1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Vendors should document their modifier usage in as much detail as
62  * possible, to ensure maximum compatibility across devices, drivers and
63  * applications.
64  *
65  * The authoritative list of format modifier codes is found in
66  * `include/uapi/drm/drm_fourcc.h`
67  */
68 
69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
70 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
71 
72 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
73 
74 /* Reserve 0 for the invalid format specifier */
75 #define DRM_FORMAT_INVALID	0
76 
77 /* color index */
78 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
79 
80 /* 8 bpp Red */
81 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
82 
83 /* 16 bpp Red */
84 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
85 
86 /* 16 bpp RG */
87 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
88 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
89 
90 /* 32 bpp RG */
91 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
92 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
93 
94 /* 8 bpp RGB */
95 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
96 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
97 
98 /* 16 bpp RGB */
99 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
100 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
101 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
102 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
103 
104 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
105 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
106 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
107 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
108 
109 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
110 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
111 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
112 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
113 
114 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
115 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
116 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
117 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
118 
119 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
120 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
121 
122 /* 24 bpp RGB */
123 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
124 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
125 
126 /* 32 bpp RGB */
127 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
128 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
129 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
130 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
131 
132 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
133 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
134 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
135 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
136 
137 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
138 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
139 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
140 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
141 
142 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
143 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
144 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
145 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
146 
147 /*
148  * Floating point 64bpp RGB
149  * IEEE 754-2008 binary16 half-precision float
150  * [15:0] sign:exponent:mantissa 1:5:10
151  */
152 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
153 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
154 
155 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
156 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
157 
158 /* packed YCbCr */
159 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
160 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
161 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
162 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
163 
164 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
165 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
166 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
167 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
168 
169 /*
170  * packed Y2xx indicate for each component, xx valid data occupy msb
171  * 16-xx padding occupy lsb
172  */
173 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
174 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
175 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
176 
177 /*
178  * packed Y4xx indicate for each component, xx valid data occupy msb
179  * 16-xx padding occupy lsb except Y410
180  */
181 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
182 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
183 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
184 
185 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
186 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
187 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
188 
189 /*
190  * packed YCbCr420 2x2 tiled formats
191  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
192  */
193 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
194 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
195 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
196 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
197 
198 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
199 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
200 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
201 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
202 
203 /*
204  * 1-plane YUV 4:2:0
205  * In these formats, the component ordering is specified (Y, followed by U
206  * then V), but the exact Linear layout is undefined.
207  * These formats can only be used with a non-Linear modifier.
208  */
209 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
210 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
211 
212 /*
213  * 2 plane RGB + A
214  * index 0 = RGB plane, same format as the corresponding non _A8 format has
215  * index 1 = A plane, [7:0] A
216  */
217 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
218 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
219 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
220 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
221 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
222 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
223 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
224 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
225 
226 /*
227  * 2 plane YCbCr
228  * index 0 = Y plane, [7:0] Y
229  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
230  * or
231  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
232  */
233 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
234 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
235 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
236 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
237 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
238 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
239 /*
240  * 2 plane YCbCr
241  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
242  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
243  */
244 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
245 
246 /*
247  * 2 plane YCbCr MSB aligned
248  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
249  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
250  */
251 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
252 
253 /*
254  * 2 plane YCbCr MSB aligned
255  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
256  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
257  */
258 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
259 
260 /*
261  * 2 plane YCbCr MSB aligned
262  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
263  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
264  */
265 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
266 
267 /*
268  * 2 plane YCbCr MSB aligned
269  * index 0 = Y plane, [15:0] Y little endian
270  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
271  */
272 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
273 
274 /* 3 plane non-subsampled (444) YCbCr
275  * 16 bits per component, but only 10 bits are used and 6 bits are padded
276  * index 0: Y plane, [15:0] Y:x [10:6] little endian
277  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
278  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
279  */
280 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
281 
282 /* 3 plane non-subsampled (444) YCrCb
283  * 16 bits per component, but only 10 bits are used and 6 bits are padded
284  * index 0: Y plane, [15:0] Y:x [10:6] little endian
285  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
286  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
287  */
288 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
289 
290 /*
291  * 3 plane YCbCr
292  * index 0: Y plane, [7:0] Y
293  * index 1: Cb plane, [7:0] Cb
294  * index 2: Cr plane, [7:0] Cr
295  * or
296  * index 1: Cr plane, [7:0] Cr
297  * index 2: Cb plane, [7:0] Cb
298  */
299 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
300 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
301 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
302 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
303 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
304 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
305 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
306 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
307 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
308 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
309 
310 
311 /*
312  * Format Modifiers:
313  *
314  * Format modifiers describe, typically, a re-ordering or modification
315  * of the data in a plane of an FB.  This can be used to express tiled/
316  * swizzled formats, or compression, or a combination of the two.
