1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * linux/cgroup-defs.h - basic definitions for cgroup
4  *
5  * This file provides basic type and interface.  Include this file directly
6  * only if necessary to avoid cyclic dependencies.
7  */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10 
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 #include <linux/psi_types.h>
24 
25 #ifdef CONFIG_CGROUPS
26 
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35 struct poll_table_struct;
36 
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME		64
40 
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
45 	CGROUP_SUBSYS_COUNT,
46 };
47 #undef SUBSYS
48 
49 /* bits in struct cgroup_subsys_state flags field */
50 enum {
51 	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
52 	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
53 	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
54 	CSS_VISIBLE	= (1 << 3), /* css is visible to userland */
55 	CSS_DYING	= (1 << 4), /* css is dying */
56 };
57 
58 /* bits in struct cgroup flags field */
59 enum {
60 	/* Control Group requires release notifications to userspace */
61 	CGRP_NOTIFY_ON_RELEASE,
62 	/*
63 	 * Clone the parent's configuration when creating a new child
64 	 * cpuset cgroup.  For historical reasons, this option can be
65 	 * specified at mount time and thus is implemented here.
66 	 */
67 	CGRP_CPUSET_CLONE_CHILDREN,
68 
69 	/* Control group has to be frozen. */
70 	CGRP_FREEZE,
71 
72 	/* Cgroup is frozen. */
73 	CGRP_FROZEN,
74 };
75 
76 /* cgroup_root->flags */
77 enum {
78 	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
79 	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
80 
81 	/*
82 	 * Consider namespaces as delegation boundaries.  If this flag is
83 	 * set, controller specific interface files in a namespace root
84 	 * aren't writeable from inside the namespace.
85 	 */
86 	CGRP_ROOT_NS_DELEGATE	= (1 << 3),
87 
88 	/*
89 	 * Enable cpuset controller in v1 cgroup to use v2 behavior.
90 	 */
91 	CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
92 
93 	/*
94 	 * Enable legacy local memory.events.
95 	 */
96 	CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5),
97 };
98 
99 /* cftype->flags */
100 enum {
101 	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
102 	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
103 	CFTYPE_NS_DELEGATABLE	= (1 << 2),	/* writeable beyond delegation boundaries */
104 
105 	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */
106 	CFTYPE_WORLD_WRITABLE	= (1 << 4),	/* (DON'T USE FOR NEW FILES) S_IWUGO */
107 	CFTYPE_DEBUG		= (1 << 5),	/* create when cgroup_debug */
108 
109 	/* internal flags, do not use outside cgroup core proper */
110 	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
111 	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
112 };
113 
114 /*
115  * cgroup_file is the handle for a file instance created in a cgroup which
116  * is used, for example, to generate file changed notifications.  This can
117  * be obtained by setting cftype->file_offset.
118  */
119 struct cgroup_file {
120 	/* do not access any fields from outside cgroup core */
121 	struct kernfs_node *kn;
122 	unsigned long notified_at;
123 	struct timer_list notify_timer;
124 };
125 
126 /*
127  * Per-subsystem/per-cgroup state maintained by the system.  This is the
128  * fundamental structural building block that controllers deal with.
129  *
130  * Fields marked with "PI:" are public and immutable and may be accessed
131  * directly without synchronization.
132  */
133 struct cgroup_subsys_state {
134 	/* PI: the cgroup that this css is attached to */
135 	struct cgroup *cgroup;
136 
137 	/* PI: the cgroup subsystem that this css is attached to */
138 	struct cgroup_subsys *ss;
139 
140 	/* reference count - access via css_[try]get() and css_put() */
141 	struct percpu_ref refcnt;
142 
143 	/* siblings list anchored at the parent's ->children */
144 	struct list_head sibling;
145 	struct list_head children;
146 
147 	/* flush target list anchored at cgrp->rstat_css_list */
148 	struct list_head rstat_css_node;
149 
150 	/*
151 	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
152 	 * matching css can be looked up using css_from_id().
153 	 */
154 	int id;
155 
156 	unsigned int flags;
157 
158 	/*
159 	 * Monotonically increasing unique serial number which defines a
160 	 * uniform order among all csses.  It's guaranteed that all
161 	 * ->children lists are in the ascending order of ->serial_nr and
162 	 * used to allow interrupting and resuming iterations.
