1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4
5
6 #include <stdarg.h>
7 #include <linux/limits.h>
8 #include <linux/linkage.h>
9 #include <linux/stddef.h>
10 #include <linux/types.h>
11 #include <linux/compiler.h>
12 #include <linux/bitops.h>
13 #include <linux/log2.h>
14 #include <linux/minmax.h>
15 #include <linux/typecheck.h>
16 #include <linux/printk.h>
17 #include <linux/build_bug.h>
18 #include <asm/byteorder.h>
19 #include <asm/div64.h>
20 #include <uapi/linux/kernel.h>
21
22 #define STACK_MAGIC 0xdeadbeef
23
24 /**
25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
26 * @x: value to repeat
27 *
28 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
29 */
30 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
31
32 /* @a is a power of 2 value */
33 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
34 #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
35 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
36 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
37 #define PTR_ALIGN_DOWN(p, a) ((typeof(p))ALIGN_DOWN((unsigned long)(p), (a)))
38 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
39
40 /* generic data direction definitions */
41 #define READ 0
42 #define WRITE 1
43
44 /**
45 * ARRAY_SIZE - get the number of elements in array @arr
46 * @arr: array to be sized
47 */
48 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
49
50 #define u64_to_user_ptr(x) ( \
51 { \
52 typecheck(u64, (x)); \
53 (void __user *)(uintptr_t)(x); \
54 } \
55 )
56
57 /*
58 * This looks more complex than it should be. But we need to
59 * get the type for the ~ right in round_down (it needs to be
60 * as wide as the result!), and we want to evaluate the macro
61 * arguments just once each.
62 */
63 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
64 /**
65 * round_up - round up to next specified power of 2
66 * @x: the value to round
67 * @y: multiple to round up to (must be a power of 2)
68 *
69 * Rounds @x up to next multiple of @y (which must be a power of 2).
70 * To perform arbitrary rounding up, use roundup() below.
71 */
72 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
73 /**
74 * round_down - round down to next specified power of 2
75 * @x: the value to round
76 * @y: multiple to round down to (must be a power of 2)
77 *
78 * Rounds @x down to next multiple of @y (which must be a power of 2).
79 * To perform arbitrary rounding down, use rounddown() below.
80 */
81 #define round_down(x, y) ((x) & ~__round_mask(x, y))
82
83 #define typeof_member(T, m) typeof(((T*)0)->m)
84
85 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
86
87 #define DIV_ROUND_DOWN_ULL(ll, d) \
88 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
89
90 #define DIV_ROUND_UP_ULL(ll, d) \
91 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
92
93 #if BITS_PER_LONG == 32
94 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
95 #else
96 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
97 #endif
98
99 /**
100 * roundup - round up to the next specified multiple
101 * @x: the value to up
102 * @y: multiple to round up to
103 *
104 * Rounds @x up to next multiple of @y. If @y will always be a power
105 * of 2, consider using the faster round_up().
106 */
107 #define roundup(x, y) ( \
108 { \
109 typeof(y) __y = y; \
110 (((x) + (__y - 1)) / __y) * __y; \
111 } \
112 )
113 /**
114 * rounddown - round down to next specified multiple
115 * @x: the value to round
116 * @y: multiple to round down to
117 *
118 * Rounds @x down to next multiple of @y. If @y will always be a power
119 * of 2, consider using the faster round_down().
120 */
121 #define rounddown(x, y) ( \
122 { \
123 typeof(x) __x = (x); \
124 __x - (__x % (y)); \
125 } \
126 )
127
128 /*
129 * Divide positive or negative dividend by positive or negative divisor
130 * and round to closest integer. Result is undefined for negative
131 * divisors if the dividend variable type is unsigned and for negative
132 * dividends if the divisor variable type is unsigned.
