1 /*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 * Syed Mohammed Khasim <x0khasim@ti.com>
10 * Madhusudhan <madhu.cr@ti.com>
11 * Mohit Jalori <mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_device.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/core.h>
36 #include <linux/mmc/mmc.h>
37 #include <linux/mmc/slot-gpio.h>
38 #include <linux/io.h>
39 #include <linux/irq.h>
40 #include <linux/regulator/consumer.h>
41 #include <linux/pinctrl/consumer.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/pm_wakeirq.h>
44 #include <linux/platform_data/hsmmc-omap.h>
45
46 /* OMAP HSMMC Host Controller Registers */
47 #define OMAP_HSMMC_SYSSTATUS 0x0014
48 #define OMAP_HSMMC_CON 0x002C
49 #define OMAP_HSMMC_SDMASA 0x0100
50 #define OMAP_HSMMC_BLK 0x0104
51 #define OMAP_HSMMC_ARG 0x0108
52 #define OMAP_HSMMC_CMD 0x010C
53 #define OMAP_HSMMC_RSP10 0x0110
54 #define OMAP_HSMMC_RSP32 0x0114
55 #define OMAP_HSMMC_RSP54 0x0118
56 #define OMAP_HSMMC_RSP76 0x011C
57 #define OMAP_HSMMC_DATA 0x0120
58 #define OMAP_HSMMC_PSTATE 0x0124
59 #define OMAP_HSMMC_HCTL 0x0128
60 #define OMAP_HSMMC_SYSCTL 0x012C
61 #define OMAP_HSMMC_STAT 0x0130
62 #define OMAP_HSMMC_IE 0x0134
63 #define OMAP_HSMMC_ISE 0x0138
64 #define OMAP_HSMMC_AC12 0x013C
65 #define OMAP_HSMMC_CAPA 0x0140
66
67 #define VS18 (1 << 26)
68 #define VS30 (1 << 25)
69 #define HSS (1 << 21)
70 #define SDVS18 (0x5 << 9)
71 #define SDVS30 (0x6 << 9)
72 #define SDVS33 (0x7 << 9)
73 #define SDVS_MASK 0x00000E00
74 #define SDVSCLR 0xFFFFF1FF
75 #define SDVSDET 0x00000400
76 #define AUTOIDLE 0x1
77 #define SDBP (1 << 8)
78 #define DTO 0xe
79 #define ICE 0x1
80 #define ICS 0x2
81 #define CEN (1 << 2)
82 #define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
83 #define CLKD_MASK 0x0000FFC0
84 #define CLKD_SHIFT 6
85 #define DTO_MASK 0x000F0000
86 #define DTO_SHIFT 16
87 #define INIT_STREAM (1 << 1)
88 #define ACEN_ACMD23 (2 << 2)
89 #define DP_SELECT (1 << 21)
90 #define DDIR (1 << 4)
91 #define DMAE 0x1
92 #define MSBS (1 << 5)
93 #define BCE (1 << 1)
94 #define FOUR_BIT (1 << 1)
95 #define HSPE (1 << 2)
96 #define IWE (1 << 24)
97 #define DDR (1 << 19)
98 #define CLKEXTFREE (1 << 16)
99 #define CTPL (1 << 11)
100 #define DW8 (1 << 5)
101 #define OD 0x1
102 #define STAT_CLEAR 0xFFFFFFFF
103 #define INIT_STREAM_CMD 0x00000000
104 #define DUAL_VOLT_OCR_BIT 7
105 #define SRC (1 << 25)
106 #define SRD (1 << 26)
107 #define SOFTRESET (1 << 1)
108
109 /* PSTATE */
110 #define DLEV_DAT(x) (1 << (20 + (x)))
111
112 /* Interrupt masks for IE and ISE register */
113 #define CC_EN (1 << 0)
114 #define TC_EN (1 << 1)
115 #define BWR_EN (1 << 4)
116 #define BRR_EN (1 << 5)
117 #define CIRQ_EN (1 << 8)
118 #define ERR_EN (1 << 15)
119 #define CTO_EN (1 << 16)
120 #define CCRC_EN (1 << 17)
121 #define CEB_EN (1 << 18)
122 #define CIE_EN (1 << 19)
123 #define DTO_EN (1 << 20)
124 #define DCRC_EN (1 << 21)
125 #define DEB_EN (1 << 22)
126 #define ACE_EN (1 << 24)
127 #define CERR_EN (1 << 28)
128 #define BADA_EN (1 << 29)
129
130 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
131 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
132 BRR_EN | BWR_EN | TC_EN | CC_EN)
133
134 #define CNI (1 << 7)
135 #define ACIE (1 << 4)
136 #define ACEB (1 << 3)
137 #define ACCE (1 << 2)
138 #define ACTO (1 << 1)
139 #define ACNE (1 << 0)
140
141 #define MMC_AUTOSUSPEND_DELAY 100
142 #define MMC_TIMEOUT_MS 20 /* 20 mSec */
143 #define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
144 #define OMAP_MMC_MIN_CLOCK 400000
145 #define OMAP_MMC_MAX_CLOCK 52000000
146 #define DRIVER_NAME "omap_hsmmc"
147
148 /*
149 * One controller can have multiple slots, like on some omap boards using
150 * omap.c controller driver. Luckily this is not currently done on any known
151 * omap_hsmmc.c device.
152 */
153 #define mmc_pdata(host) host->pdata
154
155 /*
156 * MMC Host controller read/write API's
157 */
158 #define OMAP_HSMMC_READ(base, reg) \
159 __raw_readl((base) + OMAP_HSMMC_##reg)
160
161 #define OMAP_HSMMC_WRITE(base, reg, val) \
162 __raw_writel((val), (base) + OMAP_HSMMC_##reg)
163
164 struct omap_hsmmc_next {
165 unsigned int dma_len;
166 s32 cookie;
167 };
168
169 struct omap_hsmmc_host {
170 struct device *dev;
171 struct mmc_host *mmc;
172 struct mmc_request *mrq;
173 struct mmc_command *cmd;
174 struct mmc_data *data;
175 struct clk *fclk;
176 struct clk *dbclk;
177 struct regulator *pbias;
178 bool pbias_enabled;
179 void __iomem *base;
180 int vqmmc_enabled;
181 resource_size_t mapbase;
182 spinlock_t irq_lock; /* Prevent races with irq handler */
183 unsigned int dma_len;
184 unsigned int dma_sg_idx;
185 unsigned char bus_mode;
186 unsigned char power_mode;
187 int suspended;
188 u32 con;
189 u32 hctl;
190 u32 sysctl;
191 u32 capa;
192 int irq;
193 int wake_irq;
194 int use_dma, dma_ch;
195 struct dma_chan *tx_chan;
196 struct dma_chan *rx_chan;
197 int response_busy;
198 int context_loss;
199 int reqs_blocked;
200 int req_in_progress;
201 unsigned long clk_rate;
202 unsigned int flags;
203 #define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
204 #define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
205 struct omap_hsmmc_next next_data;
206 struct omap_hsmmc_platform_data *pdata;
207 };
208
209 struct omap_mmc_of_data {
210 u32 reg_offset;
211 u8 controller_flags;
212 };
213
214 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
215
omap_hsmmc_enable_supply(struct mmc_host * mmc)216 static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
217 {
218 int ret;
219 struct omap_hsmmc_host *host = mmc_priv(mmc);
220 struct mmc_ios *ios = &mmc->ios;
221
222 if (!IS_ERR(mmc->supply.vmmc)) {
223 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
224 if (ret)
225 return ret;
226 }
227
228 /* Enable interface voltage rail, if needed */
229 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
230 ret = regulator_enable(mmc->supply.vqmmc);
231 if (ret) {
232 dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
233 goto err_vqmmc;
234 }
235 host->vqmmc_enabled = 1;
236 }
237
238 return 0;
239
240 err_vqmmc:
241 if (!IS_ERR(mmc->supply.vmmc))
242 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
243
244 return ret;
245 }
246
omap_hsmmc_disable_supply(struct mmc_host * mmc)247 static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
248 {
249 int ret;
250 int status;
251 struct omap_hsmmc_host *host = mmc_priv(mmc);
252
253 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
254 ret = regulator_disable(mmc->supply.vqmmc);
255 if (ret) {
256 dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
257 return ret;
258 }
259 host->vqmmc_enabled = 0;
260 }
261
262 if (!IS_ERR(mmc->supply.vmmc)) {
263 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
264 if (ret)
265 goto err_set_ocr;
266 }
267
268 return 0;
269
270 err_set_ocr:
271 if (!IS_ERR(mmc->supply.vqmmc)) {
272 status = regulator_enable(mmc->supply.vqmmc);
273 if (status)
274 dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
275 }
276
277 return ret;
278 }
279
omap_hsmmc_set_pbias(struct omap_hsmmc_host * host,bool power_on)280 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
281 {
282 int ret;
283
284 if (IS_ERR(host->pbias))
285 return 0;
286
287 if (power_on) {
288 if (host->pbias_enabled == 0) {
289 ret = regulator_enable(host->pbias);
290 if (ret) {
291 dev_err(host->dev, "pbias reg enable fail\n");
292 return ret;
293 }
294 host->pbias_enabled = 1;
295 }
296 } else {
297 if (host->pbias_enabled == 1) {
298 ret = regulator_disable(host->pbias);
299 if (ret) {
300 dev_err(host->dev, "pbias reg disable fail\n");
301 return ret;
302 }
303 host->pbias_enabled = 0;
304 }
305 }
306
307 return 0;
308 }
309
omap_hsmmc_set_power(struct omap_hsmmc_host * host,int power_on)310 static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
311 {
312 struct mmc_host *mmc = host->mmc;
313 int ret = 0;
314
315 /*
316 * If we don't see a Vcc regulator, assume it's a fixed
317 * voltage always-on regulator.