317  *
318  * The upper 8 bits of the format modifier are a vendor-id as assigned
319  * below.  The lower 56 bits are assigned as vendor sees fit.
320  */
321 
322 /* Vendor Ids: */
323 #define DRM_FORMAT_MOD_NONE           0
324 #define DRM_FORMAT_MOD_VENDOR_NONE    0
325 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
326 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
327 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
328 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
329 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
330 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
331 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
332 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
333 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
334 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
335 
336 /* add more to the end as needed */
337 
338 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
339 
340 #define fourcc_mod_code(vendor, val) \
341 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
342 
343 /*
344  * Format Modifier tokens:
345  *
346  * When adding a new token please document the layout with a code comment,
347  * similar to the fourcc codes above. drm_fourcc.h is considered the
348  * authoritative source for all of these.
349  *
350  * Generic modifier names:
351  *
352  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
353  * for layouts which are common across multiple vendors. To preserve
354  * compatibility, in cases where a vendor-specific definition already exists and
355  * a generic name for it is desired, the common name is a purely symbolic alias
356  * and must use the same numerical value as the original definition.
357  *
358  * Note that generic names should only be used for modifiers which describe
359  * generic layouts (such as pixel re-ordering), which may have
360  * independently-developed support across multiple vendors.
361  *
362  * In future cases where a generic layout is identified before merging with a
363  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
364  * 'NONE' could be considered. This should only be for obvious, exceptional
365  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
366  * apply to a single vendor.
367  *
368  * Generic names should not be used for cases where multiple hardware vendors
369  * have implementations of the same standardised compression scheme (such as
370  * AFBC). In those cases, all implementations should use the same format
371  * modifier(s), reflecting the vendor of the standard.
372  */
373 
374 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
375 
376 /*
377  * Invalid Modifier
378  *
379  * This modifier can be used as a sentinel to terminate the format modifiers
380  * list, or to initialize a variable with an invalid modifier. It might also be
381  * used to report an error back to userspace for certain APIs.
382  */
383 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
384 
385 /*
386  * Linear Layout
387  *
388  * Just plain linear layout. Note that this is different from no specifying any
389  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
390  * which tells the driver to also take driver-internal information into account
391  * and so might actually result in a tiled framebuffer.
392  */
393 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
394 
395 /* Intel framebuffer modifiers */
396 
397 /*
398  * Intel X-tiling layout
399  *
400  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
401  * in row-major layout. Within the tile bytes are laid out row-major, with
402  * a platform-dependent stride. On top of that the memory can apply
403  * platform-depending swizzling of some higher address bits into bit6.
404  *
405  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
406  * On earlier platforms the is highly platforms specific and not useful for
407  * cross-driver sharing. It exists since on a given platform it does uniquely
408  * identify the layout in a simple way for i915-specific userspace, which
409  * facilitated conversion of userspace to modifiers. Additionally the exact
410  * format on some really old platforms is not known.
411  */
412 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
413 
414 /*
415  * Intel Y-tiling layout
416  *
417  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
418  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
419  * chunks column-major, with a platform-dependent height. On top of that the
420  * memory can apply platform-depending swizzling of some higher address bits
421  * into bit6.
422  *
423  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
424  * On earlier platforms the is highly platforms specific and not useful for
425  * cross-driver sharing. It exists since on a given platform it does uniquely
426  * identify the layout in a simple way for i915-specific userspace, which
427  * facilitated conversion of userspace to modifiers. Additionally the exact
428  * format on some really old platforms is not known.
429  */
430 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
431 
432 /*
433  * Intel Yf-tiling layout
434  *
435  * This is a tiled layout using 4Kb tiles in row-major layout.
436  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
437  * are arranged in four groups (two wide, two high) with column-major layout.
438  * Each group therefore consits out of four 256 byte units, which are also laid
439  * out as 2x2 column-major.
440  * 256 byte units are made out of four 64 byte blocks of pixels, producing
441  * either a square block or a 2:1 unit.
