1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/include/asm/kvm_host.h:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/percpu.h>
20 #include <linux/psci.h>
21 #include <asm/arch_gicv3.h>
22 #include <asm/barrier.h>
23 #include <asm/cpufeature.h>
24 #include <asm/cputype.h>
25 #include <asm/daifflags.h>
26 #include <asm/fpsimd.h>
27 #include <asm/kvm.h>
28 #include <asm/kvm_asm.h>
29 #include <asm/thread_info.h>
30
31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40
41 #define KVM_VCPU_MAX_FEATURES 7
42
43 #define KVM_REQ_SLEEP \
44 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
45 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
46 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2)
47 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3)
48 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4)
49 #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5)
50
51 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
52 KVM_DIRTY_LOG_INITIALLY_SET)
53
54 /*
55 * Mode of operation configurable with kvm-arm.mode early param.
56 * See Documentation/admin-guide/kernel-parameters.txt for more information.
57 */
58 enum kvm_mode {
59 KVM_MODE_DEFAULT,
60 KVM_MODE_PROTECTED,
61 };
62 enum kvm_mode kvm_get_mode(void);
63
64 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65
66 extern unsigned int kvm_sve_max_vl;
67 int kvm_arm_init_sve(void);
68
69 u32 __attribute_const__ kvm_target_cpu(void);
70 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
71 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
72
73 struct kvm_vmid {
74 /* The VMID generation used for the virt. memory system */
75 u64 vmid_gen;
76 u32 vmid;
77 };
78
79 struct kvm_s2_mmu {
80 struct kvm_vmid vmid;
81
82 /*
83 * stage2 entry level table
84 *
85 * Two kvm_s2_mmu structures in the same VM can point to the same
86 * pgd here. This happens when running a guest using a
87 * translation regime that isn't affected by its own stage-2
88 * translation, such as a non-VHE hypervisor running at vEL2, or
89 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the
90 * canonical stage-2 page tables.
91 */
92 phys_addr_t pgd_phys;
93 struct kvm_pgtable *pgt;
94
95 /* The last vcpu id that ran on each physical CPU */
96 int __percpu *last_vcpu_ran;
97
98 struct kvm_arch *arch;
99 };
100
101 struct kvm_arch_memory_slot {
102 };
103
104 struct kvm_arch {
105 struct kvm_s2_mmu mmu;
106
107 /* VTCR_EL2 value for this VM */
108 u64 vtcr;
109
110 /* The maximum number of vCPUs depends on the used GIC model */
111 int max_vcpus;
112
113 /* Interrupt controller */
114 struct vgic_dist vgic;
115
116 /* Mandated version of PSCI */
117 u32 psci_version;
118
119 /*
120 * If we encounter a data abort without valid instruction syndrome
121 * information, report this to user space. User space can (and
122 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
123 * supported.