133 */
134 #define DIV_ROUND_CLOSEST(x, divisor)( \
135 { \
136 typeof(x) __x = x; \
137 typeof(divisor) __d = divisor; \
138 (((typeof(x))-1) > 0 || \
139 ((typeof(divisor))-1) > 0 || \
140 (((__x) > 0) == ((__d) > 0))) ? \
141 (((__x) + ((__d) / 2)) / (__d)) : \
142 (((__x) - ((__d) / 2)) / (__d)); \
143 } \
144 )
145 /*
146 * Same as above but for u64 dividends. divisor must be a 32-bit
147 * number.
148 */
149 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
150 { \
151 typeof(divisor) __d = divisor; \
152 unsigned long long _tmp = (x) + (__d) / 2; \
153 do_div(_tmp, __d); \
154 _tmp; \
155 } \
156 )
157
158 /*
159 * Multiplies an integer by a fraction, while avoiding unnecessary
160 * overflow or loss of precision.
161 */
162 #define mult_frac(x, numer, denom)( \
163 { \
164 typeof(x) quot = (x) / (denom); \
165 typeof(x) rem = (x) % (denom); \
166 (quot * (numer)) + ((rem * (numer)) / (denom)); \
167 } \
168 )
169
170
171 #define _RET_IP_ (unsigned long)__builtin_return_address(0)
172 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
173
174 #define sector_div(a, b) do_div(a, b)
175
176 /**
177 * upper_32_bits - return bits 32-63 of a number
178 * @n: the number we're accessing
179 *
180 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
181 * the "right shift count >= width of type" warning when that quantity is
182 * 32-bits.
183 */
184 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
185
186 /**
187 * lower_32_bits - return bits 0-31 of a number
188 * @n: the number we're accessing
189 */
190 #define lower_32_bits(n) ((u32)((n) & 0xffffffff))
191
192 struct completion;
193 struct pt_regs;
194 struct user;
195
196 #ifdef CONFIG_PREEMPT_VOLUNTARY
197 extern int _cond_resched(void);
198 # define might_resched() _cond_resched()
199 #else
200 # define might_resched() do { } while (0)
201 #endif
202
203 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
204 extern void ___might_sleep(const char *file, int line, int preempt_offset);
205 extern void __might_sleep(const char *file, int line, int preempt_offset);
206 extern void __cant_sleep(const char *file, int line, int preempt_offset);
207
208 /**
209 * might_sleep - annotation for functions that can sleep
210 *
211 * this macro will print a stack trace if it is executed in an atomic
212 * context (spinlock, irq-handler, ...). Additional sections where blocking is
213 * not allowed can be annotated with non_block_start() and non_block_end()
214 * pairs.
215 *
216 * This is a useful debugging help to be able to catch problems early and not
217 * be bitten later when the calling function happens to sleep when it is not
218 * supposed to.
219 */
220 # define might_sleep() \
221 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
222 /**
223 * cant_sleep - annotation for functions that cannot sleep
224 *
225 * this macro will print a stack trace if it is executed with preemption enabled
226 */
227 # define cant_sleep() \
228 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
229 # define sched_annotate_sleep() (current->task_state_change = 0)
230 /**
231 * non_block_start - annotate the start of section where sleeping is prohibited
232 *
233 * This is on behalf of the oom reaper, specifically when it is calling the mmu
234 * notifiers. The problem is that if the notifier were to block on, for example,
235 * mutex_lock() and if the process which holds that mutex were to perform a
236 * sleeping memory allocation, the oom reaper is now blocked on completion of
237 * that memory allocation. Other blocking calls like wait_event() pose similar
238 * issues.
239 */
240 # define non_block_start() (current->non_block_count++)
241 /**
242 * non_block_end - annotate the end of section where sleeping is prohibited
243 *
244 * Closes a section opened by non_block_start().
