *
42 **************************************************************************/
43
44 #define EFX_DRIVER_VERSION "4.1"
45
46 #ifdef DEBUG
47 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
48 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
49 #else
50 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
51 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
52 #endif
53
54 /**************************************************************************
55 *
56 * Efx data structures
57 *
58 **************************************************************************/
59
60 #define EFX_MAX_CHANNELS 32U
61 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
62 #define EFX_EXTRA_CHANNEL_IOV 0
63 #define EFX_EXTRA_CHANNEL_PTP 1
64 #define EFX_MAX_EXTRA_CHANNELS 2U
65
66 /* Checksum generation is a per-queue option in hardware, so each
67 * queue visible to the networking core is backed by two hardware TX
68 * queues. */
69 #define EFX_MAX_TX_TC 2
70 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
71 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */
72 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */
73 #define EFX_TXQ_TYPES 4
74 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
75
76 /* Maximum possible MTU the driver supports */
77 #define EFX_MAX_MTU (9 * 1024)
78
79 /* Minimum MTU, from RFC791 (IP) */
80 #define EFX_MIN_MTU 68
81
82 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
83 * and should be a multiple of the cache line size.
84 */
85 #define EFX_RX_USR_BUF_SIZE (2048 - 256)
86
87 /* If possible, we should ensure cache line alignment at start and end
88 * of every buffer. Otherwise, we just need to ensure 4-byte
89 * alignment of the network header.
90 */
91 #if NET_IP_ALIGN == 0
92 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES
93 #else
94 #define EFX_RX_BUF_ALIGNMENT 4
95 #endif
96
97 /* Forward declare Precision Time Protocol (PTP) support structure. */
98 struct efx_ptp_data;
99 struct hwtstamp_config;
100
101 struct efx_self_tests;
102
103 /**
104 * struct efx_buffer - A general-purpose DMA buffer
105 * @addr: host base address of the buffer
106 * @dma_addr: DMA base address of the buffer
107 * @len: Buffer length, in bytes
108 *
109 * The NIC uses these buffers for its interrupt status registers and
110 * MAC stats dumps.
111 */
112 struct efx_buffer {
113 void *addr;
114 dma_addr_t dma_addr;
115 unsigned int len;
116 };
117
118 /**
119 * struct efx_special_buffer - DMA buffer entered into buffer table
120 * @buf: Standard &struct efx_buffer
121 * @index: Buffer index within controller;s buffer table
122 * @entries: Number of buffer table entries
123 *
124 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
125 * Event and descriptor rings are addressed via one or more buffer
126 * table entries (and so can be physically non-contiguous, although we
127 * currently do not take advantage of that). On Falcon and Siena we
128 * have to take care of allocating and initialising the entries
129 * ourselves. On later hardware this is managed by the firmware and
130 * @index and @entries are left as 0.
131 */
132 struct efx_special_buffer {
133 struct efx_buffer buf;
134 unsigned int index;
135 unsigned int entries;
136 };
137
138 /**
139 * struct efx_tx_buffer - buffer state for a TX descriptor
140 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
141 * freed when descriptor completes
142 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
143 * @dma_addr: DMA address of the fragment.
144 * @flags: Flags for allocation and DMA mapping type
145 * @len: Length of this fragment.
146 * This field is zero when the queue slot is empty.
147 * @unmap_len: Length of this fragment to unmap
148 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
149 * Only valid if @unmap_len != 0.
150 */
151 struct efx_tx_buffer {
152 const struct sk_buff *skb;
153 union {
154 efx_qword_t option;
155 dma_addr_t dma_addr;
156 };
157 unsigned short flags;
158 unsigned short len;
159 unsigned short unmap_len;
160 unsigned short dma_offset;
161 };
162 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
163 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
164 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
165 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
166
167 /**
168 * struct efx_tx_queue - An Efx TX queue
169 *
170 * This is a ring buffer of TX fragments.
171 * Since the TX completion path always executes on the same
172 * CPU and the xmit path can operate on different CPUs,
173 * performance is increased by ensuring that the completion
174 * path and the xmit path operate on different cache lines.
175 * This is particularly important if the xmit path is always
176 * executing on one CPU which is different from the completion
177 * path. There is also a cache line for members which are
178 * read but not written on the fast path.
179 *
180 * @efx: The associated Efx NIC
181 * @queue: DMA queue number
182 * @tso_version: Version of TSO in use for this queue.
183 * @channel: The associated channel
184 * @core_txq: The networking core TX queue structure
185 * @buffer: The software buffer ring
186 * @cb_page: Array of pages of copy buffers. Carved up according to
187 * %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
188 * @txd: The hardware descriptor ring
189 * @ptr_mask: The size of the ring minus 1.
190 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
191 * Size of the region is efx_piobuf_size.
192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
193 * @initialised: Has hardware queue been initialised?
194 * @timestamping: Is timestamping enabled for this channel?
195 * @handle_tso: TSO xmit preparation handler. Sets up the TSO metadata and
196 * may also map tx data, depending on the nature of the TSO implementation.
197 * @read_count: Current read pointer.
198 * This is the number of buffers that have been removed from both rings.
199 * @old_write_count: The value of @write_count when last checked.
200 * This is here for performance reasons. The xmit path will
201 * only get the up-to-date value of @write_count if this
202 * variable indicates that the queue is empty. This is to
203 * avoid cache-line ping-pong between the xmit path and the
204 * completion path.
205 * @merge_events: Number of TX merged completion events
206 * @completed_desc_ptr: Most recent completed pointer - only used with
207 * timestamping.
208 * @completed_timestamp_major: Top part of the most recent tx timestamp.
209 * @completed_timestamp_minor: Low part of the most recent tx timestamp.
210 * @insert_count: Current insert pointer
211 * This is the number of buffers that have been added to the
212 * software ring.
213 * @write_count: Current write pointer
214 * This is the number of buffers that have been added to the
215 * hardware ring.
216 * @packet_write_count: Completable write pointer
217 * This is the write pointer of the last packet written.
218 * Normally this will equal @write_count, but as option descriptors
219 * don't produce completion events, they won't update this.
220 * Filled in iff @efx->type->option_descriptors; only used for PIO.
221 * Thus, this is written and used on EF10, and neither on farch.
222 * @old_read_count: The value of read_count when last checked.
223 * This is here for performance reasons. The xmit path will
224 * only get the up-to-date value of read_count if this
225 * variable indicates that the queue is full. This is to
226 * avoid cache-line ping-pong between the xmit path and the
227 * completion path.