124 */
125 bool return_nisv_io_abort_to_user;
126
127 /*
128 * VM-wide PMU filter, implemented as a bitmap and big enough for
129 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
130 */
131 unsigned long *pmu_filter;
132 unsigned int pmuver;
133
134 u8 pfr0_csv2;
135 u8 pfr0_csv3;
136
137 /* Memory Tagging Extension enabled for the guest */
138 bool mte_enabled;
139 };
140
141 struct kvm_vcpu_fault_info {
142 u32 esr_el2; /* Hyp Syndrom Register */
143 u64 far_el2; /* Hyp Fault Address Register */
144 u64 hpfar_el2; /* Hyp IPA Fault Address Register */
145 u64 disr_el1; /* Deferred [SError] Status Register */
146 };
147
148 enum vcpu_sysreg {
149 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */
150 MPIDR_EL1, /* MultiProcessor Affinity Register */
151 CSSELR_EL1, /* Cache Size Selection Register */
152 SCTLR_EL1, /* System Control Register */
153 ACTLR_EL1, /* Auxiliary Control Register */
154 CPACR_EL1, /* Coprocessor Access Control */
155 ZCR_EL1, /* SVE Control */
156 TTBR0_EL1, /* Translation Table Base Register 0 */
157 TTBR1_EL1, /* Translation Table Base Register 1 */
158 TCR_EL1, /* Translation Control Register */
159 ESR_EL1, /* Exception Syndrome Register */
160 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */
161 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */
162 FAR_EL1, /* Fault Address Register */
163 MAIR_EL1, /* Memory Attribute Indirection Register */
164 VBAR_EL1, /* Vector Base Address Register */
165 CONTEXTIDR_EL1, /* Context ID Register */
166 TPIDR_EL0, /* Thread ID, User R/W */
167 TPIDRRO_EL0, /* Thread ID, User R/O */
168 TPIDR_EL1, /* Thread ID, Privileged */
169 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */
170 CNTKCTL_EL1, /* Timer Control Register (EL1) */
171 PAR_EL1, /* Physical Address Register */
172 MDSCR_EL1, /* Monitor Debug System Control Register */
173 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */
174 DISR_EL1, /* Deferred Interrupt Status Register */
175
176 /* Performance Monitors Registers */
177 PMCR_EL0, /* Control Register */
178 PMSELR_EL0, /* Event Counter Selection Register */
179 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */
180 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
181 PMCCNTR_EL0, /* Cycle Counter Register */
182 PMEVTYPER0_EL0, /* Event Type Register (0-30) */
183 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
184 PMCCFILTR_EL0, /* Cycle Count Filter Register */
185 PMCNTENSET_EL0, /* Count Enable Set Register */
186 PMINTENSET_EL1, /* Interrupt Enable Set Register */
187 PMOVSSET_EL0, /* Overflow Flag Status Set Register */
188 PMUSERENR_EL0, /* User Enable Register */
189
190 /* Pointer Authentication Registers in a strict increasing order. */
191 APIAKEYLO_EL1,
192 APIAKEYHI_EL1,
193 APIBKEYLO_EL1,
194 APIBKEYHI_EL1,
195 APDAKEYLO_EL1,
196 APDAKEYHI_EL1,
197 APDBKEYLO_EL1,
198 APDBKEYHI_EL1,
199 APGAKEYLO_EL1,
200 APGAKEYHI_EL1,
201
202 ELR_EL1,
203 SP_EL1,
204 SPSR_EL1,
205
206 CNTVOFF_EL2,
207 CNTV_CVAL_EL0,
208 CNTV_CTL_EL0,
209 CNTP_CVAL_EL0,
210 CNTP_CTL_EL0,
211
212 /* Memory Tagging Extension registers */
213 RGSR_EL1, /* Random Allocation Tag Seed Register */
214 GCR_EL1, /* Tag Control Register */
215 TFSR_EL1, /* Tag Fault Status Register (EL1) */
216 TFSRE0_EL1, /* Tag Fault Status Register (EL0) */
217
218 /* 32bit specific registers. Keep them at the end of the range */
219 DACR32_EL2, /* Domain Access Control Register */
220 IFSR32_EL2, /* Instruction Fault Status Register */
221 FPEXC32_EL2, /* Floating-Point Exception Control Register */
222 DBGVCR32_EL2, /* Debug Vector Catch Register */
223