442  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
443  * in pixel depends on the pixel depth.
444  */
445 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
446 
447 /*
448  * Intel color control surface (CCS) for render compression
449  *
450  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
451  * The main surface will be plane index 0 and must be Y/Yf-tiled,
452  * the CCS will be plane index 1.
453  *
454  * Each CCS tile matches a 1024x512 pixel area of the main surface.
455  * To match certain aspects of the 3D hardware the CCS is
456  * considered to be made up of normal 128Bx32 Y tiles, Thus
457  * the CCS pitch must be specified in multiples of 128 bytes.
458  *
459  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
460  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
461  * But that fact is not relevant unless the memory is accessed
462  * directly.
463  */
464 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
465 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
466 
467 /*
468  * Intel color control surfaces (CCS) for Gen-12 render compression.
469  *
470  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
471  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
472  * main surface. In other words, 4 bits in CCS map to a main surface cache
473  * line pair. The main surface pitch is required to be a multiple of four
474  * Y-tile widths.
475  */
476 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
477 
478 /*
479  * Intel color control surfaces (CCS) for Gen-12 media compression
480  *
481  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
482  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
483  * main surface. In other words, 4 bits in CCS map to a main surface cache
484  * line pair. The main surface pitch is required to be a multiple of four
485  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
486  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
487  * planes 2 and 3 for the respective CCS.
488  */
489 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
490 
491 /*
492  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
493  *
494  * Macroblocks are laid in a Z-shape, and each pixel data is following the
495  * standard NV12 style.
496  * As for NV12, an image is the result of two frame buffers: one for Y,
497  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
498  * Alignment requirements are (for each buffer):
499  * - multiple of 128 pixels for the width
500  * - multiple of  32 pixels for the height
501  *
502  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
503  */
504 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
505 
506 /*
507  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
508  *
509  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
510  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
511  * they correspond to their 16x16 luma block.
512  */
513 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
514 
515 /*
516  * Qualcomm Compressed Format
517  *
518  * Refers to a compressed variant of the base format that is compressed.
519  * Implementation may be platform and base-format specific.
520  *
521  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
522  * Pixel data pitch/stride is aligned with macrotile width.
523  * Pixel data height is aligned with macrotile height.
524  * Entire pixel data buffer is aligned with 4k(bytes).
525  */
526 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
527 
528 /* Vivante framebuffer modifiers */
529 
530 /*
531  * Vivante 4x4 tiling layout
532  *
533  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
534  * layout.
535  */
536 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
537 
538 /*
539  * Vivante 64x64 super-tiling layout
540  *
541  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
542  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
543  * major layout.
544  *
545  * For more information: see
546  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
547  */
548 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
549 
550 /*
551  * Vivante 4x4 tiling layout for dual-pipe
552  *
553  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
554  * different base address. Offsets from the base addresses are therefore halved
555  * compared to the non-split tiled layout.
556  */
557 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
558 
559 /*
560  * Vivante 64x64 super-tiling layout for dual-pipe
561  *
562  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
563  * starts at a different base address. Offsets from the base addresses are
564  * therefore halved compared to the non-split super-tiled layout.
565  */
566 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
567 
568 /* NVIDIA frame buffer modifiers */
569 
570 /*
571  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
572  *
573  * Pixels are arranged in simple tiles of 16 x 16 bytes.
574  */
575 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
576 
577 /*
578  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
579  * and Tegra GPUs starting with Tegra K1.
580  *
581  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
582  * based on the architecture generation.  GOBs themselves are then arranged in
583  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
584  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
585  * a block depth or height of "4").
586  *
587  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
588  * in full detail.
589  *
590  *       Macro
591  * Bits  Param Description
592  * ----  ----- -----------------------------------------------------------------
593  *
594  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
595  *             compatibility with the existing
596  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
597  *
598  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
599  *             compatibility with the existing
600  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
601  *
602  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
603  *             size).  Must be zero.
604  *
605  *             Note there is no log2(width) parameter.  Some portions of the
606  *             hardware support a block width of two gobs, but it is impractical
607  *             to use due to lack of support elsewhere, and has no known
608  *             benefits.
609  *
610  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
611  *             in blocks, specified via log2(tile width in blocks)).  Must be
612  *             zero.