228 * @tso_bursts: Number of times TSO xmit invoked by kernel
229 * @tso_long_headers: Number of packets with headers too long for standard
230 * blocks
231 * @tso_packets: Number of packets via the TSO xmit path
232 * @tso_fallbacks: Number of times TSO fallback used
233 * @pushes: Number of times the TX push feature has been used
234 * @pio_packets: Number of times the TX PIO feature has been used
235 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
236 * @cb_packets: Number of times the TX copybreak feature has been used
237 * @empty_read_count: If the completion path has seen the queue as empty
238 * and the transmission path has not yet checked this, the value of
239 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
240 */
241 struct efx_tx_queue {
242 /* Members which don't change on the fast path */
243 struct efx_nic *efx ____cacheline_aligned_in_smp;
244 unsigned queue;
245 unsigned int tso_version;
246 struct efx_channel *channel;
247 struct netdev_queue *core_txq;
248 struct efx_tx_buffer *buffer;
249 struct efx_buffer *cb_page;
250 struct efx_special_buffer txd;
251 unsigned int ptr_mask;
252 void __iomem *piobuf;
253 unsigned int piobuf_offset;
254 bool initialised;
255 bool timestamping;
256
257 /* Function pointers used in the fast path. */
258 int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *);
259
260 /* Members used mainly on the completion path */
261 unsigned int read_count ____cacheline_aligned_in_smp;
262 unsigned int old_write_count;
263 unsigned int merge_events;
264 unsigned int bytes_compl;
265 unsigned int pkts_compl;
266 unsigned int completed_desc_ptr;
267 u32 completed_timestamp_major;
268 u32 completed_timestamp_minor;
269
270 /* Members used only on the xmit path */
271 unsigned int insert_count ____cacheline_aligned_in_smp;
272 unsigned int write_count;
273 unsigned int packet_write_count;
274 unsigned int old_read_count;
275 unsigned int tso_bursts;
276 unsigned int tso_long_headers;
277 unsigned int tso_packets;
278 unsigned int tso_fallbacks;
279 unsigned int pushes;
280 unsigned int pio_packets;
281 bool xmit_more_available;
282 unsigned int cb_packets;
283 /* Statistics to supplement MAC stats */
284 unsigned long tx_packets;
285
286 /* Members shared between paths and sometimes updated */
287 unsigned int empty_read_count ____cacheline_aligned_in_smp;
288 #define EFX_EMPTY_COUNT_VALID 0x80000000
289 atomic_t flush_outstanding;
290 };
291
292 #define EFX_TX_CB_ORDER 7
293 #define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
294
295 /**
296 * struct efx_rx_buffer - An Efx RX data buffer
297 * @dma_addr: DMA base address of the buffer
298 * @page: The associated page buffer.
299 * Will be %NULL if the buffer slot is currently free.
300 * @page_offset: If pending: offset in @page of DMA base address.
301 * If completed: offset in @page of Ethernet header.
302 * @len: If pending: length for DMA descriptor.
303 * If completed: received length, excluding hash prefix.
304 * @flags: Flags for buffer and packet state. These are only set on the
305 * first buffer of a scattered packet.
306 */
307 struct efx_rx_buffer {
308 dma_addr_t dma_addr;
309 struct page *page;
310 u16 page_offset;
311 u16 len;
312 u16 flags;
313 };
314 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001
315 #define EFX_RX_PKT_CSUMMED 0x0002
316 #define EFX_RX_PKT_DISCARD 0x0004
317 #define EFX_RX_PKT_TCP 0x0040
318 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
319 #define EFX_RX_PKT_CSUM_LEVEL 0x0200
320
321 /**
322 * struct efx_rx_page_state - Page-based rx buffer state
323 *
324 * Inserted at the start of every page allocated for receive buffers.
325 * Used to facilitate sharing dma mappings between recycled rx buffers
326 * and those passed up to the kernel.
327 *
328 * @dma_addr: The dma address of this page.
329 */
330 struct efx_rx_page_state {
331 dma_addr_t dma_addr;
332
333 unsigned int __pad[0] ____cacheline_aligned;
334 };
335
336 /**
337 * struct efx_rx_queue - An Efx RX queue
338 * @efx: The associated Efx NIC
339 * @core_index: Index of network core RX queue. Will be >= 0 iff this
340 * is associated with a real RX queue.
341 * @buffer: The software buffer ring
342 * @rxd: The hardware descriptor ring
343 * @ptr_mask: The size of the ring minus 1.
344 * @refill_enabled: Enable refill whenever fill level is low
345 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
346 * @rxq_flush_pending.
347 * @added_count: Number of buffers added to the receive queue.
348 * @notified_count: Number of buffers given to NIC (<= @added_count).
349 * @removed_count: Number of buffers removed from the receive queue.
350 * @scatter_n: Used by NIC specific receive code.
351 * @scatter_len: Used by NIC specific receive code.
352 * @page_ring: The ring to store DMA mapped pages for reuse.
353 * @page_add: Counter to calculate the write pointer for the recycle ring.
354 * @page_remove: Counter to calculate the read pointer for the recycle ring.
355 * @page_recycle_count: The number of pages that have been recycled.
356 * @page_recycle_failed: The number of pages that couldn't be recycled because
357 * the kernel still held a reference to them.
358 * @page_recycle_full: The number of pages that were released because the
359 * recycle ring was full.
360 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
361 * @max_fill: RX descriptor maximum fill level (<= ring size)
362 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
363 * (<= @max_fill)
364 * @min_fill: RX descriptor minimum non-zero fill level.
365 * This records the minimum fill level observed when a ring
366 * refill was triggered.
367 * @recycle_count: RX buffer recycle counter.
368 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
369 */
370 struct efx_rx_queue {
371 struct efx_nic *efx;
372 int core_index;
373 struct efx_rx_buffer *buffer;
374 struct efx_special_buffer rxd;
375 unsigned int ptr_mask;
376 bool refill_enabled;
377 bool flush_pending;
378
379 unsigned int added_count;
380 unsigned int notified_count;
381 unsigned int removed_count;
382 unsigned int scatter_n;
383 unsigned int scatter_len;
384 struct page **page_ring;
385 unsigned int page_add;
386 unsigned int page_remove;
387 unsigned int page_recycle_count;
388 unsigned int page_recycle_failed;
389 unsigned int page_recycle_full;
390 unsigned int page_ptr_mask;
391 unsigned int max_fill;
392 unsigned int fast_fill_trigger;
393 unsigned int min_fill;
394 unsigned int min_overfill;
395 unsigned int recycle_count;
396 struct timer_list slow_fill;
397 unsigned int slow_fill_count;
398 /* Statistics to supplement MAC stats */
399 unsigned long rx_packets;
400 };
401
402 enum efx_sync_events_state {
403 SYNC_EVENTS_DISABLED = 0,
404 SYNC_EVENTS_QUIESCENT,
405 SYNC_EVENTS_REQUESTED,
406 SYNC_EVENTS_VALID,
407 };
408
409 /**
410 * struct efx_channel - An Efx channel
411 *
412 * A channel comprises an event queue, at least one TX queue, at least
413 * one RX queue, and an associated tasklet for processing the event
414 * queue.
