1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * linux/cgroup-defs.h - basic definitions for cgroup
4  *
5  * This file provides basic type and interface.  Include this file directly
6  * only if necessary to avoid cyclic dependencies.
7  */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10 
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 #include <linux/psi_types.h>
24 
25 #ifdef CONFIG_CGROUPS
26 
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35 struct poll_table_struct;
36 
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME		64
40 
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
45 	CGROUP_SUBSYS_COUNT,
46 };
47 #undef SUBSYS
48 
49 /* bits in struct cgroup_subsys_state flags field */
50 enum {
51 	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
52 	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
53 	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
54 	CSS_VISIBLE	= (1 << 3), /* css is visible to userland */
55 	CSS_DYING	= (1 << 4), /* css is dying */
56 };
57 
58 /* bits in struct cgroup flags field */
59 enum {
60 	/* Control Group requires release notifications to userspace */
61 	CGRP_NOTIFY_ON_RELEASE,
62 	/*
63 	 * Clone the parent's configuration when creating a new child
64 	 * cpuset cgroup.  For historical reasons, this option can be
65 	 * specified at mount time and thus is implemented here.
66 	 */
67 	CGRP_CPUSET_CLONE_CHILDREN,
68 
69 	/* Control group has to be frozen. */
70 	CGRP_FREEZE,
71 
72 	/* Cgroup is frozen. */
73 	CGRP_FROZEN,
74 };
75 
76 /* cgroup_root->flags */
77 enum {
78 	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
79 	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
80 
81 	/*
82 	 * Consider namespaces as delegation boundaries.  If this flag is
83 	 * set, controller specific interface files in a namespace root
84 	 * aren't writeable from inside the namespace.
85 	 */
86 	CGRP_ROOT_NS_DELEGATE	= (1 << 3),
87 
88 	/*
89 	 * Enable cpuset controller in v1 cgroup to use v2 behavior.
90 	 */
91 	CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
92 
93 	/*
94 	 * Enable legacy local memory.events.
95 	 */
96 	CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5),
97 
98 	/*
99 	 * Enable recursive subtree protection
100 	 */
101 	CGRP_ROOT_MEMORY_RECURSIVE_PROT = (1 << 6),
102 };
103 
104 /* cftype->flags */
105 enum {
106 	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
107 	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
108 	CFTYPE_NS_DELEGATABLE	= (1 << 2),	/* writeable beyond delegation boundaries */
109 
110 	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */
111 	CFTYPE_WORLD_WRITABLE	= (1 << 4),	/* (DON'T USE FOR NEW FILES) S_IWUGO */
112 	CFTYPE_DEBUG		= (1 << 5),	/* create when cgroup_debug */
113 
114 	/* internal flags, do not use outside cgroup core proper */
115 	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
116 	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
117 };
118 
119 /*
120  * cgroup_file is the handle for a file instance created in a cgroup which
121  * is used, for example, to generate file changed notifications.  This can
122  * be obtained by setting cftype->file_offset.
123  */
124 struct cgroup_file {
125 	/* do not access any fields from outside cgroup core */
126 	struct kernfs_node *kn;
127 	unsigned long notified_at;
128 	struct timer_list notify_timer;
129 };
130 
131 /*
132  * Per-subsystem/per-cgroup state maintained by the system.  This is the
133  * fundamental structural building block that controllers deal with.
134  *
135  * Fields marked with "PI:" are public and immutable and may be accessed
136  * directly without synchronization.
137  */
138 struct cgroup_subsys_state {
139 	/* PI: the cgroup that this css is attached to */
140 	struct cgroup *cgroup;
141 
142 	/* PI: the cgroup subsystem that this css is attached to */
143 	struct cgroup_subsys *ss;
144 
145 	/* reference count - access via css_[try]get() and css_put() */
146 	struct percpu_ref refcnt;
147 
148 	/* siblings list anchored at the parent's ->children */
149 	struct list_head sibling;
150 	struct list_head children;
151 
152 	/* flush target list anchored at cgrp->rstat_css_list */
153 	struct list_head rstat_css_node;
154 
155 	/*
156 	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
157 	 * matching css can be looked up using css_from_id().