318 */
319 if (IS_ERR(mmc->supply.vmmc))
320 return 0;
321
322 ret = omap_hsmmc_set_pbias(host, false);
323 if (ret)
324 return ret;
325
326 /*
327 * Assume Vcc regulator is used only to power the card ... OMAP
328 * VDDS is used to power the pins, optionally with a transceiver to
329 * support cards using voltages other than VDDS (1.8V nominal). When a
330 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
331 *
332 * In some cases this regulator won't support enable/disable;
333 * e.g. it's a fixed rail for a WLAN chip.
334 *
335 * In other cases vcc_aux switches interface power. Example, for
336 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
337 * chips/cards need an interface voltage rail too.
338 */
339 if (power_on) {
340 ret = omap_hsmmc_enable_supply(mmc);
341 if (ret)
342 return ret;
343
344 ret = omap_hsmmc_set_pbias(host, true);
345 if (ret)
346 goto err_set_voltage;
347 } else {
348 ret = omap_hsmmc_disable_supply(mmc);
349 if (ret)
350 return ret;
351 }
352
353 return 0;
354
355 err_set_voltage:
356 omap_hsmmc_disable_supply(mmc);
357
358 return ret;
359 }
360
omap_hsmmc_disable_boot_regulator(struct regulator * reg)361 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
362 {
363 int ret;
364
365 if (IS_ERR(reg))
366 return 0;
367
368 if (regulator_is_enabled(reg)) {
369 ret = regulator_enable(reg);
370 if (ret)
371 return ret;
372
373 ret = regulator_disable(reg);
374 if (ret)
375 return ret;
376 }
377
378 return 0;
379 }
380
omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host * host)381 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
382 {
383 struct mmc_host *mmc = host->mmc;
384 int ret;
385
386 /*
387 * disable regulators enabled during boot and get the usecount
388 * right so that regulators can be enabled/disabled by checking
389 * the return value of regulator_is_enabled
390 */
391 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
392 if (ret) {
393 dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
394 return ret;
395 }
396
397 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
398 if (ret) {
399 dev_err(host->dev,
400 "fail to disable boot enabled vmmc_aux reg\n");
401 return ret;
402 }
403
404 ret = omap_hsmmc_disable_boot_regulator(host->pbias);
405 if (ret) {
406 dev_err(host->dev,
407 "failed to disable boot enabled pbias reg\n");
408 return ret;
409 }
410
411 return 0;
412 }
413
omap_hsmmc_reg_get(struct omap_hsmmc_host * host)414 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
415 {
416 int ret;
417 struct mmc_host *mmc = host->mmc;
418
419
420 ret = mmc_regulator_get_supply(mmc);
421 if (ret)
422 return ret;
423
424 /* Allow an aux regulator */
425 if (IS_ERR(mmc->supply.vqmmc)) {
426 mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
427 "vmmc_aux");
428 if (IS_ERR(mmc->supply.vqmmc)) {
429 ret = PTR_ERR(mmc->supply.vqmmc);
430 if ((ret != -ENODEV) && host->dev->of_node)
431 return ret;
432 dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
433 PTR_ERR(mmc->supply.vqmmc));
434 }
435 }
436
437 host->pbias = devm_regulator_get_optional(host->dev, "pbias");
438 if (IS_ERR(host->pbias)) {
439 ret = PTR_ERR(host->pbias);
440 if ((ret != -ENODEV) && host->dev->of_node) {
441 dev_err(host->dev,
442 "SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
443 return ret;
444 }
445 dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
446 PTR_ERR(host->pbias));
447 }
448
449 /* For eMMC do not power off when not in sleep state */
450 if (mmc_pdata(host)->no_regulator_off_init)
451 return 0;
452
453 ret = omap_hsmmc_disable_boot_regulators(host);
454 if (ret)
455 return ret;
456
457 return 0;
458 }
459
460 /*
461 * Start clock to the card
462 */
omap_hsmmc_start_clock(struct omap_hsmmc_host * host)463 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
464 {
465 OMAP_HSMMC_WRITE(host->base, SYSCTL,
466 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
467 }
468
469 /*
470 * Stop clock to the card
471 */
omap_hsmmc_stop_clock(struct omap_hsmmc_host * host)472 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
473 {
474 OMAP_HSMMC_WRITE(host->base, SYSCTL,
475 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
476 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
477 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
478 }
479
omap_hsmmc_enable_irq(struct omap_hsmmc_host * host,struct mmc_command * cmd)480 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
481 struct mmc_command *cmd)
482 {
483 u32 irq_mask = INT_EN_MASK;
484 unsigned long flags;
485
486 if (host->use_dma)
487 irq_mask &= ~(BRR_EN | BWR_EN);
488
489 /* Disable timeout for erases */
490 if (cmd->opcode == MMC_ERASE)
491 irq_mask &= ~DTO_EN;
492
493 spin_lock_irqsave(&host->irq_lock, flags);
494 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
495 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
496
497 /* latch pending CIRQ, but don't signal MMC core */
498 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
499 irq_mask |= CIRQ_EN;
500 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
501 spin_unlock_irqrestore(&host->irq_lock, flags);
502 }
503
omap_hsmmc_disable_irq(struct omap_hsmmc_host * host)504 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
505 {
506 u32 irq_mask = 0;
507 unsigned long flags;
508
509 spin_lock_irqsave(&host->irq_lock, flags);
510 /* no transfer running but need to keep cirq if enabled */
511 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
512 irq_mask |= CIRQ_EN;
513 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
514 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
515 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
516 spin_unlock_irqrestore(&host->irq_lock, flags);
517 }
518
519 /* Calculate divisor for the given clock frequency */
calc_divisor(struct omap_hsmmc_host * host,struct mmc_ios * ios)520 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
521 {
522 u16 dsor = 0;
523
524 if (ios->clock) {
525 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
526 if (dsor > CLKD_MAX)
527 dsor = CLKD_MAX;
528 }
529
530 return dsor;
531 }
532
omap_hsmmc_set_clock(struct omap_hsmmc_host * host)533 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
534 {
535 struct mmc_ios *ios = &host->mmc->ios;
536 unsigned long regval;
537 unsigned long timeout;
538 unsigned long clkdiv;
539
540 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
541
542 omap_hsmmc_stop_clock(host);
543
544 regval = OMAP_HSMMC_READ(host->base, SYSCTL);
545 regval = regval & ~(CLKD_MASK | DTO_MASK);
546 clkdiv = calc_divisor(host, ios);
547 regval = regval | (clkdiv << 6) | (DTO << 16);
548 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
549 OMAP_HSMMC_WRITE(host->base, SYSCTL,
550 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
551
552 /* Wait till the ICS bit is set */
553 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
554 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
555 && time_before(jiffies, timeout))
556 cpu_relax();
557
558 /*
559 * Enable High-Speed Support
560 * Pre-Requisites
561 * - Controller should support High-Speed-Enable Bit
562 * - Controller should not be using DDR Mode
563 * - Controller should advertise that it supports High Speed
564 * in capabilities register
565 * - MMC/SD clock coming out of controller > 25MHz
566 */
567 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
568 (ios->timing != MMC_TIMING_MMC_DDR52) &&
569 (ios->timing != MMC_TIMING_UHS_DDR50) &&
570 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
571 regval = OMAP_HSMMC_READ(host->base, HCTL);
572 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
573 regval |= HSPE;
574 else
575 regval &= ~HSPE;
576
577 OMAP_HSMMC_WRITE(host->base, HCTL, regval);
578 }
579
580 omap_hsmmc_start_clock(host);
581 }
582
omap_hsmmc_set_bus_width(struct omap_hsmmc_host * host)583 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
584 {
585 struct mmc_ios *ios = &host->mmc->ios;
586 u32 con;
587
588 con = OMAP_HSMMC_READ(host->base, CON);
589 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
590 ios->timing == MMC_TIMING_UHS_DDR50)
591 con |= DDR; /* configure in DDR mode */
592 else
593 con &= ~DDR;
594 switch (ios->bus_width) {
595 case MMC_BUS_WIDTH_8:
596 OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
597 break;
598 case MMC_BUS_WIDTH_4:
599 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
600 OMAP_HSMMC_WRITE(host->base, HCTL,
601 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
602 break;
603 case MMC_BUS_WIDTH_1:
604 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
605 OMAP_HSMMC_WRITE(host->base, HCTL,
606 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
607 break;
608 }
609 }
610
omap_hsmmc_set_bus_mode(struct omap_hsmmc_host * host)611 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
612 {
613 struct mmc_ios *ios = &host->mmc->ios;
614 u32 con;
615
616 con = OMAP_HSMMC_READ(host->base, CON);
617 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
618 OMAP_HSMMC_WRITE(host->base, CON, con | OD);
619 else
620 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
621 }
622
623 #ifdef CONFIG_PM
624
625 /*
626 * Restore the MMC host context, if it was lost as result of a
627 * power state change.