245 */
246 # define non_block_end() WARN_ON(current->non_block_count-- == 0)
247 #else
___might_sleep(const char * file,int line,int preempt_offset)248 static inline void ___might_sleep(const char *file, int line,
249 int preempt_offset) { }
__might_sleep(const char * file,int line,int preempt_offset)250 static inline void __might_sleep(const char *file, int line,
251 int preempt_offset) { }
252 # define might_sleep() do { might_resched(); } while (0)
253 # define cant_sleep() do { } while (0)
254 # define sched_annotate_sleep() do { } while (0)
255 # define non_block_start() do { } while (0)
256 # define non_block_end() do { } while (0)
257 #endif
258
259 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
260
261 #ifndef CONFIG_PREEMPT_RT
262 # define cant_migrate() cant_sleep()
263 #else
264 /* Placeholder for now */
265 # define cant_migrate() do { } while (0)
266 #endif
267
268 /**
269 * abs - return absolute value of an argument
270 * @x: the value. If it is unsigned type, it is converted to signed type first.
271 * char is treated as if it was signed (regardless of whether it really is)
272 * but the macro's return type is preserved as char.
273 *
274 * Return: an absolute value of x.
275 */
276 #define abs(x) __abs_choose_expr(x, long long, \
277 __abs_choose_expr(x, long, \
278 __abs_choose_expr(x, int, \
279 __abs_choose_expr(x, short, \
280 __abs_choose_expr(x, char, \
281 __builtin_choose_expr( \
282 __builtin_types_compatible_p(typeof(x), char), \
283 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
284 ((void)0)))))))
285
286 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
287 __builtin_types_compatible_p(typeof(x), signed type) || \
288 __builtin_types_compatible_p(typeof(x), unsigned type), \
289 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
290
291 /**
292 * reciprocal_scale - "scale" a value into range [0, ep_ro)
293 * @val: value
294 * @ep_ro: right open interval endpoint
295 *
296 * Perform a "reciprocal multiplication" in order to "scale" a value into
297 * range [0, @ep_ro), where the upper interval endpoint is right-open.
298 * This is useful, e.g. for accessing a index of an array containing
299 * @ep_ro elements, for example. Think of it as sort of modulus, only that
300 * the result isn't that of modulo. ;) Note that if initial input is a
301 * small value, then result will return 0.
302 *
303 * Return: a result based on @val in interval [0, @ep_ro).
304 */
reciprocal_scale(u32 val,u32 ep_ro)305 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
306 {
307 return (u32)(((u64) val * ep_ro) >> 32);
308 }
309
310 #if defined(CONFIG_MMU) && \
311 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
312 #define might_fault() __might_fault(__FILE__, __LINE__)
313 void __might_fault(const char *file, int line);
314 #else
might_fault(void)315 static inline void might_fault(void) { }
316 #endif
317
318 extern struct atomic_notifier_head panic_notifier_list;
319 extern long (*panic_blink)(int state);
320 __printf(1, 2)
321 void panic(const char *fmt, ...) __noreturn __cold;
322 void nmi_panic(struct pt_regs *regs, const char *msg);
323 extern void oops_enter(void);
324 extern void oops_exit(void);
325 extern bool oops_may_print(void);
326 void do_exit(long error_code) __noreturn;
327 void complete_and_exit(struct completion *, long) __noreturn;
328
329 /* Internal, do not use. */
330 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
331 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
332
333 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
334 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
335
336 /**
337 * kstrtoul - convert a string to an unsigned long
338 * @s: The start of the string. The string must be null-terminated, and may also
339 * include a single newline before its terminating null. The first character
340 * may also be a plus sign, but not a minus sign.
341 * @base: The number base to use. The maximum supported base is 16. If base is
342 * given as 0, then the base of the string is automatically detected with the
343 * conventional semantics - If it begins with 0x the number will be parsed as a
344 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
345 * parsed as an octal number. Otherwise it will be parsed as a decimal.
346 * @res: Where to write the result of the conversion on success.
347 *
348 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
349 * Preferred over simple_strtoul(). Return code must be checked.
