1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 * Copyright 2007-2010 Freescale Semiconductor, Inc.
5 *
6 * Modified by Cort Dougan (cort@cs.nmt.edu)
7 * and Paul Mackerras (paulus@samba.org)
8 */
9
10 /*
11 * This file handles the architecture-dependent parts of hardware exceptions
12 */
13
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/pkeys.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/extable.h>
27 #include <linux/module.h> /* print_modules */
28 #include <linux/prctl.h>
29 #include <linux/delay.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/backlight.h>
33 #include <linux/bug.h>
34 #include <linux/kdebug.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/smp.h>
38 #include <linux/console.h>
39 #include <linux/kmsg_dump.h>
40
41 #include <asm/emulated_ops.h>
42 #include <linux/uaccess.h>
43 #include <asm/debugfs.h>
44 #include <asm/io.h>
45 #include <asm/machdep.h>
46 #include <asm/rtas.h>
47 #include <asm/pmc.h>
48 #include <asm/reg.h>
49 #ifdef CONFIG_PMAC_BACKLIGHT
50 #include <asm/backlight.h>
51 #endif
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #include <asm/processor.h>
55 #include <asm/tm.h>
56 #endif
57 #include <asm/kexec.h>
58 #include <asm/ppc-opcode.h>
59 #include <asm/rio.h>
60 #include <asm/fadump.h>
61 #include <asm/switch_to.h>
62 #include <asm/tm.h>
63 #include <asm/debug.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/hmi.h>
66 #include <sysdev/fsl_pci.h>
67 #include <asm/kprobes.h>
68 #include <asm/stacktrace.h>
69 #include <asm/nmi.h>
70
71 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
72 int (*__debugger)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
79
80 EXPORT_SYMBOL(__debugger);
81 EXPORT_SYMBOL(__debugger_ipi);
82 EXPORT_SYMBOL(__debugger_bpt);
83 EXPORT_SYMBOL(__debugger_sstep);
84 EXPORT_SYMBOL(__debugger_iabr_match);
85 EXPORT_SYMBOL(__debugger_break_match);
86 EXPORT_SYMBOL(__debugger_fault_handler);
87 #endif
88
89 /* Transactional Memory trap debug */
90 #ifdef TM_DEBUG_SW
91 #define TM_DEBUG(x...) printk(KERN_INFO x)
92 #else
93 #define TM_DEBUG(x...) do { } while(0)
94 #endif
95
signame(int signr)96 static const char *signame(int signr)
97 {
98 switch (signr) {
99 case SIGBUS: return "bus error";
100 case SIGFPE: return "floating point exception";
101 case SIGILL: return "illegal instruction";
102 case SIGSEGV: return "segfault";
103 case SIGTRAP: return "unhandled trap";
104 }
105
106 return "unknown signal";
107 }
108
109 /*
110 * Trap & Exception support
111 */
112
113 #ifdef CONFIG_PMAC_BACKLIGHT
pmac_backlight_unblank(void)114 static void pmac_backlight_unblank(void)
115 {
116 mutex_lock(&pmac_backlight_mutex);
117 if (pmac_backlight) {
118 struct backlight_properties *props;
119
120 props = &pmac_backlight->props;
121 props->brightness = props->max_brightness;
122 props->power = FB_BLANK_UNBLANK;
123 backlight_update_status(pmac_backlight);
124 }
125 mutex_unlock(&pmac_backlight_mutex);
126 }
127 #else
pmac_backlight_unblank(void)128 static inline void pmac_backlight_unblank(void) { }
129 #endif
130
131 /*
132 * If oops/die is expected to crash the machine, return true here.
133 *
134 * This should not be expected to be 100% accurate, there may be
135 * notifiers registered or other unexpected conditions that may bring
136 * down the kernel. Or if the current process in the kernel is holding
137 * locks or has other critical state, the kernel may become effectively
138 * unusable anyway.
139 */
die_will_crash(void)140 bool die_will_crash(void)
141 {
142 if (should_fadump_crash())
143 return true;
144 if (kexec_should_crash(current))
145 return true;
146 if (in_interrupt() || panic_on_oops ||
147 !current->pid || is_global_init(current))
148 return true;
149
150 return false;
151 }
152
153 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
154 static int die_owner = -1;
155 static unsigned int die_nest_count;
156 static int die_counter;
157
panic_flush_kmsg_start(void)158 extern void panic_flush_kmsg_start(void)
159 {
160 /*
161 * These are mostly taken from kernel/panic.c, but tries to do
162 * relatively minimal work. Don't use delay functions (TB may
163 * be broken), don't crash dump (need to set a firmware log),
164 * don't run notifiers. We do want to get some information to
165 * Linux console.
166 */
167 console_verbose();
168 bust_spinlocks(1);
169 }
170
panic_flush_kmsg_end(void)171 extern void panic_flush_kmsg_end(void)
172 {
173 printk_safe_flush_on_panic();
174 kmsg_dump(KMSG_DUMP_PANIC);
175 bust_spinlocks(0);
176 debug_locks_off();
177 console_flush_on_panic(CONSOLE_FLUSH_PENDING);
178 }
179
oops_begin(struct pt_regs * regs)180 static unsigned long oops_begin(struct pt_regs *regs)
181 {
182 int cpu;
183 unsigned long flags;
184
185 oops_enter();
186
187 /* racy, but better than risking deadlock. */
188 raw_local_irq_save(flags);
189 cpu = smp_processor_id();
190 if (!arch_spin_trylock(&die_lock)) {
191 if (cpu == die_owner)
192 /* nested oops. should stop eventually */;
193 else
194 arch_spin_lock(&die_lock);
195 }
196 die_nest_count++;
197 die_owner = cpu;
198 console_verbose();
199 bust_spinlocks(1);
200 if (machine_is(powermac))
201 pmac_backlight_unblank();
202 return flags;
203 }
204 NOKPROBE_SYMBOL(oops_begin);
205
oops_end(unsigned long flags,struct pt_regs * regs,int signr)206 static void oops_end(unsigned long flags, struct pt_regs *regs,
207 int signr)
208 {
209 bust_spinlocks(0);
210 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
211 die_nest_count--;
212 oops_exit();
213 printk("\n");
214 if (!die_nest_count) {
215 /* Nest count reaches zero, release the lock. */
216 die_owner = -1;
217 arch_spin_unlock(&die_lock);
218 }
219 raw_local_irq_restore(flags);
220
221 /*
222 * system_reset_excption handles debugger, crash dump, panic, for 0x100
223 */
224 if (TRAP(regs) == 0x100)
225 return;
226
227 crash_fadump(regs, "die oops");
228
229 if (kexec_should_crash(current))
230 crash_kexec(regs);
231
232 if (!signr)
233 return;
234
235 /*
236 * While our oops output is serialised by a spinlock, output
237 * from panic() called below can race and corrupt it. If we
238 * know we are going to panic, delay for 1 second so we have a
239 * chance to get clean backtraces from all CPUs that are oopsing.
240 */
241 if (in_interrupt() || panic_on_oops || !current->pid ||
242 is_global_init(current)) {
243 mdelay(MSEC_PER_SEC);
244 }
245
246 if (panic_on_oops)
247 panic("Fatal exception");
248 do_exit(signr);
249 }
250 NOKPROBE_SYMBOL(oops_end);
251
get_mmu_str(void)252 static char *get_mmu_str(void)
253 {
254 if (early_radix_enabled())
255 return " MMU=Radix";
256 if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
257 return " MMU=Hash";
258 return "";
259 }
260
__die(const char * str,struct pt_regs * regs,long err)261 static int __die(const char *str, struct pt_regs *regs, long err)
262 {
263 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
264
265 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
266 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
267 PAGE_SIZE / 1024, get_mmu_str(),
268 IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
269 IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
270 IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
271 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
272 IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
273 ppc_md.name ? ppc_md.name : "");
274
275 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
276 return 1;
277
278 print_modules();
279 show_regs(regs);
280
281 return 0;
282 }
283 NOKPROBE_SYMBOL(__die);
284
die(const char * str,struct pt_regs * regs,long err)285 void die(const char *str, struct pt_regs *regs, long err)
286 {
287 unsigned long flags;
288
289 /*
290 * system_reset_excption handles debugger, crash dump, panic, for 0x100
291 */
292 if (TRAP(regs) != 0x100) {
293 if (debugger(regs))
294 return;
295 }
296
297 flags = oops_begin(regs);
298 if (__die(str, regs, err))
299 err = 0;
300 oops_end(flags, regs, err);
301 }
302 NOKPROBE_SYMBOL(die);
303
user_single_step_report(struct pt_regs * regs)304 void user_single_step_report(struct pt_regs *regs)
305 {
306 force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
307 }
308
show_signal_msg(int signr,struct pt_regs * regs,int code,unsigned long addr)309 static void show_signal_msg(int signr, struct pt_regs *regs, int code,
310 unsigned long addr)
311 {
312 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
313 DEFAULT_RATELIMIT_BURST);
314
315 if (!show_unhandled_signals)
316 return;
317
318 if (!unhandled_signal(current, signr))
319 return;
320
321 if (!__ratelimit(&rs))
322 return;
323
324 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
325 current->comm, current->pid, signame(signr), signr,
326 addr, regs->nip, regs->link, code);
327
328 print_vma_addr(KERN_CONT " in ", regs->nip);
329
330 pr_cont("\n");
331
332 show_user_instructions(regs);
333 }
334
exception_common(int signr,struct pt_regs * regs,int code,unsigned long addr)335 static bool exception_common(int signr, struct pt_regs *regs, int code,
336 unsigned long addr)
337 {
338 if (!user_mode(regs)) {
339 die("Exception in kernel mode", regs, signr);
340 return false;
341 }
342
343 show_signal_msg(signr, regs, code, addr);
344
345 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
346 local_irq_enable();
347
348 current->thread.trap_nr = code;
349
350 /*
351 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
352 * to capture the content, if the task gets killed.