628 */
omap_hsmmc_context_restore(struct omap_hsmmc_host * host)629 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
630 {
631 struct mmc_ios *ios = &host->mmc->ios;
632 u32 hctl, capa;
633 unsigned long timeout;
634
635 if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
636 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
637 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
638 host->capa == OMAP_HSMMC_READ(host->base, CAPA))
639 return 0;
640
641 host->context_loss++;
642
643 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
644 if (host->power_mode != MMC_POWER_OFF &&
645 (1 << ios->vdd) <= MMC_VDD_23_24)
646 hctl = SDVS18;
647 else
648 hctl = SDVS30;
649 capa = VS30 | VS18;
650 } else {
651 hctl = SDVS18;
652 capa = VS18;
653 }
654
655 if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
656 hctl |= IWE;
657
658 OMAP_HSMMC_WRITE(host->base, HCTL,
659 OMAP_HSMMC_READ(host->base, HCTL) | hctl);
660
661 OMAP_HSMMC_WRITE(host->base, CAPA,
662 OMAP_HSMMC_READ(host->base, CAPA) | capa);
663
664 OMAP_HSMMC_WRITE(host->base, HCTL,
665 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
666
667 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
668 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
669 && time_before(jiffies, timeout))
670 ;
671
672 OMAP_HSMMC_WRITE(host->base, ISE, 0);
673 OMAP_HSMMC_WRITE(host->base, IE, 0);
674 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
675
676 /* Do not initialize card-specific things if the power is off */
677 if (host->power_mode == MMC_POWER_OFF)
678 goto out;
679
680 omap_hsmmc_set_bus_width(host);
681
682 omap_hsmmc_set_clock(host);
683
684 omap_hsmmc_set_bus_mode(host);
685
686 out:
687 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
688 host->context_loss);
689 return 0;
690 }
691
692 /*
693 * Save the MMC host context (store the number of power state changes so far).
694 */
omap_hsmmc_context_save(struct omap_hsmmc_host * host)695 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
696 {
697 host->con = OMAP_HSMMC_READ(host->base, CON);
698 host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
699 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
700 host->capa = OMAP_HSMMC_READ(host->base, CAPA);
701 }
702
703 #else
704
omap_hsmmc_context_restore(struct omap_hsmmc_host * host)705 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
706 {
707 return 0;
708 }
709
omap_hsmmc_context_save(struct omap_hsmmc_host * host)710 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
711 {
712 }
713
714 #endif
715
716 /*
717 * Send init stream sequence to card
718 * before sending IDLE command
719 */
send_init_stream(struct omap_hsmmc_host * host)720 static void send_init_stream(struct omap_hsmmc_host *host)
721 {
722 int reg = 0;
723 unsigned long timeout;
724
725 disable_irq(host->irq);
726
727 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
728 OMAP_HSMMC_WRITE(host->base, CON,
729 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
730 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
731
732 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
733 while ((reg != CC_EN) && time_before(jiffies, timeout))
734 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
735
736 OMAP_HSMMC_WRITE(host->base, CON,
737 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
738
739 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
740 OMAP_HSMMC_READ(host->base, STAT);
741
742 enable_irq(host->irq);
743 }
744
745 static ssize_t
omap_hsmmc_show_slot_name(struct device * dev,struct device_attribute * attr,char * buf)746 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
747 char *buf)
748 {
749 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
750 struct omap_hsmmc_host *host = mmc_priv(mmc);
751
752 return sprintf(buf, "%s\n", mmc_pdata(host)->name);
753 }
754
755 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
756
757 /*
758 * Configure the response type and send the cmd.
759 */
760 static void
omap_hsmmc_start_command(struct omap_hsmmc_host * host,struct mmc_command * cmd,struct mmc_data * data)761 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
762 struct mmc_data *data)
763 {
764 int cmdreg = 0, resptype = 0, cmdtype = 0;
765
766 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
767 mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
768 host->cmd = cmd;
769
770 omap_hsmmc_enable_irq(host, cmd);
771
772 host->response_busy = 0;
773 if (cmd->flags & MMC_RSP_PRESENT) {
774 if (cmd->flags & MMC_RSP_136)
775 resptype = 1;
776 else if (cmd->flags & MMC_RSP_BUSY) {
777 resptype = 3;
778 host->response_busy = 1;
779 } else
780 resptype = 2;
781 }
782
783 /*
784 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
785 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
786 * a val of 0x3, rest 0x0.