163 	 */
164 	u64 serial_nr;
165 
166 	/*
167 	 * Incremented by online self and children.  Used to guarantee that
168 	 * parents are not offlined before their children.
169 	 */
170 	atomic_t online_cnt;
171 
172 	/* percpu_ref killing and RCU release */
173 	struct work_struct destroy_work;
174 	struct rcu_work destroy_rwork;
175 
176 	/*
177 	 * PI: the parent css.	Placed here for cache proximity to following
178 	 * fields of the containing structure.
179 	 */
180 	struct cgroup_subsys_state *parent;
181 };
182 
183 /*
184  * A css_set is a structure holding pointers to a set of
185  * cgroup_subsys_state objects. This saves space in the task struct
186  * object and speeds up fork()/exit(), since a single inc/dec and a
187  * list_add()/del() can bump the reference count on the entire cgroup
188  * set for a task.
189  */
190 struct css_set {
191 	/*
192 	 * Set of subsystem states, one for each subsystem. This array is
193 	 * immutable after creation apart from the init_css_set during
194 	 * subsystem registration (at boot time).
195 	 */
196 	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
197 
198 	/* reference count */
199 	refcount_t refcount;
200 
201 	/*
202 	 * For a domain cgroup, the following points to self.  If threaded,
203 	 * to the matching cset of the nearest domain ancestor.  The
204 	 * dom_cset provides access to the domain cgroup and its csses to
205 	 * which domain level resource consumptions should be charged.
206 	 */
207 	struct css_set *dom_cset;
208 
209 	/* the default cgroup associated with this css_set */
210 	struct cgroup *dfl_cgrp;
211 
212 	/* internal task count, protected by css_set_lock */
213 	int nr_tasks;
214 
215 	/*
216 	 * Lists running through all tasks using this cgroup group.
217 	 * mg_tasks lists tasks which belong to this cset but are in the
218 	 * process of being migrated out or in.  Protected by
219 	 * css_set_rwsem, but, during migration, once tasks are moved to
220 	 * mg_tasks, it can be read safely while holding cgroup_mutex.
221 	 */
222 	struct list_head tasks;
223 	struct list_head mg_tasks;
224 	struct list_head dying_tasks;
225 
226 	/* all css_task_iters currently walking this cset */
227 	struct list_head task_iters;
228 
229 	/*
230 	 * On the default hierarhcy, ->subsys[ssid] may point to a css
231 	 * attached to an ancestor instead of the cgroup this css_set is
232 	 * associated with.  The following node is anchored at
233 	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
234 	 * iterate through all css's attached to a given cgroup.
235 	 */
236 	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
237 
238 	/* all threaded csets whose ->dom_cset points to this cset */
239 	struct list_head threaded_csets;
240 	struct list_head threaded_csets_node;
241 
242 	/*
243 	 * List running through all cgroup groups in the same hash
244 	 * slot. Protected by css_set_lock
245 	 */
246 	struct hlist_node hlist;
247 
248 	/*
249 	 * List of cgrp_cset_links pointing at cgroups referenced from this
250 	 * css_set.  Protected by css_set_lock.
251 	 */
252 	struct list_head cgrp_links;
253 
254 	/*
255 	 * List of csets participating in the on-going migration either as
256 	 * source or destination.  Protected by cgroup_mutex.
257 	 */
258 	struct list_head mg_preload_node;
259 	struct list_head mg_node;
260 
261 	/*
262 	 * If this cset is acting as the source of migration the following
263 	 * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
264 	 * respectively the source and destination cgroups of the on-going
265 	 * migration.  mg_dst_cset is the destination cset the target tasks
266 	 * on this cset should be migrated to.  Protected by cgroup_mutex.
267 	 */
268 	struct cgroup *mg_src_cgrp;
269 	struct cgroup *mg_dst_cgrp;
270 	struct css_set *mg_dst_cset;
271 
272 	/* dead and being drained, ignore for migration */
273 	bool dead;
274 
275 	/* For RCU-protected deletion */
276 	struct rcu_head rcu_head;
277 };
278 
279 struct cgroup_base_stat {
280 	struct task_cputime cputime;
281 };
282 
283 /*
284  * rstat - cgroup scalable recursive statistics.  Accounting is done
285  * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
286  * hierarchy on reads.
