1 /****************************************************************************
2
3 Copyright Echo Digital Audio Corporation (c) 1998 - 2004
4 All rights reserved
5 www.echoaudio.com
6
7 This file is part of Echo Digital Audio's generic driver library.
8
9 Echo Digital Audio's generic driver library is free software;
10 you can redistribute it and/or modify it under the terms of
11 the GNU General Public License as published by the Free Software
12 Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22 MA 02111-1307, USA.
23
24 ****************************************************************************
25
26 Translation from C++ and adaptation for use in ALSA-Driver
27 were made by Giuliano Pochini <pochini@shiny.it>
28
29 ****************************************************************************
30
31
32 Here's a block diagram of how most of the cards work:
33
34 +-----------+
35 record | |<-------------------- Inputs
36 <-------| | |
37 PCI | Transport | |
38 bus | engine | \|/
39 ------->| | +-------+
40 play | |--->|monitor|-------> Outputs
41 +-----------+ | mixer |
42 +-------+
43
44 The lines going to and from the PCI bus represent "pipes". A pipe performs
45 audio transport - moving audio data to and from buffers on the host via
46 bus mastering.
47
48 The inputs and outputs on the right represent input and output "busses."
49 A bus is a physical, real connection to the outside world. An example
50 of a bus would be the 1/4" analog connectors on the back of Layla or
51 an RCA S/PDIF connector.
52
53 For most cards, there is a one-to-one correspondence between outputs
54 and busses; that is, each individual pipe is hard-wired to a single bus.
55
56 Cards that work this way are Darla20, Gina20, Layla20, Darla24, Gina24,
57 Layla24, Mona, and Indigo.
58
59
60 Mia has a feature called "virtual outputs."
61
62
63 +-----------+
64 record | |<----------------------------- Inputs
65 <-------| | |
66 PCI | Transport | |
67 bus | engine | \|/
68 ------->| | +------+ +-------+
69 play | |-->|vmixer|-->|monitor|-------> Outputs
70 +-----------+ +------+ | mixer |
71 +-------+
72
73
74 Obviously, the difference here is the box labeled "vmixer." Vmixer is
75 short for "virtual output mixer." For Mia, pipes are *not* hard-wired
76 to a single bus; the vmixer lets you mix any pipe to any bus in any
77 combination.
78
79 Note, however, that the left-hand side of the diagram is unchanged.
80 Transport works exactly the same way - the difference is in the mixer stage.
81
82
83 Pipes and busses are numbered starting at zero.
84
85
86
87 Pipe index
88 ==========
89
90 A number of calls in CEchoGals refer to a "pipe index". A pipe index is
91 a unique number for a pipe that unambiguously refers to a playback or record
92 pipe. Pipe indices are numbered starting with analog outputs, followed by
93 digital outputs, then analog inputs, then digital inputs.
94
95 Take Gina24 as an example:
96
97 Pipe index
98
99 0-7 Analog outputs (0 .. FirstDigitalBusOut-1)
100 8-15 Digital outputs (FirstDigitalBusOut .. NumBussesOut-1)
101 16-17 Analog inputs
102 18-25 Digital inputs
103
104
105 You get the pipe index by calling CEchoGals::OpenAudio; the other transport
106 functions take the pipe index as a parameter. If you need a pipe index for
107 some other reason, use the handy Makepipe_index method.
108
109
110 Some calls take a CChannelMask parameter; CChannelMask is a handy way to
111 group pipe indices.
112
113
114
115 Digital mode switch
116 ===================
117
118 Some cards (right now, Gina24, Layla24, and Mona) have a Digital Mode Switch
119 or DMS. Cards with a DMS can be set to one of three mutually exclusive
120 digital modes: S/PDIF RCA, S/PDIF optical, or ADAT optical.
121
122 This may create some confusion since ADAT optical is 8 channels wide and
123 S/PDIF is only two channels wide. Gina24, Layla24, and Mona handle this
124 by acting as if they always have 8 digital outs and ins. If you are in
125 either S/PDIF mode, the last 6 channels don't do anything - data sent
126 out these channels is thrown away and you will always record zeros.
127
128 Note that with Gina24, Layla24, and Mona, sample rates above 50 kHz are
129 only available if you have the card configured for S/PDIF optical or S/PDIF
130 RCA.
131
132
133
134 Double speed mode
135 =================
136
137 Some of the cards support 88.2 kHz and 96 kHz sampling (Darla24, Gina24,
138 Layla24, Mona, Mia, and Indigo). For these cards, the driver sometimes has
139 to worry about "double speed mode"; double speed mode applies whenever the
140 sampling rate is above 50 kHz.