350 */
kstrtoul(const char * s,unsigned int base,unsigned long * res)351 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
352 {
353 /*
354 * We want to shortcut function call, but
355 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
356 */
357 if (sizeof(unsigned long) == sizeof(unsigned long long) &&
358 __alignof__(unsigned long) == __alignof__(unsigned long long))
359 return kstrtoull(s, base, (unsigned long long *)res);
360 else
361 return _kstrtoul(s, base, res);
362 }
363
364 /**
365 * kstrtol - convert a string to a long
366 * @s: The start of the string. The string must be null-terminated, and may also
367 * include a single newline before its terminating null. The first character
368 * may also be a plus sign or a minus sign.
369 * @base: The number base to use. The maximum supported base is 16. If base is
370 * given as 0, then the base of the string is automatically detected with the
371 * conventional semantics - If it begins with 0x the number will be parsed as a
372 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
373 * parsed as an octal number. Otherwise it will be parsed as a decimal.
374 * @res: Where to write the result of the conversion on success.
375 *
376 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
377 * Preferred over simple_strtol(). Return code must be checked.
378 */
kstrtol(const char * s,unsigned int base,long * res)379 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
380 {
381 /*
382 * We want to shortcut function call, but
383 * __builtin_types_compatible_p(long, long long) = 0.
384 */
385 if (sizeof(long) == sizeof(long long) &&
386 __alignof__(long) == __alignof__(long long))
387 return kstrtoll(s, base, (long long *)res);
388 else
389 return _kstrtol(s, base, res);
390 }
391
392 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
393 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
394
kstrtou64(const char * s,unsigned int base,u64 * res)395 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
396 {
397 return kstrtoull(s, base, res);
398 }
399
kstrtos64(const char * s,unsigned int base,s64 * res)400 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
401 {
402 return kstrtoll(s, base, res);
403 }
404
kstrtou32(const char * s,unsigned int base,u32 * res)405 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
406 {
407 return kstrtouint(s, base, res);
408 }
409
kstrtos32(const char * s,unsigned int base,s32 * res)410 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
411 {
412 return kstrtoint(s, base, res);
413 }
414
415 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
416 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
417 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
418 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
419 int __must_check kstrtobool(const char *s, bool *res);
420
421 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
422 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
423 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
424 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
425 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
426 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
427 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
428 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
429 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
430 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
431 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
432
kstrtou64_from_user(const char __user * s,size_t count,unsigned int base,u64 * res)433 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
434 {
435 return kstrtoull_from_user(s, count, base, res);
436 }
437
kstrtos64_from_user(const char __user * s,size_t count,unsigned int base,s64 * res)438 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
439 {
440 return kstrtoll_from_user(s, count, base, res);
441 }
442
kstrtou32_from_user(const char __user * s,size_t count,unsigned int base,u32 * res)443 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
444 {
445 return kstrtouint_from_user(s, count, base, res);
446 }
447
kstrtos32_from_user(const char __user * s,size_t count,unsigned int base,s32 * res)448 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
449 {
450 return kstrtoint_from_user(s, count, base, res);
451 }
452
453 /*
454 * Use kstrto<foo> instead.
455 *
456 * NOTE: simple_strto<foo> does not check for the range overflow and,
457 * depending on the input, may give interesting results.
458 *
459 * Use these functions if and only if you cannot use kstrto<foo>, because
460 * the conversion ends on the first non-digit character, which may be far
461 * beyond the supported range. It might be useful to parse the strings like
462 * 10x50 or 12:21 without altering original string or temporary buffer in use.
463 * Keep in mind above caveat.