287  *
288  * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
289  * linked into the updated tree.  On the following read, propagation only
290  * considers and consumes the updated tree.  This makes reading O(the
291  * number of descendants which have been active since last read) instead of
292  * O(the total number of descendants).
293  *
294  * This is important because there can be a lot of (draining) cgroups which
295  * aren't active and stat may be read frequently.  The combination can
296  * become very expensive.  By propagating selectively, increasing reading
297  * frequency decreases the cost of each read.
298  *
299  * This struct hosts both the fields which implement the above -
300  * updated_children and updated_next - and the fields which track basic
301  * resource statistics on top of it - bsync, bstat and last_bstat.
302  */
303 struct cgroup_rstat_cpu {
304 	/*
305 	 * ->bsync protects ->bstat.  These are the only fields which get
306 	 * updated in the hot path.
307 	 */
308 	struct u64_stats_sync bsync;
309 	struct cgroup_base_stat bstat;
310 
311 	/*
312 	 * Snapshots at the last reading.  These are used to calculate the
313 	 * deltas to propagate to the global counters.
314 	 */
315 	struct cgroup_base_stat last_bstat;
316 
317 	/*
318 	 * Child cgroups with stat updates on this cpu since the last read
319 	 * are linked on the parent's ->updated_children through
320 	 * ->updated_next.
321 	 *
322 	 * In addition to being more compact, singly-linked list pointing
323 	 * to the cgroup makes it unnecessary for each per-cpu struct to
324 	 * point back to the associated cgroup.
325 	 *
326 	 * Protected by per-cpu cgroup_rstat_cpu_lock.
327 	 */
328 	struct cgroup *updated_children;	/* terminated by self cgroup */
329 	struct cgroup *updated_next;		/* NULL iff not on the list */
330 };
331 
332 struct cgroup_freezer_state {
333 	/* Should the cgroup and its descendants be frozen. */
334 	bool freeze;
335 
336 	/* Should the cgroup actually be frozen? */
337 	int e_freeze;
338 
339 	/* Fields below are protected by css_set_lock */
340 
341 	/* Number of frozen descendant cgroups */
342 	int nr_frozen_descendants;
343 
344 	/*
345 	 * Number of tasks, which are counted as frozen:
346 	 * frozen, SIGSTOPped, and PTRACEd.
347 	 */
348 	int nr_frozen_tasks;
349 };
350 
351 struct cgroup {
352 	/* self css with NULL ->ss, points back to this cgroup */
353 	struct cgroup_subsys_state self;
354 
355 	unsigned long flags;		/* "unsigned long" so bitops work */
356 
357 	/*
358 	 * idr allocated in-hierarchy ID.
359 	 *
360 	 * ID 0 is not used, the ID of the root cgroup is always 1, and a
361 	 * new cgroup will be assigned with a smallest available ID.
362 	 *
363 	 * Allocating/Removing ID must be protected by cgroup_mutex.
364 	 */
365 	int id;
366 
367 	/*
368 	 * The depth this cgroup is at.  The root is at depth zero and each
369 	 * step down the hierarchy increments the level.  This along with
370 	 * ancestor_ids[] can determine whether a given cgroup is a
371 	 * descendant of another without traversing the hierarchy.
372 	 */
373 	int level;
374 
375 	/* Maximum allowed descent tree depth */
376 	int max_depth;
377 
378 	/*
379 	 * Keep track of total numbers of visible and dying descent cgroups.
380 	 * Dying cgroups are cgroups which were deleted by a user,
381 	 * but are still existing because someone else is holding a reference.
382 	 * max_descendants is a maximum allowed number of descent cgroups.
383 	 *
384 	 * nr_descendants and nr_dying_descendants are protected
385 	 * by cgroup_mutex and css_set_lock. It's fine to read them holding
386 	 * any of cgroup_mutex and css_set_lock; for writing both locks
387 	 * should be held.
388 	 */
389 	int nr_descendants;
390 	int nr_dying_descendants;
391 	int max_descendants;
392 
393 	/*
394 	 * Each non-empty css_set associated with this cgroup contributes
395 	 * one to nr_populated_csets.  The counter is zero iff this cgroup
396 	 * doesn't have any tasks.