415 *
416 * @efx: Associated Efx NIC
417 * @channel: Channel instance number
418 * @type: Channel type definition
419 * @eventq_init: Event queue initialised flag
420 * @enabled: Channel enabled indicator
421 * @irq: IRQ number (MSI and MSI-X only)
422 * @irq_moderation_us: IRQ moderation value (in microseconds)
423 * @napi_dev: Net device used with NAPI
424 * @napi_str: NAPI control structure
425 * @state: state for NAPI vs busy polling
426 * @state_lock: lock protecting @state
427 * @eventq: Event queue buffer
428 * @eventq_mask: Event queue pointer mask
429 * @eventq_read_ptr: Event queue read pointer
430 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
431 * @irq_count: Number of IRQs since last adaptive moderation decision
432 * @irq_mod_score: IRQ moderation score
433 * @filter_work: Work item for efx_filter_rfs_expire()
434 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
435 * indexed by filter ID
436 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
437 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
438 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
439 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
440 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
441 * @n_rx_overlength: Count of RX_OVERLENGTH errors
442 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
443 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
444 * lack of descriptors
445 * @n_rx_merge_events: Number of RX merged completion events
446 * @n_rx_merge_packets: Number of RX packets completed by merged events
447 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
448 * __efx_rx_packet(), or zero if there is none
449 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
450 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0
451 * @rx_list: list of SKBs from current RX, awaiting processing
452 * @rx_queue: RX queue for this channel
453 * @tx_queue: TX queues for this channel
454 * @sync_events_state: Current state of sync events on this channel
455 * @sync_timestamp_major: Major part of the last ptp sync event
456 * @sync_timestamp_minor: Minor part of the last ptp sync event
457 */
458 struct efx_channel {
459 struct efx_nic *efx;
460 int channel;
461 const struct efx_channel_type *type;
462 bool eventq_init;
463 bool enabled;
464 int irq;
465 unsigned int irq_moderation_us;
466 struct net_device *napi_dev;
467 struct napi_struct napi_str;
468 #ifdef CONFIG_NET_RX_BUSY_POLL
469 unsigned long busy_poll_state;
470 #endif
471 struct efx_special_buffer eventq;
472 unsigned int eventq_mask;
473 unsigned int eventq_read_ptr;
474 int event_test_cpu;
475
476 unsigned int irq_count;
477 unsigned int irq_mod_score;
478 #ifdef CONFIG_RFS_ACCEL
479 unsigned int rfs_filters_added;
480 struct work_struct filter_work;
481 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
482 u32 *rps_flow_id;
483 #endif
484
485 unsigned int n_rx_tobe_disc;
486 unsigned int n_rx_ip_hdr_chksum_err;
487 unsigned int n_rx_tcp_udp_chksum_err;
488 unsigned int n_rx_outer_ip_hdr_chksum_err;
489 unsigned int n_rx_outer_tcp_udp_chksum_err;
490 unsigned int n_rx_inner_ip_hdr_chksum_err;
491 unsigned int n_rx_inner_tcp_udp_chksum_err;
492 unsigned int n_rx_eth_crc_err;
493 unsigned int n_rx_mcast_mismatch;
494 unsigned int n_rx_frm_trunc;
495 unsigned int n_rx_overlength;
496 unsigned int n_skbuff_leaks;
497 unsigned int n_rx_nodesc_trunc;
498 unsigned int n_rx_merge_events;
499 unsigned int n_rx_merge_packets;
500
501 unsigned int rx_pkt_n_frags;
502 unsigned int rx_pkt_index;
503
504 struct list_head *rx_list;
505
506 struct efx_rx_queue rx_queue;
507 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
508
509 enum efx_sync_events_state sync_events_state;
510 u32 sync_timestamp_major;
511 u32 sync_timestamp_minor;
512 };
513
514 /**
515 * struct efx_msi_context - Context for each MSI
516 * @efx: The associated NIC
517 * @index: Index of the channel/IRQ
518 * @name: Name of the channel/IRQ
519 *
520 * Unlike &struct efx_channel, this is never reallocated and is always
521 * safe for the IRQ handler to access.
522 */
523 struct efx_msi_context {
524 struct efx_nic *efx;
525 unsigned int index;
526 char name[IFNAMSIZ + 6];
527 };
528
529 /**
530 * struct efx_channel_type - distinguishes traffic and extra channels
531 * @handle_no_channel: Handle failure to allocate an extra channel
532 * @pre_probe: Set up extra state prior to initialisation
533 * @post_remove: Tear down extra state after finalisation, if allocated.
534 * May be called on channels that have not been probed.
535 * @get_name: Generate the channel's name (used for its IRQ handler)
536 * @copy: Copy the channel state prior to reallocation. May be %NULL if
537 * reallocation is not supported.
538 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
539 * @want_txqs: Determine whether this channel should have TX queues
540 * created. If %NULL, TX queues are not created.
541 * @keep_eventq: Flag for whether event queue should be kept initialised
542 * while the device is stopped
543 * @want_pio: Flag for whether PIO buffers should be linked to this
544 * channel's TX queues.
545 */
546 struct efx_channel_type {
547 void (*handle_no_channel)(struct efx_nic *);
548 int (*pre_probe)(struct efx_channel *);
549 void (*post_remove)(struct efx_channel *);
550 void (*get_name)(struct efx_channel *, char *buf, size_t len);
551 struct efx_channel *(*copy)(const struct efx_channel *);
552 bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
553 bool (*want_txqs)(struct efx_channel *);
554 bool keep_eventq;
555 bool want_pio;
556 };
557
558 enum efx_led_mode {
559 EFX_LED_OFF = 0,
560 EFX_LED_ON = 1,
561 EFX_LED_DEFAULT = 2
562 };
563
564 #define STRING_TABLE_LOOKUP(val, member) \
565 ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
566
567 extern const char *const efx_loopback_mode_names[];
568 extern const unsigned int efx_loopback_mode_max;
569 #define LOOPBACK_MODE(efx) \
570 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
571
572 extern const char *const efx_reset_type_names[];
573 extern const unsigned int efx_reset_type_max;
574 #define RESET_TYPE(type) \
575 STRING_TABLE_LOOKUP(type, efx_reset_type)
576
577 void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen);
578
579 enum efx_int_mode {
580 /* Be careful if altering to correct macro below */
581 EFX_INT_MODE_MSIX = 0,
582 EFX_INT_MODE_MSI = 1,
583 EFX_INT_MODE_LEGACY = 2,
584 EFX_INT_MODE_MAX /* Insert any new items before this */
585 };
586 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
587
588 enum nic_state {
589 STATE_UNINIT = 0, /* device being probed/removed or is frozen */
590 STATE_READY = 1, /* hardware ready and netdev registered */
591 STATE_DISABLED = 2, /* device disabled due to hardware errors */
592 STATE_RECOVERY = 3, /* device recovering from PCI error */
593 };
594
595 /* Forward declaration */
596 struct efx_nic;
597
598 /* Pseudo bit-mask flow control field */
599 #define EFX_FC_RX FLOW_CTRL_RX
600 #define EFX_FC_TX FLOW_CTRL_TX
601 #define EFX_FC_AUTO 4
602
603 /**
604 * struct efx_link_state - Current state of the link
605 * @up: Link is up
606 * @fd: Link is full-duplex
607 * @fc: Actual flow control flags
608 * @speed: Link speed (Mbps)
609 */
610 struct efx_link_state {
611 bool up;
612 bool fd;
613 u8 fc;
614 unsigned int speed;
615 };
616
efx_link_state_equal(const struct efx_link_state * left,const struct efx_link_state * right)617 static inline bool efx_link_state_equal(const struct efx_link_state *left,
618 const struct efx_link_state *right)
619 {
620 return left->up == right->up && left->fd == right->fd &&
621 left->fc == right->fc && left->speed == right->speed;
622 }
623
624 /**
625 * struct efx_phy_operations - Efx PHY operations table
626 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
627 * efx->loopback_modes.
628 * @init: Initialise PHY
629 * @fini: Shut down PHY
630 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
631 * @poll: Update @link_state and report whether it changed.
632 * Serialised by the mac_lock.
633 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
634 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
635 * @get_fecparam: Get Forward Error Correction settings. Serialised by mac_lock.
636 * @set_fecparam: Set Forward Error Correction settings. Serialised by mac_lock.
637 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
638 * (only needed where AN bit is set in mmds)
639 * @test_alive: Test that PHY is 'alive' (online)
640 * @test_name: Get the name of a PHY-specific test/result
641 * @run_tests: Run tests and record results as appropriate (offline).
642 * Flags are the ethtool tests flags.