464 */
465
466 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
467 extern long simple_strtol(const char *,char **,unsigned int);
468 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
469 extern long long simple_strtoll(const char *,char **,unsigned int);
470
471 extern int num_to_str(char *buf, int size,
472 unsigned long long num, unsigned int width);
473
474 /* lib/printf utilities */
475
476 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
477 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
478 extern __printf(3, 4)
479 int snprintf(char *buf, size_t size, const char *fmt, ...);
480 extern __printf(3, 0)
481 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
482 extern __printf(3, 4)
483 int scnprintf(char *buf, size_t size, const char *fmt, ...);
484 extern __printf(3, 0)
485 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
486 extern __printf(2, 3) __malloc
487 char *kasprintf(gfp_t gfp, const char *fmt, ...);
488 extern __printf(2, 0) __malloc
489 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
490 extern __printf(2, 0)
491 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
492
493 extern __scanf(2, 3)
494 int sscanf(const char *, const char *, ...);
495 extern __scanf(2, 0)
496 int vsscanf(const char *, const char *, va_list);
497
498 extern int get_option(char **str, int *pint);
499 extern char *get_options(const char *str, int nints, int *ints);
500 extern unsigned long long memparse(const char *ptr, char **retptr);
501 extern bool parse_option_str(const char *str, const char *option);
502 extern char *next_arg(char *args, char **param, char **val);
503
504 extern int core_kernel_text(unsigned long addr);
505 extern int init_kernel_text(unsigned long addr);
506 extern int core_kernel_data(unsigned long addr);
507 extern int __kernel_text_address(unsigned long addr);
508 extern int kernel_text_address(unsigned long addr);
509 extern int func_ptr_is_kernel_text(void *ptr);
510
511 u64 int_pow(u64 base, unsigned int exp);
512 unsigned long int_sqrt(unsigned long);
513
514 #if BITS_PER_LONG < 64
515 u32 int_sqrt64(u64 x);
516 #else
int_sqrt64(u64 x)517 static inline u32 int_sqrt64(u64 x)
518 {
519 return (u32)int_sqrt(x);
520 }
521 #endif
522
523 #ifdef CONFIG_SMP
524 extern unsigned int sysctl_oops_all_cpu_backtrace;
525 #else
526 #define sysctl_oops_all_cpu_backtrace 0
527 #endif /* CONFIG_SMP */
528
529 extern void bust_spinlocks(int yes);
530 extern int panic_timeout;
531 extern unsigned long panic_print;
532 extern int panic_on_oops;
533 extern int panic_on_unrecovered_nmi;
534 extern int panic_on_io_nmi;
535 extern int panic_on_warn;
536 extern unsigned long panic_on_taint;
537 extern bool panic_on_taint_nousertaint;
538 extern int sysctl_panic_on_rcu_stall;
539 extern int sysctl_panic_on_stackoverflow;
540
541 extern bool crash_kexec_post_notifiers;
542
543 /*
544 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
545 * holds a CPU number which is executing panic() currently. A value of
546 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
547 */
548 extern atomic_t panic_cpu;
549 #define PANIC_CPU_INVALID -1
550
551 /*
552 * Only to be used by arch init code. If the user over-wrote the default
553 * CONFIG_PANIC_TIMEOUT, honor it.
554 */
set_arch_panic_timeout(int timeout,int arch_default_timeout)555 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
556 {
557 if (panic_timeout == arch_default_timeout)
558 panic_timeout = timeout;
559 }
560 extern const char *print_tainted(void);
561 enum lockdep_ok {
562 LOCKDEP_STILL_OK,
563 LOCKDEP_NOW_UNRELIABLE
564 };
565 extern void add_taint(unsigned flag, enum lockdep_ok);
566 extern int test_taint(unsigned flag);
567 extern unsigned long get_taint(void);
568 extern int root_mountflags;
569
570 extern bool early_boot_irqs_disabled;
571
572 /*
573 * Values used for system_state. Ordering of the states must not be changed
574 * as code checks for <, <=, >, >= STATE.