224 NR_SYS_REGS /* Nothing after this line! */
225 };
226
227 struct kvm_cpu_context {
228 struct user_pt_regs regs; /* sp = sp_el0 */
229
230 u64 spsr_abt;
231 u64 spsr_und;
232 u64 spsr_irq;
233 u64 spsr_fiq;
234
235 struct user_fpsimd_state fp_regs;
236
237 u64 sys_regs[NR_SYS_REGS];
238
239 struct kvm_vcpu *__hyp_running_vcpu;
240 };
241
242 struct kvm_pmu_events {
243 u32 events_host;
244 u32 events_guest;
245 };
246
247 struct kvm_host_data {
248 struct kvm_cpu_context host_ctxt;
249 struct kvm_pmu_events pmu_events;
250 };
251
252 struct kvm_host_psci_config {
253 /* PSCI version used by host. */
254 u32 version;
255
256 /* Function IDs used by host if version is v0.1. */
257 struct psci_0_1_function_ids function_ids_0_1;
258
259 bool psci_0_1_cpu_suspend_implemented;
260 bool psci_0_1_cpu_on_implemented;
261 bool psci_0_1_cpu_off_implemented;
262 bool psci_0_1_migrate_implemented;
263 };
264
265 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
266 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
267
268 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
269 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
270
271 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
272 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
273
274 struct vcpu_reset_state {
275 unsigned long pc;
276 unsigned long r0;
277 bool be;
278 bool reset;
279 };
280
281 struct kvm_vcpu_arch {
282 struct kvm_cpu_context ctxt;
283 void *sve_state;
284 unsigned int sve_max_vl;
285
286 /* Stage 2 paging state used by the hardware on next switch */
287 struct kvm_s2_mmu *hw_mmu;
288
289 /* Values of trap registers for the guest. */
290 u64 hcr_el2;
291 u64 mdcr_el2;
292 u64 cptr_el2;
293
294 /* Values of trap registers for the host before guest entry. */
295 u64 mdcr_el2_host;
296
297 /* Exception Information */
298 struct kvm_vcpu_fault_info fault;
299
300 /* State of various workarounds, see kvm_asm.h for bit assignment */
301 u64 workaround_flags;
302
303 /* Miscellaneous vcpu state flags */
304 u64 flags;
305
306 /*
307 * We maintain more than a single set of debug registers to support
308 * debugging the guest from the host and to maintain separate host and
309 * guest state during world switches. vcpu_debug_state are the debug
310 * registers of the vcpu as the guest sees them. host_debug_state are
311 * the host registers which are saved and restored during
312 * world switches. external_debug_state contains the debug
313 * values we want to debug the guest. This is set via the
314 * KVM_SET_GUEST_DEBUG ioctl.
315 *
316 * debug_ptr points to the set of debug registers that should be loaded
317 * onto the hardware when running the guest.
318 */
319 struct kvm_guest_debug_arch *debug_ptr;
320 struct kvm_guest_debug_arch vcpu_debug_state;
321 struct kvm_guest_debug_arch external_debug_state;
322
323 struct thread_info *host_thread_info; /* hyp VA */
324 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */
325
326 struct {
327 /* {Break,watch}point registers */
328 struct kvm_guest_debug_arch regs;
329 /* Statistical profiling extension */
330 u64 pmscr_el1;
331 /* Self-hosted trace */
332 u64 trfcr_el1;
333 } host_debug_state;
334
335 /* VGIC state */
336 struct vgic_cpu vgic_cpu;
337 struct arch_timer_cpu timer_cpu;
338 struct kvm_pmu pmu;
339
340 /*
341 * Anything that is not used directly from assembly code goes
342 * here.
343 */
344
345 /*
346 * Guest registers we preserve during guest debugging.
347 *
348 * These shadow registers are updated by the kvm_handle_sys_reg
349 * trap handler if the guest accesses or updates them while we
350 * are using guest debug.