613  *
614  * 19:12 k     Page Kind.  This value directly maps to a field in the page
615  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
616  *             in memory and can be derived from the tuple
617  *
618  *               (format, GPU model, compression type, samples per pixel)
619  *
620  *             Where compression type is defined below.  If GPU model were
621  *             implied by the format modifier, format, or memory buffer, page
622  *             kind would not need to be included in the modifier itself, but
623  *             since the modifier should define the layout of the associated
624  *             memory buffer independent from any device or other context, it
625  *             must be included here.
626  *
627  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
628  *             starting with Fermi GPUs.  Additionally, the mapping between page
629  *             kind and bit layout has changed at various points.
630  *
631  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
632  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
633  *               2 = Gob Height 8, Turing+ Page Kind mapping
634  *               3 = Reserved for future use.
635  *
636  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
637  *             bit remapping step that occurs at an even lower level than the
638  *             page kind and block linear swizzles.  This causes the layout of
639  *             surfaces mapped in those SOC's GPUs to be incompatible with the
640  *             equivalent mapping on other GPUs in the same system.
641  *
642  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
643  *               1 = Desktop GPU and Tegra Xavier+ Layout
644  *
645  * 25:23 c     Lossless Framebuffer Compression type.
646  *
647  *               0 = none
648  *               1 = ROP/3D, layout 1, exact compression format implied by Page
649  *                   Kind field
650  *               2 = ROP/3D, layout 2, exact compression format implied by Page
651  *                   Kind field
652  *               3 = CDE horizontal
653  *               4 = CDE vertical
654  *               5 = Reserved for future use
655  *               6 = Reserved for future use
656  *               7 = Reserved for future use
657  *
658  * 55:25 -     Reserved for future use.  Must be zero.
659  */
660 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
661 	fourcc_mod_code(NVIDIA, (0x10 | \
662 				 ((h) & 0xf) | \
663 				 (((k) & 0xff) << 12) | \
664 				 (((g) & 0x3) << 20) | \
665 				 (((s) & 0x1) << 22) | \
666 				 (((c) & 0x7) << 23)))
667 
668 /* To grandfather in prior block linear format modifiers to the above layout,
669  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
670  * with block-linear layouts, is remapped within drivers to the value 0xfe,
671  * which corresponds to the "generic" kind used for simple single-sample
672  * uncompressed color formats on Fermi - Volta GPUs.
673  */
674 static inline __u64
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)675 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
676 {
677 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
678 		return modifier;
679 	else
680 		return modifier | (0xfe << 12);
681 }
682 
683 /*
684  * 16Bx2 Block Linear layout, used by Tegra K1 and later
685  *
686  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
687  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
688  *
689  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
690  *
691  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
692  * Valid values are:
693  *
694  * 0 == ONE_GOB
695  * 1 == TWO_GOBS
696  * 2 == FOUR_GOBS
697  * 3 == EIGHT_GOBS
698  * 4 == SIXTEEN_GOBS
699  * 5 == THIRTYTWO_GOBS
700  *
701  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
702  * in full detail.
703  */
704 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
705 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
706 
707 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
708 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
709 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
710 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
711 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
712 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
713 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
714 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
715 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
716 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
717 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
718 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
719 
720 /*
721  * Some Broadcom modifiers take parameters, for example the number of
722  * vertical lines in the image. Reserve the lower 32 bits for modifier
723  * type, and the next 24 bits for parameters. Top 8 bits are the
724  * vendor code.
725  */
726 #define __fourcc_mod_broadcom_param_shift 8
727 #define __fourcc_mod_broadcom_param_bits 48
728 #define fourcc_mod_broadcom_code(val, params) \
729 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
730 #define fourcc_mod_broadcom_param(m) \
731 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
732 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
733 #define fourcc_mod_broadcom_mod(m) \
734 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
735 		 __fourcc_mod_broadcom_param_shift))
736 
737 /*
738  * Broadcom VC4 "T" format
739  *
740  * This is the primary layout that the V3D GPU can texture from (it
741  * can't do linear).  The T format has:
742  *
743  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
744  *   pixels at 32 bit depth.
745  *
746  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
747  *   16x16 pixels).
748  *
749  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
750  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
751  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
752  *
753  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
754  *   tiles) or right-to-left (odd rows of 4k tiles).
755  */
756 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
757 
758 /*
759  * Broadcom SAND format
760  *
761  * This is the native format that the H.264 codec block uses.  For VC4
762  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
763  *
764  * The image can be considered to be split into columns, and the
765  * columns are placed consecutively into memory.  The width of those
766  * columns can be either 32, 64, 128, or 256 pixels, but in practice
767  * only 128 pixel columns are used.