158 	 */
159 	int id;
160 
161 	unsigned int flags;
162 
163 	/*
164 	 * Monotonically increasing unique serial number which defines a
165 	 * uniform order among all csses.  It's guaranteed that all
166 	 * ->children lists are in the ascending order of ->serial_nr and
167 	 * used to allow interrupting and resuming iterations.
168 	 */
169 	u64 serial_nr;
170 
171 	/*
172 	 * Incremented by online self and children.  Used to guarantee that
173 	 * parents are not offlined before their children.
174 	 */
175 	atomic_t online_cnt;
176 
177 	/* percpu_ref killing and RCU release */
178 	struct work_struct destroy_work;
179 	struct rcu_work destroy_rwork;
180 
181 	/*
182 	 * PI: the parent css.	Placed here for cache proximity to following
183 	 * fields of the containing structure.
184 	 */
185 	struct cgroup_subsys_state *parent;
186 };
187 
188 /*
189  * A css_set is a structure holding pointers to a set of
190  * cgroup_subsys_state objects. This saves space in the task struct
191  * object and speeds up fork()/exit(), since a single inc/dec and a
192  * list_add()/del() can bump the reference count on the entire cgroup
193  * set for a task.
194  */
195 struct css_set {
196 	/*
197 	 * Set of subsystem states, one for each subsystem. This array is
198 	 * immutable after creation apart from the init_css_set during
199 	 * subsystem registration (at boot time).
200 	 */
201 	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
202 
203 	/* reference count */
204 	refcount_t refcount;
205 
206 	/*
207 	 * For a domain cgroup, the following points to self.  If threaded,
208 	 * to the matching cset of the nearest domain ancestor.  The
209 	 * dom_cset provides access to the domain cgroup and its csses to
210 	 * which domain level resource consumptions should be charged.
211 	 */
212 	struct css_set *dom_cset;
213 
214 	/* the default cgroup associated with this css_set */
215 	struct cgroup *dfl_cgrp;
216 
217 	/* internal task count, protected by css_set_lock */
218 	int nr_tasks;
219 
220 	/*
221 	 * Lists running through all tasks using this cgroup group.
222 	 * mg_tasks lists tasks which belong to this cset but are in the
223 	 * process of being migrated out or in.  Protected by
224 	 * css_set_rwsem, but, during migration, once tasks are moved to
225 	 * mg_tasks, it can be read safely while holding cgroup_mutex.
226 	 */
227 	struct list_head tasks;
228 	struct list_head mg_tasks;
229 	struct list_head dying_tasks;
230 
231 	/* all css_task_iters currently walking this cset */
232 	struct list_head task_iters;
233 
234 	/*
235 	 * On the default hierarhcy, ->subsys[ssid] may point to a css
236 	 * attached to an ancestor instead of the cgroup this css_set is
237 	 * associated with.  The following node is anchored at
238 	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
239 	 * iterate through all css's attached to a given cgroup.
240 	 */
241 	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
242 
243 	/* all threaded csets whose ->dom_cset points to this cset */
244 	struct list_head threaded_csets;
245 	struct list_head threaded_csets_node;
246 
247 	/*
248 	 * List running through all cgroup groups in the same hash
249 	 * slot. Protected by css_set_lock
250 	 */
251 	struct hlist_node hlist;
252 
253 	/*
254 	 * List of cgrp_cset_links pointing at cgroups referenced from this
255 	 * css_set.  Protected by css_set_lock.
256 	 */
257 	struct list_head cgrp_links;
258 
259 	/*
260 	 * List of csets participating in the on-going migration either as
261 	 * source or destination.  Protected by cgroup_mutex.
262 	 */
263 	struct list_head mg_preload_node;
264 	struct list_head mg_node;
265 
266 	/*
267 	 * If this cset is acting as the source of migration the following
268 	 * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
269 	 * respectively the source and destination cgroups of the on-going
270 	 * migration.  mg_dst_cset is the destination cset the target tasks
271 	 * on this cset should be migrated to.  Protected by cgroup_mutex.
272 	 */
273 	struct cgroup *mg_src_cgrp;
274 	struct cgroup *mg_dst_cgrp;
275 	struct css_set *mg_dst_cset;
276 
277 	/* dead and being drained, ignore for migration */
278 	bool dead;
279 
280 	/* For RCU-protected deletion */
281 	struct rcu_head rcu_head;
282 };
283 
284 struct cgroup_base_stat {
285 	struct task_cputime cputime;
286 };
287 
288 /*
289  * rstat - cgroup scalable recursive statistics.  Accounting is done
290  * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
291  * hierarchy on reads.