351 */
352 struct {
353 u32 mdscr_el1;
354 } guest_debug_preserved;
355
356 /* vcpu power-off state */
357 bool power_off;
358
359 /* Don't run the guest (internal implementation need) */
360 bool pause;
361
362 /* Cache some mmu pages needed inside spinlock regions */
363 struct kvm_mmu_memory_cache mmu_page_cache;
364
365 /* Target CPU and feature flags */
366 int target;
367 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
368
369 /* Detect first run of a vcpu */
370 bool has_run_once;
371
372 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
373 u64 vsesr_el2;
374
375 /* Additional reset state */
376 struct vcpu_reset_state reset_state;
377
378 /* True when deferrable sysregs are loaded on the physical CPU,
379 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
380 bool sysregs_loaded_on_cpu;
381
382 /* Guest PV state */
383 struct {
384 u64 last_steal;
385 gpa_t base;
386 } steal;
387 };
388
389 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
390 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \
391 sve_ffr_offset((vcpu)->arch.sve_max_vl))
392
393 #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl)
394
395 #define vcpu_sve_state_size(vcpu) ({ \
396 size_t __size_ret; \
397 unsigned int __vcpu_vq; \
398 \
399 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \
400 __size_ret = 0; \
401 } else { \
402 __vcpu_vq = vcpu_sve_max_vq(vcpu); \
403 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \
404 } \
405 \
406 __size_ret; \
407 })
408
409 /* vcpu_arch flags field values: */
410 #define KVM_ARM64_DEBUG_DIRTY (1 << 0)
411 #define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */
412 #define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */
413 #define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */
414 #define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */
415 #define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */
416 #define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */
417 #define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */
418 #define KVM_ARM64_PENDING_EXCEPTION (1 << 8) /* Exception pending */
419 #define KVM_ARM64_EXCEPT_MASK (7 << 9) /* Target EL/MODE */
420 #define KVM_ARM64_DEBUG_STATE_SAVE_SPE (1 << 12) /* Save SPE context if active */
421 #define KVM_ARM64_DEBUG_STATE_SAVE_TRBE (1 << 13) /* Save TRBE context if active */
422
423 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
424 KVM_GUESTDBG_USE_SW_BP | \
425 KVM_GUESTDBG_USE_HW | \
426 KVM_GUESTDBG_SINGLESTEP)
427 /*
428 * When KVM_ARM64_PENDING_EXCEPTION is set, KVM_ARM64_EXCEPT_MASK can
429 * take the following values:
430 *
431 * For AArch32 EL1:
432 */
433 #define KVM_ARM64_EXCEPT_AA32_UND (0 << 9)
434 #define KVM_ARM64_EXCEPT_AA32_IABT (1 << 9)
435 #define KVM_ARM64_EXCEPT_AA32_DABT (2 << 9)
436 /* For AArch64: */
437 #define KVM_ARM64_EXCEPT_AA64_ELx_SYNC (0 << 9)
438 #define KVM_ARM64_EXCEPT_AA64_ELx_IRQ (1 << 9)
439 #define KVM_ARM64_EXCEPT_AA64_ELx_FIQ (2 << 9)
440 #define KVM_ARM64_EXCEPT_AA64_ELx_SERR (3 << 9)
441 #define KVM_ARM64_EXCEPT_AA64_EL1 (0 << 11)
442 #define KVM_ARM64_EXCEPT_AA64_EL2 (1 << 11)
443
444 /*
445 * Overlaps with KVM_ARM64_EXCEPT_MASK on purpose so that it can't be
446 * set together with an exception...
447 */
448 #define KVM_ARM64_INCREMENT_PC (1 << 9) /* Increment PC */
449
450 #define vcpu_has_sve(vcpu) (system_supports_sve() && \
451 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
452
453 #ifdef CONFIG_ARM64_PTR_AUTH
454 #define vcpu_has_ptrauth(vcpu) \
455 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \
456 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \
457 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
458 #else
459 #define vcpu_has_ptrauth(vcpu) false
460 #endif
461
462 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs)
463
464 /*
465 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
466 * memory backed version of a register, and not the one most recently
467 * accessed by a running VCPU. For example, for userspace access or
468 * for system registers that are never context switched, but only
469 * emulated.