575 */
576 extern enum system_states {
577 SYSTEM_BOOTING,
578 SYSTEM_SCHEDULING,
579 SYSTEM_RUNNING,
580 SYSTEM_HALT,
581 SYSTEM_POWER_OFF,
582 SYSTEM_RESTART,
583 SYSTEM_SUSPEND,
584 } system_state;
585
586 /* This cannot be an enum because some may be used in assembly source. */
587 #define TAINT_PROPRIETARY_MODULE 0
588 #define TAINT_FORCED_MODULE 1
589 #define TAINT_CPU_OUT_OF_SPEC 2
590 #define TAINT_FORCED_RMMOD 3
591 #define TAINT_MACHINE_CHECK 4
592 #define TAINT_BAD_PAGE 5
593 #define TAINT_USER 6
594 #define TAINT_DIE 7
595 #define TAINT_OVERRIDDEN_ACPI_TABLE 8
596 #define TAINT_WARN 9
597 #define TAINT_CRAP 10
598 #define TAINT_FIRMWARE_WORKAROUND 11
599 #define TAINT_OOT_MODULE 12
600 #define TAINT_UNSIGNED_MODULE 13
601 #define TAINT_SOFTLOCKUP 14
602 #define TAINT_LIVEPATCH 15
603 #define TAINT_AUX 16
604 #define TAINT_RANDSTRUCT 17
605 #define TAINT_FLAGS_COUNT 18
606 #define TAINT_FLAGS_MAX ((1UL << TAINT_FLAGS_COUNT) - 1)
607
608 struct taint_flag {
609 char c_true; /* character printed when tainted */
610 char c_false; /* character printed when not tainted */
611 bool module; /* also show as a per-module taint flag */
612 };
613
614 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
615
616 extern const char hex_asc[];
617 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
618 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
619
hex_byte_pack(char * buf,u8 byte)620 static inline char *hex_byte_pack(char *buf, u8 byte)
621 {
622 *buf++ = hex_asc_hi(byte);
623 *buf++ = hex_asc_lo(byte);
624 return buf;
625 }
626
627 extern const char hex_asc_upper[];
628 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
629 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
630
hex_byte_pack_upper(char * buf,u8 byte)631 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
632 {
633 *buf++ = hex_asc_upper_hi(byte);
634 *buf++ = hex_asc_upper_lo(byte);
635 return buf;
636 }
637
638 extern int hex_to_bin(char ch);
639 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
640 extern char *bin2hex(char *dst, const void *src, size_t count);
641
642 bool mac_pton(const char *s, u8 *mac);
643
644 /*
645 * General tracing related utility functions - trace_printk(),
646 * tracing_on/tracing_off and tracing_start()/tracing_stop
647 *
648 * Use tracing_on/tracing_off when you want to quickly turn on or off
649 * tracing. It simply enables or disables the recording of the trace events.
650 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
651 * file, which gives a means for the kernel and userspace to interact.
652 * Place a tracing_off() in the kernel where you want tracing to end.
653 * From user space, examine the trace, and then echo 1 > tracing_on
654 * to continue tracing.
655 *
656 * tracing_stop/tracing_start has slightly more overhead. It is used
657 * by things like suspend to ram where disabling the recording of the
658 * trace is not enough, but tracing must actually stop because things
659 * like calling smp_processor_id() may crash the system.
660 *
661 * Most likely, you want to use tracing_on/tracing_off.
662 */
663
664 enum ftrace_dump_mode {
665 DUMP_NONE,
666 DUMP_ALL,
667 DUMP_ORIG,
668 };
669
670 #ifdef CONFIG_TRACING
671 void tracing_on(void);
672 void tracing_off(void);
673 int tracing_is_on(void);
674 void tracing_snapshot(void);
675 void tracing_snapshot_alloc(void);
676
677 extern void tracing_start(void);
678 extern void tracing_stop(void);
679
680 static inline __printf(1, 2)
____trace_printk_check_format(const char * fmt,...)681 void ____trace_printk_check_format(const char *fmt, ...)
682 {
683 }
684 #define __trace_printk_check_format(fmt, args...) \
685 do { \
686 if (0) \
687 ____trace_printk_check_format(fmt, ##args); \
688 } while (0)
689
690 /**
691 * trace_printk - printf formatting in the ftrace buffer
692 * @fmt: the printf format for printing
693 *
694 * Note: __trace_printk is an internal function for trace_printk() and
695 * the @ip is passed in via the trace_printk() macro.