292  *
293  * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
294  * linked into the updated tree.  On the following read, propagation only
295  * considers and consumes the updated tree.  This makes reading O(the
296  * number of descendants which have been active since last read) instead of
297  * O(the total number of descendants).
298  *
299  * This is important because there can be a lot of (draining) cgroups which
300  * aren't active and stat may be read frequently.  The combination can
301  * become very expensive.  By propagating selectively, increasing reading
302  * frequency decreases the cost of each read.
303  *
304  * This struct hosts both the fields which implement the above -
305  * updated_children and updated_next - and the fields which track basic
306  * resource statistics on top of it - bsync, bstat and last_bstat.
307  */
308 struct cgroup_rstat_cpu {
309 	/*
310 	 * ->bsync protects ->bstat.  These are the only fields which get
311 	 * updated in the hot path.
312 	 */
313 	struct u64_stats_sync bsync;
314 	struct cgroup_base_stat bstat;
315 
316 	/*
317 	 * Snapshots at the last reading.  These are used to calculate the
318 	 * deltas to propagate to the global counters.
319 	 */
320 	struct cgroup_base_stat last_bstat;
321 
322 	/*
323 	 * Child cgroups with stat updates on this cpu since the last read
324 	 * are linked on the parent's ->updated_children through
325 	 * ->updated_next.
326 	 *
327 	 * In addition to being more compact, singly-linked list pointing
328 	 * to the cgroup makes it unnecessary for each per-cpu struct to
329 	 * point back to the associated cgroup.
330 	 *
331 	 * Protected by per-cpu cgroup_rstat_cpu_lock.
332 	 */
333 	struct cgroup *updated_children;	/* terminated by self cgroup */
334 	struct cgroup *updated_next;		/* NULL iff not on the list */
335 };
336 
337 struct cgroup_freezer_state {
338 	/* Should the cgroup and its descendants be frozen. */
339 	bool freeze;
340 
341 	/* Should the cgroup actually be frozen? */
342 	int e_freeze;
343 
344 	/* Fields below are protected by css_set_lock */
345 
346 	/* Number of frozen descendant cgroups */
347 	int nr_frozen_descendants;
348 
349 	/*
350 	 * Number of tasks, which are counted as frozen:
351 	 * frozen, SIGSTOPped, and PTRACEd.
352 	 */
353 	int nr_frozen_tasks;
354 };
355 
356 struct cgroup {
357 	/* self css with NULL ->ss, points back to this cgroup */
358 	struct cgroup_subsys_state self;
359 
360 	unsigned long flags;		/* "unsigned long" so bitops work */
361 
362 	/*
363 	 * The depth this cgroup is at.  The root is at depth zero and each
364 	 * step down the hierarchy increments the level.  This along with
365 	 * ancestor_ids[] can determine whether a given cgroup is a
366 	 * descendant of another without traversing the hierarchy.
367 	 */
368 	int level;
369 
370 	/* Maximum allowed descent tree depth */
371 	int max_depth;
372 
373 	/*
374 	 * Keep track of total numbers of visible and dying descent cgroups.
375 	 * Dying cgroups are cgroups which were deleted by a user,
376 	 * but are still existing because someone else is holding a reference.
377 	 * max_descendants is a maximum allowed number of descent cgroups.
378 	 *
379 	 * nr_descendants and nr_dying_descendants are protected
380 	 * by cgroup_mutex and css_set_lock. It's fine to read them holding
381 	 * any of cgroup_mutex and css_set_lock; for writing both locks
382 	 * should be held.
383 	 */
384 	int nr_descendants;
385 	int nr_dying_descendants;
386 	int max_descendants;
387 
388 	/*
389 	 * Each non-empty css_set associated with this cgroup contributes
390 	 * one to nr_populated_csets.  The counter is zero iff this cgroup
391 	 * doesn't have any tasks.
392 	 *
393 	 * All children which have non-zero nr_populated_csets and/or
394 	 * nr_populated_children of their own contribute one to either
395 	 * nr_populated_domain_children or nr_populated_threaded_children
396 	 * depending on their type.  Each counter is zero iff all cgroups
397 	 * of the type in the subtree proper don't have any tasks.