643 */
644 struct efx_phy_operations {
645 int (*probe) (struct efx_nic *efx);
646 int (*init) (struct efx_nic *efx);
647 void (*fini) (struct efx_nic *efx);
648 void (*remove) (struct efx_nic *efx);
649 int (*reconfigure) (struct efx_nic *efx);
650 bool (*poll) (struct efx_nic *efx);
651 void (*get_link_ksettings)(struct efx_nic *efx,
652 struct ethtool_link_ksettings *cmd);
653 int (*set_link_ksettings)(struct efx_nic *efx,
654 const struct ethtool_link_ksettings *cmd);
655 int (*get_fecparam)(struct efx_nic *efx, struct ethtool_fecparam *fec);
656 int (*set_fecparam)(struct efx_nic *efx,
657 const struct ethtool_fecparam *fec);
658 void (*set_npage_adv) (struct efx_nic *efx, u32);
659 int (*test_alive) (struct efx_nic *efx);
660 const char *(*test_name) (struct efx_nic *efx, unsigned int index);
661 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
662 int (*get_module_eeprom) (struct efx_nic *efx,
663 struct ethtool_eeprom *ee,
664 u8 *data);
665 int (*get_module_info) (struct efx_nic *efx,
666 struct ethtool_modinfo *modinfo);
667 };
668
669 /**
670 * enum efx_phy_mode - PHY operating mode flags
671 * @PHY_MODE_NORMAL: on and should pass traffic
672 * @PHY_MODE_TX_DISABLED: on with TX disabled
673 * @PHY_MODE_LOW_POWER: set to low power through MDIO
674 * @PHY_MODE_OFF: switched off through external control
675 * @PHY_MODE_SPECIAL: on but will not pass traffic
676 */
677 enum efx_phy_mode {
678 PHY_MODE_NORMAL = 0,
679 PHY_MODE_TX_DISABLED = 1,
680 PHY_MODE_LOW_POWER = 2,
681 PHY_MODE_OFF = 4,
682 PHY_MODE_SPECIAL = 8,
683 };
684
efx_phy_mode_disabled(enum efx_phy_mode mode)685 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
686 {
687 return !!(mode & ~PHY_MODE_TX_DISABLED);
688 }
689
690 /**
691 * struct efx_hw_stat_desc - Description of a hardware statistic
692 * @name: Name of the statistic as visible through ethtool, or %NULL if
693 * it should not be exposed
694 * @dma_width: Width in bits (0 for non-DMA statistics)
695 * @offset: Offset within stats (ignored for non-DMA statistics)
696 */
697 struct efx_hw_stat_desc {
698 const char *name;
699 u16 dma_width;
700 u16 offset;
701 };
702
703 /* Number of bits used in a multicast filter hash address */
704 #define EFX_MCAST_HASH_BITS 8
705
706 /* Number of (single-bit) entries in a multicast filter hash */
707 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
708
709 /* An Efx multicast filter hash */
710 union efx_multicast_hash {
711 u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
712 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
713 };
714
715 struct vfdi_status;
716
717 /* The reserved RSS context value */
718 #define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
719 /**
720 * struct efx_rss_context - A user-defined RSS context for filtering
721 * @list: node of linked list on which this struct is stored
722 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
723 * %EFX_EF10_RSS_CONTEXT_INVALID if this context is not present on the NIC.
724 * For Siena, 0 if RSS is active, else %EFX_EF10_RSS_CONTEXT_INVALID.
725 * @user_id: the rss_context ID exposed to userspace over ethtool.
726 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
727 * @rx_hash_key: Toeplitz hash key for this RSS context
728 * @indir_table: Indirection table for this RSS context
729 */
730 struct efx_rss_context {
731 struct list_head list;
732 u32 context_id;
733 u32 user_id;
734 bool rx_hash_udp_4tuple;
735 u8 rx_hash_key[40];
736 u32 rx_indir_table[128];
737 };
738
739 #ifdef CONFIG_RFS_ACCEL
740 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
741 * is used to test if filter does or will exist.
742 */
743 #define EFX_ARFS_FILTER_ID_PENDING -1
744 #define EFX_ARFS_FILTER_ID_ERROR -2
745 #define EFX_ARFS_FILTER_ID_REMOVING -3
746 /**
747 * struct efx_arfs_rule - record of an ARFS filter and its IDs
748 * @node: linkage into hash table
749 * @spec: details of the filter (used as key for hash table). Use efx->type to
750 * determine which member to use.
751 * @rxq_index: channel to which the filter will steer traffic.
752 * @arfs_id: filter ID which was returned to ARFS
753 * @filter_id: index in software filter table. May be
754 * %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
755 * %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
756 * %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
757 */
758 struct efx_arfs_rule {
759 struct hlist_node node;
760 struct efx_filter_spec spec;
761 u16 rxq_index;
762 u16 arfs_id;
763 s32 filter_id;
764 };
765
766 /* Size chosen so that the table is one page (4kB) */
767 #define EFX_ARFS_HASH_TABLE_SIZE 512
768
769 /**
770 * struct efx_async_filter_insertion - Request to asynchronously insert a filter
771 * @net_dev: Reference to the netdevice
772 * @spec: The filter to insert
773 * @work: Workitem for this request
774 * @rxq_index: Identifies the channel for which this request was made
775 * @flow_id: Identifies the kernel-side flow for which this request was made
776 */
777 struct efx_async_filter_insertion {
778 struct net_device *net_dev;
779 struct efx_filter_spec spec;
780 struct work_struct work;
781 u16 rxq_index;
782 u32 flow_id;
783 };
784
785 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */
786 #define EFX_RPS_MAX_IN_FLIGHT 8
787 #endif /* CONFIG_RFS_ACCEL */
788
789 /**
790 * struct efx_nic - an Efx NIC
791 * @name: Device name (net device name or bus id before net device registered)
792 * @pci_dev: The PCI device
793 * @node: List node for maintaning primary/secondary function lists
794 * @primary: &struct efx_nic instance for the primary function of this
795 * controller. May be the same structure, and may be %NULL if no
796 * primary function is bound. Serialised by rtnl_lock.
797 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
798 * functions of the controller, if this is for the primary function.
799 * Serialised by rtnl_lock.
800 * @type: Controller type attributes
801 * @legacy_irq: IRQ number
802 * @workqueue: Workqueue for port reconfigures and the HW monitor.
803 * Work items do not hold and must not acquire RTNL.
804 * @workqueue_name: Name of workqueue
805 * @reset_work: Scheduled reset workitem
806 * @membase_phys: Memory BAR value as physical address
807 * @membase: Memory BAR value
808 * @vi_stride: step between per-VI registers / memory regions
809 * @interrupt_mode: Interrupt mode
810 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
811 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
812 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
813 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
814 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
815 * @msg_enable: Log message enable flags
816 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
817 * @reset_pending: Bitmask for pending resets
818 * @tx_queue: TX DMA queues
819 * @rx_queue: RX DMA queues
820 * @channel: Channels
821 * @msi_context: Context for each MSI
822 * @extra_channel_types: Types of extra (non-traffic) channels that
823 * should be allocated for this NIC
824 * @rxq_entries: Size of receive queues requested by user.
825 * @txq_entries: Size of transmit queues requested by user.
826 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
827 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
828 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
829 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
830 * @sram_lim_qw: Qword address limit of SRAM
831 * @next_buffer_table: First available buffer table id
832 * @n_channels: Number of channels in use
833 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
834 * @n_tx_channels: Number of channels used for TX
835 * @n_extra_tx_channels: Number of extra channels with TX queues
836 * @rx_ip_align: RX DMA address offset to have IP header aligned in
837 * in accordance with NET_IP_ALIGN
838 * @rx_dma_len: Current maximum RX DMA length
839 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
840 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
841 * for use in sk_buff::truesize
842 * @rx_prefix_size: Size of RX prefix before packet data
843 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
844 * (valid only if @rx_prefix_size != 0; always negative)
845 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
846 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
847 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
848 * (valid only if channel->sync_timestamps_enabled; always negative)
849 * @rx_scatter: Scatter mode enabled for receives
850 * @rss_context: Main RSS context. Its @list member is the head of the list of
851 * RSS contexts created by user requests
852 * @rss_lock: Protects custom RSS context software state in @rss_context.list
853 * @int_error_count: Number of internal errors seen recently
854 * @int_error_expire: Time at which error count will be expired
855 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
856 * acknowledge but do nothing else.