353 */
354 thread_pkey_regs_save(¤t->thread);
355
356 return true;
357 }
358
_exception_pkey(struct pt_regs * regs,unsigned long addr,int key)359 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
360 {
361 if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
362 return;
363
364 force_sig_pkuerr((void __user *) addr, key);
365 }
366
_exception(int signr,struct pt_regs * regs,int code,unsigned long addr)367 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
368 {
369 if (!exception_common(signr, regs, code, addr))
370 return;
371
372 force_sig_fault(signr, code, (void __user *)addr);
373 }
374
375 /*
376 * The interrupt architecture has a quirk in that the HV interrupts excluding
377 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
378 * that an interrupt handler must do is save off a GPR into a scratch register,
379 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
380 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
381 * that it is non-reentrant, which leads to random data corruption.
382 *
383 * The solution is for NMI interrupts in HV mode to check if they originated
384 * from these critical HV interrupt regions. If so, then mark them not
385 * recoverable.
386 *
387 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
388 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
389 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
390 * that would work. However any other guest OS that may have the SPRG live
391 * and MSR[RI]=1 could encounter silent corruption.
392 *
393 * Builds that do not support KVM could take this second option to increase
394 * the recoverability of NMIs.
395 */
hv_nmi_check_nonrecoverable(struct pt_regs * regs)396 void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
397 {
398 #ifdef CONFIG_PPC_POWERNV
399 unsigned long kbase = (unsigned long)_stext;
400 unsigned long nip = regs->nip;
401
402 if (!(regs->msr & MSR_RI))
403 return;
404 if (!(regs->msr & MSR_HV))
405 return;
406 if (regs->msr & MSR_PR)
407 return;
408
409 /*
410 * Now test if the interrupt has hit a range that may be using
411 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
412 * problem ranges all run un-relocated. Test real and virt modes
413 * at the same time by droping the high bit of the nip (virt mode
414 * entry points still have the +0x4000 offset).
415 */
416 nip &= ~0xc000000000000000ULL;
417 if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
418 goto nonrecoverable;
419 if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
420 goto nonrecoverable;
421 if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
422 goto nonrecoverable;
423 if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
424 goto nonrecoverable;
425
426 /* Trampoline code runs un-relocated so subtract kbase. */
427 if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
428 nip < (unsigned long)(end_real_trampolines - kbase))
429 goto nonrecoverable;
430 if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
431 nip < (unsigned long)(end_virt_trampolines - kbase))
432 goto nonrecoverable;
433 return;
434
435 nonrecoverable:
436 regs->msr &= ~MSR_RI;
437 #endif
438 }
439
system_reset_exception(struct pt_regs * regs)440 void system_reset_exception(struct pt_regs *regs)
441 {
442 unsigned long hsrr0, hsrr1;
443 bool saved_hsrrs = false;
444 u8 ftrace_enabled = this_cpu_get_ftrace_enabled();
445
446 this_cpu_set_ftrace_enabled(0);
447
448 nmi_enter();
449
450 /*
451 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
452 * The system reset interrupt itself may clobber HSRRs (e.g., to call
453 * OPAL), so save them here and restore them before returning.
454 *
455 * Machine checks don't need to save HSRRs, as the real mode handler
456 * is careful to avoid them, and the regular handler is not delivered
457 * as an NMI.
458 */
459 if (cpu_has_feature(CPU_FTR_HVMODE)) {
460 hsrr0 = mfspr(SPRN_HSRR0);
461 hsrr1 = mfspr(SPRN_HSRR1);
462 saved_hsrrs = true;
463 }
464
465 hv_nmi_check_nonrecoverable(regs);
466
467 __this_cpu_inc(irq_stat.sreset_irqs);
468
469 /* See if any machine dependent calls */
470 if (ppc_md.system_reset_exception) {
471 if (ppc_md.system_reset_exception(regs))
472 goto out;
473 }
474
475 if (debugger(regs))
476 goto out;
477
478 kmsg_dump(KMSG_DUMP_OOPS);
479 /*
480 * A system reset is a request to dump, so we always send
481 * it through the crashdump code (if fadump or kdump are
482 * registered).
483 */
484 crash_fadump(regs, "System Reset");
485
486 crash_kexec(regs);
487
488 /*
489 * We aren't the primary crash CPU. We need to send it
490 * to a holding pattern to avoid it ending up in the panic
491 * code.
492 */
493 crash_kexec_secondary(regs);
494
495 /*
496 * No debugger or crash dump registered, print logs then
497 * panic.
498 */
499 die("System Reset", regs, SIGABRT);
500
501 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
502 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
503 nmi_panic(regs, "System Reset");
504
505 out:
506 #ifdef CONFIG_PPC_BOOK3S_64
507 BUG_ON(get_paca()->in_nmi == 0);
508 if (get_paca()->in_nmi > 1)
509 die("Unrecoverable nested System Reset", regs, SIGABRT);
510 #endif
511 /* Must die if the interrupt is not recoverable */
512 if (!(regs->msr & MSR_RI))
513 die("Unrecoverable System Reset", regs, SIGABRT);
514
515 if (saved_hsrrs) {
516 mtspr(SPRN_HSRR0, hsrr0);
517 mtspr(SPRN_HSRR1, hsrr1);
518 }
519
520 nmi_exit();
521
522 this_cpu_set_ftrace_enabled(ftrace_enabled);
523
524 /* What should we do here? We could issue a shutdown or hard reset. */
525 }
526
527 /*
528 * I/O accesses can cause machine checks on powermacs.
529 * Check if the NIP corresponds to the address of a sync
530 * instruction for which there is an entry in the exception
531 * table.
532 * -- paulus.
533 */
check_io_access(struct pt_regs * regs)534 static inline int check_io_access(struct pt_regs *regs)
535 {
536 #ifdef CONFIG_PPC32
537 unsigned long msr = regs->msr;
538 const struct exception_table_entry *entry;
539 unsigned int *nip = (unsigned int *)regs->nip;
540
541 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
542 && (entry = search_exception_tables(regs->nip)) != NULL) {
543 /*
544 * Check that it's a sync instruction, or somewhere
545 * in the twi; isync; nop sequence that inb/inw/inl uses.
546 * As the address is in the exception table
547 * we should be able to read the instr there.
548 * For the debug message, we look at the preceding
549 * load or store.
550 */
551 if (*nip == PPC_INST_NOP)
552 nip -= 2;
553 else if (*nip == PPC_INST_ISYNC)
554 --nip;
555 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
556 unsigned int rb;
557
558 --nip;
559 rb = (*nip >> 11) & 0x1f;
560 printk(KERN_DEBUG "%s bad port %lx at %p\n",
561 (*nip & 0x100)? "OUT to": "IN from",
562 regs->gpr[rb] - _IO_BASE, nip);
563 regs->msr |= MSR_RI;
564 regs->nip = extable_fixup(entry);
565 return 1;
566 }
567 }
568 #endif /* CONFIG_PPC32 */
569 return 0;
570 }
571
572 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
573 /* On 4xx, the reason for the machine check or program exception
574 is in the ESR. */
575 #define get_reason(regs) ((regs)->dsisr)
576 #define REASON_FP ESR_FP
577 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
578 #define REASON_PRIVILEGED ESR_PPR
579 #define REASON_TRAP ESR_PTR
580 #define REASON_PREFIXED 0
581 #define REASON_BOUNDARY 0
582
583 /* single-step stuff */
584 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
585 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
586 #define clear_br_trace(regs) do {} while(0)
587 #else
588 /* On non-4xx, the reason for the machine check or program
589 exception is in the MSR. */
590 #define get_reason(regs) ((regs)->msr)
591 #define REASON_TM SRR1_PROGTM
592 #define REASON_FP SRR1_PROGFPE
593 #define REASON_ILLEGAL SRR1_PROGILL
594 #define REASON_PRIVILEGED SRR1_PROGPRIV
595 #define REASON_TRAP SRR1_PROGTRAP
596 #define REASON_PREFIXED SRR1_PREFIXED
597 #define REASON_BOUNDARY SRR1_BOUNDARY
598
599 #define single_stepping(regs) ((regs)->msr & MSR_SE)
600 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
601 #define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE)
602 #endif
603
604 #define inst_length(reason) (((reason) & REASON_PREFIXED) ? 8 : 4)
605
606 #if defined(CONFIG_E500)
machine_check_e500mc(struct pt_regs * regs)607 int machine_check_e500mc(struct pt_regs *regs)
608 {
609 unsigned long mcsr = mfspr(SPRN_MCSR);
610 unsigned long pvr = mfspr(SPRN_PVR);
611 unsigned long reason = mcsr;
612 int recoverable = 1;
613
614 if (reason & MCSR_LD) {
615 recoverable = fsl_rio_mcheck_exception(regs);
616 if (recoverable == 1)
617 goto silent_out;
618 }
619
620 printk("Machine check in kernel mode.\n");
621 printk("Caused by (from MCSR=%lx): ", reason);
622
623 if (reason & MCSR_MCP)
624 pr_cont("Machine Check Signal\n");
625
626 if (reason & MCSR_ICPERR) {
627 pr_cont("Instruction Cache Parity Error\n");
628
629 /*
630 * This is recoverable by invalidating the i-cache.