470 */
471 #define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)])
472
473 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r))
474
475 #define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
476
477 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
478 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
479
__vcpu_read_sys_reg_from_cpu(int reg,u64 * val)480 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
481 {
482 /*
483 * *** VHE ONLY ***
484 *
485 * System registers listed in the switch are not saved on every
486 * exit from the guest but are only saved on vcpu_put.
487 *
488 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
489 * should never be listed below, because the guest cannot modify its
490 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
491 * thread when emulating cross-VCPU communication.
492 */
493 if (!has_vhe())
494 return false;
495
496 switch (reg) {
497 case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break;
498 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break;
499 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break;
500 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break;
501 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break;
502 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break;
503 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break;
504 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break;
505 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break;
506 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break;
507 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break;
508 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break;
509 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
510 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break;
511 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break;
512 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
513 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
514 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
515 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break;
516 case PAR_EL1: *val = read_sysreg_par(); break;
517 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
518 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
519 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
520 default: return false;
521 }
522
523 return true;
524 }
525
__vcpu_write_sys_reg_to_cpu(u64 val,int reg)526 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
527 {
528 /*
529 * *** VHE ONLY ***
530 *
531 * System registers listed in the switch are not restored on every
532 * entry to the guest but are only restored on vcpu_load.
533 *
534 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
535 * should never be listed below, because the MPIDR should only be set
536 * once, before running the VCPU, and never changed later.
537 */
538 if (!has_vhe())
539 return false;
540
541 switch (reg) {
542 case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break;
543 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
544 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
545 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
546 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
547 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break;
548 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break;
549 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break;
550 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break;
551 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break;
552 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break;
553 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break;
554 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
555 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break;
556 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break;
557 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
558 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
559 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
560 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break;
561 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
562 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
563 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
564 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break;
565 default: return false;
566 }
567
568 return true;
569 }
570
571 struct kvm_vm_stat {
572 struct kvm_vm_stat_generic generic;
573 };
574
575 struct kvm_vcpu_stat {
576 struct kvm_vcpu_stat_generic generic;
577 u64 hvc_exit_stat;
578 u64 wfe_exit_stat;
579 u64 wfi_exit_stat;
580 u64 mmio_exit_user;
581 u64 mmio_exit_kernel;
582 u64 signal_exits;
583 u64 exits;
584 };
585
586 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
587 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
588 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
589 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
590 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
591
592 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
593 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
594 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
595 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
596
597 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
598 struct kvm_vcpu_events *events);
599
600 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
601 struct kvm_vcpu_events *events);
602
603 #define KVM_ARCH_WANT_MMU_NOTIFIER
604
605 void kvm_arm_halt_guest(struct kvm *kvm);
606 void kvm_arm_resume_guest(struct kvm *kvm);
607
608 #ifndef __KVM_NVHE_HYPERVISOR__
609 #define kvm_call_hyp_nvhe(f, ...) \
610 ({ \
611 struct arm_smccc_res res; \
612 \
613 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \
614 ##__VA_ARGS__, &res); \
615 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \
616 \
617 res.a1; \
618 })
619
620 /*
621 * The couple of isb() below are there to guarantee the same behaviour
622 * on VHE as on !VHE, where the eret to EL1 acts as a context
623 * synchronization event.