768  *
769  * The pitch between the start of each column is set to optimally
770  * switch between SDRAM banks. This is passed as the number of lines
771  * of column width in the modifier (we can't use the stride value due
772  * to various core checks that look at it , so you should set the
773  * stride to width*cpp).
774  *
775  * Note that the column height for this format modifier is the same
776  * for all of the planes, assuming that each column contains both Y
777  * and UV.  Some SAND-using hardware stores UV in a separate tiled
778  * image from Y to reduce the column height, which is not supported
779  * with these modifiers.
780  */
781 
782 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
783 	fourcc_mod_broadcom_code(2, v)
784 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
785 	fourcc_mod_broadcom_code(3, v)
786 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
787 	fourcc_mod_broadcom_code(4, v)
788 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
789 	fourcc_mod_broadcom_code(5, v)
790 
791 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
792 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
793 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
794 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
795 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
796 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
797 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
798 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
799 
800 /* Broadcom UIF format
801  *
802  * This is the common format for the current Broadcom multimedia
803  * blocks, including V3D 3.x and newer, newer video codecs, and
804  * displays.
805  *
806  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
807  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
808  * stored in columns, with padding between the columns to ensure that
809  * moving from one column to the next doesn't hit the same SDRAM page
810  * bank.
811  *
812  * To calculate the padding, it is assumed that each hardware block
813  * and the software driving it knows the platform's SDRAM page size,
814  * number of banks, and XOR address, and that it's identical between
815  * all blocks using the format.  This tiling modifier will use XOR as
816  * necessary to reduce the padding.  If a hardware block can't do XOR,
817  * the assumption is that a no-XOR tiling modifier will be created.
818  */
819 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
820 
821 /*
822  * Arm Framebuffer Compression (AFBC) modifiers
823  *
824  * AFBC is a proprietary lossless image compression protocol and format.
825  * It provides fine-grained random access and minimizes the amount of data
826  * transferred between IP blocks.
827  *
828  * AFBC has several features which may be supported and/or used, which are
829  * represented using bits in the modifier. Not all combinations are valid,
830  * and different devices or use-cases may support different combinations.
831  *
832  * Further information on the use of AFBC modifiers can be found in
833  * Documentation/gpu/afbc.rst
834  */
835 
836 /*
837  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
838  * modifiers) denote the category for modifiers. Currently we have only two
839  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
840  * different categories.
841  */
842 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
843 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
844 
845 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
846 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
847 
848 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
849 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
850 
851 /*
852  * AFBC superblock size
853  *
854  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
855  * size (in pixels) must be aligned to a multiple of the superblock size.
856  * Four lowest significant bits(LSBs) are reserved for block size.
857  *
858  * Where one superblock size is specified, it applies to all planes of the
859  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
860  * the first applies to the Luma plane and the second applies to the Chroma
861  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
862  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
863  */
864 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
865 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
866 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
867 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
868 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
869 
870 /*
871  * AFBC lossless colorspace transform
872  *
873  * Indicates that the buffer makes use of the AFBC lossless colorspace
874  * transform.
875  */
876 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
877 
878 /*
879  * AFBC block-split
880  *
881  * Indicates that the payload of each superblock is split. The second
882  * half of the payload is positioned at a predefined offset from the start
883  * of the superblock payload.
884  */
885 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
886 
887 /*
888  * AFBC sparse layout
889  *
890  * This flag indicates that the payload of each superblock must be stored at a
891  * predefined position relative to the other superblocks in the same AFBC
892  * buffer. This order is the same order used by the header buffer. In this mode
893  * each superblock is given the same amount of space as an uncompressed
894  * superblock of the particular format would require, rounding up to the next
895  * multiple of 128 bytes in size.
896  */
897 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
898 
899 /*
900  * AFBC copy-block restrict
901  *
902  * Buffers with this flag must obey the copy-block restriction. The restriction
903  * is such that there are no copy-blocks referring across the border of 8x8
904  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
905  */
906 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
907 
908 /*
909  * AFBC tiled layout
910  *
911  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
912  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
913  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
914  * larger bpp formats. The order between the tiles is scan line.
915  * When the tiled layout is used, the buffer size (in pixels) must be aligned
916  * to the tile size.