631 */
632 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
633 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
634 ;
635
636 /*
637 * This will generally be accompanied by an instruction
638 * fetch error report -- only treat MCSR_IF as fatal
639 * if it wasn't due to an L1 parity error.
640 */
641 reason &= ~MCSR_IF;
642 }
643
644 if (reason & MCSR_DCPERR_MC) {
645 pr_cont("Data Cache Parity Error\n");
646
647 /*
648 * In write shadow mode we auto-recover from the error, but it
649 * may still get logged and cause a machine check. We should
650 * only treat the non-write shadow case as non-recoverable.
651 */
652 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
653 * is not implemented but L1 data cache always runs in write
654 * shadow mode. Hence on data cache parity errors HW will
655 * automatically invalidate the L1 Data Cache.
656 */
657 if (PVR_VER(pvr) != PVR_VER_E6500) {
658 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
659 recoverable = 0;
660 }
661 }
662
663 if (reason & MCSR_L2MMU_MHIT) {
664 pr_cont("Hit on multiple TLB entries\n");
665 recoverable = 0;
666 }
667
668 if (reason & MCSR_NMI)
669 pr_cont("Non-maskable interrupt\n");
670
671 if (reason & MCSR_IF) {
672 pr_cont("Instruction Fetch Error Report\n");
673 recoverable = 0;
674 }
675
676 if (reason & MCSR_LD) {
677 pr_cont("Load Error Report\n");
678 recoverable = 0;
679 }
680
681 if (reason & MCSR_ST) {
682 pr_cont("Store Error Report\n");
683 recoverable = 0;
684 }
685
686 if (reason & MCSR_LDG) {
687 pr_cont("Guarded Load Error Report\n");
688 recoverable = 0;
689 }
690
691 if (reason & MCSR_TLBSYNC)
692 pr_cont("Simultaneous tlbsync operations\n");
693
694 if (reason & MCSR_BSL2_ERR) {
695 pr_cont("Level 2 Cache Error\n");
696 recoverable = 0;
697 }
698
699 if (reason & MCSR_MAV) {
700 u64 addr;
701
702 addr = mfspr(SPRN_MCAR);
703 addr |= (u64)mfspr(SPRN_MCARU) << 32;
704
705 pr_cont("Machine Check %s Address: %#llx\n",
706 reason & MCSR_MEA ? "Effective" : "Physical", addr);
707 }
708
709 silent_out:
710 mtspr(SPRN_MCSR, mcsr);
711 return mfspr(SPRN_MCSR) == 0 && recoverable;
712 }
713
machine_check_e500(struct pt_regs * regs)714 int machine_check_e500(struct pt_regs *regs)
715 {
716 unsigned long reason = mfspr(SPRN_MCSR);
717
718 if (reason & MCSR_BUS_RBERR) {
719 if (fsl_rio_mcheck_exception(regs))
720 return 1;
721 if (fsl_pci_mcheck_exception(regs))
722 return 1;
723 }
724
725 printk("Machine check in kernel mode.\n");
726 printk("Caused by (from MCSR=%lx): ", reason);
727
728 if (reason & MCSR_MCP)
729 pr_cont("Machine Check Signal\n");
730 if (reason & MCSR_ICPERR)
731 pr_cont("Instruction Cache Parity Error\n");
732 if (reason & MCSR_DCP_PERR)
733 pr_cont("Data Cache Push Parity Error\n");
734 if (reason & MCSR_DCPERR)
735 pr_cont("Data Cache Parity Error\n");
736 if (reason & MCSR_BUS_IAERR)
737 pr_cont("Bus - Instruction Address Error\n");
738 if (reason & MCSR_BUS_RAERR)
739 pr_cont("Bus - Read Address Error\n");
740 if (reason & MCSR_BUS_WAERR)
741 pr_cont("Bus - Write Address Error\n");
742 if (reason & MCSR_BUS_IBERR)
743 pr_cont("Bus - Instruction Data Error\n");
744 if (reason & MCSR_BUS_RBERR)
745 pr_cont("Bus - Read Data Bus Error\n");
746 if (reason & MCSR_BUS_WBERR)
747 pr_cont("Bus - Write Data Bus Error\n");
748 if (reason & MCSR_BUS_IPERR)
749 pr_cont("Bus - Instruction Parity Error\n");
750 if (reason & MCSR_BUS_RPERR)
751 pr_cont("Bus - Read Parity Error\n");
752
753 return 0;
754 }
755
machine_check_generic(struct pt_regs * regs)756 int machine_check_generic(struct pt_regs *regs)
757 {
758 return 0;
759 }
760 #elif defined(CONFIG_E200)
machine_check_e200(struct pt_regs * regs)761 int machine_check_e200(struct pt_regs *regs)
762 {
763 unsigned long reason = mfspr(SPRN_MCSR);
764
765 printk("Machine check in kernel mode.\n");
766 printk("Caused by (from MCSR=%lx): ", reason);
767
768 if (reason & MCSR_MCP)
769 pr_cont("Machine Check Signal\n");
770 if (reason & MCSR_CP_PERR)
771 pr_cont("Cache Push Parity Error\n");
772 if (reason & MCSR_CPERR)
773 pr_cont("Cache Parity Error\n");
774 if (reason & MCSR_EXCP_ERR)
775 pr_cont("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
776 if (reason & MCSR_BUS_IRERR)
777 pr_cont("Bus - Read Bus Error on instruction fetch\n");
778 if (reason & MCSR_BUS_DRERR)
779 pr_cont("Bus - Read Bus Error on data load\n");
780 if (reason & MCSR_BUS_WRERR)
781 pr_cont("Bus - Write Bus Error on buffered store or cache line push\n");
782
783 return 0;
784 }
785 #elif defined(CONFIG_PPC32)
machine_check_generic(struct pt_regs * regs)786 int machine_check_generic(struct pt_regs *regs)
787 {
788 unsigned long reason = regs->msr;
789
790 printk("Machine check in kernel mode.\n");
791 printk("Caused by (from SRR1=%lx): ", reason);
792 switch (reason & 0x601F0000) {
793 case 0x80000:
794 pr_cont("Machine check signal\n");
795 break;
796 case 0x40000:
797 case 0x140000: /* 7450 MSS error and TEA */
798 pr_cont("Transfer error ack signal\n");
799 break;
800 case 0x20000:
801 pr_cont("Data parity error signal\n");
802 break;
803 case 0x10000:
804 pr_cont("Address parity error signal\n");
805 break;
806 case 0x20000000:
807 pr_cont("L1 Data Cache error\n");
808 break;
809 case 0x40000000:
810 pr_cont("L1 Instruction Cache error\n");
811 break;
812 case 0x00100000:
813 pr_cont("L2 data cache parity error\n");
814 break;
815 default:
816 pr_cont("Unknown values in msr\n");
817 }
818 return 0;
819 }
820 #endif /* everything else */
821
machine_check_exception(struct pt_regs * regs)822 void machine_check_exception(struct pt_regs *regs)
823 {
824 int recover = 0;
825
826 /*
827 * BOOK3S_64 does not call this handler as a non-maskable interrupt
828 * (it uses its own early real-mode handler to handle the MCE proper
829 * and then raises irq_work to call this handler when interrupts are
830 * enabled).
831 *
832 * This is silly. The BOOK3S_64 should just call a different function
833 * rather than expecting semantics to magically change. Something
834 * like 'non_nmi_machine_check_exception()', perhaps?
835 */
836 const bool nmi = !IS_ENABLED(CONFIG_PPC_BOOK3S_64);
837
838 if (nmi) nmi_enter();
839
840 __this_cpu_inc(irq_stat.mce_exceptions);
841
842 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
843
844 /* See if any machine dependent calls. In theory, we would want
845 * to call the CPU first, and call the ppc_md. one if the CPU
846 * one returns a positive number. However there is existing code
847 * that assumes the board gets a first chance, so let's keep it
848 * that way for now and fix things later. --BenH.