787 */
788 if (cmd == host->mrq->stop)
789 cmdtype = 0x3;
790
791 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
792
793 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
794 host->mrq->sbc) {
795 cmdreg |= ACEN_ACMD23;
796 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
797 }
798 if (data) {
799 cmdreg |= DP_SELECT | MSBS | BCE;
800 if (data->flags & MMC_DATA_READ)
801 cmdreg |= DDIR;
802 else
803 cmdreg &= ~(DDIR);
804 }
805
806 if (host->use_dma)
807 cmdreg |= DMAE;
808
809 host->req_in_progress = 1;
810
811 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
812 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
813 }
814
omap_hsmmc_get_dma_chan(struct omap_hsmmc_host * host,struct mmc_data * data)815 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
816 struct mmc_data *data)
817 {
818 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
819 }
820
omap_hsmmc_request_done(struct omap_hsmmc_host * host,struct mmc_request * mrq)821 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
822 {
823 int dma_ch;
824 unsigned long flags;
825
826 spin_lock_irqsave(&host->irq_lock, flags);
827 host->req_in_progress = 0;
828 dma_ch = host->dma_ch;
829 spin_unlock_irqrestore(&host->irq_lock, flags);
830
831 omap_hsmmc_disable_irq(host);
832 /* Do not complete the request if DMA is still in progress */
833 if (mrq->data && host->use_dma && dma_ch != -1)
834 return;
835 host->mrq = NULL;
836 mmc_request_done(host->mmc, mrq);
837 }
838
839 /*
840 * Notify the transfer complete to MMC core
841 */
842 static void
omap_hsmmc_xfer_done(struct omap_hsmmc_host * host,struct mmc_data * data)843 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
844 {
845 if (!data) {
846 struct mmc_request *mrq = host->mrq;
847
848 /* TC before CC from CMD6 - don't know why, but it happens */
849 if (host->cmd && host->cmd->opcode == 6 &&
850 host->response_busy) {
851 host->response_busy = 0;
852 return;
853 }
854
855 omap_hsmmc_request_done(host, mrq);
856 return;
857 }
858
859 host->data = NULL;
860
861 if (!data->error)
862 data->bytes_xfered += data->blocks * (data->blksz);
863 else
864 data->bytes_xfered = 0;
865
866 if (data->stop && (data->error || !host->mrq->sbc))
867 omap_hsmmc_start_command(host, data->stop, NULL);
868 else
869 omap_hsmmc_request_done(host, data->mrq);
870 }
871
872 /*
873 * Notify the core about command completion
874 */
875 static void
omap_hsmmc_cmd_done(struct omap_hsmmc_host * host,struct mmc_command * cmd)876 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
877 {
878 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
879 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
880 host->cmd = NULL;
881 omap_hsmmc_start_dma_transfer(host);
882 omap_hsmmc_start_command(host, host->mrq->cmd,
883 host->mrq->data);
884 return;
885 }
886
887 host->cmd = NULL;
888
889 if (cmd->flags & MMC_RSP_PRESENT) {
890 if (cmd->flags & MMC_RSP_136) {
891 /* response type 2 */
892 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
893 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
894 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
895 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
896 } else {
897 /* response types 1, 1b, 3, 4, 5, 6 */
898 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
899 }
900 }
901 if ((host->data == NULL && !host->response_busy) || cmd->error)
902 omap_hsmmc_request_done(host, host->mrq);
903 }
904
905 /*
906 * DMA clean up for command errors
907 */
omap_hsmmc_dma_cleanup(struct omap_hsmmc_host * host,int errno)908 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
909 {
910 int dma_ch;
911 unsigned long flags;
912
913 host->data->error = errno;
914
915 spin_lock_irqsave(&host->irq_lock, flags);
916 dma_ch = host->dma_ch;
917 host->dma_ch = -1;
918 spin_unlock_irqrestore(&host->irq_lock, flags);
919
920 if (host->use_dma && dma_ch != -1) {
921 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
922
923 dmaengine_terminate_all(chan);
924 dma_unmap_sg(chan->device->dev,
925 host->data->sg, host->data->sg_len,
926 mmc_get_dma_dir(host->data));
927
928 host->data->host_cookie = 0;
929 }
930 host->data = NULL;
931 }
932
933 /*
934 * Readable error output
935 */
936 #ifdef CONFIG_MMC_DEBUG
omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host * host,u32 status)937 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
938 {
939 /* --- means reserved bit without definition at documentation */
940 static const char *omap_hsmmc_status_bits[] = {
941 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
942 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
943 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
944 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
945 };
946 char res[256];
947 char *buf = res;
948 int len, i;
949
950 len = sprintf(buf, "MMC IRQ 0x%x :", status);
951 buf += len;
952
953 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
954 if (status & (1 << i)) {
955 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
956 buf += len;
957 }
958
959 dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
960 }
961 #else
omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host * host,u32 status)962 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
963 u32 status)
964 {
965 }
966 #endif /* CONFIG_MMC_DEBUG */
967
968 /*
969 * MMC controller internal state machines reset
970 *
971 * Used to reset command or data internal state machines, using respectively
972 * SRC or SRD bit of SYSCTL register
973 * Can be called from interrupt context
974 */
omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host * host,unsigned long bit)975 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
976 unsigned long bit)
977 {
978 unsigned long i = 0;
979 unsigned long limit = MMC_TIMEOUT_US;
980
981 OMAP_HSMMC_WRITE(host->base, SYSCTL,
982 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
983
984 /*
985 * OMAP4 ES2 and greater has an updated reset logic.
986 * Monitor a 0->1 transition first
987 */
988 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
989 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
990 && (i++ < limit))
991 udelay(1);
992 }
993 i = 0;
994
995 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
996 (i++ < limit))
997 udelay(1);
998
999 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1000 dev_err(mmc_dev(host->mmc),
1001 "Timeout waiting on controller reset in %s\n",
1002 __func__);
1003 }
1004
hsmmc_command_incomplete(struct omap_hsmmc_host * host,int err,int end_cmd)1005 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1006 int err, int end_cmd)
1007 {
1008 if (end_cmd) {
1009 omap_hsmmc_reset_controller_fsm(host, SRC);
1010 if (host->cmd)
1011 host->cmd->error = err;
1012 }
1013
1014 if (host->data) {
1015 omap_hsmmc_reset_controller_fsm(host, SRD);
1016 omap_hsmmc_dma_cleanup(host, err);
1017 } else if (host->mrq && host->mrq->cmd)
1018 host->mrq->cmd->error = err;
1019 }
1020
omap_hsmmc_do_irq(struct omap_hsmmc_host * host,int status)1021 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1022 {
1023 struct mmc_data *data;
1024 int end_cmd = 0, end_trans = 0;
1025 int error = 0;
1026
1027 data = host->data;
1028 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1029
1030 if (status & ERR_EN) {
1031 omap_hsmmc_dbg_report_irq(host, status);
1032
1033 if (status & (CTO_EN | CCRC_EN | CEB_EN))
1034 end_cmd = 1;
1035 if (host->data || host->response_busy) {
1036 end_trans = !end_cmd;
1037 host->response_busy = 0;
1038 }
1039 if (status & (CTO_EN | DTO_EN))
1040 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1041 else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1042 BADA_EN))
1043 hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1044
1045 if (status & ACE_EN) {
1046 u32 ac12;
1047 ac12 = OMAP_HSMMC_READ(host->base, AC12);
1048 if (!(ac12 & ACNE) && host->mrq->sbc) {
1049 end_cmd = 1;
1050 if (ac12 & ACTO)
1051 error = -ETIMEDOUT;
1052 else if (ac12 & (ACCE | ACEB | ACIE))
1053 error = -EILSEQ;
1054 host->mrq->sbc->error = error;
1055 hsmmc_command_incomplete(host, error, end_cmd);
1056 }
1057 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1058 }
1059 }
1060
1061 OMAP_HSMMC_WRITE(host->base, STAT, status);
1062 if (end_cmd || ((status & CC_EN) && host->cmd))
1063 omap_hsmmc_cmd_done(host, host->cmd);
1064 if ((end_trans || (status & TC_EN)) && host->mrq)
1065 omap_hsmmc_xfer_done(host, data);
1066 }
1067
1068 /*
1069 * MMC controller IRQ handler
1070 */
omap_hsmmc_irq(int irq,void * dev_id)1071 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1072 {
1073 struct omap_hsmmc_host *host = dev_id;
1074 int status;
1075
1076 status = OMAP_HSMMC_READ(host->base, STAT);
1077 while (status & (INT_EN_MASK | CIRQ_EN)) {
1078 if (host->req_in_progress)
1079 omap_hsmmc_do_irq(host, status);
1080
1081 if (status & CIRQ_EN)
1082 mmc_signal_sdio_irq(host->mmc);
1083
1084 /* Flush posted write */
1085 status = OMAP_HSMMC_READ(host->base, STAT);
1086 }
1087
1088 return IRQ_HANDLED;
1089 }
1090
set_sd_bus_power(struct omap_hsmmc_host * host)1091 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1092 {
1093 unsigned long i;
1094
1095 OMAP_HSMMC_WRITE(host->base, HCTL,
1096 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1097 for (i = 0; i < loops_per_jiffy; i++) {
1098 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1099 break;
1100 cpu_relax();
1101 }
1102 }
1103
1104 /*
1105 * Switch MMC interface voltage ... only relevant for MMC1.
1106 *
1107 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1108 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1109 * Some chips, like eMMC ones, use internal transceivers.