397 	 *
398 	 * All children which have non-zero nr_populated_csets and/or
399 	 * nr_populated_children of their own contribute one to either
400 	 * nr_populated_domain_children or nr_populated_threaded_children
401 	 * depending on their type.  Each counter is zero iff all cgroups
402 	 * of the type in the subtree proper don't have any tasks.
403 	 */
404 	int nr_populated_csets;
405 	int nr_populated_domain_children;
406 	int nr_populated_threaded_children;
407 
408 	int nr_threaded_children;	/* # of live threaded child cgroups */
409 
410 	struct kernfs_node *kn;		/* cgroup kernfs entry */
411 	struct cgroup_file procs_file;	/* handle for "cgroup.procs" */
412 	struct cgroup_file events_file;	/* handle for "cgroup.events" */
413 
414 	/*
415 	 * The bitmask of subsystems enabled on the child cgroups.
416 	 * ->subtree_control is the one configured through
417 	 * "cgroup.subtree_control" while ->child_ss_mask is the effective
418 	 * one which may have more subsystems enabled.  Controller knobs
419 	 * are made available iff it's enabled in ->subtree_control.
420 	 */
421 	u16 subtree_control;
422 	u16 subtree_ss_mask;
423 	u16 old_subtree_control;
424 	u16 old_subtree_ss_mask;
425 
426 	/* Private pointers for each registered subsystem */
427 	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
428 
429 	struct cgroup_root *root;
430 
431 	/*
432 	 * List of cgrp_cset_links pointing at css_sets with tasks in this
433 	 * cgroup.  Protected by css_set_lock.
434 	 */
435 	struct list_head cset_links;
436 
437 	/*
438 	 * On the default hierarchy, a css_set for a cgroup with some
439 	 * susbsys disabled will point to css's which are associated with
440 	 * the closest ancestor which has the subsys enabled.  The
441 	 * following lists all css_sets which point to this cgroup's css
442 	 * for the given subsystem.
443 	 */
444 	struct list_head e_csets[CGROUP_SUBSYS_COUNT];
445 
446 	/*
447 	 * If !threaded, self.  If threaded, it points to the nearest
448 	 * domain ancestor.  Inside a threaded subtree, cgroups are exempt
449 	 * from process granularity and no-internal-task constraint.
450 	 * Domain level resource consumptions which aren't tied to a
451 	 * specific task are charged to the dom_cgrp.
452 	 */
453 	struct cgroup *dom_cgrp;
454 	struct cgroup *old_dom_cgrp;		/* used while enabling threaded */
455 
456 	/* per-cpu recursive resource statistics */
457 	struct cgroup_rstat_cpu __percpu *rstat_cpu;
458 	struct list_head rstat_css_list;
459 
460 	/* cgroup basic resource statistics */
461 	struct cgroup_base_stat pending_bstat;	/* pending from children */
462 	struct cgroup_base_stat bstat;
463 	struct prev_cputime prev_cputime;	/* for printing out cputime */
464 
465 	/*
466 	 * list of pidlists, up to two for each namespace (one for procs, one
467 	 * for tasks); created on demand.
468 	 */
469 	struct list_head pidlists;
470 	struct mutex pidlist_mutex;
471 
472 	/* used to wait for offlining of csses */
473 	wait_queue_head_t offline_waitq;
474 
475 	/* used to schedule release agent */
476 	struct work_struct release_agent_work;
477 
478 	/* used to track pressure stalls */
479 	struct psi_group psi;
480 
481 	/* used to store eBPF programs */
482 	struct cgroup_bpf bpf;
483 
484 	/* If there is block congestion on this cgroup. */
485 	atomic_t congestion_count;
486 
487 	/* Used to store internal freezer state */
488 	struct cgroup_freezer_state freezer;
489 
490 	/* ids of the ancestors at each level including self */
491 	int ancestor_ids[];
492 };
493 
494 /*
495  * A cgroup_root represents the root of a cgroup hierarchy, and may be
496  * associated with a kernfs_root to form an active hierarchy.  This is
497  * internal to cgroup core.  Don't access directly from controllers.