849 */
850 if (ppc_md.machine_check_exception)
851 recover = ppc_md.machine_check_exception(regs);
852 else if (cur_cpu_spec->machine_check)
853 recover = cur_cpu_spec->machine_check(regs);
854
855 if (recover > 0)
856 goto bail;
857
858 if (debugger_fault_handler(regs))
859 goto bail;
860
861 if (check_io_access(regs))
862 goto bail;
863
864 if (nmi) nmi_exit();
865
866 die("Machine check", regs, SIGBUS);
867
868 /* Must die if the interrupt is not recoverable */
869 if (!(regs->msr & MSR_RI))
870 die("Unrecoverable Machine check", regs, SIGBUS);
871
872 return;
873
874 bail:
875 if (nmi) nmi_exit();
876 }
877
SMIException(struct pt_regs * regs)878 void SMIException(struct pt_regs *regs)
879 {
880 die("System Management Interrupt", regs, SIGABRT);
881 }
882
883 #ifdef CONFIG_VSX
p9_hmi_special_emu(struct pt_regs * regs)884 static void p9_hmi_special_emu(struct pt_regs *regs)
885 {
886 unsigned int ra, rb, t, i, sel, instr, rc;
887 const void __user *addr;
888 u8 vbuf[16] __aligned(16), *vdst;
889 unsigned long ea, msr, msr_mask;
890 bool swap;
891
892 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
893 return;
894
895 /*
896 * lxvb16x opcode: 0x7c0006d8
897 * lxvd2x opcode: 0x7c000698
898 * lxvh8x opcode: 0x7c000658
899 * lxvw4x opcode: 0x7c000618
900 */
901 if ((instr & 0xfc00073e) != 0x7c000618) {
902 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
903 " instr=%08x\n",
904 smp_processor_id(), current->comm, current->pid,
905 regs->nip, instr);
906 return;
907 }
908
909 /* Grab vector registers into the task struct */
910 msr = regs->msr; /* Grab msr before we flush the bits */
911 flush_vsx_to_thread(current);
912 enable_kernel_altivec();
913
914 /*
915 * Is userspace running with a different endian (this is rare but
916 * not impossible)
917 */
918 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
919
920 /* Decode the instruction */
921 ra = (instr >> 16) & 0x1f;
922 rb = (instr >> 11) & 0x1f;
923 t = (instr >> 21) & 0x1f;
924 if (instr & 1)
925 vdst = (u8 *)¤t->thread.vr_state.vr[t];
926 else
927 vdst = (u8 *)¤t->thread.fp_state.fpr[t][0];
928
929 /* Grab the vector address */
930 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
931 if (is_32bit_task())
932 ea &= 0xfffffffful;
933 addr = (__force const void __user *)ea;
934
935 /* Check it */
936 if (!access_ok(addr, 16)) {
937 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
938 " instr=%08x addr=%016lx\n",
939 smp_processor_id(), current->comm, current->pid,
940 regs->nip, instr, (unsigned long)addr);
941 return;
942 }
943
944 /* Read the vector */
945 rc = 0;
946 if ((unsigned long)addr & 0xfUL)
947 /* unaligned case */
948 rc = __copy_from_user_inatomic(vbuf, addr, 16);
949 else
950 __get_user_atomic_128_aligned(vbuf, addr, rc);
951 if (rc) {
952 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
953 " instr=%08x addr=%016lx\n",
954 smp_processor_id(), current->comm, current->pid,
955 regs->nip, instr, (unsigned long)addr);
956 return;
957 }
958
959 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
960 " instr=%08x addr=%016lx\n",
961 smp_processor_id(), current->comm, current->pid, regs->nip,
962 instr, (unsigned long) addr);
963
964 /* Grab instruction "selector" */
965 sel = (instr >> 6) & 3;
966
967 /*
968 * Check to make sure the facility is actually enabled. This
969 * could happen if we get a false positive hit.
970 *
971 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
972 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
973 */
974 msr_mask = MSR_VSX;
975 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
976 msr_mask = MSR_VEC;
977 if (!(msr & msr_mask)) {
978 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
979 " instr=%08x msr:%016lx\n",
980 smp_processor_id(), current->comm, current->pid,
981 regs->nip, instr, msr);
982 return;
983 }
984
985 /* Do logging here before we modify sel based on endian */
986 switch (sel) {
987 case 0: /* lxvw4x */
988 PPC_WARN_EMULATED(lxvw4x, regs);
989 break;
990 case 1: /* lxvh8x */
991 PPC_WARN_EMULATED(lxvh8x, regs);
992 break;
993 case 2: /* lxvd2x */
994 PPC_WARN_EMULATED(lxvd2x, regs);
995 break;
996 case 3: /* lxvb16x */
997 PPC_WARN_EMULATED(lxvb16x, regs);
998 break;
999 }
1000
1001 #ifdef __LITTLE_ENDIAN__
1002 /*
1003 * An LE kernel stores the vector in the task struct as an LE
1004 * byte array (effectively swapping both the components and
1005 * the content of the components). Those instructions expect
1006 * the components to remain in ascending address order, so we
1007 * swap them back.
1008 *
1009 * If we are running a BE user space, the expectation is that
1010 * of a simple memcpy, so forcing the emulation to look like
1011 * a lxvb16x should do the trick.
1012 */
1013 if (swap)
1014 sel = 3;
1015
1016 switch (sel) {
1017 case 0: /* lxvw4x */
1018 for (i = 0; i < 4; i++)
1019 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1020 break;
1021 case 1: /* lxvh8x */
1022 for (i = 0; i < 8; i++)
1023 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1024 break;
1025 case 2: /* lxvd2x */
1026 for (i = 0; i < 2; i++)
1027 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1028 break;
1029 case 3: /* lxvb16x */
1030 for (i = 0; i < 16; i++)
1031 vdst[i] = vbuf[15-i];
1032 break;
1033 }
1034 #else /* __LITTLE_ENDIAN__ */
1035 /* On a big endian kernel, a BE userspace only needs a memcpy */
1036 if (!swap)
1037 sel = 3;
1038
1039 /* Otherwise, we need to swap the content of the components */
1040 switch (sel) {
1041 case 0: /* lxvw4x */
1042 for (i = 0; i < 4; i++)
1043 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1044 break;
1045 case 1: /* lxvh8x */
1046 for (i = 0; i < 8; i++)
1047 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1048 break;
1049 case 2: /* lxvd2x */
1050 for (i = 0; i < 2; i++)
1051 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1052 break;
1053 case 3: /* lxvb16x */
1054 memcpy(vdst, vbuf, 16);
1055 break;
1056 }
1057 #endif /* !__LITTLE_ENDIAN__ */
1058
1059 /* Go to next instruction */
1060 regs->nip += 4;
1061 }
1062 #endif /* CONFIG_VSX */
1063
handle_hmi_exception(struct pt_regs * regs)1064 void handle_hmi_exception(struct pt_regs *regs)
1065 {
1066 struct pt_regs *old_regs;
1067
1068 old_regs = set_irq_regs(regs);
1069 irq_enter();
1070
1071 #ifdef CONFIG_VSX
1072 /* Real mode flagged P9 special emu is needed */
1073 if (local_paca->hmi_p9_special_emu) {
1074 local_paca->hmi_p9_special_emu = 0;
1075
1076 /*
1077 * We don't want to take page faults while doing the
1078 * emulation, we just replay the instruction if necessary.
1079 */
1080 pagefault_disable();
1081 p9_hmi_special_emu(regs);
1082 pagefault_enable();
1083 }
1084 #endif /* CONFIG_VSX */
1085
1086 if (ppc_md.handle_hmi_exception)
1087 ppc_md.handle_hmi_exception(regs);
1088
1089 irq_exit();
1090 set_irq_regs(old_regs);
1091 }
1092
unknown_exception(struct pt_regs * regs)1093 void unknown_exception(struct pt_regs *regs)
1094 {
1095 enum ctx_state prev_state = exception_enter();
1096
1097 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1098 regs->nip, regs->msr, regs->trap);
1099
1100 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1101
1102 exception_exit(prev_state);
1103 }
1104
instruction_breakpoint_exception(struct pt_regs * regs)1105 void instruction_breakpoint_exception(struct pt_regs *regs)
1106 {
1107 enum ctx_state prev_state = exception_enter();
1108
1109 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1110 5, SIGTRAP) == NOTIFY_STOP)
1111 goto bail;
1112 if (debugger_iabr_match(regs))
1113 goto bail;
1114 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1115
1116 bail:
1117 exception_exit(prev_state);
1118 }
1119
RunModeException(struct pt_regs * regs)1120 void RunModeException(struct pt_regs *regs)
1121 {
1122 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1123 }
1124
single_step_exception(struct pt_regs * regs)1125 void single_step_exception(struct pt_regs *regs)
1126 {
1127 enum ctx_state prev_state = exception_enter();
1128
1129 clear_single_step(regs);
1130 clear_br_trace(regs);
1131
1132 if (kprobe_post_handler(regs))
1133 return;
1134
1135 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1136 5, SIGTRAP) == NOTIFY_STOP)
1137 goto bail;
1138 if (debugger_sstep(regs))
1139 goto bail;
1140
1141 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1142
1143 bail:
1144 exception_exit(prev_state);
1145 }
1146 NOKPROBE_SYMBOL(single_step_exception);
1147
1148 /*
1149 * After we have successfully emulated an instruction, we have to
1150 * check if the instruction was being single-stepped, and if so,
1151 * pretend we got a single-step exception. This was pointed out
1152 * by Kumar Gala. -- paulus
1153 */
emulate_single_step(struct pt_regs * regs)1154 static void emulate_single_step(struct pt_regs *regs)
1155 {
1156 if (single_stepping(regs))
1157 single_step_exception(regs);
1158 }
1159
__parse_fpscr(unsigned long fpscr)1160 static inline int __parse_fpscr(unsigned long fpscr)
1161 {
1162 int ret = FPE_FLTUNK;
1163
1164 /* Invalid operation */
1165 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1166 ret = FPE_FLTINV;
1167
1168 /* Overflow */
1169 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1170 ret = FPE_FLTOVF;
1171
1172 /* Underflow */
1173 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1174 ret = FPE_FLTUND;
1175
1176 /* Divide by zero */
1177 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1178 ret = FPE_FLTDIV;
1179
1180 /* Inexact result */
1181 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1182 ret = FPE_FLTRES;
1183
1184 return ret;
1185 }
1186
parse_fpe(struct pt_regs * regs)1187 static void parse_fpe(struct pt_regs *regs)
1188 {
1189 int code = 0;
1190
1191 flush_fp_to_thread(current);
1192
1193 code = __parse_fpscr(current->thread.fp_state.fpscr);
1194
1195 _exception(SIGFPE, regs, code, regs->nip);
1196 }
1197
1198 /*
1199 * Illegal instruction emulation support. Originally written to
1200 * provide the PVR to user applications using the mfspr rd, PVR.