398 	 */
399 	int nr_populated_csets;
400 	int nr_populated_domain_children;
401 	int nr_populated_threaded_children;
402 
403 	int nr_threaded_children;	/* # of live threaded child cgroups */
404 
405 	struct kernfs_node *kn;		/* cgroup kernfs entry */
406 	struct cgroup_file procs_file;	/* handle for "cgroup.procs" */
407 	struct cgroup_file events_file;	/* handle for "cgroup.events" */
408 
409 	/*
410 	 * The bitmask of subsystems enabled on the child cgroups.
411 	 * ->subtree_control is the one configured through
412 	 * "cgroup.subtree_control" while ->child_ss_mask is the effective
413 	 * one which may have more subsystems enabled.  Controller knobs
414 	 * are made available iff it's enabled in ->subtree_control.
415 	 */
416 	u16 subtree_control;
417 	u16 subtree_ss_mask;
418 	u16 old_subtree_control;
419 	u16 old_subtree_ss_mask;
420 
421 	/* Private pointers for each registered subsystem */
422 	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
423 
424 	struct cgroup_root *root;
425 
426 	/*
427 	 * List of cgrp_cset_links pointing at css_sets with tasks in this
428 	 * cgroup.  Protected by css_set_lock.
429 	 */
430 	struct list_head cset_links;
431 
432 	/*
433 	 * On the default hierarchy, a css_set for a cgroup with some
434 	 * susbsys disabled will point to css's which are associated with
435 	 * the closest ancestor which has the subsys enabled.  The
436 	 * following lists all css_sets which point to this cgroup's css
437 	 * for the given subsystem.
438 	 */
439 	struct list_head e_csets[CGROUP_SUBSYS_COUNT];
440 
441 	/*
442 	 * If !threaded, self.  If threaded, it points to the nearest
443 	 * domain ancestor.  Inside a threaded subtree, cgroups are exempt
444 	 * from process granularity and no-internal-task constraint.
445 	 * Domain level resource consumptions which aren't tied to a
446 	 * specific task are charged to the dom_cgrp.
447 	 */
448 	struct cgroup *dom_cgrp;
449 	struct cgroup *old_dom_cgrp;		/* used while enabling threaded */
450 
451 	/* per-cpu recursive resource statistics */
452 	struct cgroup_rstat_cpu __percpu *rstat_cpu;
453 	struct list_head rstat_css_list;
454 
455 	/* cgroup basic resource statistics */
456 	struct cgroup_base_stat last_bstat;
457 	struct cgroup_base_stat bstat;
458 	struct prev_cputime prev_cputime;	/* for printing out cputime */
459 
460 	/*
461 	 * list of pidlists, up to two for each namespace (one for procs, one
462 	 * for tasks); created on demand.
463 	 */
464 	struct list_head pidlists;
465 	struct mutex pidlist_mutex;
466 
467 	/* used to wait for offlining of csses */
468 	wait_queue_head_t offline_waitq;
469 
470 	/* used to schedule release agent */
471 	struct work_struct release_agent_work;
472 
473 	/* used to track pressure stalls */
474 	struct psi_group psi;
475 
476 	/* used to store eBPF programs */
477 	struct cgroup_bpf bpf;
478 
479 	/* If there is block congestion on this cgroup. */
480 	atomic_t congestion_count;
481 
482 	/* Used to store internal freezer state */
483 	struct cgroup_freezer_state freezer;
484 
485 	/* ids of the ancestors at each level including self */
486 	u64 ancestor_ids[];
487 };
488 
489 /*
490  * A cgroup_root represents the root of a cgroup hierarchy, and may be
491  * associated with a kernfs_root to form an active hierarchy.  This is
492  * internal to cgroup core.  Don't access directly from controllers.