696 *
697 * This function allows a kernel developer to debug fast path sections
698 * that printk is not appropriate for. By scattering in various
699 * printk like tracing in the code, a developer can quickly see
700 * where problems are occurring.
701 *
702 * This is intended as a debugging tool for the developer only.
703 * Please refrain from leaving trace_printks scattered around in
704 * your code. (Extra memory is used for special buffers that are
705 * allocated when trace_printk() is used.)
706 *
707 * A little optimization trick is done here. If there's only one
708 * argument, there's no need to scan the string for printf formats.
709 * The trace_puts() will suffice. But how can we take advantage of
710 * using trace_puts() when trace_printk() has only one argument?
711 * By stringifying the args and checking the size we can tell
712 * whether or not there are args. __stringify((__VA_ARGS__)) will
713 * turn into "()\0" with a size of 3 when there are no args, anything
714 * else will be bigger. All we need to do is define a string to this,
715 * and then take its size and compare to 3. If it's bigger, use
716 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
717 * let gcc optimize the rest.
718 */
719
720 #define trace_printk(fmt, ...) \
721 do { \
722 char _______STR[] = __stringify((__VA_ARGS__)); \
723 if (sizeof(_______STR) > 3) \
724 do_trace_printk(fmt, ##__VA_ARGS__); \
725 else \
726 trace_puts(fmt); \
727 } while (0)
728
729 #define do_trace_printk(fmt, args...) \
730 do { \
731 static const char *trace_printk_fmt __used \
732 __section("__trace_printk_fmt") = \
733 __builtin_constant_p(fmt) ? fmt : NULL; \
734 \
735 __trace_printk_check_format(fmt, ##args); \
736 \
737 if (__builtin_constant_p(fmt)) \
738 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
739 else \
740 __trace_printk(_THIS_IP_, fmt, ##args); \
741 } while (0)
742
743 extern __printf(2, 3)
744 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
745
746 extern __printf(2, 3)
747 int __trace_printk(unsigned long ip, const char *fmt, ...);
748
749 /**
750 * trace_puts - write a string into the ftrace buffer
751 * @str: the string to record
752 *
753 * Note: __trace_bputs is an internal function for trace_puts and
754 * the @ip is passed in via the trace_puts macro.
755 *
756 * This is similar to trace_printk() but is made for those really fast
757 * paths that a developer wants the least amount of "Heisenbug" effects,
758 * where the processing of the print format is still too much.
759 *
760 * This function allows a kernel developer to debug fast path sections
761 * that printk is not appropriate for. By scattering in various
762 * printk like tracing in the code, a developer can quickly see
763 * where problems are occurring.
764 *
765 * This is intended as a debugging tool for the developer only.
766 * Please refrain from leaving trace_puts scattered around in
767 * your code. (Extra memory is used for special buffers that are
768 * allocated when trace_puts() is used.)
769 *
770 * Returns: 0 if nothing was written, positive # if string was.
771 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
772 */
773
774 #define trace_puts(str) ({ \
775 static const char *trace_printk_fmt __used \
776 __section("__trace_printk_fmt") = \
777 __builtin_constant_p(str) ? str : NULL; \
778 \
779 if (__builtin_constant_p(str)) \
780 __trace_bputs(_THIS_IP_, trace_printk_fmt); \
781 else \
782 __trace_puts(_THIS_IP_, str, strlen(str)); \
783 })
784 extern int __trace_bputs(unsigned long ip, const char *str);
785 extern int __trace_puts(unsigned long ip, const char *str, int size);
786
787 extern void trace_dump_stack(int skip);
788
789 /*
790 * The double __builtin_constant_p is because gcc will give us an error
791 * if we try to allocate the static variable to fmt if it is not a
792 * constant. Even with the outer if statement.