141
142 For instance, Mona and Layla24 support word clock sync. However, they
143 actually support two different word clock modes - single speed (below
144 50 kHz) and double speed (above 50 kHz). The hardware detects if a single
145 or double speed word clock signal is present; the generic code uses that
146 information to determine which mode to use.
147
148 The generic code takes care of all this for you.
149 */
150
151
152 #ifndef _ECHOAUDIO_H_
153 #define _ECHOAUDIO_H_
154
155
156 #include "echoaudio_dsp.h"
157
158
159
160 /***********************************************************************
161
162 PCI configuration space
163
164 ***********************************************************************/
165
166 /*
167 * PCI vendor ID and device IDs for the hardware
168 */
169 #define VENDOR_ID 0x1057
170 #define DEVICE_ID_56301 0x1801
171 #define DEVICE_ID_56361 0x3410
172 #define SUBVENDOR_ID 0xECC0
173
174
175 /*
176 * Valid Echo PCI subsystem card IDs
177 */
178 #define DARLA20 0x0010
179 #define GINA20 0x0020
180 #define LAYLA20 0x0030
181 #define DARLA24 0x0040
182 #define GINA24 0x0050
183 #define LAYLA24 0x0060
184 #define MONA 0x0070
185 #define MIA 0x0080
186 #define INDIGO 0x0090
187 #define INDIGO_IO 0x00a0
188 #define INDIGO_DJ 0x00b0
189 #define DC8 0x00c0
190 #define INDIGO_IOX 0x00d0
191 #define INDIGO_DJX 0x00e0
192 #define ECHO3G 0x0100
193
194
195 /************************************************************************
196
197 Array sizes and so forth
198
199 ***********************************************************************/
200
201 /*
202 * Sizes
203 */
204 #define ECHO_MAXAUDIOINPUTS 32 /* Max audio input channels */
205 #define ECHO_MAXAUDIOOUTPUTS 32 /* Max audio output channels */
206 #define ECHO_MAXAUDIOPIPES 32 /* Max number of input and output
207 * pipes */
208 #define E3G_MAX_OUTPUTS 16
209 #define ECHO_MAXMIDIJACKS 1 /* Max MIDI ports */
210 #define ECHO_MIDI_QUEUE_SZ 512 /* Max MIDI input queue entries */
211 #define ECHO_MTC_QUEUE_SZ 32 /* Max MIDI time code input queue
212 * entries */
213
214 /*
215 * MIDI activity indicator timeout
216 */
217 #define MIDI_ACTIVITY_TIMEOUT_USEC 200000
218
219
220 /****************************************************************************
221
222 Clocks
223
224 *****************************************************************************/
225
226 /*
227 * Clock numbers
228 */
229 #define ECHO_CLOCK_INTERNAL 0
230 #define ECHO_CLOCK_WORD 1
231 #define ECHO_CLOCK_SUPER 2
232 #define ECHO_CLOCK_SPDIF 3
233 #define ECHO_CLOCK_ADAT 4
234 #define ECHO_CLOCK_ESYNC 5
235 #define ECHO_CLOCK_ESYNC96 6
236 #define ECHO_CLOCK_MTC 7
237 #define ECHO_CLOCK_NUMBER 8
238 #define ECHO_CLOCKS 0xffff
239
240 /*
241 * Clock bit numbers - used to report capabilities and whatever clocks
242 * are being detected dynamically.