857 * @irq_status: Interrupt status buffer
858 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
859 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
860 * @selftest_work: Work item for asynchronous self-test
861 * @mtd_list: List of MTDs attached to the NIC
862 * @nic_data: Hardware dependent state
863 * @mcdi: Management-Controller-to-Driver Interface state
864 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
865 * efx_monitor() and efx_reconfigure_port()
866 * @port_enabled: Port enabled indicator.
867 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
868 * efx_mac_work() with kernel interfaces. Safe to read under any
869 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
870 * be held to modify it.
871 * @port_initialized: Port initialized?
872 * @net_dev: Operating system network device. Consider holding the rtnl lock
873 * @fixed_features: Features which cannot be turned off
874 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
875 * field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
876 * @stats_buffer: DMA buffer for statistics
877 * @phy_type: PHY type
878 * @phy_op: PHY interface
879 * @phy_data: PHY private data (including PHY-specific stats)
880 * @mdio: PHY MDIO interface
881 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
882 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
883 * @link_advertising: Autonegotiation advertising flags
884 * @fec_config: Forward Error Correction configuration flags. For bit positions
885 * see &enum ethtool_fec_config_bits.
886 * @link_state: Current state of the link
887 * @n_link_state_changes: Number of times the link has changed state
888 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
889 * Protected by @mac_lock.
890 * @multicast_hash: Multicast hash table for Falcon-arch.
891 * Protected by @mac_lock.
892 * @wanted_fc: Wanted flow control flags
893 * @fc_disable: When non-zero flow control is disabled. Typically used to
894 * ensure that network back pressure doesn't delay dma queue flushes.
895 * Serialised by the rtnl lock.
896 * @mac_work: Work item for changing MAC promiscuity and multicast hash
897 * @loopback_mode: Loopback status
898 * @loopback_modes: Supported loopback mode bitmask
899 * @loopback_selftest: Offline self-test private state
900 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
901 * @filter_state: Architecture-dependent filter table state
902 * @rps_mutex: Protects RPS state of all channels
903 * @rps_expire_channel: Next channel to check for expiry
904 * @rps_expire_index: Next index to check for expiry in
905 * @rps_expire_channel's @rps_flow_id
906 * @rps_slot_map: bitmap of in-flight entries in @rps_slot
907 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
908 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
909 * @rps_next_id).
910 * @rps_hash_table: Mapping between ARFS filters and their various IDs
911 * @rps_next_id: next arfs_id for an ARFS filter
912 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
913 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
914 * Decremented when the efx_flush_rx_queue() is called.
915 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
916 * completed (either success or failure). Not used when MCDI is used to
917 * flush receive queues.
918 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
919 * @vf_count: Number of VFs intended to be enabled.
920 * @vf_init_count: Number of VFs that have been fully initialised.
921 * @vi_scale: log2 number of vnics per VF.
922 * @ptp_data: PTP state data
923 * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
924 * @vpd_sn: Serial number read from VPD
925 * @monitor_work: Hardware monitor workitem
926 * @biu_lock: BIU (bus interface unit) lock
927 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
928 * field is used by efx_test_interrupts() to verify that an
929 * interrupt has occurred.
930 * @stats_lock: Statistics update lock. Must be held when calling
931 * efx_nic_type::{update,start,stop}_stats.
932 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
933 *
934 * This is stored in the private area of the &struct net_device.
935 */
936 struct efx_nic {
937 /* The following fields should be written very rarely */
938
939 char name[IFNAMSIZ];
940 struct list_head node;
941 struct efx_nic *primary;
942 struct list_head secondary_list;
943 struct pci_dev *pci_dev;
944 unsigned int port_num;
945 const struct efx_nic_type *type;
946 int legacy_irq;
947 bool eeh_disabled_legacy_irq;
948 struct workqueue_struct *workqueue;
949 char workqueue_name[16];
950 struct work_struct reset_work;
951 resource_size_t membase_phys;
952 void __iomem *membase;
953
954 unsigned int vi_stride;
955
956 enum efx_int_mode interrupt_mode;
957 unsigned int timer_quantum_ns;
958 unsigned int timer_max_ns;
959 bool irq_rx_adaptive;
960 unsigned int irq_mod_step_us;
961 unsigned int irq_rx_moderation_us;
962 u32 msg_enable;
963
964 enum nic_state state;
965 unsigned long reset_pending;
966
967 struct efx_channel *channel[EFX_MAX_CHANNELS];
968 struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
969 const struct efx_channel_type *
970 extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
971
972 unsigned rxq_entries;
973 unsigned txq_entries;
974 unsigned int txq_stop_thresh;
975 unsigned int txq_wake_thresh;
976
977 unsigned tx_dc_base;
978 unsigned rx_dc_base;
979 unsigned sram_lim_qw;
980 unsigned next_buffer_table;
981
982 unsigned int max_channels;
983 unsigned int max_tx_channels;
984 unsigned n_channels;
985 unsigned n_rx_channels;
986 unsigned rss_spread;
987 unsigned tx_channel_offset;
988 unsigned n_tx_channels;
989 unsigned n_extra_tx_channels;
990 unsigned int rx_ip_align;
991 unsigned int rx_dma_len;
992 unsigned int rx_buffer_order;
993 unsigned int rx_buffer_truesize;
994 unsigned int rx_page_buf_step;
995 unsigned int rx_bufs_per_page;
996 unsigned int rx_pages_per_batch;
997 unsigned int rx_prefix_size;
998 int rx_packet_hash_offset;
999 int rx_packet_len_offset;
1000 int rx_packet_ts_offset;
1001 bool rx_scatter;
1002 struct efx_rss_context rss_context;
1003 struct mutex rss_lock;
1004
1005 unsigned int_error_count;
1006 unsigned long int_error_expire;
1007
1008 bool irq_soft_enabled;
1009 struct efx_buffer irq_status;
1010 unsigned irq_zero_count;
1011 unsigned irq_level;
1012 struct delayed_work selftest_work;
1013
1014 #ifdef CONFIG_SFC_MTD
1015 struct list_head mtd_list;
1016 #endif
1017
1018 void *nic_data;
1019 struct efx_mcdi_data *mcdi;
1020
1021 struct mutex mac_lock;
1022 struct work_struct mac_work;
1023 bool port_enabled;
1024
1025 bool mc_bist_for_other_fn;
1026 bool port_initialized;
1027 struct net_device *net_dev;
1028
1029 netdev_features_t fixed_features;
1030
1031 u16 num_mac_stats;
1032 struct efx_buffer stats_buffer;
1033 u64 rx_nodesc_drops_total;
1034 u64 rx_nodesc_drops_while_down;
1035 bool rx_nodesc_drops_prev_state;
1036
1037 unsigned int phy_type;
1038 const struct efx_phy_operations *phy_op;
1039 void *phy_data;
1040 struct mdio_if_info mdio;
1041 unsigned int mdio_bus;
1042 enum efx_phy_mode phy_mode;
1043
1044 __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1045 u32 fec_config;
1046 struct efx_link_state link_state;
1047 unsigned int n_link_state_changes;
1048
1049 bool unicast_filter;
1050 union efx_multicast_hash multicast_hash;
1051 u8 wanted_fc;
1052 unsigned fc_disable;
1053
1054 atomic_t rx_reset;
1055 enum efx_loopback_mode loopback_mode;
1056 u64 loopback_modes;
1057
1058 void *loopback_selftest;
1059
1060 struct rw_semaphore filter_sem;
1061 void *filter_state;
1062 #ifdef CONFIG_RFS_ACCEL
1063 struct mutex rps_mutex;
1064 unsigned int rps_expire_channel;
1065 unsigned int rps_expire_index;
1066 unsigned long rps_slot_map;
1067 struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1068 spinlock_t rps_hash_lock;
1069 struct hlist_head *rps_hash_table;
1070 u32 rps_next_id;
1071 #endif
1072
1073 atomic_t active_queues;
1074 atomic_t rxq_flush_pending;
1075 atomic_t rxq_flush_outstanding;
1076 wait_queue_head_t flush_wq;
1077
1078 #ifdef CONFIG_SFC_SRIOV
1079 unsigned vf_count;
1080 unsigned vf_init_count;
1081 unsigned vi_scale;
1082 #endif
1083
1084 struct efx_ptp_data *ptp_data;
1085 bool ptp_warned;
1086
1087 char *vpd_sn;
1088
1089 /* The following fields may be written more often */
1090
1091 struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1092 spinlock_t biu_lock;
1093 int last_irq_cpu;
1094 spinlock_t stats_lock;
1095 atomic_t n_rx_noskb_drops;
1096 };
1097
efx_dev_registered(struct efx_nic * efx)1098 static inline int efx_dev_registered(struct efx_nic *efx)
1099 {
1100 return efx->net_dev->reg_state == NETREG_REGISTERED;
1101 }
1102
efx_port_num(struct efx_nic * efx)1103 static inline unsigned int efx_port_num(struct efx_nic *efx)
1104 {
1105 return efx->port_num;
1106 }
1107
1108 struct efx_mtd_partition {
1109 struct list_head node;
1110 struct mtd_info mtd;
1111 const char *dev_type_name;
1112 const char *type_name;
1113 char name[IFNAMSIZ + 20];
1114 };
1115
1116 struct efx_udp_tunnel {
1117 u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1118 __be16 port;
1119 /* Count of repeated adds of the same port. Used only inside the list,
1120 * not in request arguments.