1201 * Return non-zero if we can't emulate, or -EFAULT if the associated
1202 * memory access caused an access fault. Return zero on success.
1203 *
1204 * There are a couple of ways to do this, either "decode" the instruction
1205 * or directly match lots of bits. In this case, matching lots of
1206 * bits is faster and easier.
1207 *
1208 */
emulate_string_inst(struct pt_regs * regs,u32 instword)1209 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1210 {
1211 u8 rT = (instword >> 21) & 0x1f;
1212 u8 rA = (instword >> 16) & 0x1f;
1213 u8 NB_RB = (instword >> 11) & 0x1f;
1214 u32 num_bytes;
1215 unsigned long EA;
1216 int pos = 0;
1217
1218 /* Early out if we are an invalid form of lswx */
1219 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1220 if ((rT == rA) || (rT == NB_RB))
1221 return -EINVAL;
1222
1223 EA = (rA == 0) ? 0 : regs->gpr[rA];
1224
1225 switch (instword & PPC_INST_STRING_MASK) {
1226 case PPC_INST_LSWX:
1227 case PPC_INST_STSWX:
1228 EA += NB_RB;
1229 num_bytes = regs->xer & 0x7f;
1230 break;
1231 case PPC_INST_LSWI:
1232 case PPC_INST_STSWI:
1233 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1234 break;
1235 default:
1236 return -EINVAL;
1237 }
1238
1239 while (num_bytes != 0)
1240 {
1241 u8 val;
1242 u32 shift = 8 * (3 - (pos & 0x3));
1243
1244 /* if process is 32-bit, clear upper 32 bits of EA */
1245 if ((regs->msr & MSR_64BIT) == 0)
1246 EA &= 0xFFFFFFFF;
1247
1248 switch ((instword & PPC_INST_STRING_MASK)) {
1249 case PPC_INST_LSWX:
1250 case PPC_INST_LSWI:
1251 if (get_user(val, (u8 __user *)EA))
1252 return -EFAULT;
1253 /* first time updating this reg,
1254 * zero it out */
1255 if (pos == 0)
1256 regs->gpr[rT] = 0;
1257 regs->gpr[rT] |= val << shift;
1258 break;
1259 case PPC_INST_STSWI:
1260 case PPC_INST_STSWX:
1261 val = regs->gpr[rT] >> shift;
1262 if (put_user(val, (u8 __user *)EA))
1263 return -EFAULT;
1264 break;
1265 }
1266 /* move EA to next address */
1267 EA += 1;
1268 num_bytes--;
1269
1270 /* manage our position within the register */
1271 if (++pos == 4) {
1272 pos = 0;
1273 if (++rT == 32)
1274 rT = 0;
1275 }
1276 }
1277
1278 return 0;
1279 }
1280
emulate_popcntb_inst(struct pt_regs * regs,u32 instword)1281 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1282 {
1283 u32 ra,rs;
1284 unsigned long tmp;
1285
1286 ra = (instword >> 16) & 0x1f;
1287 rs = (instword >> 21) & 0x1f;
1288
1289 tmp = regs->gpr[rs];
1290 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1291 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1292 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1293 regs->gpr[ra] = tmp;
1294
1295 return 0;
1296 }
1297
emulate_isel(struct pt_regs * regs,u32 instword)1298 static int emulate_isel(struct pt_regs *regs, u32 instword)
1299 {
1300 u8 rT = (instword >> 21) & 0x1f;
1301 u8 rA = (instword >> 16) & 0x1f;
1302 u8 rB = (instword >> 11) & 0x1f;
1303 u8 BC = (instword >> 6) & 0x1f;
1304 u8 bit;
1305 unsigned long tmp;
1306
1307 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1308 bit = (regs->ccr >> (31 - BC)) & 0x1;
1309
1310 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1311
1312 return 0;
1313 }
1314
1315 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_abort_check(struct pt_regs * regs,int cause)1316 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1317 {
1318 /* If we're emulating a load/store in an active transaction, we cannot
1319 * emulate it as the kernel operates in transaction suspended context.
1320 * We need to abort the transaction. This creates a persistent TM
1321 * abort so tell the user what caused it with a new code.
1322 */
1323 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1324 tm_enable();
1325 tm_abort(cause);
1326 return true;
1327 }
1328 return false;
1329 }
1330 #else
tm_abort_check(struct pt_regs * regs,int reason)1331 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1332 {
1333 return false;
1334 }
1335 #endif
1336
emulate_instruction(struct pt_regs * regs)1337 static int emulate_instruction(struct pt_regs *regs)
1338 {
1339 u32 instword;
1340 u32 rd;
1341
1342 if (!user_mode(regs))
1343 return -EINVAL;
1344 CHECK_FULL_REGS(regs);
1345
1346 if (get_user(instword, (u32 __user *)(regs->nip)))
1347 return -EFAULT;
1348
1349 /* Emulate the mfspr rD, PVR. */
1350 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1351 PPC_WARN_EMULATED(mfpvr, regs);
1352 rd = (instword >> 21) & 0x1f;
1353 regs->gpr[rd] = mfspr(SPRN_PVR);
1354 return 0;
1355 }
1356
1357 /* Emulating the dcba insn is just a no-op. */
1358 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1359 PPC_WARN_EMULATED(dcba, regs);
1360 return 0;
1361 }
1362
1363 /* Emulate the mcrxr insn. */
1364 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1365 int shift = (instword >> 21) & 0x1c;
1366 unsigned long msk = 0xf0000000UL >> shift;
1367
1368 PPC_WARN_EMULATED(mcrxr, regs);
1369 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1370 regs->xer &= ~0xf0000000UL;
1371 return 0;
1372 }
1373
1374 /* Emulate load/store string insn. */
1375 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1376 if (tm_abort_check(regs,
1377 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1378 return -EINVAL;
1379 PPC_WARN_EMULATED(string, regs);
1380 return emulate_string_inst(regs, instword);
1381 }
1382
1383 /* Emulate the popcntb (Population Count Bytes) instruction. */
1384 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1385 PPC_WARN_EMULATED(popcntb, regs);
1386 return emulate_popcntb_inst(regs, instword);
1387 }
1388
1389 /* Emulate isel (Integer Select) instruction */
1390 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1391 PPC_WARN_EMULATED(isel, regs);
1392 return emulate_isel(regs, instword);
1393 }
1394
1395 /* Emulate sync instruction variants */
1396 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1397 PPC_WARN_EMULATED(sync, regs);
1398 asm volatile("sync");
1399 return 0;
1400 }
1401
1402 #ifdef CONFIG_PPC64
1403 /* Emulate the mfspr rD, DSCR. */
1404 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1405 PPC_INST_MFSPR_DSCR_USER) ||
1406 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1407 PPC_INST_MFSPR_DSCR)) &&
1408 cpu_has_feature(CPU_FTR_DSCR)) {
1409 PPC_WARN_EMULATED(mfdscr, regs);
1410 rd = (instword >> 21) & 0x1f;
1411 regs->gpr[rd] = mfspr(SPRN_DSCR);
1412 return 0;
1413 }
1414 /* Emulate the mtspr DSCR, rD. */
1415 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1416 PPC_INST_MTSPR_DSCR_USER) ||
1417 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1418 PPC_INST_MTSPR_DSCR)) &&
1419 cpu_has_feature(CPU_FTR_DSCR)) {
1420 PPC_WARN_EMULATED(mtdscr, regs);
1421 rd = (instword >> 21) & 0x1f;
1422 current->thread.dscr = regs->gpr[rd];
1423 current->thread.dscr_inherit = 1;
1424 mtspr(SPRN_DSCR, current->thread.dscr);
1425 return 0;
1426 }
1427 #endif
1428
1429 return -EINVAL;
1430 }
1431
is_valid_bugaddr(unsigned long addr)1432 int is_valid_bugaddr(unsigned long addr)
1433 {
1434 return is_kernel_addr(addr);
1435 }
1436
1437 #ifdef CONFIG_MATH_EMULATION
emulate_math(struct pt_regs * regs)1438 static int emulate_math(struct pt_regs *regs)
1439 {
1440 int ret;
1441 extern int do_mathemu(struct pt_regs *regs);
1442
1443 ret = do_mathemu(regs);
1444 if (ret >= 0)
1445 PPC_WARN_EMULATED(math, regs);
1446
1447 switch (ret) {
1448 case 0:
1449 emulate_single_step(regs);
1450 return 0;
1451 case 1: {
1452 int code = 0;
1453 code = __parse_fpscr(current->thread.fp_state.fpscr);
1454 _exception(SIGFPE, regs, code, regs->nip);
1455 return 0;
1456 }
1457 case -EFAULT:
1458 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1459 return 0;
1460 }
1461
1462 return -1;
1463 }
1464 #else
emulate_math(struct pt_regs * regs)1465 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1466 #endif
1467
program_check_exception(struct pt_regs * regs)1468 void program_check_exception(struct pt_regs *regs)
1469 {
1470 enum ctx_state prev_state = exception_enter();
1471 unsigned int reason = get_reason(regs);
1472
1473 /* We can now get here via a FP Unavailable exception if the core
1474 * has no FPU, in that case the reason flags will be 0 */
1475
1476 if (reason & REASON_FP) {
1477 /* IEEE FP exception */
1478 parse_fpe(regs);
1479 goto bail;
1480 }
1481 if (reason & REASON_TRAP) {
1482 unsigned long bugaddr;
1483 /* Debugger is first in line to stop recursive faults in
1484 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1485 if (debugger_bpt(regs))
1486 goto bail;
1487
1488 if (kprobe_handler(regs))
1489 goto bail;
1490
1491 /* trap exception */
1492 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1493 == NOTIFY_STOP)
1494 goto bail;
1495
1496 bugaddr = regs->nip;
1497 /*
1498 * Fixup bugaddr for BUG_ON() in real mode
1499 */
1500 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1501 bugaddr += PAGE_OFFSET;
1502
1503 if (!(regs->msr & MSR_PR) && /* not user-mode */
1504 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1505 regs->nip += 4;
1506 goto bail;
1507 }
1508 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1509 goto bail;
1510 }
1511 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1512 if (reason & REASON_TM) {
1513 /* This is a TM "Bad Thing Exception" program check.