493  */
494 struct cgroup_root {
495 	struct kernfs_root *kf_root;
496 
497 	/* The bitmask of subsystems attached to this hierarchy */
498 	unsigned int subsys_mask;
499 
500 	/* Unique id for this hierarchy. */
501 	int hierarchy_id;
502 
503 	/* The root cgroup.  Root is destroyed on its release. */
504 	struct cgroup cgrp;
505 
506 	/* for cgrp->ancestor_ids[0] */
507 	u64 cgrp_ancestor_id_storage;
508 
509 	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
510 	atomic_t nr_cgrps;
511 
512 	/* A list running through the active hierarchies */
513 	struct list_head root_list;
514 
515 	/* Hierarchy-specific flags */
516 	unsigned int flags;
517 
518 	/* The path to use for release notifications. */
519 	char release_agent_path[PATH_MAX];
520 
521 	/* The name for this hierarchy - may be empty */
522 	char name[MAX_CGROUP_ROOT_NAMELEN];
523 };
524 
525 /*
526  * struct cftype: handler definitions for cgroup control files
527  *
528  * When reading/writing to a file:
529  *	- the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
530  *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
531  */
532 struct cftype {
533 	/*
534 	 * By convention, the name should begin with the name of the
535 	 * subsystem, followed by a period.  Zero length string indicates
536 	 * end of cftype array.
537 	 */
538 	char name[MAX_CFTYPE_NAME];
539 	unsigned long private;
540 
541 	/*
542 	 * The maximum length of string, excluding trailing nul, that can
543 	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
544 	 */
545 	size_t max_write_len;
546 
547 	/* CFTYPE_* flags */
548 	unsigned int flags;
549 
550 	/*
551 	 * If non-zero, should contain the offset from the start of css to
552 	 * a struct cgroup_file field.  cgroup will record the handle of
553 	 * the created file into it.  The recorded handle can be used as
554 	 * long as the containing css remains accessible.
555 	 */
556 	unsigned int file_offset;
557 
558 	/*
559 	 * Fields used for internal bookkeeping.  Initialized automatically
560 	 * during registration.
561 	 */
562 	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
563 	struct list_head node;		/* anchored at ss->cfts */
564 	struct kernfs_ops *kf_ops;
565 
566 	int (*open)(struct kernfs_open_file *of);
567 	void (*release)(struct kernfs_open_file *of);
568 
569 	/*
570 	 * read_u64() is a shortcut for the common case of returning a
571 	 * single integer. Use it in place of read()
572 	 */
573 	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
574 	/*
575 	 * read_s64() is a signed version of read_u64()
576 	 */
577 	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
578 
579 	/* generic seq_file read interface */
580 	int (*seq_show)(struct seq_file *sf, void *v);
581 
582 	/* optional ops, implement all or none */
583 	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
584 	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
585 	void (*seq_stop)(struct seq_file *sf, void *v);
586 
587 	/*
588 	 * write_u64() is a shortcut for the common case of accepting
589 	 * a single integer (as parsed by simple_strtoull) from
590 	 * userspace. Use in place of write(); return 0 or error.
591 	 */
592 	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
593 			 u64 val);
594 	/*
595 	 * write_s64() is a signed version of write_u64()
596 	 */
597 	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
598 			 s64 val);
599 
600 	/*
601 	 * write() is the generic write callback which maps directly to
602 	 * kernfs write operation and overrides all other operations.
603 	 * Maximum write size is determined by ->max_write_len.  Use
604 	 * of_css/cft() to access the associated css and cft.
605 	 */
606 	ssize_t (*write)(struct kernfs_open_file *of,
607 			 char *buf, size_t nbytes, loff_t off);
608 
609 	__poll_t (*poll)(struct kernfs_open_file *of,
610 			 struct poll_table_struct *pt);
611 
612 #ifdef CONFIG_DEBUG_LOCK_ALLOC
613 	struct lock_class_key	lockdep_key;
614 #endif
615 };
616 
617 /*
618  * Control Group subsystem type.