243 */
244 #define ECHO_CLOCK_BIT_INTERNAL (1 << ECHO_CLOCK_INTERNAL)
245 #define ECHO_CLOCK_BIT_WORD (1 << ECHO_CLOCK_WORD)
246 #define ECHO_CLOCK_BIT_SUPER (1 << ECHO_CLOCK_SUPER)
247 #define ECHO_CLOCK_BIT_SPDIF (1 << ECHO_CLOCK_SPDIF)
248 #define ECHO_CLOCK_BIT_ADAT (1 << ECHO_CLOCK_ADAT)
249 #define ECHO_CLOCK_BIT_ESYNC (1 << ECHO_CLOCK_ESYNC)
250 #define ECHO_CLOCK_BIT_ESYNC96 (1 << ECHO_CLOCK_ESYNC96)
251 #define ECHO_CLOCK_BIT_MTC (1<<ECHO_CLOCK_MTC)
252
253
254 /***************************************************************************
255
256 Digital modes
257
258 ****************************************************************************/
259
260 /*
261 * Digital modes for Mona, Layla24, and Gina24
262 */
263 #define DIGITAL_MODE_NONE 0xFF
264 #define DIGITAL_MODE_SPDIF_RCA 0
265 #define DIGITAL_MODE_SPDIF_OPTICAL 1
266 #define DIGITAL_MODE_ADAT 2
267 #define DIGITAL_MODE_SPDIF_CDROM 3
268 #define DIGITAL_MODES 4
269
270 /*
271 * Digital mode capability masks
272 */
273 #define ECHOCAPS_HAS_DIGITAL_MODE_SPDIF_RCA (1 << DIGITAL_MODE_SPDIF_RCA)
274 #define ECHOCAPS_HAS_DIGITAL_MODE_SPDIF_OPTICAL (1 << DIGITAL_MODE_SPDIF_OPTICAL)
275 #define ECHOCAPS_HAS_DIGITAL_MODE_ADAT (1 << DIGITAL_MODE_ADAT)
276 #define ECHOCAPS_HAS_DIGITAL_MODE_SPDIF_CDROM (1 << DIGITAL_MODE_SPDIF_CDROM)
277
278
279 #define EXT_3GBOX_NC 0x01 /* 3G box not connected */
280 #define EXT_3GBOX_NOT_SET 0x02 /* 3G box not detected yet */
281
282
283 #define ECHOGAIN_MUTED (-128) /* Minimum possible gain */
284 #define ECHOGAIN_MINOUT (-128) /* Min output gain (dB) */
285 #define ECHOGAIN_MAXOUT (6) /* Max output gain (dB) */
286 #define ECHOGAIN_MININP (-50) /* Min input gain (0.5 dB) */
287 #define ECHOGAIN_MAXINP (50) /* Max input gain (0.5 dB) */
288
289 #define PIPE_STATE_STOPPED 0 /* Pipe has been reset */
290 #define PIPE_STATE_PAUSED 1 /* Pipe has been stopped */
291 #define PIPE_STATE_STARTED 2 /* Pipe has been started */
292 #define PIPE_STATE_PENDING 3 /* Pipe has pending start */
293
294
295
296 struct audiopipe {
297 volatile __le32 *dma_counter; /* Commpage register that contains
298 * the current dma position
299 * (lower 32 bits only)
300 */
301 u32 last_counter; /* The last position, which is used
302 * to compute...
303 */
304 u32 position; /* ...the number of bytes tranferred
305 * by the DMA engine, modulo the
306 * buffer size
307 */
308 short index; /* Index of the first channel or <0
309 * if hw is not configured yet
310 */
311 short interleave;
312 struct snd_dma_buffer sgpage; /* Room for the scatter-gather list */
313 struct snd_pcm_hardware hw;
314 struct snd_pcm_hw_constraint_list constr;
315 short sglist_head;
316 char state; /* pipe state */
317 };
318
319
320 struct audioformat {
321 u8 interleave; /* How the data is arranged in memory:
322 * mono = 1, stereo = 2, ...
323 */
324 u8 bits_per_sample; /* 8, 16, 24, 32 (24 bits left aligned) */
325 char mono_to_stereo; /* Only used if interleave is 1 and
326 * if this is an output pipe.