1514 * This occurs when:
1515 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1516 * transition in TM states.
1517 * - A trechkpt is attempted when transactional.
1518 * - A treclaim is attempted when non transactional.
1519 * - A tend is illegally attempted.
1520 * - writing a TM SPR when transactional.
1521 *
1522 * If usermode caused this, it's done something illegal and
1523 * gets a SIGILL slap on the wrist. We call it an illegal
1524 * operand to distinguish from the instruction just being bad
1525 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1526 * illegal /placement/ of a valid instruction.
1527 */
1528 if (user_mode(regs)) {
1529 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1530 goto bail;
1531 } else {
1532 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1533 "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1534 regs->nip, regs->msr, get_paca()->tm_scratch);
1535 die("Unrecoverable exception", regs, SIGABRT);
1536 }
1537 }
1538 #endif
1539
1540 /*
1541 * If we took the program check in the kernel skip down to sending a
1542 * SIGILL. The subsequent cases all relate to emulating instructions
1543 * which we should only do for userspace. We also do not want to enable
1544 * interrupts for kernel faults because that might lead to further
1545 * faults, and loose the context of the original exception.
1546 */
1547 if (!user_mode(regs))
1548 goto sigill;
1549
1550 /* We restore the interrupt state now */
1551 if (!arch_irq_disabled_regs(regs))
1552 local_irq_enable();
1553
1554 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1555 * but there seems to be a hardware bug on the 405GP (RevD)
1556 * that means ESR is sometimes set incorrectly - either to
1557 * ESR_DST (!?) or 0. In the process of chasing this with the
1558 * hardware people - not sure if it can happen on any illegal
1559 * instruction or only on FP instructions, whether there is a
1560 * pattern to occurrences etc. -dgibson 31/Mar/2003
1561 */
1562 if (!emulate_math(regs))
1563 goto bail;
1564
1565 /* Try to emulate it if we should. */
1566 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1567 switch (emulate_instruction(regs)) {
1568 case 0:
1569 regs->nip += 4;
1570 emulate_single_step(regs);
1571 goto bail;
1572 case -EFAULT:
1573 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1574 goto bail;
1575 }
1576 }
1577
1578 sigill:
1579 if (reason & REASON_PRIVILEGED)
1580 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1581 else
1582 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1583
1584 bail:
1585 exception_exit(prev_state);
1586 }
1587 NOKPROBE_SYMBOL(program_check_exception);
1588
1589 /*
1590 * This occurs when running in hypervisor mode on POWER6 or later
1591 * and an illegal instruction is encountered.
1592 */
emulation_assist_interrupt(struct pt_regs * regs)1593 void emulation_assist_interrupt(struct pt_regs *regs)
1594 {
1595 regs->msr |= REASON_ILLEGAL;
1596 program_check_exception(regs);
1597 }
1598 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1599
alignment_exception(struct pt_regs * regs)1600 void alignment_exception(struct pt_regs *regs)
1601 {
1602 enum ctx_state prev_state = exception_enter();
1603 int sig, code, fixed = 0;
1604 unsigned long reason;
1605
1606 /* We restore the interrupt state now */
1607 if (!arch_irq_disabled_regs(regs))
1608 local_irq_enable();
1609
1610 reason = get_reason(regs);
1611
1612 if (reason & REASON_BOUNDARY) {
1613 sig = SIGBUS;
1614 code = BUS_ADRALN;
1615 goto bad;
1616 }
1617
1618 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1619 goto bail;
1620
1621 /* we don't implement logging of alignment exceptions */
1622 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1623 fixed = fix_alignment(regs);
1624
1625 if (fixed == 1) {
1626 /* skip over emulated instruction */
1627 regs->nip += inst_length(reason);
1628 emulate_single_step(regs);
1629 goto bail;
1630 }
1631
1632 /* Operand address was bad */
1633 if (fixed == -EFAULT) {
1634 sig = SIGSEGV;
1635 code = SEGV_ACCERR;
1636 } else {
1637 sig = SIGBUS;
1638 code = BUS_ADRALN;
1639 }
1640 bad:
1641 if (user_mode(regs))
1642 _exception(sig, regs, code, regs->dar);
1643 else
1644 bad_page_fault(regs, regs->dar, sig);
1645
1646 bail:
1647 exception_exit(prev_state);
1648 }
1649
StackOverflow(struct pt_regs * regs)1650 void StackOverflow(struct pt_regs *regs)
1651 {
1652 pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n",
1653 current->comm, task_pid_nr(current), regs->gpr[1]);
1654 debugger(regs);
1655 show_regs(regs);
1656 panic("kernel stack overflow");
1657 }
1658
stack_overflow_exception(struct pt_regs * regs)1659 void stack_overflow_exception(struct pt_regs *regs)
1660 {
1661 enum ctx_state prev_state = exception_enter();
1662
1663 die("Kernel stack overflow", regs, SIGSEGV);
1664
1665 exception_exit(prev_state);
1666 }
1667
kernel_fp_unavailable_exception(struct pt_regs * regs)1668 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1669 {
1670 enum ctx_state prev_state = exception_enter();
1671
1672 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1673 "%lx at %lx\n", regs->trap, regs->nip);
1674 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1675
1676 exception_exit(prev_state);
1677 }
1678
altivec_unavailable_exception(struct pt_regs * regs)1679 void altivec_unavailable_exception(struct pt_regs *regs)
1680 {
1681 enum ctx_state prev_state = exception_enter();
1682
1683 if (user_mode(regs)) {
1684 /* A user program has executed an altivec instruction,
1685 but this kernel doesn't support altivec. */
1686 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1687 goto bail;
1688 }
1689
1690 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1691 "%lx at %lx\n", regs->trap, regs->nip);
1692 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1693
1694 bail:
1695 exception_exit(prev_state);
1696 }
1697
vsx_unavailable_exception(struct pt_regs * regs)1698 void vsx_unavailable_exception(struct pt_regs *regs)
1699 {
1700 if (user_mode(regs)) {
1701 /* A user program has executed an vsx instruction,
1702 but this kernel doesn't support vsx. */
1703 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1704 return;
1705 }
1706
1707 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1708 "%lx at %lx\n", regs->trap, regs->nip);
1709 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1710 }
1711
1712 #ifdef CONFIG_PPC64
tm_unavailable(struct pt_regs * regs)1713 static void tm_unavailable(struct pt_regs *regs)
1714 {
1715 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1716 if (user_mode(regs)) {
1717 current->thread.load_tm++;
1718 regs->msr |= MSR_TM;
1719 tm_enable();
1720 tm_restore_sprs(¤t->thread);
1721 return;
1722 }
1723 #endif
1724 pr_emerg("Unrecoverable TM Unavailable Exception "
1725 "%lx at %lx\n", regs->trap, regs->nip);
1726 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1727 }
1728
facility_unavailable_exception(struct pt_regs * regs)1729 void facility_unavailable_exception(struct pt_regs *regs)
1730 {
1731 static char *facility_strings[] = {
1732 [FSCR_FP_LG] = "FPU",
1733 [FSCR_VECVSX_LG] = "VMX/VSX",
1734 [FSCR_DSCR_LG] = "DSCR",
1735 [FSCR_PM_LG] = "PMU SPRs",
1736 [FSCR_BHRB_LG] = "BHRB",
1737 [FSCR_TM_LG] = "TM",
1738 [FSCR_EBB_LG] = "EBB",
1739 [FSCR_TAR_LG] = "TAR",
1740 [FSCR_MSGP_LG] = "MSGP",
1741 [FSCR_SCV_LG] = "SCV",
1742 [FSCR_PREFIX_LG] = "PREFIX",
1743 };
1744 char *facility = "unknown";
1745 u64 value;
1746 u32 instword, rd;
1747 u8 status;
1748 bool hv;
1749
1750 hv = (TRAP(regs) == 0xf80);
1751 if (hv)
1752 value = mfspr(SPRN_HFSCR);
1753 else
1754 value = mfspr(SPRN_FSCR);
1755
1756 status = value >> 56;
1757 if ((hv || status >= 2) &&
1758 (status < ARRAY_SIZE(facility_strings)) &&
1759 facility_strings[status])
1760 facility = facility_strings[status];
1761
1762 /* We should not have taken this interrupt in kernel */
1763 if (!user_mode(regs)) {
1764 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1765 facility, status, regs->nip);
1766 die("Unexpected facility unavailable exception", regs, SIGABRT);
1767 }
1768
1769 /* We restore the interrupt state now */
1770 if (!arch_irq_disabled_regs(regs))
1771 local_irq_enable();
1772
1773 if (status == FSCR_DSCR_LG) {
1774 /*
1775 * User is accessing the DSCR register using the problem
1776 * state only SPR number (0x03) either through a mfspr or
1777 * a mtspr instruction. If it is a write attempt through
1778 * a mtspr, then we set the inherit bit. This also allows
1779 * the user to write or read the register directly in the
1780 * future by setting via the FSCR DSCR bit. But in case it
1781 * is a read DSCR attempt through a mfspr instruction, we
1782 * just emulate the instruction instead. This code path will
1783 * always emulate all the mfspr instructions till the user
1784 * has attempted at least one mtspr instruction. This way it
1785 * preserves the same behaviour when the user is accessing
1786 * the DSCR through privilege level only SPR number (0x11)
1787 * which is emulated through illegal instruction exception.