1110 */
omap_hsmmc_switch_opcond(struct omap_hsmmc_host * host,int vdd)1111 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1112 {
1113 u32 reg_val = 0;
1114 int ret;
1115
1116 /* Disable the clocks */
1117 if (host->dbclk)
1118 clk_disable_unprepare(host->dbclk);
1119
1120 /* Turn the power off */
1121 ret = omap_hsmmc_set_power(host, 0);
1122
1123 /* Turn the power ON with given VDD 1.8 or 3.0v */
1124 if (!ret)
1125 ret = omap_hsmmc_set_power(host, 1);
1126 if (host->dbclk)
1127 clk_prepare_enable(host->dbclk);
1128
1129 if (ret != 0)
1130 goto err;
1131
1132 OMAP_HSMMC_WRITE(host->base, HCTL,
1133 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1134 reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1135
1136 /*
1137 * If a MMC dual voltage card is detected, the set_ios fn calls
1138 * this fn with VDD bit set for 1.8V. Upon card removal from the
1139 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1140 *
1141 * Cope with a bit of slop in the range ... per data sheets:
1142 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1143 * but recommended values are 1.71V to 1.89V
1144 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1145 * but recommended values are 2.7V to 3.3V
1146 *
1147 * Board setup code shouldn't permit anything very out-of-range.
1148 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1149 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1150 */
1151 if ((1 << vdd) <= MMC_VDD_23_24)
1152 reg_val |= SDVS18;
1153 else
1154 reg_val |= SDVS30;
1155
1156 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1157 set_sd_bus_power(host);
1158
1159 return 0;
1160 err:
1161 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1162 return ret;
1163 }
1164
omap_hsmmc_dma_callback(void * param)1165 static void omap_hsmmc_dma_callback(void *param)
1166 {
1167 struct omap_hsmmc_host *host = param;
1168 struct dma_chan *chan;
1169 struct mmc_data *data;
1170 int req_in_progress;
1171
1172 spin_lock_irq(&host->irq_lock);
1173 if (host->dma_ch < 0) {
1174 spin_unlock_irq(&host->irq_lock);
1175 return;
1176 }
1177
1178 data = host->mrq->data;
1179 chan = omap_hsmmc_get_dma_chan(host, data);
1180 if (!data->host_cookie)
1181 dma_unmap_sg(chan->device->dev,
1182 data->sg, data->sg_len,
1183 mmc_get_dma_dir(data));
1184
1185 req_in_progress = host->req_in_progress;
1186 host->dma_ch = -1;
1187 spin_unlock_irq(&host->irq_lock);
1188
1189 /* If DMA has finished after TC, complete the request */
1190 if (!req_in_progress) {
1191 struct mmc_request *mrq = host->mrq;
1192
1193 host->mrq = NULL;
1194 mmc_request_done(host->mmc, mrq);
1195 }
1196 }
1197
omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host * host,struct mmc_data * data,struct omap_hsmmc_next * next,struct dma_chan * chan)1198 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1199 struct mmc_data *data,
1200 struct omap_hsmmc_next *next,
1201 struct dma_chan *chan)
1202 {
1203 int dma_len;
1204
1205 if (!next && data->host_cookie &&
1206 data->host_cookie != host->next_data.cookie) {
1207 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1208 " host->next_data.cookie %d\n",
1209 __func__, data->host_cookie, host->next_data.cookie);
1210 data->host_cookie = 0;
1211 }
1212
1213 /* Check if next job is already prepared */
1214 if (next || data->host_cookie != host->next_data.cookie) {
1215 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1216 mmc_get_dma_dir(data));
1217
1218 } else {
1219 dma_len = host->next_data.dma_len;
1220 host->next_data.dma_len = 0;
1221 }
1222
1223
1224 if (dma_len == 0)
1225 return -EINVAL;
1226
1227 if (next) {
1228 next->dma_len = dma_len;
1229 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1230 } else
1231 host->dma_len = dma_len;
1232
1233 return 0;
1234 }
1235
1236 /*
1237 * Routine to configure and start DMA for the MMC card
1238 */
omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host * host,struct mmc_request * req)1239 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1240 struct mmc_request *req)
1241 {
1242 struct dma_async_tx_descriptor *tx;
1243 int ret = 0, i;
1244 struct mmc_data *data = req->data;
1245 struct dma_chan *chan;
1246 struct dma_slave_config cfg = {
1247 .src_addr = host->mapbase + OMAP_HSMMC_DATA,
1248 .dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1249 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1250 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1251 .src_maxburst = data->blksz / 4,
1252 .dst_maxburst = data->blksz / 4,
1253 };
1254
1255 /* Sanity check: all the SG entries must be aligned by block size. */
1256 for (i = 0; i < data->sg_len; i++) {
1257 struct scatterlist *sgl;
1258
1259 sgl = data->sg + i;
1260 if (sgl->length % data->blksz)
1261 return -EINVAL;
1262 }
1263 if ((data->blksz % 4) != 0)
1264 /* REVISIT: The MMC buffer increments only when MSB is written.
1265 * Return error for blksz which is non multiple of four.
1266 */
1267 return -EINVAL;
1268
1269 BUG_ON(host->dma_ch != -1);
1270
1271 chan = omap_hsmmc_get_dma_chan(host, data);
1272
1273 ret = dmaengine_slave_config(chan, &cfg);
1274 if (ret)
1275 return ret;
1276
1277 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1278 if (ret)
1279 return ret;
1280
1281 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1282 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1283 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1284 if (!tx) {
1285 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1286 /* FIXME: cleanup */
1287 return -1;
1288 }
1289
1290 tx->callback = omap_hsmmc_dma_callback;
1291 tx->callback_param = host;
1292
1293 /* Does not fail */
1294 dmaengine_submit(tx);
1295
1296 host->dma_ch = 1;
1297
1298 return 0;
1299 }
1300
set_data_timeout(struct omap_hsmmc_host * host,unsigned long long timeout_ns,unsigned int timeout_clks)1301 static void set_data_timeout(struct omap_hsmmc_host *host,
1302 unsigned long long timeout_ns,
1303 unsigned int timeout_clks)
1304 {
1305 unsigned long long timeout = timeout_ns;
1306 unsigned int cycle_ns;
1307 uint32_t reg, clkd, dto = 0;
1308
1309 reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1310 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1311 if (clkd == 0)
1312 clkd = 1;
1313
1314 cycle_ns = 1000000000 / (host->clk_rate / clkd);
1315 do_div(timeout, cycle_ns);
1316 timeout += timeout_clks;
1317 if (timeout) {
1318 while ((timeout & 0x80000000) == 0) {
1319 dto += 1;
1320 timeout <<= 1;
1321 }
1322 dto = 31 - dto;
1323 timeout <<= 1;
1324 if (timeout && dto)
1325 dto += 1;
1326 if (dto >= 13)
1327 dto -= 13;
1328 else
1329 dto = 0;
1330 if (dto > 14)
1331 dto = 14;
1332 }
1333
1334 reg &= ~DTO_MASK;
1335 reg |= dto << DTO_SHIFT;
1336 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1337 }
1338
omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host * host)1339 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1340 {
1341 struct mmc_request *req = host->mrq;
1342 struct dma_chan *chan;
1343
1344 if (!req->data)
1345 return;
1346 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1347 | (req->data->blocks << 16));
1348 set_data_timeout(host, req->data->timeout_ns,
1349 req->data->timeout_clks);
1350 chan = omap_hsmmc_get_dma_chan(host, req->data);
1351 dma_async_issue_pending(chan);
1352 }
1353
1354 /*
1355 * Configure block length for MMC/SD cards and initiate the transfer.
1356 */
1357 static int
omap_hsmmc_prepare_data(struct omap_hsmmc_host * host,struct mmc_request * req)1358 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1359 {
1360 int ret;
1361 unsigned long long timeout;
1362
1363 host->data = req->data;
1364
1365 if (req->data == NULL) {
1366 OMAP_HSMMC_WRITE(host->base, BLK, 0);
1367 if (req->cmd->flags & MMC_RSP_BUSY) {
1368 timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1369
1370 /*
1371 * Set an arbitrary 100ms data timeout for commands with
1372 * busy signal and no indication of busy_timeout.