1121 */
1122 u16 count;
1123 };
1124
1125 /**
1126 * struct efx_nic_type - Efx device type definition
1127 * @mem_bar: Get the memory BAR
1128 * @mem_map_size: Get memory BAR mapped size
1129 * @probe: Probe the controller
1130 * @remove: Free resources allocated by probe()
1131 * @init: Initialise the controller
1132 * @dimension_resources: Dimension controller resources (buffer table,
1133 * and VIs once the available interrupt resources are clear)
1134 * @fini: Shut down the controller
1135 * @monitor: Periodic function for polling link state and hardware monitor
1136 * @map_reset_reason: Map ethtool reset reason to a reset method
1137 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1138 * @reset: Reset the controller hardware and possibly the PHY. This will
1139 * be called while the controller is uninitialised.
1140 * @probe_port: Probe the MAC and PHY
1141 * @remove_port: Free resources allocated by probe_port()
1142 * @handle_global_event: Handle a "global" event (may be %NULL)
1143 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1144 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1145 * (for Falcon architecture)
1146 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1147 * architecture)
1148 * @prepare_flr: Prepare for an FLR
1149 * @finish_flr: Clean up after an FLR
1150 * @describe_stats: Describe statistics for ethtool
1151 * @update_stats: Update statistics not provided by event handling.
1152 * Either argument may be %NULL.
1153 * @start_stats: Start the regular fetching of statistics
1154 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1155 * @stop_stats: Stop the regular fetching of statistics
1156 * @set_id_led: Set state of identifying LED or revert to automatic function
1157 * @push_irq_moderation: Apply interrupt moderation value
1158 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1159 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1160 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1161 * to the hardware. Serialised by the mac_lock.
1162 * @check_mac_fault: Check MAC fault state. True if fault present.
1163 * @get_wol: Get WoL configuration from driver state
1164 * @set_wol: Push WoL configuration to the NIC
1165 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1166 * @test_chip: Test registers. May use efx_farch_test_registers(), and is
1167 * expected to reset the NIC.
1168 * @test_nvram: Test validity of NVRAM contents
1169 * @mcdi_request: Send an MCDI request with the given header and SDU.
1170 * The SDU length may be any value from 0 up to the protocol-
1171 * defined maximum, but its buffer will be padded to a multiple
1172 * of 4 bytes.
1173 * @mcdi_poll_response: Test whether an MCDI response is available.
1174 * @mcdi_read_response: Read the MCDI response PDU. The offset will
1175 * be a multiple of 4. The length may not be, but the buffer
1176 * will be padded so it is safe to round up.
1177 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
1178 * return an appropriate error code for aborting any current
1179 * request; otherwise return 0.
1180 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must
1181 * be separately enabled after this.
1182 * @irq_test_generate: Generate a test IRQ
1183 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
1184 * queue must be separately disabled before this.
1185 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
1186 * a pointer to the &struct efx_msi_context for the channel.
1187 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
1188 * is a pointer to the &struct efx_nic.
1189 * @tx_probe: Allocate resources for TX queue
1190 * @tx_init: Initialise TX queue on the NIC
1191 * @tx_remove: Free resources for TX queue
1192 * @tx_write: Write TX descriptors and doorbell
1193 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1194 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1195 * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1196 * user RSS context to the NIC
1197 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1198 * RSS context back from the NIC
1199 * @rx_probe: Allocate resources for RX queue
1200 * @rx_init: Initialise RX queue on the NIC
1201 * @rx_remove: Free resources for RX queue
1202 * @rx_write: Write RX descriptors and doorbell
1203 * @rx_defer_refill: Generate a refill reminder event
1204 * @ev_probe: Allocate resources for event queue
1205 * @ev_init: Initialise event queue on the NIC
1206 * @ev_fini: Deinitialise event queue on the NIC
1207 * @ev_remove: Free resources for event queue
1208 * @ev_process: Process events for a queue, up to the given NAPI quota
1209 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1210 * @ev_test_generate: Generate a test event
1211 * @filter_table_probe: Probe filter capabilities and set up filter software state
1212 * @filter_table_restore: Restore filters removed from hardware
1213 * @filter_table_remove: Remove filters from hardware and tear down software state
1214 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1215 * @filter_insert: add or replace a filter
1216 * @filter_remove_safe: remove a filter by ID, carefully
1217 * @filter_get_safe: retrieve a filter by ID, carefully
1218 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1219 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1220 * @filter_count_rx_used: Get the number of filters in use at a given priority
1221 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1222 * @filter_get_rx_ids: Get list of RX filters at a given priority
1223 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1224 * This must check whether the specified table entry is used by RFS
1225 * and that rps_may_expire_flow() returns true for it.
1226 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1227 * using efx_mtd_add()
1228 * @mtd_rename: Set an MTD partition name using the net device name
1229 * @mtd_read: Read from an MTD partition
1230 * @mtd_erase: Erase part of an MTD partition
1231 * @mtd_write: Write to an MTD partition
1232 * @mtd_sync: Wait for write-back to complete on MTD partition. This
1233 * also notifies the driver that a writer has finished using this
1234 * partition.
1235 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1236 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1237 * timestamping, possibly only temporarily for the purposes of a reset.
1238 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags
1239 * and tx_type will already have been validated but this operation
1240 * must validate and update rx_filter.
1241 * @get_phys_port_id: Get the underlying physical port id.
1242 * @set_mac_address: Set the MAC address of the device
1243 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1244 * If %NULL, then device does not support any TSO version.