1788 * We always leave HFSCR DSCR set.
1789 */
1790 if (get_user(instword, (u32 __user *)(regs->nip))) {
1791 pr_err("Failed to fetch the user instruction\n");
1792 return;
1793 }
1794
1795 /* Write into DSCR (mtspr 0x03, RS) */
1796 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1797 == PPC_INST_MTSPR_DSCR_USER) {
1798 rd = (instword >> 21) & 0x1f;
1799 current->thread.dscr = regs->gpr[rd];
1800 current->thread.dscr_inherit = 1;
1801 current->thread.fscr |= FSCR_DSCR;
1802 mtspr(SPRN_FSCR, current->thread.fscr);
1803 }
1804
1805 /* Read from DSCR (mfspr RT, 0x03) */
1806 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1807 == PPC_INST_MFSPR_DSCR_USER) {
1808 if (emulate_instruction(regs)) {
1809 pr_err("DSCR based mfspr emulation failed\n");
1810 return;
1811 }
1812 regs->nip += 4;
1813 emulate_single_step(regs);
1814 }
1815 return;
1816 }
1817
1818 if (status == FSCR_TM_LG) {
1819 /*
1820 * If we're here then the hardware is TM aware because it
1821 * generated an exception with FSRM_TM set.
1822 *
1823 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1824 * told us not to do TM, or the kernel is not built with TM
1825 * support.
1826 *
1827 * If both of those things are true, then userspace can spam the
1828 * console by triggering the printk() below just by continually
1829 * doing tbegin (or any TM instruction). So in that case just
1830 * send the process a SIGILL immediately.
1831 */
1832 if (!cpu_has_feature(CPU_FTR_TM))
1833 goto out;
1834
1835 tm_unavailable(regs);
1836 return;
1837 }
1838
1839 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1840 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1841
1842 out:
1843 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1844 }
1845 #endif
1846
1847 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1848
fp_unavailable_tm(struct pt_regs * regs)1849 void fp_unavailable_tm(struct pt_regs *regs)
1850 {
1851 /* Note: This does not handle any kind of FP laziness. */
1852
1853 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1854 regs->nip, regs->msr);
1855
1856 /* We can only have got here if the task started using FP after
1857 * beginning the transaction. So, the transactional regs are just a
1858 * copy of the checkpointed ones. But, we still need to recheckpoint
1859 * as we're enabling FP for the process; it will return, abort the
1860 * transaction, and probably retry but now with FP enabled. So the
1861 * checkpointed FP registers need to be loaded.
1862 */
1863 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1864
1865 /*
1866 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1867 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1868 *
1869 * At this point, ck{fp,vr}_state contains the exact values we want to
1870 * recheckpoint.
1871 */
1872
1873 /* Enable FP for the task: */
1874 current->thread.load_fp = 1;
1875
1876 /*
1877 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1878 */
1879 tm_recheckpoint(¤t->thread);
1880 }
1881
altivec_unavailable_tm(struct pt_regs * regs)1882 void altivec_unavailable_tm(struct pt_regs *regs)
1883 {
1884 /* See the comments in fp_unavailable_tm(). This function operates
1885 * the same way.
1886 */
1887
1888 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1889 "MSR=%lx\n",
1890 regs->nip, regs->msr);
1891 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1892 current->thread.load_vec = 1;
1893 tm_recheckpoint(¤t->thread);
1894 current->thread.used_vr = 1;
1895 }
1896
vsx_unavailable_tm(struct pt_regs * regs)1897 void vsx_unavailable_tm(struct pt_regs *regs)
1898 {
1899 /* See the comments in fp_unavailable_tm(). This works similarly,
1900 * though we're loading both FP and VEC registers in here.
1901 *
1902 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1903 * regs. Either way, set MSR_VSX.
1904 */
1905
1906 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1907 "MSR=%lx\n",
1908 regs->nip, regs->msr);
1909
1910 current->thread.used_vsr = 1;
1911
1912 /* This reclaims FP and/or VR regs if they're already enabled */
1913 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1914
1915 current->thread.load_vec = 1;
1916 current->thread.load_fp = 1;
1917
1918 tm_recheckpoint(¤t->thread);
1919 }
1920 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1921
performance_monitor_exception(struct pt_regs * regs)1922 void performance_monitor_exception(struct pt_regs *regs)
1923 {
1924 __this_cpu_inc(irq_stat.pmu_irqs);
1925
1926 perf_irq(regs);
1927 }
1928
1929 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
handle_debug(struct pt_regs * regs,unsigned long debug_status)1930 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1931 {
1932 int changed = 0;
1933 /*
1934 * Determine the cause of the debug event, clear the
1935 * event flags and send a trap to the handler. Torez
1936 */
1937 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1938 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1939 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1940 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1941 #endif
1942 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1943 5);
1944 changed |= 0x01;
1945 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1946 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1947 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1948 6);
1949 changed |= 0x01;
1950 } else if (debug_status & DBSR_IAC1) {
1951 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1952 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1953 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1954 1);
1955 changed |= 0x01;
1956 } else if (debug_status & DBSR_IAC2) {
1957 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1958 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1959 2);
1960 changed |= 0x01;
1961 } else if (debug_status & DBSR_IAC3) {
1962 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1963 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1964 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1965 3);
1966 changed |= 0x01;
1967 } else if (debug_status & DBSR_IAC4) {
1968 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1969 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1970 4);
1971 changed |= 0x01;
1972 }
1973 /*
1974 * At the point this routine was called, the MSR(DE) was turned off.
1975 * Check all other debug flags and see if that bit needs to be turned
1976 * back on or not.