619  * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
620  */
621 struct cgroup_subsys {
622 	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
623 	int (*css_online)(struct cgroup_subsys_state *css);
624 	void (*css_offline)(struct cgroup_subsys_state *css);
625 	void (*css_released)(struct cgroup_subsys_state *css);
626 	void (*css_free)(struct cgroup_subsys_state *css);
627 	void (*css_reset)(struct cgroup_subsys_state *css);
628 	void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
629 	int (*css_extra_stat_show)(struct seq_file *seq,
630 				   struct cgroup_subsys_state *css);
631 
632 	int (*can_attach)(struct cgroup_taskset *tset);
633 	void (*cancel_attach)(struct cgroup_taskset *tset);
634 	void (*attach)(struct cgroup_taskset *tset);
635 	void (*post_attach)(void);
636 	int (*can_fork)(struct task_struct *task,
637 			struct css_set *cset);
638 	void (*cancel_fork)(struct task_struct *task, struct css_set *cset);
639 	void (*fork)(struct task_struct *task);
640 	void (*exit)(struct task_struct *task);
641 	void (*release)(struct task_struct *task);
642 	void (*bind)(struct cgroup_subsys_state *root_css);
643 
644 	bool early_init:1;
645 
646 	/*
647 	 * If %true, the controller, on the default hierarchy, doesn't show
648 	 * up in "cgroup.controllers" or "cgroup.subtree_control", is
649 	 * implicitly enabled on all cgroups on the default hierarchy, and
650 	 * bypasses the "no internal process" constraint.  This is for
651 	 * utility type controllers which is transparent to userland.
652 	 *
653 	 * An implicit controller can be stolen from the default hierarchy
654 	 * anytime and thus must be okay with offline csses from previous
655 	 * hierarchies coexisting with csses for the current one.
656 	 */
657 	bool implicit_on_dfl:1;
658 
659 	/*
660 	 * If %true, the controller, supports threaded mode on the default
661 	 * hierarchy.  In a threaded subtree, both process granularity and
662 	 * no-internal-process constraint are ignored and a threaded
663 	 * controllers should be able to handle that.
664 	 *
665 	 * Note that as an implicit controller is automatically enabled on
666 	 * all cgroups on the default hierarchy, it should also be
667 	 * threaded.  implicit && !threaded is not supported.
668 	 */
669 	bool threaded:1;
670 
671 	/*
672 	 * If %false, this subsystem is properly hierarchical -
673 	 * configuration, resource accounting and restriction on a parent
674 	 * cgroup cover those of its children.  If %true, hierarchy support
675 	 * is broken in some ways - some subsystems ignore hierarchy
676 	 * completely while others are only implemented half-way.
677 	 *
678 	 * It's now disallowed to create nested cgroups if the subsystem is
679 	 * broken and cgroup core will emit a warning message on such
680 	 * cases.  Eventually, all subsystems will be made properly
681 	 * hierarchical and this will go away.
682 	 */
683 	bool broken_hierarchy:1;
684 	bool warned_broken_hierarchy:1;
685 
686 	/* the following two fields are initialized automtically during boot */
687 	int id;
688 	const char *name;
689 
690 	/* optional, initialized automatically during boot if not set */
691 	const char *legacy_name;
692 
693 	/* link to parent, protected by cgroup_lock() */
694 	struct cgroup_root *root;
695 
696 	/* idr for css->id */
697 	struct idr css_idr;
698 
699 	/*
700 	 * List of cftypes.  Each entry is the first entry of an array
701 	 * terminated by zero length name.
702 	 */
703 	struct list_head cfts;
704 
705 	/*
706 	 * Base cftypes which are automatically registered.  The two can
707 	 * point to the same array.
708 	 */
709 	struct cftype *dfl_cftypes;	/* for the default hierarchy */
710 	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */
711 
712 	/*
713 	 * A subsystem may depend on other subsystems.  When such subsystem
714 	 * is enabled on a cgroup, the depended-upon subsystems are enabled
715 	 * together if available.  Subsystems enabled due to dependency are
716 	 * not visible to userland until explicitly enabled.  The following
717 	 * specifies the mask of subsystems that this one depends on.
718 	 */
719 	unsigned int depends_on;
720 };
721 
722 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
723 
724 /**
725  * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
726  * @tsk: target task
727  *
728  * Allows cgroup operations to synchronize against threadgroup changes
729  * using a percpu_rw_semaphore.
730  */
cgroup_threadgroup_change_begin(struct task_struct * tsk)731 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
732 {
733 	percpu_down_read(&cgroup_threadgroup_rwsem);
734 }
735 
736 /**
737  * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
738  * @tsk: target task
739  *
740  * Counterpart of cgroup_threadcgroup_change_begin().