917  */
918 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
919 
920 /*
921  * AFBC solid color blocks
922  *
923  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
924  * can be reduced if a whole superblock is a single color.
925  */
926 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
927 
928 /*
929  * AFBC double-buffer
930  *
931  * Indicates that the buffer is allocated in a layout safe for front-buffer
932  * rendering.
933  */
934 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
935 
936 /*
937  * AFBC buffer content hints
938  *
939  * Indicates that the buffer includes per-superblock content hints.
940  */
941 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
942 
943 /* AFBC uncompressed storage mode
944  *
945  * Indicates that the buffer is using AFBC uncompressed storage mode.
946  * In this mode all superblock payloads in the buffer use the uncompressed
947  * storage mode, which is usually only used for data which cannot be compressed.
948  * The buffer layout is the same as for AFBC buffers without USM set, this only
949  * affects the storage mode of the individual superblocks. Note that even a
950  * buffer without USM set may use uncompressed storage mode for some or all
951  * superblocks, USM just guarantees it for all.
952  */
953 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
954 
955 /*
956  * Arm 16x16 Block U-Interleaved modifier
957  *
958  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
959  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
960  * in the block are reordered.
961  */
962 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
963 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
964 
965 /*
966  * Allwinner tiled modifier
967  *
968  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
969  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
970  * planes.
971  *
972  * With this tiling, the luminance samples are disposed in tiles representing
973  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
974  * The pixel order in each tile is linear and the tiles are disposed linearly,
975  * both in row-major order.
976  */
977 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
978 
979 /*
980  * Amlogic Video Framebuffer Compression modifiers
981  *
982  * Amlogic uses a proprietary lossless image compression protocol and format
983  * for their hardware video codec accelerators, either video decoders or
984  * video input encoders.
985  *
986  * It considerably reduces memory bandwidth while writing and reading
987  * frames in memory.
988  *
989  * The underlying storage is considered to be 3 components, 8bit or 10-bit
990  * per component YCbCr 420, single plane :
991  * - DRM_FORMAT_YUV420_8BIT
992  * - DRM_FORMAT_YUV420_10BIT
993  *
994  * The first 8 bits of the mode defines the layout, then the following 8 bits
995  * defines the options changing the layout.
996  *
997  * Not all combinations are valid, and different SoCs may support different
998  * combinations of layout and options.
999  */
1000 #define __fourcc_mod_amlogic_layout_mask 0xf
1001 #define __fourcc_mod_amlogic_options_shift 8
1002 #define __fourcc_mod_amlogic_options_mask 0xf
1003 
1004 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1005 	fourcc_mod_code(AMLOGIC, \
1006 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1007 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1008 			 << __fourcc_mod_amlogic_options_shift))
1009 
1010 /* Amlogic FBC Layouts */
1011 
1012 /*
1013  * Amlogic FBC Basic Layout
1014  *
1015  * The basic layout is composed of:
1016  * - a body content organized in 64x32 superblocks with 4096 bytes per
1017  *   superblock in default mode.
1018  * - a 32 bytes per 128x64 header block
1019  *
1020  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1021  */
1022 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1023 
1024 /*
1025  * Amlogic FBC Scatter Memory layout
1026  *
1027  * Indicates the header contains IOMMU references to the compressed
1028  * frames content to optimize memory access and layout.
1029  *
1030  * In this mode, only the header memory address is needed, thus the
1031  * content memory organization is tied to the current producer
1032  * execution and cannot be saved/dumped neither transferrable between
1033  * Amlogic SoCs supporting this modifier.
1034  *
1035  * Due to the nature of the layout, these buffers are not expected to
1036  * be accessible by the user-space clients, but only accessible by the
1037  * hardware producers and consumers.
1038  *
1039  * The user-space clients should expect a failure while trying to mmap
1040  * the DMA-BUF handle returned by the producer.
1041  */
1042 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1043 
1044 /* Amlogic FBC Layout Options Bit Mask */
1045 
1046 /*
1047  * Amlogic FBC Memory Saving mode
1048  *
1049  * Indicates the storage is packed when pixel size is multiple of word
1050  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1051  * memory.
1052  *
1053  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1054  * the basic layout and 3200 bytes per 64x32 superblock combined with
1055  * the scatter layout.
1056  */
1057 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1058 
1059 #if defined(__cplusplus)
1060 }
1061 #endif
1062 
1063 #endif /* DRM_FOURCC_H */
1064