1373 */
1374 if (!timeout)
1375 timeout = 100000000U;
1376
1377 set_data_timeout(host, timeout, 0);
1378 }
1379 return 0;
1380 }
1381
1382 if (host->use_dma) {
1383 ret = omap_hsmmc_setup_dma_transfer(host, req);
1384 if (ret != 0) {
1385 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1386 return ret;
1387 }
1388 }
1389 return 0;
1390 }
1391
omap_hsmmc_post_req(struct mmc_host * mmc,struct mmc_request * mrq,int err)1392 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1393 int err)
1394 {
1395 struct omap_hsmmc_host *host = mmc_priv(mmc);
1396 struct mmc_data *data = mrq->data;
1397
1398 if (host->use_dma && data->host_cookie) {
1399 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1400
1401 dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1402 mmc_get_dma_dir(data));
1403 data->host_cookie = 0;
1404 }
1405 }
1406
omap_hsmmc_pre_req(struct mmc_host * mmc,struct mmc_request * mrq)1407 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1408 {
1409 struct omap_hsmmc_host *host = mmc_priv(mmc);
1410
1411 if (mrq->data->host_cookie) {
1412 mrq->data->host_cookie = 0;
1413 return ;
1414 }
1415
1416 if (host->use_dma) {
1417 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1418
1419 if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1420 &host->next_data, c))
1421 mrq->data->host_cookie = 0;
1422 }
1423 }
1424
1425 /*
1426 * Request function. for read/write operation
1427 */
omap_hsmmc_request(struct mmc_host * mmc,struct mmc_request * req)1428 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1429 {
1430 struct omap_hsmmc_host *host = mmc_priv(mmc);
1431 int err;
1432
1433 BUG_ON(host->req_in_progress);
1434 BUG_ON(host->dma_ch != -1);
1435 if (host->reqs_blocked)
1436 host->reqs_blocked = 0;
1437 WARN_ON(host->mrq != NULL);
1438 host->mrq = req;
1439 host->clk_rate = clk_get_rate(host->fclk);
1440 err = omap_hsmmc_prepare_data(host, req);
1441 if (err) {
1442 req->cmd->error = err;
1443 if (req->data)
1444 req->data->error = err;
1445 host->mrq = NULL;
1446 mmc_request_done(mmc, req);
1447 return;
1448 }
1449 if (req->sbc && !(host->flags & AUTO_CMD23)) {
1450 omap_hsmmc_start_command(host, req->sbc, NULL);
1451 return;
1452 }
1453
1454 omap_hsmmc_start_dma_transfer(host);
1455 omap_hsmmc_start_command(host, req->cmd, req->data);
1456 }
1457
1458 /* Routine to configure clock values. Exposed API to core */
omap_hsmmc_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1459 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1460 {
1461 struct omap_hsmmc_host *host = mmc_priv(mmc);
1462 int do_send_init_stream = 0;
1463
1464 if (ios->power_mode != host->power_mode) {
1465 switch (ios->power_mode) {
1466 case MMC_POWER_OFF:
1467 omap_hsmmc_set_power(host, 0);
1468 break;
1469 case MMC_POWER_UP:
1470 omap_hsmmc_set_power(host, 1);
1471 break;
1472 case MMC_POWER_ON:
1473 do_send_init_stream = 1;
1474 break;
1475 }
1476 host->power_mode = ios->power_mode;
1477 }
1478
1479 /* FIXME: set registers based only on changes to ios */
1480
1481 omap_hsmmc_set_bus_width(host);
1482
1483 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1484 /* Only MMC1 can interface at 3V without some flavor
1485 * of external transceiver; but they all handle 1.8V.
1486 */
1487 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1488 (ios->vdd == DUAL_VOLT_OCR_BIT)) {
1489 /*
1490 * The mmc_select_voltage fn of the core does
1491 * not seem to set the power_mode to
1492 * MMC_POWER_UP upon recalculating the voltage.
1493 * vdd 1.8v.
1494 */
1495 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1496 dev_dbg(mmc_dev(host->mmc),
1497 "Switch operation failed\n");
1498 }
1499 }
1500
1501 omap_hsmmc_set_clock(host);
1502
1503 if (do_send_init_stream)
1504 send_init_stream(host);
1505
1506 omap_hsmmc_set_bus_mode(host);
1507 }
1508
omap_hsmmc_init_card(struct mmc_host * mmc,struct mmc_card * card)1509 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1510 {
1511 struct omap_hsmmc_host *host = mmc_priv(mmc);
1512
1513 if (mmc_pdata(host)->init_card)
1514 mmc_pdata(host)->init_card(card);
1515 }
1516
omap_hsmmc_enable_sdio_irq(struct mmc_host * mmc,int enable)1517 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1518 {
1519 struct omap_hsmmc_host *host = mmc_priv(mmc);
1520 u32 irq_mask, con;
1521 unsigned long flags;
1522
1523 spin_lock_irqsave(&host->irq_lock, flags);
1524
1525 con = OMAP_HSMMC_READ(host->base, CON);
1526 irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1527 if (enable) {
1528 host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1529 irq_mask |= CIRQ_EN;
1530 con |= CTPL | CLKEXTFREE;
1531 } else {
1532 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1533 irq_mask &= ~CIRQ_EN;
1534 con &= ~(CTPL | CLKEXTFREE);
1535 }
1536 OMAP_HSMMC_WRITE(host->base, CON, con);
1537 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1538
1539 /*
1540 * if enable, piggy back detection on current request
1541 * but always disable immediately
1542 */
1543 if (!host->req_in_progress || !enable)
1544 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1545
1546 /* flush posted write */
1547 OMAP_HSMMC_READ(host->base, IE);
1548
1549 spin_unlock_irqrestore(&host->irq_lock, flags);
1550 }
1551
omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host * host)1552 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1553 {
1554 int ret;
1555
1556 /*
1557 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1558 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1559 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1560 * with functional clock disabled.
1561 */
1562 if (!host->dev->of_node || !host->wake_irq)
1563 return -ENODEV;
1564
1565 ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1566 if (ret) {
1567 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1568 goto err;
1569 }
1570
1571 /*
1572 * Some omaps don't have wake-up path from deeper idle states
1573 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1574 */
1575 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1576 struct pinctrl *p = devm_pinctrl_get(host->dev);
1577 if (IS_ERR(p)) {
1578 ret = PTR_ERR(p);
1579 goto err_free_irq;
1580 }
1581 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1582 dev_info(host->dev, "missing default pinctrl state\n");
1583 devm_pinctrl_put(p);
1584 ret = -EINVAL;
1585 goto err_free_irq;
1586 }
1587
1588 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1589 dev_info(host->dev, "missing idle pinctrl state\n");
1590 devm_pinctrl_put(p);
1591 ret = -EINVAL;
1592 goto err_free_irq;
1593 }
1594 devm_pinctrl_put(p);
1595 }
1596
1597 OMAP_HSMMC_WRITE(host->base, HCTL,
1598 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1599 return 0;
1600
1601 err_free_irq:
1602 dev_pm_clear_wake_irq(host->dev);
1603 err:
1604 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1605 host->wake_irq = 0;
1606 return ret;
1607 }
1608
omap_hsmmc_conf_bus_power(struct omap_hsmmc_host * host)1609 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1610 {
1611 u32 hctl, capa, value;
1612
1613 /* Only MMC1 supports 3.0V */
1614 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1615 hctl = SDVS30;
1616 capa = VS30 | VS18;
1617 } else {
1618 hctl = SDVS18;
1619 capa = VS18;
1620 }
1621
1622 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1623 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1624
1625 value = OMAP_HSMMC_READ(host->base, CAPA);
1626 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1627
1628 /* Set SD bus power bit */
1629 set_sd_bus_power(host);
1630 }
1631
omap_hsmmc_multi_io_quirk(struct mmc_card * card,unsigned int direction,int blk_size)1632 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1633 unsigned int direction, int blk_size)
1634 {
1635 /* This controller can't do multiblock reads due to hw bugs */
1636 if (direction == MMC_DATA_READ)
1637 return 1;
1638
1639 return blk_size;
1640 }
1641
1642 static struct mmc_host_ops omap_hsmmc_ops = {
1643 .post_req = omap_hsmmc_post_req,
1644 .pre_req = omap_hsmmc_pre_req,
1645 .request = omap_hsmmc_request,
1646 .set_ios = omap_hsmmc_set_ios,
1647 .get_cd = mmc_gpio_get_cd,
1648 .get_ro = mmc_gpio_get_ro,
1649 .init_card = omap_hsmmc_init_card,
1650 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1651 };
1652
1653 #ifdef CONFIG_DEBUG_FS
1654
mmc_regs_show(struct seq_file * s,void * data)1655 static int mmc_regs_show(struct seq_file *s, void *data)
1656 {
1657 struct mmc_host *mmc = s->private;