498  */
499 struct cgroup_root {
500 	struct kernfs_root *kf_root;
501 
502 	/* The bitmask of subsystems attached to this hierarchy */
503 	unsigned int subsys_mask;
504 
505 	/* Unique id for this hierarchy. */
506 	int hierarchy_id;
507 
508 	/* The root cgroup.  Root is destroyed on its release. */
509 	struct cgroup cgrp;
510 
511 	/* for cgrp->ancestor_ids[0] */
512 	int cgrp_ancestor_id_storage;
513 
514 	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
515 	atomic_t nr_cgrps;
516 
517 	/* A list running through the active hierarchies */
518 	struct list_head root_list;
519 
520 	/* Hierarchy-specific flags */
521 	unsigned int flags;
522 
523 	/* IDs for cgroups in this hierarchy */
524 	struct idr cgroup_idr;
525 
526 	/* The path to use for release notifications. */
527 	char release_agent_path[PATH_MAX];
528 
529 	/* The name for this hierarchy - may be empty */
530 	char name[MAX_CGROUP_ROOT_NAMELEN];
531 };
532 
533 /*
534  * struct cftype: handler definitions for cgroup control files
535  *
536  * When reading/writing to a file:
537  *	- the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
538  *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
539  */
540 struct cftype {
541 	/*
542 	 * By convention, the name should begin with the name of the
543 	 * subsystem, followed by a period.  Zero length string indicates
544 	 * end of cftype array.
545 	 */
546 	char name[MAX_CFTYPE_NAME];
547 	unsigned long private;
548 
549 	/*
550 	 * The maximum length of string, excluding trailing nul, that can
551 	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
552 	 */
553 	size_t max_write_len;
554 
555 	/* CFTYPE_* flags */
556 	unsigned int flags;
557 
558 	/*
559 	 * If non-zero, should contain the offset from the start of css to
560 	 * a struct cgroup_file field.  cgroup will record the handle of
561 	 * the created file into it.  The recorded handle can be used as
562 	 * long as the containing css remains accessible.
563 	 */
564 	unsigned int file_offset;
565 
566 	/*
567 	 * Fields used for internal bookkeeping.  Initialized automatically
568 	 * during registration.
569 	 */
570 	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
571 	struct list_head node;		/* anchored at ss->cfts */
572 	struct kernfs_ops *kf_ops;
573 
574 	int (*open)(struct kernfs_open_file *of);
575 	void (*release)(struct kernfs_open_file *of);
576 
577 	/*
578 	 * read_u64() is a shortcut for the common case of returning a
579 	 * single integer. Use it in place of read()
580 	 */
581 	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
582 	/*
583 	 * read_s64() is a signed version of read_u64()
584 	 */
585 	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
586 
587 	/* generic seq_file read interface */
588 	int (*seq_show)(struct seq_file *sf, void *v);
589 
590 	/* optional ops, implement all or none */
591 	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
592 	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
593 	void (*seq_stop)(struct seq_file *sf, void *v);
594 
595 	/*
596 	 * write_u64() is a shortcut for the common case of accepting
597 	 * a single integer (as parsed by simple_strtoull) from
598 	 * userspace. Use in place of write(); return 0 or error.
599 	 */
600 	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
601 			 u64 val);
602 	/*
603 	 * write_s64() is a signed version of write_u64()
604 	 */
605 	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
606 			 s64 val);
607 
608 	/*
609 	 * write() is the generic write callback which maps directly to
610 	 * kernfs write operation and overrides all other operations.
611 	 * Maximum write size is determined by ->max_write_len.  Use
612 	 * of_css/cft() to access the associated css and cft.
613 	 */
614 	ssize_t (*write)(struct kernfs_open_file *of,
615 			 char *buf, size_t nbytes, loff_t off);
616 
617 	__poll_t (*poll)(struct kernfs_open_file *of,
618 			 struct poll_table_struct *pt);
619 
620 #ifdef CONFIG_DEBUG_LOCK_ALLOC
621 	struct lock_class_key	lockdep_key;
622 #endif
623 };
624 
625 /*
626  * Control Group subsystem type.