793 */
794 #define ftrace_vprintk(fmt, vargs) \
795 do { \
796 if (__builtin_constant_p(fmt)) { \
797 static const char *trace_printk_fmt __used \
798 __section("__trace_printk_fmt") = \
799 __builtin_constant_p(fmt) ? fmt : NULL; \
800 \
801 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
802 } else \
803 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \
804 } while (0)
805
806 extern __printf(2, 0) int
807 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
808
809 extern __printf(2, 0) int
810 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
811
812 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
813 #else
tracing_start(void)814 static inline void tracing_start(void) { }
tracing_stop(void)815 static inline void tracing_stop(void) { }
trace_dump_stack(int skip)816 static inline void trace_dump_stack(int skip) { }
817
tracing_on(void)818 static inline void tracing_on(void) { }
tracing_off(void)819 static inline void tracing_off(void) { }
tracing_is_on(void)820 static inline int tracing_is_on(void) { return 0; }
tracing_snapshot(void)821 static inline void tracing_snapshot(void) { }
tracing_snapshot_alloc(void)822 static inline void tracing_snapshot_alloc(void) { }
823
824 static inline __printf(1, 2)
trace_printk(const char * fmt,...)825 int trace_printk(const char *fmt, ...)
826 {
827 return 0;
828 }
829 static __printf(1, 0) inline int
ftrace_vprintk(const char * fmt,va_list ap)830 ftrace_vprintk(const char *fmt, va_list ap)
831 {
832 return 0;
833 }
ftrace_dump(enum ftrace_dump_mode oops_dump_mode)834 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
835 #endif /* CONFIG_TRACING */
836
837 /* This counts to 12. Any more, it will return 13th argument. */
838 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
839 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
840
841 #define __CONCAT(a, b) a ## b
842 #define CONCATENATE(a, b) __CONCAT(a, b)
843
844 /**
845 * container_of - cast a member of a structure out to the containing structure
846 * @ptr: the pointer to the member.
847 * @type: the type of the container struct this is embedded in.
848 * @member: the name of the member within the struct.
849 *
850 */
851 #define container_of(ptr, type, member) ({ \
852 void *__mptr = (void *)(ptr); \
853 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
854 !__same_type(*(ptr), void), \
855 "pointer type mismatch in container_of()"); \
856 ((type *)(__mptr - offsetof(type, member))); })
857
858 /**
859 * container_of_safe - cast a member of a structure out to the containing structure
860 * @ptr: the pointer to the member.
861 * @type: the type of the container struct this is embedded in.
862 * @member: the name of the member within the struct.
863 *
864 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
865 */
866 #define container_of_safe(ptr, type, member) ({ \
867 void *__mptr = (void *)(ptr); \
868 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
869 !__same_type(*(ptr), void), \
870 "pointer type mismatch in container_of()"); \
871 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \
872 ((type *)(__mptr - offsetof(type, member))); })
873
874 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
875 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
876 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
877 #endif
878
879 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
880 #define VERIFY_OCTAL_PERMISSIONS(perms) \
881 (BUILD_BUG_ON_ZERO((perms) < 0) + \
882 BUILD_BUG_ON_ZERO((perms) > 0777) + \
883 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
884 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
885 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
886 /* USER_WRITABLE >= GROUP_WRITABLE */ \
887 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
888 /* OTHER_WRITABLE? Generally considered a bad idea. */ \
889 BUILD_BUG_ON_ZERO((perms) & 2) + \
890 (perms))
891 #endif
892