1658 struct omap_hsmmc_host *host = mmc_priv(mmc);
1659
1660 seq_printf(s, "mmc%d:\n", mmc->index);
1661 seq_printf(s, "sdio irq mode\t%s\n",
1662 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1663
1664 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1665 seq_printf(s, "sdio irq \t%s\n",
1666 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
1667 : "disabled");
1668 }
1669 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1670
1671 pm_runtime_get_sync(host->dev);
1672 seq_puts(s, "\nregs:\n");
1673 seq_printf(s, "CON:\t\t0x%08x\n",
1674 OMAP_HSMMC_READ(host->base, CON));
1675 seq_printf(s, "PSTATE:\t\t0x%08x\n",
1676 OMAP_HSMMC_READ(host->base, PSTATE));
1677 seq_printf(s, "HCTL:\t\t0x%08x\n",
1678 OMAP_HSMMC_READ(host->base, HCTL));
1679 seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1680 OMAP_HSMMC_READ(host->base, SYSCTL));
1681 seq_printf(s, "IE:\t\t0x%08x\n",
1682 OMAP_HSMMC_READ(host->base, IE));
1683 seq_printf(s, "ISE:\t\t0x%08x\n",
1684 OMAP_HSMMC_READ(host->base, ISE));
1685 seq_printf(s, "CAPA:\t\t0x%08x\n",
1686 OMAP_HSMMC_READ(host->base, CAPA));
1687
1688 pm_runtime_mark_last_busy(host->dev);
1689 pm_runtime_put_autosuspend(host->dev);
1690
1691 return 0;
1692 }
1693
1694 DEFINE_SHOW_ATTRIBUTE(mmc_regs);
1695
omap_hsmmc_debugfs(struct mmc_host * mmc)1696 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1697 {
1698 if (mmc->debugfs_root)
1699 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1700 mmc, &mmc_regs_fops);
1701 }
1702
1703 #else
1704
omap_hsmmc_debugfs(struct mmc_host * mmc)1705 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1706 {
1707 }
1708
1709 #endif
1710
1711 #ifdef CONFIG_OF
1712 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1713 /* See 35xx errata 2.1.1.128 in SPRZ278F */
1714 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1715 };
1716
1717 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1718 .reg_offset = 0x100,
1719 };
1720 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1721 .reg_offset = 0x100,
1722 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1723 };
1724
1725 static const struct of_device_id omap_mmc_of_match[] = {
1726 {
1727 .compatible = "ti,omap2-hsmmc",
1728 },
1729 {
1730 .compatible = "ti,omap3-pre-es3-hsmmc",
1731 .data = &omap3_pre_es3_mmc_of_data,
1732 },
1733 {
1734 .compatible = "ti,omap3-hsmmc",
1735 },
1736 {
1737 .compatible = "ti,omap4-hsmmc",
1738 .data = &omap4_mmc_of_data,
1739 },
1740 {
1741 .compatible = "ti,am33xx-hsmmc",
1742 .data = &am33xx_mmc_of_data,
1743 },
1744 {},
1745 };
1746 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1747
of_get_hsmmc_pdata(struct device * dev)1748 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1749 {
1750 struct omap_hsmmc_platform_data *pdata, *legacy;
1751 struct device_node *np = dev->of_node;
1752
1753 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1754 if (!pdata)
1755 return ERR_PTR(-ENOMEM); /* out of memory */
1756
1757 legacy = dev_get_platdata(dev);
1758 if (legacy && legacy->name)
1759 pdata->name = legacy->name;
1760
1761 if (of_find_property(np, "ti,dual-volt", NULL))
1762 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1763
1764 if (of_find_property(np, "ti,non-removable", NULL)) {
1765 pdata->nonremovable = true;
1766 pdata->no_regulator_off_init = true;
1767 }
1768
1769 if (of_find_property(np, "ti,needs-special-reset", NULL))
1770 pdata->features |= HSMMC_HAS_UPDATED_RESET;
1771
1772 if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1773 pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1774
1775 return pdata;
1776 }
1777 #else
1778 static inline struct omap_hsmmc_platform_data
of_get_hsmmc_pdata(struct device * dev)1779 *of_get_hsmmc_pdata(struct device *dev)
1780 {
1781 return ERR_PTR(-EINVAL);
1782 }
1783 #endif
1784
omap_hsmmc_probe(struct platform_device * pdev)1785 static int omap_hsmmc_probe(struct platform_device *pdev)
1786 {
1787 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1788 struct mmc_host *mmc;
1789 struct omap_hsmmc_host *host = NULL;
1790 struct resource *res;
1791 int ret, irq;
1792 const struct of_device_id *match;
1793 const struct omap_mmc_of_data *data;
1794 void __iomem *base;
1795
1796 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1797 if (match) {
1798 pdata = of_get_hsmmc_pdata(&pdev->dev);
1799
1800 if (IS_ERR(pdata))
1801 return PTR_ERR(pdata);
1802
1803 if (match->data) {
1804 data = match->data;
1805 pdata->reg_offset = data->reg_offset;
1806 pdata->controller_flags |= data->controller_flags;
1807 }
1808 }
1809
1810 if (pdata == NULL) {
1811 dev_err(&pdev->dev, "Platform Data is missing\n");
1812 return -ENXIO;
1813 }
1814
1815 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1816 irq = platform_get_irq(pdev, 0);
1817 if (res == NULL || irq < 0)
1818 return -ENXIO;
1819
1820 base = devm_ioremap_resource(&pdev->dev, res);
1821 if (IS_ERR(base))
1822 return PTR_ERR(base);
1823
1824 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1825 if (!mmc) {
1826 ret = -ENOMEM;
1827 goto err;
1828 }
1829
1830 ret = mmc_of_parse(mmc);
1831 if (ret)
1832 goto err1;
1833
1834 host = mmc_priv(mmc);
1835 host->mmc = mmc;
1836 host->pdata = pdata;
1837 host->dev = &pdev->dev;
1838 host->use_dma = 1;
1839 host->dma_ch = -1;
1840 host->irq = irq;
1841 host->mapbase = res->start + pdata->reg_offset;
1842 host->base = base + pdata->reg_offset;
1843 host->power_mode = MMC_POWER_OFF;
1844 host->next_data.cookie = 1;
1845 host->pbias_enabled = 0;
1846 host->vqmmc_enabled = 0;
1847
1848 platform_set_drvdata(pdev, host);
1849
1850 if (pdev->dev.of_node)
1851 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1852
1853 mmc->ops = &omap_hsmmc_ops;
1854
1855 mmc->f_min = OMAP_MMC_MIN_CLOCK;
1856
1857 if (pdata->max_freq > 0)
1858 mmc->f_max = pdata->max_freq;
1859 else if (mmc->f_max == 0)
1860 mmc->f_max = OMAP_MMC_MAX_CLOCK;
1861
1862 spin_lock_init(&host->irq_lock);
1863
1864 host->fclk = devm_clk_get(&pdev->dev, "fck");
1865 if (IS_ERR(host->fclk)) {
1866 ret = PTR_ERR(host->fclk);
1867 host->fclk = NULL;
1868 goto err1;
1869 }
1870
1871 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1872 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1873 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1874 }
1875
1876 device_init_wakeup(&pdev->dev, true);
1877 pm_runtime_enable(host->dev);
1878 pm_runtime_get_sync(host->dev);
1879 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1880 pm_runtime_use_autosuspend(host->dev);
1881
1882 omap_hsmmc_context_save(host);
1883
1884 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1885 /*
1886 * MMC can still work without debounce clock.
1887 */
1888 if (IS_ERR(host->dbclk)) {
1889 host->dbclk = NULL;
1890 } else if (clk_prepare_enable(host->dbclk) != 0) {
1891 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1892 host->dbclk = NULL;
1893 }
1894
1895 /* Set this to a value that allows allocating an entire descriptor
1896 * list within a page (zero order allocation). */
1897 mmc->max_segs = 64;
1898
1899 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
1900 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
1901 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1902
1903 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1904 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE | MMC_CAP_CMD23;
1905
1906 mmc->caps |= mmc_pdata(host)->caps;
1907 if (mmc->caps & MMC_CAP_8_BIT_DATA)
1908 mmc->caps |= MMC_CAP_4_BIT_DATA;
1909
1910 if (mmc_pdata(host)->nonremovable)
1911 mmc->caps |= MMC_CAP_NONREMOVABLE;
1912
1913 mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1914
1915 omap_hsmmc_conf_bus_power(host);
1916
1917 host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1918 if (IS_ERR(host->rx_chan)) {
1919 dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1920 ret = PTR_ERR(host->rx_chan);
1921 goto err_irq;
1922 }
1923
1924 host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1925 if (IS_ERR(host->tx_chan)) {
1926 dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1927 ret = PTR_ERR(host->tx_chan);
1928 goto err_irq;
1929 }
1930
1931 /*
1932 * Limit the maximum segment size to the lower of the request size
1933 * and the DMA engine device segment size limits. In reality, with
1934 * 32-bit transfers, the DMA engine can do longer segments than this
1935 * but there is no way to represent that in the DMA model - if we
1936 * increase this figure here, we get warnings from the DMA API debug.