327 */
328 char data_are_bigendian; /* 1 = big endian, 0 = little endian */
329 };
330
331
332 struct echoaudio {
333 spinlock_t lock;
334 struct snd_pcm_substream *substream[DSP_MAXPIPES];
335 int last_period[DSP_MAXPIPES];
336 struct mutex mode_mutex;
337 u16 num_digital_modes, digital_mode_list[6];
338 u16 num_clock_sources, clock_source_list[10];
339 atomic_t opencount;
340 struct snd_kcontrol *clock_src_ctl;
341 struct snd_pcm *analog_pcm, *digital_pcm;
342 struct snd_card *card;
343 const char *card_name;
344 struct pci_dev *pci;
345 unsigned long dsp_registers_phys;
346 struct resource *iores;
347 struct snd_dma_buffer commpage_dma_buf;
348 int irq;
349 #ifdef ECHOCARD_HAS_MIDI
350 struct snd_rawmidi *rmidi;
351 struct snd_rawmidi_substream *midi_in, *midi_out;
352 #endif
353 struct timer_list timer;
354 char tinuse; /* Timer in use */
355 char midi_full; /* MIDI output buffer is full */
356 char can_set_rate;
357 char rate_set;
358
359 /* This stuff is used mainly by the lowlevel code */
360 struct comm_page *comm_page; /* Virtual address of the memory
361 * seen by DSP
362 */
363 u32 pipe_alloc_mask; /* Bitmask of allocated pipes */
364 u32 pipe_cyclic_mask; /* Bitmask of pipes with cyclic
365 * buffers
366 */
367 u32 sample_rate; /* Card sample rate in Hz */
368 u8 digital_mode; /* Current digital mode
369 * (see DIGITAL_MODE_*)
370 */
371 u8 spdif_status; /* Gina20, Darla20, Darla24 - only */
372 u8 clock_state; /* Gina20, Darla20, Darla24 - only */
373 u8 input_clock; /* Currently selected sample clock
374 * source
375 */
376 u8 output_clock; /* Layla20 only */
377 char meters_enabled; /* VU-meters status */
378 char asic_loaded; /* Set true when ASIC loaded */
379 char bad_board; /* Set true if DSP won't load */
380 char professional_spdif; /* 0 = consumer; 1 = professional */
381 char non_audio_spdif; /* 3G - only */
382 char digital_in_automute; /* Gina24, Layla24, Mona - only */
383 char has_phantom_power;
384 char hasnt_input_nominal_level; /* Gina3G */
385 char phantom_power; /* Gina3G - only */
386 char has_midi;
387 char midi_input_enabled;
388
389 #ifdef ECHOCARD_ECHO3G
390 /* External module -dependent pipe and bus indexes */
391 char px_digital_out, px_analog_in, px_digital_in, px_num;
392 char bx_digital_out, bx_analog_in, bx_digital_in, bx_num;
393 #endif
394
395 char nominal_level[ECHO_MAXAUDIOPIPES]; /* True == -10dBV
396 * False == +4dBu */
397 s8 input_gain[ECHO_MAXAUDIOINPUTS]; /* Input level -50..+50
398 * unit is 0.5dB */
399 s8 output_gain[ECHO_MAXAUDIOOUTPUTS]; /* Output level -128..+6 dB
400 * (-128=muted) */
401 s8 monitor_gain[ECHO_MAXAUDIOOUTPUTS][ECHO_MAXAUDIOINPUTS];
402 /* -128..+6 dB */
403 s8 vmixer_gain[ECHO_MAXAUDIOOUTPUTS][ECHO_MAXAUDIOOUTPUTS];
404 /* -128..+6 dB */
405
406 u16 digital_modes; /* Bitmask of supported modes
407 * (see ECHOCAPS_HAS_DIGITAL_MODE_*) */
408 u16 input_clock_types; /* Suppoted input clock types */
409 u16 output_clock_types; /* Suppoted output clock types -
410 * Layla20 only */
411 u16 device_id, subdevice_id;
412 u16 *dsp_code; /* Current DSP code loaded,
413 * NULL if nothing loaded */
414 short dsp_code_to_load; /* DSP code to load */
415 short asic_code; /* Current ASIC code */
416 u32 comm_page_phys; /* Physical address of the
417 * memory seen by DSP */
418 volatile u32 __iomem *dsp_registers; /* DSP's register base */
419 u32 active_mask; /* Chs. active mask or
420 * punks out */
421 #ifdef CONFIG_PM_SLEEP
422 const struct firmware *fw_cache[8]; /* Cached firmwares */
423 #endif
424
425 #ifdef ECHOCARD_HAS_MIDI
426 u16 mtc_state; /* State for MIDI input parsing state machine */
427 u8 midi_buffer[MIDI_IN_BUFFER_SIZE];
428 #endif
429 };
430
431
432 static int init_dsp_comm_page(struct echoaudio *chip);
433 static int init_line_levels(struct echoaudio *chip);
434 static int free_pipes(struct echoaudio *chip, struct audiopipe *pipe);
435 static int load_firmware(struct echoaudio *chip);
436 static int wait_handshake(struct echoaudio *chip);
437 static int send_vector(struct echoaudio *chip, u32 command);
438 static int get_firmware(const struct firmware **fw_entry,
439 struct echoaudio *chip, const short fw_index);
440 static void free_firmware(const struct firmware *fw_entry,
441 struct echoaudio *chip);
442
443 #ifdef ECHOCARD_HAS_MIDI
444 static int enable_midi_input(struct echoaudio *chip, char enable);
445 static void snd_echo_midi_output_trigger(
446 struct snd_rawmidi_substream *substream, int up);
447 static int midi_service_irq(struct echoaudio *chip);
448 static int snd_echo_midi_create(struct snd_card *card,
449 struct echoaudio *chip);
450 #endif
451
452
clear_handshake(struct echoaudio * chip)453 static inline void clear_handshake(struct echoaudio *chip)
454 {
455 chip->comm_page->handshake = 0;
456 }
457
get_dsp_register(struct echoaudio * chip,u32 index)458 static inline u32 get_dsp_register(struct echoaudio *chip, u32 index)
459 {
460 return readl(&chip->dsp_registers[index]);
461 }
462
set_dsp_register(struct echoaudio * chip,u32 index,u32 value)463 static inline void set_dsp_register(struct echoaudio *chip, u32 index,
464 u32 value)
465 {
466 writel(value, &chip->dsp_registers[index]);
467 }
468
469
470 /* Pipe and bus indexes. PX_* and BX_* are defined as chip->px_* and chip->bx_*
471 for 3G cards because they depend on the external box. They are integer
472 constants for all other cards.