741  */
cgroup_threadgroup_change_end(struct task_struct * tsk)742 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
743 {
744 	percpu_up_read(&cgroup_threadgroup_rwsem);
745 }
746 
747 #else	/* CONFIG_CGROUPS */
748 
749 #define CGROUP_SUBSYS_COUNT 0
750 
cgroup_threadgroup_change_begin(struct task_struct * tsk)751 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
752 {
753 	might_sleep();
754 }
755 
cgroup_threadgroup_change_end(struct task_struct * tsk)756 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
757 
758 #endif	/* CONFIG_CGROUPS */
759 
760 #ifdef CONFIG_SOCK_CGROUP_DATA
761 
762 /*
763  * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
764  * per-socket cgroup information except for memcg association.
765  *
766  * On legacy hierarchies, net_prio and net_cls controllers directly set
767  * attributes on each sock which can then be tested by the network layer.
768  * On the default hierarchy, each sock is associated with the cgroup it was
769  * created in and the networking layer can match the cgroup directly.
770  *
771  * To avoid carrying all three cgroup related fields separately in sock,
772  * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
773  * On boot, sock_cgroup_data records the cgroup that the sock was created
774  * in so that cgroup2 matches can be made; however, once either net_prio or
775  * net_cls starts being used, the area is overriden to carry prioidx and/or
776  * classid.  The two modes are distinguished by whether the lowest bit is
777  * set.  Clear bit indicates cgroup pointer while set bit prioidx and
778  * classid.
779  *
780  * While userland may start using net_prio or net_cls at any time, once
781  * either is used, cgroup2 matching no longer works.  There is no reason to
782  * mix the two and this is in line with how legacy and v2 compatibility is
783  * handled.  On mode switch, cgroup references which are already being
784  * pointed to by socks may be leaked.  While this can be remedied by adding
785  * synchronization around sock_cgroup_data, given that the number of leaked
786  * cgroups is bound and highly unlikely to be high, this seems to be the
787  * better trade-off.
788  */
789 struct sock_cgroup_data {
790 	union {
791 #ifdef __LITTLE_ENDIAN
792 		struct {
793 			u8	is_data : 1;
794 			u8	no_refcnt : 1;
795 			u8	unused : 6;
796 			u8	padding;
797 			u16	prioidx;
798 			u32	classid;
799 		} __packed;
800 #else
801 		struct {
802 			u32	classid;
803 			u16	prioidx;
804 			u8	padding;
805 			u8	unused : 6;
806 			u8	no_refcnt : 1;
807 			u8	is_data : 1;
808 		} __packed;
809 #endif
810 		u64		val;
811 	};
812 };
813 
814 /*
815  * There's a theoretical window where the following accessors race with
816  * updaters and return part of the previous pointer as the prioidx or
817  * classid.  Such races are short-lived and the result isn't critical.
818  */
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)819 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
820 {
821 	/* fallback to 1 which is always the ID of the root cgroup */
822 	return (skcd->is_data & 1) ? skcd->prioidx : 1;
823 }
824 
sock_cgroup_classid(const struct sock_cgroup_data * skcd)825 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
826 {
827 	/* fallback to 0 which is the unconfigured default classid */
828 	return (skcd->is_data & 1) ? skcd->classid : 0;
829 }
830 
831 /*
832  * If invoked concurrently, the updaters may clobber each other.  The
833  * caller is responsible for synchronization.
834  */
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)835 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
836 					   u16 prioidx)
837 {
838 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
839 
840 	if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
841 		return;
842 
843 	if (!(skcd_buf.is_data & 1)) {
844 		skcd_buf.val = 0;
845 		skcd_buf.is_data = 1;
846 	}
847 
848 	skcd_buf.prioidx = prioidx;
849 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
850 }
851 
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)852 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
853 					   u32 classid)
854 {
855 	struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
856 
857 	if (sock_cgroup_classid(&skcd_buf) == classid)
858 		return;
859 
860 	if (!(skcd_buf.is_data & 1)) {
861 		skcd_buf.val = 0;
862 		skcd_buf.is_data = 1;
863 	}
864 
865 	skcd_buf.classid = classid;
866 	WRITE_ONCE(skcd->val, skcd_buf.val);	/* see sock_cgroup_ptr() */
867 }
868 
869 #else	/* CONFIG_SOCK_CGROUP_DATA */
870 
871 struct sock_cgroup_data {
872 };
873 
874 #endif	/* CONFIG_SOCK_CGROUP_DATA */
875 
876 #endif	/* _LINUX_CGROUP_DEFS_H */
877