1977 */
1978 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1979 current->thread.debug.dbcr1))
1980 regs->msr |= MSR_DE;
1981 else
1982 /* Make sure the IDM flag is off */
1983 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1984
1985 if (changed & 0x01)
1986 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1987 }
1988
DebugException(struct pt_regs * regs,unsigned long debug_status)1989 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1990 {
1991 current->thread.debug.dbsr = debug_status;
1992
1993 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1994 * on server, it stops on the target of the branch. In order to simulate
1995 * the server behaviour, we thus restart right away with a single step
1996 * instead of stopping here when hitting a BT
1997 */
1998 if (debug_status & DBSR_BT) {
1999 regs->msr &= ~MSR_DE;
2000
2001 /* Disable BT */
2002 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
2003 /* Clear the BT event */
2004 mtspr(SPRN_DBSR, DBSR_BT);
2005
2006 /* Do the single step trick only when coming from userspace */
2007 if (user_mode(regs)) {
2008 current->thread.debug.dbcr0 &= ~DBCR0_BT;
2009 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2010 regs->msr |= MSR_DE;
2011 return;
2012 }
2013
2014 if (kprobe_post_handler(regs))
2015 return;
2016
2017 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
2018 5, SIGTRAP) == NOTIFY_STOP) {
2019 return;
2020 }
2021 if (debugger_sstep(regs))
2022 return;
2023 } else if (debug_status & DBSR_IC) { /* Instruction complete */
2024 regs->msr &= ~MSR_DE;
2025
2026 /* Disable instruction completion */
2027 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
2028 /* Clear the instruction completion event */
2029 mtspr(SPRN_DBSR, DBSR_IC);
2030
2031 if (kprobe_post_handler(regs))
2032 return;
2033
2034 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2035 5, SIGTRAP) == NOTIFY_STOP) {
2036 return;
2037 }
2038
2039 if (debugger_sstep(regs))
2040 return;
2041
2042 if (user_mode(regs)) {
2043 current->thread.debug.dbcr0 &= ~DBCR0_IC;
2044 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2045 current->thread.debug.dbcr1))
2046 regs->msr |= MSR_DE;
2047 else
2048 /* Make sure the IDM bit is off */
2049 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2050 }
2051
2052 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2053 } else
2054 handle_debug(regs, debug_status);
2055 }
2056 NOKPROBE_SYMBOL(DebugException);
2057 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2058
2059 #ifdef CONFIG_ALTIVEC
altivec_assist_exception(struct pt_regs * regs)2060 void altivec_assist_exception(struct pt_regs *regs)
2061 {
2062 int err;
2063
2064 if (!user_mode(regs)) {
2065 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2066 " at %lx\n", regs->nip);
2067 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2068 }
2069
2070 flush_altivec_to_thread(current);
2071
2072 PPC_WARN_EMULATED(altivec, regs);
2073 err = emulate_altivec(regs);
2074 if (err == 0) {
2075 regs->nip += 4; /* skip emulated instruction */
2076 emulate_single_step(regs);
2077 return;
2078 }
2079
2080 if (err == -EFAULT) {
2081 /* got an error reading the instruction */
2082 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2083 } else {
2084 /* didn't recognize the instruction */
2085 /* XXX quick hack for now: set the non-Java bit in the VSCR */
2086 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2087 "in %s at %lx\n", current->comm, regs->nip);
2088 current->thread.vr_state.vscr.u[3] |= 0x10000;
2089 }
2090 }
2091 #endif /* CONFIG_ALTIVEC */
2092
2093 #ifdef CONFIG_FSL_BOOKE
CacheLockingException(struct pt_regs * regs,unsigned long address,unsigned long error_code)2094 void CacheLockingException(struct pt_regs *regs, unsigned long address,
2095 unsigned long error_code)
2096 {
2097 /* We treat cache locking instructions from the user
2098 * as priv ops, in the future we could try to do
2099 * something smarter
2100 */
2101 if (error_code & (ESR_DLK|ESR_ILK))
2102 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2103 return;
2104 }
2105 #endif /* CONFIG_FSL_BOOKE */
2106
2107 #ifdef CONFIG_SPE
SPEFloatingPointException(struct pt_regs * regs)2108 void SPEFloatingPointException(struct pt_regs *regs)
2109 {
2110 extern int do_spe_mathemu(struct pt_regs *regs);
2111 unsigned long spefscr;
2112 int fpexc_mode;
2113 int code = FPE_FLTUNK;
2114 int err;
2115
2116 /* We restore the interrupt state now */
2117 if (!arch_irq_disabled_regs(regs))
2118 local_irq_enable();
2119
2120 flush_spe_to_thread(current);
2121
2122 spefscr = current->thread.spefscr;
2123 fpexc_mode = current->thread.fpexc_mode;
2124
2125 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2126 code = FPE_FLTOVF;
2127 }
2128 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2129 code = FPE_FLTUND;
2130 }
2131 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2132 code = FPE_FLTDIV;
2133 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2134 code = FPE_FLTINV;
2135 }
2136 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2137 code = FPE_FLTRES;
2138
2139 err = do_spe_mathemu(regs);
2140 if (err == 0) {
2141 regs->nip += 4; /* skip emulated instruction */
2142 emulate_single_step(regs);
2143 return;
2144 }
2145
2146 if (err == -EFAULT) {
2147 /* got an error reading the instruction */
2148 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2149 } else if (err == -EINVAL) {
2150 /* didn't recognize the instruction */
2151 printk(KERN_ERR "unrecognized spe instruction "
2152 "in %s at %lx\n", current->comm, regs->nip);
2153 } else {
2154 _exception(SIGFPE, regs, code, regs->nip);
2155 }
2156
2157 return;
2158 }
2159
SPEFloatingPointRoundException(struct pt_regs * regs)2160 void SPEFloatingPointRoundException(struct pt_regs *regs)
2161 {
2162 extern int speround_handler(struct pt_regs *regs);
2163 int err;
2164
2165 /* We restore the interrupt state now */
2166 if (!arch_irq_disabled_regs(regs))
2167 local_irq_enable();
2168
2169 preempt_disable();
2170 if (regs->msr & MSR_SPE)
2171 giveup_spe(current);
2172 preempt_enable();
2173
2174 regs->nip -= 4;
2175 err = speround_handler(regs);
2176 if (err == 0) {
2177 regs->nip += 4; /* skip emulated instruction */
2178 emulate_single_step(regs);
2179 return;
2180 }
2181
2182 if (err == -EFAULT) {
2183 /* got an error reading the instruction */
2184 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2185 } else if (err == -EINVAL) {
2186 /* didn't recognize the instruction */
2187 printk(KERN_ERR "unrecognized spe instruction "
2188 "in %s at %lx\n", current->comm, regs->nip);
2189 } else {
2190 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2191 return;
2192 }
2193 }
2194 #endif
2195
2196 /*
2197 * We enter here if we get an unrecoverable exception, that is, one
2198 * that happened at a point where the RI (recoverable interrupt) bit
2199 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2200 * we therefore lost state by taking this exception.
2201 */
unrecoverable_exception(struct pt_regs * regs)2202 void unrecoverable_exception(struct pt_regs *regs)
2203 {
2204 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2205 regs->trap, regs->nip, regs->msr);
2206 die("Unrecoverable exception", regs, SIGABRT);
2207 }
2208 NOKPROBE_SYMBOL(unrecoverable_exception);
2209
2210 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2211 /*
2212 * Default handler for a Watchdog exception,
2213 * spins until a reboot occurs
2214 */
WatchdogHandler(struct pt_regs * regs)2215 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2216 {
2217 /* Generic WatchdogHandler, implement your own */
2218 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2219 return;
2220 }
2221
WatchdogException(struct pt_regs * regs)2222 void WatchdogException(struct pt_regs *regs)
2223 {
2224 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2225 WatchdogHandler(regs);
2226 }
2227 #endif
2228
2229 /*
2230 * We enter here if we discover during exception entry that we are
2231 * running in supervisor mode with a userspace value in the stack pointer.
2232 */
kernel_bad_stack(struct pt_regs * regs)2233 void kernel_bad_stack(struct pt_regs *regs)
2234 {
2235 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2236 regs->gpr[1], regs->nip);
2237 die("Bad kernel stack pointer", regs, SIGABRT);
2238 }
2239 NOKPROBE_SYMBOL(kernel_bad_stack);
2240
trap_init(void)2241 void __init trap_init(void)
2242 {
2243 }
2244
2245
2246 #ifdef CONFIG_PPC_EMULATED_STATS
2247
2248 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2249
2250 struct ppc_emulated ppc_emulated = {
2251 #ifdef CONFIG_ALTIVEC
2252 WARN_EMULATED_SETUP(altivec),
2253 #endif
2254 WARN_EMULATED_SETUP(dcba),
2255 WARN_EMULATED_SETUP(dcbz),
2256 WARN_EMULATED_SETUP(fp_pair),
2257 WARN_EMULATED_SETUP(isel),
2258 WARN_EMULATED_SETUP(mcrxr),
2259 WARN_EMULATED_SETUP(mfpvr),
2260 WARN_EMULATED_SETUP(multiple),
2261 WARN_EMULATED_SETUP(popcntb),
2262 WARN_EMULATED_SETUP(spe),
2263 WARN_EMULATED_SETUP(string),
2264 WARN_EMULATED_SETUP(sync),
2265 WARN_EMULATED_SETUP(unaligned),
2266 #ifdef CONFIG_MATH_EMULATION
2267 WARN_EMULATED_SETUP(math),
2268 #endif
2269 #ifdef CONFIG_VSX
2270 WARN_EMULATED_SETUP(vsx),
2271 #endif
2272 #ifdef CONFIG_PPC64
2273 WARN_EMULATED_SETUP(mfdscr),
2274 WARN_EMULATED_SETUP(mtdscr),
2275 WARN_EMULATED_SETUP(lq_stq),
2276 WARN_EMULATED_SETUP(lxvw4x),
2277 WARN_EMULATED_SETUP(lxvh8x),
2278 WARN_EMULATED_SETUP(lxvd2x),
2279 WARN_EMULATED_SETUP(lxvb16x),
2280 #endif
2281 };
2282
2283 u32 ppc_warn_emulated;
2284
ppc_warn_emulated_print(const char * type)2285 void ppc_warn_emulated_print(const char *type)
2286 {
2287 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2288 type);
2289 }
2290
ppc_warn_emulated_init(void)2291 static int __init ppc_warn_emulated_init(void)
2292 {
2293 struct dentry *dir;
2294 unsigned int i;
2295 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2296
2297 dir = debugfs_create_dir("emulated_instructions",
2298 powerpc_debugfs_root);
2299
2300 debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated);
2301
2302 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++)
2303 debugfs_create_u32(entries[i].name, 0644, dir,
2304 (u32 *)&entries[i].val.counter);
2305
2306 return 0;
2307 }
2308
2309 device_initcall(ppc_warn_emulated_init);
2310
2311 #endif /* CONFIG_PPC_EMULATED_STATS */
2312