627  * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
628  */
629 struct cgroup_subsys {
630 	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
631 	int (*css_online)(struct cgroup_subsys_state *css);
632 	void (*css_offline)(struct cgroup_subsys_state *css);
633 	void (*css_released)(struct cgroup_subsys_state *css);
634 	void (*css_free)(struct cgroup_subsys_state *css);
635 	void (*css_reset)(struct cgroup_subsys_state *css);
636 	void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
637 	int (*css_extra_stat_show)(struct seq_file *seq,
638 				   struct cgroup_subsys_state *css);
639 
640 	int (*can_attach)(struct cgroup_taskset *tset);
641 	void (*cancel_attach)(struct cgroup_taskset *tset);
642 	void (*attach)(struct cgroup_taskset *tset);
643 	void (*post_attach)(void);
644 	int (*can_fork)(struct task_struct *task);
645 	void (*cancel_fork)(struct task_struct *task);
646 	void (*fork)(struct task_struct *task);
647 	void (*exit)(struct task_struct *task);
648 	void (*release)(struct task_struct *task);
649 	void (*bind)(struct cgroup_subsys_state *root_css);
650 
651 	bool early_init:1;
652 
653 	/*
654 	 * If %true, the controller, on the default hierarchy, doesn't show
655 	 * up in "cgroup.controllers" or "cgroup.subtree_control", is
656 	 * implicitly enabled on all cgroups on the default hierarchy, and
657 	 * bypasses the "no internal process" constraint.  This is for
658 	 * utility type controllers which is transparent to userland.
659 	 *
660 	 * An implicit controller can be stolen from the default hierarchy
661 	 * anytime and thus must be okay with offline csses from previous
662 	 * hierarchies coexisting with csses for the current one.
663 	 */
664 	bool implicit_on_dfl:1;
665 
666 	/*
667 	 * If %true, the controller, supports threaded mode on the default
668 	 * hierarchy.  In a threaded subtree, both process granularity and
669 	 * no-internal-process constraint are ignored and a threaded
670 	 * controllers should be able to handle that.
671 	 *
672 	 * Note that as an implicit controller is automatically enabled on
673 	 * all cgroups on the default hierarchy, it should also be
674 	 * threaded.  implicit && !threaded is not supported.
675 	 */
676 	bool threaded:1;
677 
678 	/*
679 	 * If %false, this subsystem is properly hierarchical -
680 	 * configuration, resource accounting and restriction on a parent
681 	 * cgroup cover those of its children.  If %true, hierarchy support
682 	 * is broken in some ways - some subsystems ignore hierarchy
683 	 * completely while others are only implemented half-way.
684 	 *
685 	 * It's now disallowed to create nested cgroups if the subsystem is
686 	 * broken and cgroup core will emit a warning message on such
687 	 * cases.  Eventually, all subsystems will be made properly
688 	 * hierarchical and this will go away.
689 	 */
690 	bool broken_hierarchy:1;
691 	bool warned_broken_hierarchy:1;
692 
693 	/* the following two fields are initialized automtically during boot */
694 	int id;
695 	const char *name;
696 
697 	/* optional, initialized automatically during boot if not set */
698 	const char *legacy_name;
699 
700 	/* link to parent, protected by cgroup_lock() */
701 	struct cgroup_root *root;
702 
703 	/* idr for css->id */
704 	struct idr css_idr;
705 
706 	/*
707 	 * List of cftypes.  Each entry is the first entry of an array
708 	 * terminated by zero length name.
709 	 */
710 	struct list_head cfts;
711 
712 	/*
713 	 * Base cftypes which are automatically registered.  The two can
714 	 * point to the same array.
715 	 */
716 	struct cftype *dfl_cftypes;	/* for the default hierarchy */
717 	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */
718 
719 	/*
720 	 * A subsystem may depend on other subsystems.  When such subsystem
721 	 * is enabled on a cgroup, the depended-upon subsystems are enabled
722 	 * together if available.  Subsystems enabled due to dependency are
723 	 * not visible to userland until explicitly enabled.  The following
724 	 * specifies the mask of subsystems that this one depends on.
725 	 */
726 	unsigned int depends_on;
727 };
728 
729 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
730 
731 /**
732  * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
733  * @tsk: target task
734  *
735  * Allows cgroup operations to synchronize against threadgroup changes
736  * using a percpu_rw_semaphore.
737  */
cgroup_threadgroup_change_begin(struct task_struct * tsk)738 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
739 {
740 	percpu_down_read(&cgroup_threadgroup_rwsem);
741 }
742 
743 /**
744  * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
745  * @tsk: target task
746  *
747  * Counterpart of cgroup_threadcgroup_change_begin().