1937 */
1938 mmc->max_seg_size = min3(mmc->max_req_size,
1939 dma_get_max_seg_size(host->rx_chan->device->dev),
1940 dma_get_max_seg_size(host->tx_chan->device->dev));
1941
1942 /* Request IRQ for MMC operations */
1943 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1944 mmc_hostname(mmc), host);
1945 if (ret) {
1946 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1947 goto err_irq;
1948 }
1949
1950 ret = omap_hsmmc_reg_get(host);
1951 if (ret)
1952 goto err_irq;
1953
1954 if (!mmc->ocr_avail)
1955 mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1956
1957 omap_hsmmc_disable_irq(host);
1958
1959 /*
1960 * For now, only support SDIO interrupt if we have a separate
1961 * wake-up interrupt configured from device tree. This is because
1962 * the wake-up interrupt is needed for idle state and some
1963 * platforms need special quirks. And we don't want to add new
1964 * legacy mux platform init code callbacks any longer as we
1965 * are moving to DT based booting anyways.
1966 */
1967 ret = omap_hsmmc_configure_wake_irq(host);
1968 if (!ret)
1969 mmc->caps |= MMC_CAP_SDIO_IRQ;
1970
1971 mmc_add_host(mmc);
1972
1973 if (mmc_pdata(host)->name != NULL) {
1974 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1975 if (ret < 0)
1976 goto err_slot_name;
1977 }
1978
1979 omap_hsmmc_debugfs(mmc);
1980 pm_runtime_mark_last_busy(host->dev);
1981 pm_runtime_put_autosuspend(host->dev);
1982
1983 return 0;
1984
1985 err_slot_name:
1986 mmc_remove_host(mmc);
1987 err_irq:
1988 device_init_wakeup(&pdev->dev, false);
1989 if (!IS_ERR_OR_NULL(host->tx_chan))
1990 dma_release_channel(host->tx_chan);
1991 if (!IS_ERR_OR_NULL(host->rx_chan))
1992 dma_release_channel(host->rx_chan);
1993 pm_runtime_dont_use_autosuspend(host->dev);
1994 pm_runtime_put_sync(host->dev);
1995 pm_runtime_disable(host->dev);
1996 if (host->dbclk)
1997 clk_disable_unprepare(host->dbclk);
1998 err1:
1999 mmc_free_host(mmc);
2000 err:
2001 return ret;
2002 }
2003
omap_hsmmc_remove(struct platform_device * pdev)2004 static int omap_hsmmc_remove(struct platform_device *pdev)
2005 {
2006 struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2007
2008 pm_runtime_get_sync(host->dev);
2009 mmc_remove_host(host->mmc);
2010
2011 dma_release_channel(host->tx_chan);
2012 dma_release_channel(host->rx_chan);
2013
2014 dev_pm_clear_wake_irq(host->dev);
2015 pm_runtime_dont_use_autosuspend(host->dev);
2016 pm_runtime_put_sync(host->dev);
2017 pm_runtime_disable(host->dev);
2018 device_init_wakeup(&pdev->dev, false);
2019 if (host->dbclk)
2020 clk_disable_unprepare(host->dbclk);
2021
2022 mmc_free_host(host->mmc);
2023
2024 return 0;
2025 }
2026
2027 #ifdef CONFIG_PM_SLEEP
omap_hsmmc_suspend(struct device * dev)2028 static int omap_hsmmc_suspend(struct device *dev)
2029 {
2030 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2031
2032 if (!host)
2033 return 0;
2034
2035 pm_runtime_get_sync(host->dev);
2036
2037 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2038 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2039 OMAP_HSMMC_WRITE(host->base, IE, 0);
2040 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2041 OMAP_HSMMC_WRITE(host->base, HCTL,
2042 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2043 }
2044
2045 if (host->dbclk)
2046 clk_disable_unprepare(host->dbclk);
2047
2048 pm_runtime_put_sync(host->dev);
2049 return 0;
2050 }
2051
2052 /* Routine to resume the MMC device */
omap_hsmmc_resume(struct device * dev)2053 static int omap_hsmmc_resume(struct device *dev)
2054 {
2055 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2056
2057 if (!host)
2058 return 0;
2059
2060 pm_runtime_get_sync(host->dev);
2061
2062 if (host->dbclk)
2063 clk_prepare_enable(host->dbclk);
2064
2065 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2066 omap_hsmmc_conf_bus_power(host);
2067
2068 pm_runtime_mark_last_busy(host->dev);
2069 pm_runtime_put_autosuspend(host->dev);
2070 return 0;
2071 }
2072 #endif
2073
omap_hsmmc_runtime_suspend(struct device * dev)2074 static int omap_hsmmc_runtime_suspend(struct device *dev)
2075 {
2076 struct omap_hsmmc_host *host;
2077 unsigned long flags;
2078 int ret = 0;
2079
2080 host = dev_get_drvdata(dev);
2081 omap_hsmmc_context_save(host);
2082 dev_dbg(dev, "disabled\n");
2083
2084 spin_lock_irqsave(&host->irq_lock, flags);
2085 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2086 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2087 /* disable sdio irq handling to prevent race */
2088 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2089 OMAP_HSMMC_WRITE(host->base, IE, 0);
2090
2091 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2092 /*
2093 * dat1 line low, pending sdio irq
2094 * race condition: possible irq handler running on
2095 * multi-core, abort
2096 */
2097 dev_dbg(dev, "pending sdio irq, abort suspend\n");
2098 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2099 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2100 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2101 pm_runtime_mark_last_busy(dev);
2102 ret = -EBUSY;
2103 goto abort;
2104 }
2105
2106 pinctrl_pm_select_idle_state(dev);
2107 } else {
2108 pinctrl_pm_select_idle_state(dev);
2109 }
2110
2111 abort:
2112 spin_unlock_irqrestore(&host->irq_lock, flags);
2113 return ret;
2114 }
2115
omap_hsmmc_runtime_resume(struct device * dev)2116 static int omap_hsmmc_runtime_resume(struct device *dev)
2117 {
2118 struct omap_hsmmc_host *host;
2119 unsigned long flags;
2120
2121 host = dev_get_drvdata(dev);
2122 omap_hsmmc_context_restore(host);
2123 dev_dbg(dev, "enabled\n");
2124
2125 spin_lock_irqsave(&host->irq_lock, flags);
2126 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2127 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2128
2129 pinctrl_pm_select_default_state(host->dev);
2130
2131 /* irq lost, if pinmux incorrect */
2132 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2133 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2134 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2135 } else {
2136 pinctrl_pm_select_default_state(host->dev);
2137 }
2138 spin_unlock_irqrestore(&host->irq_lock, flags);
2139 return 0;
2140 }
2141
2142 static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2143 SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2144 .runtime_suspend = omap_hsmmc_runtime_suspend,
2145 .runtime_resume = omap_hsmmc_runtime_resume,
2146 };
2147
2148 static struct platform_driver omap_hsmmc_driver = {
2149 .probe = omap_hsmmc_probe,
2150 .remove = omap_hsmmc_remove,
2151 .driver = {
2152 .name = DRIVER_NAME,
2153 .pm = &omap_hsmmc_dev_pm_ops,
2154 .of_match_table = of_match_ptr(omap_mmc_of_match),
2155 },
2156 };
2157
2158 module_platform_driver(omap_hsmmc_driver);
2159 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2160 MODULE_LICENSE("GPL");
2161 MODULE_ALIAS("platform:" DRIVER_NAME);
2162 MODULE_AUTHOR("Texas Instruments Inc");
2163