624 */
625 #define kvm_call_hyp(f, ...) \
626 do { \
627 if (has_vhe()) { \
628 f(__VA_ARGS__); \
629 isb(); \
630 } else { \
631 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
632 } \
633 } while(0)
634
635 #define kvm_call_hyp_ret(f, ...) \
636 ({ \
637 typeof(f(__VA_ARGS__)) ret; \
638 \
639 if (has_vhe()) { \
640 ret = f(__VA_ARGS__); \
641 isb(); \
642 } else { \
643 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
644 } \
645 \
646 ret; \
647 })
648 #else /* __KVM_NVHE_HYPERVISOR__ */
649 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
650 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
651 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
652 #endif /* __KVM_NVHE_HYPERVISOR__ */
653
654 void force_vm_exit(const cpumask_t *mask);
655
656 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
657 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
658
659 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
660 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
661 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
662 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
663 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
664 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
665
666 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
667
668 void kvm_sys_reg_table_init(void);
669
670 /* MMIO helpers */
671 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
672 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
673
674 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
675 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
676
677 int kvm_perf_init(void);
678 int kvm_perf_teardown(void);
679
680 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
681 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
682 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
683
684 bool kvm_arm_pvtime_supported(void);
685 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
686 struct kvm_device_attr *attr);
687 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
688 struct kvm_device_attr *attr);
689 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
690 struct kvm_device_attr *attr);
691
kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch * vcpu_arch)692 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
693 {
694 vcpu_arch->steal.base = GPA_INVALID;
695 }
696
kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch * vcpu_arch)697 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
698 {
699 return (vcpu_arch->steal.base != GPA_INVALID);
700 }
701
702 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
703
704 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
705
706 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
707
kvm_init_host_cpu_context(struct kvm_cpu_context * cpu_ctxt)708 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
709 {
710 /* The host's MPIDR is immutable, so let's set it up at boot time */
711 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
712 }
713
714 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
715
kvm_arch_hardware_unsetup(void)716 static inline void kvm_arch_hardware_unsetup(void) {}
kvm_arch_sync_events(struct kvm * kvm)717 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)718 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
kvm_arch_vcpu_block_finish(struct kvm_vcpu * vcpu)719 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
720
721 void kvm_arm_init_debug(void);
722 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
723 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
724 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
725 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
726 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
727 struct kvm_device_attr *attr);
728 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
729 struct kvm_device_attr *attr);
730 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
731 struct kvm_device_attr *attr);
732
733 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
734 struct kvm_arm_copy_mte_tags *copy_tags);
735
736 /* Guest/host FPSIMD coordination helpers */
737 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
738 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
739 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
740 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
741
kvm_pmu_counter_deferred(struct perf_event_attr * attr)742 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
743 {
744 return (!has_vhe() && attr->exclude_host);
745 }
746
747 /* Flags for host debug state */
748 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
749 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
750
751 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)752 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
753 {
754 return kvm_arch_vcpu_run_map_fp(vcpu);
755 }
756
757 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
758 void kvm_clr_pmu_events(u32 clr);
759
760 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
761 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
762 #else
kvm_set_pmu_events(u32 set,struct perf_event_attr * attr)763 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
kvm_clr_pmu_events(u32 clr)764 static inline void kvm_clr_pmu_events(u32 clr) {}
765 #endif
766
767 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
768 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
769
770 int kvm_set_ipa_limit(void);
771
772 #define __KVM_HAVE_ARCH_VM_ALLOC
773 struct kvm *kvm_arch_alloc_vm(void);
774 void kvm_arch_free_vm(struct kvm *kvm);
775
776 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
777
kvm_vm_is_protected(struct kvm * kvm)778 static inline bool kvm_vm_is_protected(struct kvm *kvm)
779 {
780 return false;
781 }
782
783 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
784 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
785
786 #define kvm_arm_vcpu_sve_finalized(vcpu) \
787 ((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
788
789 #define kvm_has_mte(kvm) (system_supports_mte() && (kvm)->arch.mte_enabled)
790 #define kvm_vcpu_has_pmu(vcpu) \
791 (test_bit(KVM_ARM_VCPU_PMU_V3, (vcpu)->arch.features))
792
793 int kvm_trng_call(struct kvm_vcpu *vcpu);
794 #ifdef CONFIG_KVM
795 extern phys_addr_t hyp_mem_base;
796 extern phys_addr_t hyp_mem_size;
797 void __init kvm_hyp_reserve(void);
798 #else
kvm_hyp_reserve(void)799 static inline void kvm_hyp_reserve(void) { }
800 #endif
801
802 #endif /* __ARM64_KVM_HOST_H__ */
803