748  */
cgroup_threadgroup_change_end(struct task_struct * tsk)749 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
750 {
751 	percpu_up_read(&cgroup_threadgroup_rwsem);
752 }
753 
754 #else	/* CONFIG_CGROUPS */
755 
756 #define CGROUP_SUBSYS_COUNT 0
757 
cgroup_threadgroup_change_begin(struct task_struct * tsk)758 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
759 {
760 	might_sleep();
761 }
762 
cgroup_threadgroup_change_end(struct task_struct * tsk)763 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
764 
765 #endif	/* CONFIG_CGROUPS */
766 
767 #ifdef CONFIG_SOCK_CGROUP_DATA
768 
769 /*
770  * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
771  * per-socket cgroup information except for memcg association.
772  *
773  * On legacy hierarchies, net_prio and net_cls controllers directly set
774  * attributes on each sock which can then be tested by the network layer.
775  * On the default hierarchy, each sock is associated with the cgroup it was
776  * created in and the networking layer can match the cgroup directly.
777  *
778  * To avoid carrying all three cgroup related fields separately in sock,
779  * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
780  * On boot, sock_cgroup_data records the cgroup that the sock was created
781  * in so that cgroup2 matches can be made; however, once either net_prio or
782  * net_cls starts being used, the area is overriden to carry prioidx and/or
783  * classid.  The two modes are distinguished by whether the lowest bit is
784  * set.  Clear bit indicates cgroup pointer while set bit prioidx and
785  * classid.
786  *
787  * While userland may start using net_prio or net_cls at any time, once
788  * either is used, cgroup2 matching no longer works.  There is no reason to
789  * mix the two and this is in line with how legacy and v2 compatibility is
790  * handled.  On mode switch, cgroup references which are already being
791  * pointed to by socks may be leaked.  While this can be remedied by adding
792  * synchronization around sock_cgroup_data, given that the number of leaked
793  * cgroups is bound and highly unlikely to be high, this seems to be the
794  * better trade-off.
795  */
796 struct sock_cgroup_data {
797 	union {
798 #ifdef __LITTLE_ENDIAN
799 		struct {
800 			u8	is_data;
801 			u8	padding;
802 			u16	prioidx;
803 			u32	classid;
804 		} __packed;
805 #else
806 		struct {
807 			u32	classid;
808 			u16	prioidx;
809 			u8	padding;
810 			u8	is_data;
811 		} __packed;
812 #endif
813 		u64		val;
814 	};
815 };
816 
817 /*
818  * There's a theoretical window where the following accessors race with
819  * updaters and return part of the previous pointer as the prioidx or
820  * classid.  Such races are short-lived and the result isn't critical.
821  */
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)822 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
823 {
824 	/* fallback to 1 which is always the ID of the root cgroup */
825 	return (skcd->is_data & 1) ? skcd->prioidx : 1;
826 }
827 
sock_cgroup_classid(const struct sock_cgroup_data * skcd)828 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
829 {
830 	/* fallback to 0 which is the unconfigured default classid */
831 	return (skcd->is_data & 1) ? skcd->classid : 0;
832 }
833 
834 /*
835  * If invoked concurrently, the updaters may clobber each other.  The
836  * caller is responsible for synchronization.
837  */
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)838 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
839 					   u16 prioidx)
840 {
841 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
842 
843 	if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
844 		return;
845 
846 	if (!(skcd_buf.is_data & 1)) {
847 		skcd_buf.val = 0;
848 		skcd_buf.is_data = 1;
849 	}
850 
851 	skcd_buf.prioidx = prioidx;
852 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
853 }
854 
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)855 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
856 					   u32 classid)
857 {
858 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
859 
860 	if (sock_cgroup_classid(&skcd_buf) == classid)
861 		return;
862 
863 	if (!(skcd_buf.is_data & 1)) {
864 		skcd_buf.val = 0;
865 		skcd_buf.is_data = 1;
866 	}
867 
868 	skcd_buf.classid = classid;
869 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
870 }
871 
872 #else	/* CONFIG_SOCK_CGROUP_DATA */
873 
874 struct sock_cgroup_data {
875 };
876 
877 #endif	/* CONFIG_SOCK_CGROUP_DATA */
878 
879 #endif	/* _LINUX_CGROUP_DEFS_H */
880