1245 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1246 * @udp_tnl_add_port: Add a UDP tunnel port
1247 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1248 * @udp_tnl_del_port: Remove a UDP tunnel port
1249 * @revision: Hardware architecture revision
1250 * @txd_ptr_tbl_base: TX descriptor ring base address
1251 * @rxd_ptr_tbl_base: RX descriptor ring base address
1252 * @buf_tbl_base: Buffer table base address
1253 * @evq_ptr_tbl_base: Event queue pointer table base address
1254 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1255 * @max_dma_mask: Maximum possible DMA mask
1256 * @rx_prefix_size: Size of RX prefix before packet data
1257 * @rx_hash_offset: Offset of RX flow hash within prefix
1258 * @rx_ts_offset: Offset of timestamp within prefix
1259 * @rx_buffer_padding: Size of padding at end of RX packet
1260 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1261 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1262 * @option_descriptors: NIC supports TX option descriptors
1263 * @min_interrupt_mode: Lowest capability interrupt mode supported
1264 * from &enum efx_int_mode.
1265 * @max_interrupt_mode: Highest capability interrupt mode supported
1266 * from &enum efx_int_mode.
1267 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1268 * @offload_features: net_device feature flags for protocol offload
1269 * features implemented in hardware
1270 * @mcdi_max_ver: Maximum MCDI version supported
1271 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1272 */
1273 struct efx_nic_type {
1274 bool is_vf;
1275 unsigned int (*mem_bar)(struct efx_nic *efx);
1276 unsigned int (*mem_map_size)(struct efx_nic *efx);
1277 int (*probe)(struct efx_nic *efx);
1278 void (*remove)(struct efx_nic *efx);
1279 int (*init)(struct efx_nic *efx);
1280 int (*dimension_resources)(struct efx_nic *efx);
1281 void (*fini)(struct efx_nic *efx);
1282 void (*monitor)(struct efx_nic *efx);
1283 enum reset_type (*map_reset_reason)(enum reset_type reason);
1284 int (*map_reset_flags)(u32 *flags);
1285 int (*reset)(struct efx_nic *efx, enum reset_type method);
1286 int (*probe_port)(struct efx_nic *efx);
1287 void (*remove_port)(struct efx_nic *efx);
1288 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1289 int (*fini_dmaq)(struct efx_nic *efx);
1290 void (*prepare_flush)(struct efx_nic *efx);
1291 void (*finish_flush)(struct efx_nic *efx);
1292 void (*prepare_flr)(struct efx_nic *efx);
1293 void (*finish_flr)(struct efx_nic *efx);
1294 size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1295 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1296 struct rtnl_link_stats64 *core_stats);
1297 void (*start_stats)(struct efx_nic *efx);
1298 void (*pull_stats)(struct efx_nic *efx);
1299 void (*stop_stats)(struct efx_nic *efx);
1300 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1301 void (*push_irq_moderation)(struct efx_channel *channel);
1302 int (*reconfigure_port)(struct efx_nic *efx);
1303 void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1304 int (*reconfigure_mac)(struct efx_nic *efx);
1305 bool (*check_mac_fault)(struct efx_nic *efx);
1306 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1307 int (*set_wol)(struct efx_nic *efx, u32 type);
1308 void (*resume_wol)(struct efx_nic *efx);
1309 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1310 int (*test_nvram)(struct efx_nic *efx);
1311 void (*mcdi_request)(struct efx_nic *efx,
1312 const efx_dword_t *hdr, size_t hdr_len,
1313 const efx_dword_t *sdu, size_t sdu_len);
1314 bool (*mcdi_poll_response)(struct efx_nic *efx);
1315 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1316 size_t pdu_offset, size_t pdu_len);
1317 int (*mcdi_poll_reboot)(struct efx_nic *efx);
1318 void (*mcdi_reboot_detected)(struct efx_nic *efx);
1319 void (*irq_enable_master)(struct efx_nic *efx);
1320 int (*irq_test_generate)(struct efx_nic *efx);
1321 void (*irq_disable_non_ev)(struct efx_nic *efx);
1322 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1323 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1324 int (*tx_probe)(struct efx_tx_queue *tx_queue);
1325 void (*tx_init)(struct efx_tx_queue *tx_queue);
1326 void (*tx_remove)(struct efx_tx_queue *tx_queue);
1327 void (*tx_write)(struct efx_tx_queue *tx_queue);
1328 unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1329 dma_addr_t dma_addr, unsigned int len);
1330 int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1331 const u32 *rx_indir_table, const u8 *key);
1332 int (*rx_pull_rss_config)(struct efx_nic *efx);
1333 int (*rx_push_rss_context_config)(struct efx_nic *efx,
1334 struct efx_rss_context *ctx,
1335 const u32 *rx_indir_table,
1336 const u8 *key);
1337 int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1338 struct efx_rss_context *ctx);
1339 void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1340 int (*rx_probe)(struct efx_rx_queue *rx_queue);
1341 void (*rx_init)(struct efx_rx_queue *rx_queue);
1342 void (*rx_remove)(struct efx_rx_queue *rx_queue);
1343 void (*rx_write)(struct efx_rx_queue *rx_queue);
1344 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1345 int (*ev_probe)(struct efx_channel *channel);
1346 int (*ev_init)(struct efx_channel *channel);
1347 void (*ev_fini)(struct efx_channel *channel);
1348 void (*ev_remove)(struct efx_channel *channel);
1349 int (*ev_process)(struct efx_channel *channel, int quota);
1350 void (*ev_read_ack)(struct efx_channel *channel);
1351 void (*ev_test_generate)(struct efx_channel *channel);
1352 int (*filter_table_probe)(struct efx_nic *efx);
1353 void (*filter_table_restore)(struct efx_nic *efx);
1354 void (*filter_table_remove)(struct efx_nic *efx);
1355 void (*filter_update_rx_scatter)(struct efx_nic *efx);
1356 s32 (*filter_insert)(struct efx_nic *efx,
1357 struct efx_filter_spec *spec, bool replace);
1358 int (*filter_remove_safe)(struct efx_nic *efx,
1359 enum efx_filter_priority priority,
1360 u32 filter_id);
1361 int (*filter_get_safe)(struct efx_nic *efx,
1362 enum efx_filter_priority priority,
1363 u32 filter_id, struct efx_filter_spec *);
1364 int (*filter_clear_rx)(struct efx_nic *efx,
1365 enum efx_filter_priority priority);
1366 u32 (*filter_count_rx_used)(struct efx_nic *efx,
1367 enum efx_filter_priority priority);
1368 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1369 s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1370 enum efx_filter_priority priority,
1371 u32 *buf, u32 size);
1372 #ifdef CONFIG_RFS_ACCEL
1373 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1374 unsigned int index);
1375 #endif
1376 #ifdef CONFIG_SFC_MTD
1377 int (*mtd_probe)(struct efx_nic *efx);
1378 void (*mtd_rename)(struct efx_mtd_partition *part);
1379 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1380 size_t *retlen, u8 *buffer);
1381 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1382 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1383 size_t *retlen, const u8 *buffer);
1384 int (*mtd_sync)(struct mtd_info *mtd);
1385 #endif
1386 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1387 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1388 int (*ptp_set_ts_config)(struct efx_nic *efx,
1389 struct hwtstamp_config *init);
1390 int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1391 int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1392 int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1393 int (*get_phys_port_id)(struct efx_nic *efx,
1394 struct netdev_phys_item_id *ppid);
1395 int (*sriov_init)(struct efx_nic *efx);
1396 void (*sriov_fini)(struct efx_nic *efx);
1397 bool (*sriov_wanted)(struct efx_nic *efx);
1398 void (*sriov_reset)(struct efx_nic *efx);
1399 void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1400 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1401 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1402 u8 qos);
1403 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1404 bool spoofchk);
1405 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1406 struct ifla_vf_info *ivi);
1407 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1408 int link_state);
1409 int (*vswitching_probe)(struct efx_nic *efx);
1410 int (*vswitching_restore)(struct efx_nic *efx);
1411 void (*vswitching_remove)(struct efx_nic *efx);
