1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Scatterlist Cryptographic API.
4  *
5  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6  * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7  * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10  * and Nettle, by Niels Möller.
11  */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14 
15 #include <linux/atomic.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 #include <linux/completion.h>
22 
23 /*
24  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
25  * arbitrary modules to be loaded. Loading from userspace may still need the
26  * unprefixed names, so retains those aliases as well.
27  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
28  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
29  * expands twice on the same line. Instead, use a separate base name for the
30  * alias.
31  */
32 #define MODULE_ALIAS_CRYPTO(name)	\
33 		__MODULE_INFO(alias, alias_userspace, name);	\
34 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
35 
36 /*
37  * Algorithm masks and types.
38  */
39 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
40 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
41 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
42 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
43 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
44 #define CRYPTO_ALG_TYPE_KPP		0x00000008
45 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
46 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
47 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
48 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
49 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
50 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
51 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
52 
53 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
54 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
55 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
56 
57 #define CRYPTO_ALG_LARVAL		0x00000010
58 #define CRYPTO_ALG_DEAD			0x00000020
59 #define CRYPTO_ALG_DYING		0x00000040
60 #define CRYPTO_ALG_ASYNC		0x00000080
61 
62 /*
63  * Set if the algorithm (or an algorithm which it uses) requires another
64  * algorithm of the same type to handle corner cases.
65  */
66 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
67 
68 /*
69  * Set if the algorithm has passed automated run-time testing.  Note that
70  * if there is no run-time testing for a given algorithm it is considered
71  * to have passed.
72  */
73 
74 #define CRYPTO_ALG_TESTED		0x00000400
75 
76 /*
77  * Set if the algorithm is an instance that is built from templates.
78  */
79 #define CRYPTO_ALG_INSTANCE		0x00000800
80 
81 /* Set this bit if the algorithm provided is hardware accelerated but
82  * not available to userspace via instruction set or so.
83  */
84 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
85 
86 /*
87  * Mark a cipher as a service implementation only usable by another
88  * cipher and never by a normal user of the kernel crypto API
89  */
90 #define CRYPTO_ALG_INTERNAL		0x00002000
91 
92 /*
93  * Set if the algorithm has a ->setkey() method but can be used without
94  * calling it first, i.e. there is a default key.
95  */
96 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
97 
98 /*
99  * Don't trigger module loading
100  */
101 #define CRYPTO_NOLOAD			0x00008000
102 
103 /*
104  * The algorithm may allocate memory during request processing, i.e. during
105  * encryption, decryption, or hashing.  Users can request an algorithm with this
106  * flag unset if they can't handle memory allocation failures.
107  *
108  * This flag is currently only implemented for algorithms of type "skcipher",
109  * "aead", "ahash", "shash", and "cipher".  Algorithms of other types might not
110  * have this flag set even if they allocate memory.
111  *
112  * In some edge cases, algorithms can allocate memory regardless of this flag.
113  * To avoid these cases, users must obey the following usage constraints:
114  *    skcipher:
115  *	- The IV buffer and all scatterlist elements must be aligned to the
116  *	  algorithm's alignmask.
117  *	- If the data were to be divided into chunks of size
118  *	  crypto_skcipher_walksize() (with any remainder going at the end), no
119  *	  chunk can cross a page boundary or a scatterlist element boundary.
120  *    aead:
121  *	- The IV buffer and all scatterlist elements must be aligned to the
122  *	  algorithm's alignmask.
123  *	- The first scatterlist element must contain all the associated data,
124  *	  and its pages must be !PageHighMem.
125  *	- If the plaintext/ciphertext were to be divided into chunks of size
126  *	  crypto_aead_walksize() (with the remainder going at the end), no chunk
127  *	  can cross a page boundary or a scatterlist element boundary.
128  *    ahash:
129  *	- The result buffer must be aligned to the algorithm's alignmask.
130  *	- crypto_ahash_finup() must not be used unless the algorithm implements
131  *	  ->finup() natively.
132  */
133 #define CRYPTO_ALG_ALLOCATES_MEMORY	0x00010000
134 
135 /*
136  * Transform masks and values (for crt_flags).
137  */
138 #define CRYPTO_TFM_NEED_KEY		0x00000001
139 
140 #define CRYPTO_TFM_REQ_MASK		0x000fff00
141 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS	0x00000100
142 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
143 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
144 
145 /*
146  * Miscellaneous stuff.
147  */
148 #define CRYPTO_MAX_ALG_NAME		128
149 
150 /*
151  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
152  * declaration) is used to ensure that the crypto_tfm context structure is
153  * aligned correctly for the given architecture so that there are no alignment
154  * faults for C data types.  In particular, this is required on platforms such
155  * as arm where pointers are 32-bit aligned but there are data types such as
156  * u64 which require 64-bit alignment.