473 Never use those defines directly, use the following functions instead. */
474
px_digital_out(const struct echoaudio * chip)475 static inline int px_digital_out(const struct echoaudio *chip)
476 {
477 return PX_DIGITAL_OUT;
478 }
479
px_analog_in(const struct echoaudio * chip)480 static inline int px_analog_in(const struct echoaudio *chip)
481 {
482 return PX_ANALOG_IN;
483 }
484
px_digital_in(const struct echoaudio * chip)485 static inline int px_digital_in(const struct echoaudio *chip)
486 {
487 return PX_DIGITAL_IN;
488 }
489
px_num(const struct echoaudio * chip)490 static inline int px_num(const struct echoaudio *chip)
491 {
492 return PX_NUM;
493 }
494
bx_digital_out(const struct echoaudio * chip)495 static inline int bx_digital_out(const struct echoaudio *chip)
496 {
497 return BX_DIGITAL_OUT;
498 }
499
bx_analog_in(const struct echoaudio * chip)500 static inline int bx_analog_in(const struct echoaudio *chip)
501 {
502 return BX_ANALOG_IN;
503 }
504
bx_digital_in(const struct echoaudio * chip)505 static inline int bx_digital_in(const struct echoaudio *chip)
506 {
507 return BX_DIGITAL_IN;
508 }
509
bx_num(const struct echoaudio * chip)510 static inline int bx_num(const struct echoaudio *chip)
511 {
512 return BX_NUM;
513 }
514
num_pipes_out(const struct echoaudio * chip)515 static inline int num_pipes_out(const struct echoaudio *chip)
516 {
517 return px_analog_in(chip);
518 }
519
num_pipes_in(const struct echoaudio * chip)520 static inline int num_pipes_in(const struct echoaudio *chip)
521 {
522 return px_num(chip) - px_analog_in(chip);
523 }
524
num_busses_out(const struct echoaudio * chip)525 static inline int num_busses_out(const struct echoaudio *chip)
526 {
527 return bx_analog_in(chip);
528 }
529
num_busses_in(const struct echoaudio * chip)530 static inline int num_busses_in(const struct echoaudio *chip)
531 {
532 return bx_num(chip) - bx_analog_in(chip);
533 }
534
num_analog_busses_out(const struct echoaudio * chip)535 static inline int num_analog_busses_out(const struct echoaudio *chip)
536 {
537 return bx_digital_out(chip);
538 }
539
num_analog_busses_in(const struct echoaudio * chip)540 static inline int num_analog_busses_in(const struct echoaudio *chip)
541 {
542 return bx_digital_in(chip) - bx_analog_in(chip);
543 }
544
num_digital_busses_out(const struct echoaudio * chip)545 static inline int num_digital_busses_out(const struct echoaudio *chip)
546 {
547 return num_busses_out(chip) - num_analog_busses_out(chip);
548 }
549
num_digital_busses_in(const struct echoaudio * chip)550 static inline int num_digital_busses_in(const struct echoaudio *chip)
551 {
552 return num_busses_in(chip) - num_analog_busses_in(chip);
553 }
554
555 /* The monitor array is a one-dimensional array; compute the offset
556 * into the array */
monitor_index(const struct echoaudio * chip,int out,int in)557 static inline int monitor_index(const struct echoaudio *chip, int out, int in)
558 {
559 return out * num_busses_in(chip) + in;
560 }
561
562 #endif /* _ECHOAUDIO_H_ */
563