1412 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1413 int (*set_mac_address)(struct efx_nic *efx);
1414 u32 (*tso_versions)(struct efx_nic *efx);
1415 int (*udp_tnl_push_ports)(struct efx_nic *efx);
1416 int (*udp_tnl_add_port)(struct efx_nic *efx, struct efx_udp_tunnel tnl);
1417 bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1418 int (*udp_tnl_del_port)(struct efx_nic *efx, struct efx_udp_tunnel tnl);
1419
1420 int revision;
1421 unsigned int txd_ptr_tbl_base;
1422 unsigned int rxd_ptr_tbl_base;
1423 unsigned int buf_tbl_base;
1424 unsigned int evq_ptr_tbl_base;
1425 unsigned int evq_rptr_tbl_base;
1426 u64 max_dma_mask;
1427 unsigned int rx_prefix_size;
1428 unsigned int rx_hash_offset;
1429 unsigned int rx_ts_offset;
1430 unsigned int rx_buffer_padding;
1431 bool can_rx_scatter;
1432 bool always_rx_scatter;
1433 bool option_descriptors;
1434 unsigned int min_interrupt_mode;
1435 unsigned int max_interrupt_mode;
1436 unsigned int timer_period_max;
1437 netdev_features_t offload_features;
1438 int mcdi_max_ver;
1439 unsigned int max_rx_ip_filters;
1440 u32 hwtstamp_filters;
1441 unsigned int rx_hash_key_size;
1442 };
1443
1444 /**************************************************************************
1445 *
1446 * Prototypes and inline functions
1447 *
1448 *************************************************************************/
1449
1450 static inline struct efx_channel *
efx_get_channel(struct efx_nic * efx,unsigned index)1451 efx_get_channel(struct efx_nic *efx, unsigned index)
1452 {
1453 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1454 return efx->channel[index];
1455 }
1456
1457 /* Iterate over all used channels */
1458 #define efx_for_each_channel(_channel, _efx) \
1459 for (_channel = (_efx)->channel[0]; \
1460 _channel; \
1461 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
1462 (_efx)->channel[_channel->channel + 1] : NULL)
1463
1464 /* Iterate over all used channels in reverse */
1465 #define efx_for_each_channel_rev(_channel, _efx) \
1466 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
1467 _channel; \
1468 _channel = _channel->channel ? \
1469 (_efx)->channel[_channel->channel - 1] : NULL)
1470
1471 static inline struct efx_tx_queue *
efx_get_tx_queue(struct efx_nic * efx,unsigned index,unsigned type)1472 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1473 {
1474 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels ||
1475 type >= EFX_TXQ_TYPES);
1476 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1477 }
1478
efx_channel_has_tx_queues(struct efx_channel * channel)1479 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1480 {
1481 return channel->type && channel->type->want_txqs &&
1482 channel->type->want_txqs(channel);
1483 }
1484
1485 static inline struct efx_tx_queue *
efx_channel_get_tx_queue(struct efx_channel * channel,unsigned type)1486 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1487 {
1488 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_tx_queues(channel) ||
1489 type >= EFX_TXQ_TYPES);
1490 return &channel->tx_queue[type];
1491 }
1492
efx_tx_queue_used(struct efx_tx_queue * tx_queue)1493 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1494 {
1495 return !(tx_queue->efx->net_dev->num_tc < 2 &&
1496 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1497 }
1498
1499 /* Iterate over all TX queues belonging to a channel */
1500 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
1501 if (!efx_channel_has_tx_queues(_channel)) \
1502 ; \
1503 else \
1504 for (_tx_queue = (_channel)->tx_queue; \
1505 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1506 efx_tx_queue_used(_tx_queue); \
1507 _tx_queue++)
1508
1509 /* Iterate over all possible TX queues belonging to a channel */
1510 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \
1511 if (!efx_channel_has_tx_queues(_channel)) \
1512 ; \
1513 else \
1514 for (_tx_queue = (_channel)->tx_queue; \
1515 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \
1516 _tx_queue++)
1517
efx_channel_has_rx_queue(struct efx_channel * channel)1518 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1519 {
1520 return channel->rx_queue.core_index >= 0;
1521 }
1522
1523 static inline struct efx_rx_queue *
efx_channel_get_rx_queue(struct efx_channel * channel)1524 efx_channel_get_rx_queue(struct efx_channel *channel)
1525 {
1526 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1527 return &channel->rx_queue;
1528 }
1529
1530 /* Iterate over all RX queues belonging to a channel */
1531 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
1532 if (!efx_channel_has_rx_queue(_channel)) \
1533 ; \
1534 else \
1535 for (_rx_queue = &(_channel)->rx_queue; \
1536 _rx_queue; \
1537 _rx_queue = NULL)
1538
1539 static inline struct efx_channel *
efx_rx_queue_channel(struct efx_rx_queue * rx_queue)1540 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1541 {
1542 return container_of(rx_queue, struct efx_channel, rx_queue);
1543 }
1544
efx_rx_queue_index(struct efx_rx_queue * rx_queue)1545 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1546 {
1547 return efx_rx_queue_channel(rx_queue)->channel;
1548 }
1549
1550 /* Returns a pointer to the specified receive buffer in the RX
1551 * descriptor queue.
1552 */
efx_rx_buffer(struct efx_rx_queue * rx_queue,unsigned int index)1553 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1554 unsigned int index)
1555 {
1556 return &rx_queue->buffer[index];
1557 }
1558
1559 /**
1560 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1561 *
1562 * This calculates the maximum frame length that will be used for a
1563 * given MTU. The frame length will be equal to the MTU plus a
1564 * constant amount of header space and padding. This is the quantity
1565 * that the net driver will program into the MAC as the maximum frame
1566 * length.
1567 *
1568 * The 10G MAC requires 8-byte alignment on the frame
1569 * length, so we round up to the nearest 8.
1570 *
1571 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1572 * XGMII cycle). If the frame length reaches the maximum value in the
1573 * same cycle, the XMAC can miss the IPG altogether. We work around
1574 * this by adding a further 16 bytes.
1575 */
1576 #define EFX_FRAME_PAD 16
1577 #define EFX_MAX_FRAME_LEN(mtu) \
1578 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1579
efx_xmit_with_hwtstamp(struct sk_buff * skb)1580 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1581 {
1582 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1583 }
efx_xmit_hwtstamp_pending(struct sk_buff * skb)1584 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1585 {
1586 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1587 }
1588
1589 /* Get all supported features.
1590 * If a feature is not fixed, it is present in hw_features.
1591 * If a feature is fixed, it does not present in hw_features, but
1592 * always in features.
1593 */
efx_supported_features(const struct efx_nic * efx)1594 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1595 {
1596 const struct net_device *net_dev = efx->net_dev;
1597
1598 return net_dev->features | net_dev->hw_features;
1599 }
1600
1601 /* Get the current TX queue insert index. */
1602 static inline unsigned int
efx_tx_queue_get_insert_index(const struct efx_tx_queue * tx_queue)1603 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1604 {
1605 return tx_queue->insert_count & tx_queue->ptr_mask;
1606 }
1607
1608 /* Get a TX buffer. */
1609 static inline struct efx_tx_buffer *
__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue * tx_queue)1610 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1611 {
1612 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1613 }
1614
1615 /* Get a TX buffer, checking it's not currently in use. */
1616 static inline struct efx_tx_buffer *
efx_tx_queue_get_insert_buffer(const struct efx_tx_queue * tx_queue)1617 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1618 {
1619 struct efx_tx_buffer *buffer =
1620 __efx_tx_queue_get_insert_buffer(tx_queue);
1621
1622 EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1623 EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1624 EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1625
1626 return buffer;
1627 }
1628
1629 #endif /* EFX_NET_DRIVER_H */
1630