157  */
158 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
159 
160 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
161 
162 struct scatterlist;
163 struct crypto_async_request;
164 struct crypto_tfm;
165 struct crypto_type;
166 
167 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
168 
169 /**
170  * DOC: Block Cipher Context Data Structures
171  *
172  * These data structures define the operating context for each block cipher
173  * type.
174  */
175 
176 struct crypto_async_request {
177 	struct list_head list;
178 	crypto_completion_t complete;
179 	void *data;
180 	struct crypto_tfm *tfm;
181 
182 	u32 flags;
183 };
184 
185 /**
186  * DOC: Block Cipher Algorithm Definitions
187  *
188  * These data structures define modular crypto algorithm implementations,
189  * managed via crypto_register_alg() and crypto_unregister_alg().
190  */
191 
192 /**
193  * struct cipher_alg - single-block symmetric ciphers definition
194  * @cia_min_keysize: Minimum key size supported by the transformation. This is
195  *		     the smallest key length supported by this transformation
196  *		     algorithm. This must be set to one of the pre-defined
197  *		     values as this is not hardware specific. Possible values
198  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
199  *		     include/crypto/
200  * @cia_max_keysize: Maximum key size supported by the transformation. This is
201  *		    the largest key length supported by this transformation
202  *		    algorithm. This must be set to one of the pre-defined values
203  *		    as this is not hardware specific. Possible values for this
204  *		    field can be found via git grep "_MAX_KEY_SIZE"
205  *		    include/crypto/
206  * @cia_setkey: Set key for the transformation. This function is used to either
207  *	        program a supplied key into the hardware or store the key in the
208  *	        transformation context for programming it later. Note that this
209  *	        function does modify the transformation context. This function
210  *	        can be called multiple times during the existence of the
211  *	        transformation object, so one must make sure the key is properly
212  *	        reprogrammed into the hardware. This function is also
213  *	        responsible for checking the key length for validity.
214  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
215  *		 single block of data, which must be @cra_blocksize big. This
216  *		 always operates on a full @cra_blocksize and it is not possible
217  *		 to encrypt a block of smaller size. The supplied buffers must
218  *		 therefore also be at least of @cra_blocksize size. Both the
219  *		 input and output buffers are always aligned to @cra_alignmask.
220  *		 In case either of the input or output buffer supplied by user
221  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
222  *		 API will re-align the buffers. The re-alignment means that a
223  *		 new buffer will be allocated, the data will be copied into the
224  *		 new buffer, then the processing will happen on the new buffer,
225  *		 then the data will be copied back into the original buffer and
226  *		 finally the new buffer will be freed. In case a software
227  *		 fallback was put in place in the @cra_init call, this function
228  *		 might need to use the fallback if the algorithm doesn't support
229  *		 all of the key sizes. In case the key was stored in
230  *		 transformation context, the key might need to be re-programmed
231  *		 into the hardware in this function. This function shall not
232  *		 modify the transformation context, as this function may be
233  *		 called in parallel with the same transformation object.
234  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
235  *		 @cia_encrypt, and the conditions are exactly the same.
236  *
237  * All fields are mandatory and must be filled.
238  */
239 struct cipher_alg {
240 	unsigned int cia_min_keysize;
241 	unsigned int cia_max_keysize;
242 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
243 	                  unsigned int keylen);
244 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
245 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
246 };
247 
248 /**
249  * struct compress_alg - compression/decompression algorithm
250  * @coa_compress: Compress a buffer of specified length, storing the resulting
251  *		  data in the specified buffer. Return the length of the
252  *		  compressed data in dlen.
253  * @coa_decompress: Decompress the source buffer, storing the uncompressed
254  *		    data in the specified buffer. The length of the data is
255  *		    returned in dlen.
256  *
257  * All fields are mandatory.
258  */
259 struct compress_alg {
260 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
261 			    unsigned int slen, u8 *dst, unsigned int *dlen);
262 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
263 			      unsigned int slen, u8 *dst, unsigned int *dlen);
264 };
265 
266 #ifdef CONFIG_CRYPTO_STATS
267 /*
268  * struct crypto_istat_aead - statistics for AEAD algorithm
269  * @encrypt_cnt:	number of encrypt requests
270  * @encrypt_tlen:	total data size handled by encrypt requests
271  * @decrypt_cnt:	number of decrypt requests
272  * @decrypt_tlen:	total data size handled by decrypt requests
273  * @err_cnt:		number of error for AEAD requests
274  */
275 struct crypto_istat_aead {
276 	atomic64_t encrypt_cnt;
277 	atomic64_t encrypt_tlen;
278 	atomic64_t decrypt_cnt;
279 	atomic64_t decrypt_tlen;
280 	atomic64_t err_cnt;
281 };
282 
283 /*
284  * struct crypto_istat_akcipher - statistics for akcipher algorithm
285  * @encrypt_cnt:	number of encrypt requests
286  * @encrypt_tlen:	total data size handled by encrypt requests
287  * @decrypt_cnt:	number of decrypt requests
288  * @decrypt_tlen:	total data size handled by decrypt requests
289  * @verify_cnt:		number of verify operation
290  * @sign_cnt:		number of sign requests
291  * @err_cnt:		number of error for akcipher requests
292  */
293 struct crypto_istat_akcipher {
294 	atomic64_t encrypt_cnt;
295 	atomic64_t encrypt_tlen;
296 	atomic64_t decrypt_cnt;
297 	atomic64_t decrypt_tlen;
298 	atomic64_t verify_cnt;
299 	atomic64_t sign_cnt;
300 	atomic64_t err_cnt;
301 };
302 
303 /*
304  * struct crypto_istat_cipher - statistics for cipher algorithm
305  * @encrypt_cnt:	number of encrypt requests
306  * @encrypt_tlen:	total data size handled by encrypt requests
307  * @decrypt_cnt:	number of decrypt requests
308  * @decrypt_tlen:	total data size handled by decrypt requests
309  * @err_cnt:		number of error for cipher requests
310  */
311 struct crypto_istat_cipher {
312 	atomic64_t encrypt_cnt;
313 	atomic64_t encrypt_tlen;
314 	atomic64_t decrypt_cnt;
315 	atomic64_t decrypt_tlen;
316 	atomic64_t err_cnt;
317 };
318 
319 /*
320  * struct crypto_istat_compress - statistics for compress algorithm
321  * @compress_cnt:	number of compress requests
322  * @compress_tlen:	total data size handled by compress requests
323  * @decompress_cnt:	number of decompress requests
324  * @decompress_tlen:	total data size handled by decompress requests
325  * @err_cnt:		number of error for compress requests
326  */
327 struct crypto_istat_compress {
328 	atomic64_t compress_cnt;
329 	atomic64_t compress_tlen;
330 	atomic64_t decompress_cnt;
331 	atomic64_t decompress_tlen;
332 	atomic64_t err_cnt;
333 };
334 
335 /*
336  * struct crypto_istat_hash - statistics for has algorithm
337  * @hash_cnt:		number of hash requests
338  * @hash_tlen:		total data size hashed
339  * @err_cnt:		number of error for hash requests
340  */
341 struct crypto_istat_hash {
342 	atomic64_t hash_cnt;
343 	atomic64_t hash_tlen;
344 	atomic64_t err_cnt;
345 };
346 
347 /*
348  * struct crypto_istat_kpp - statistics for KPP algorithm
349  * @setsecret_cnt:		number of setsecrey operation
350  * @generate_public_key_cnt:	number of generate_public_key operation
351  * @compute_shared_secret_cnt:	number of compute_shared_secret operation
352  * @err_cnt:			number of error for KPP requests
353  */
354 struct crypto_istat_kpp {
355 	atomic64_t setsecret_cnt;
356 	atomic64_t generate_public_key_cnt;
357 	atomic64_t compute_shared_secret_cnt;
358 	atomic64_t err_cnt;
359 };
360 
361 /*
362  * struct crypto_istat_rng: statistics for RNG algorithm
363  * @generate_cnt:	number of RNG generate requests
364  * @generate_tlen:	total data size of generated data by the RNG
365  * @seed_cnt:		number of times the RNG was seeded
366  * @err_cnt:		number of error for RNG requests
367  */
368 struct crypto_istat_rng {
369 	atomic64_t generate_cnt;
370 	atomic64_t generate_tlen;
371 	atomic64_t seed_cnt;
372 	atomic64_t err_cnt;
373 };
374 #endif /* CONFIG_CRYPTO_STATS */
375 
376 #define cra_cipher	cra_u.cipher
377 #define cra_compress	cra_u.compress
378 
379 /**
380  * struct crypto_alg - definition of a cryptograpic cipher algorithm
381  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
382  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
383  *	       used for fine-tuning the description of the transformation
384  *	       algorithm.
385  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
386  *		   of the smallest possible unit which can be transformed with
387  *		   this algorithm. The users must respect this value.
388  *		   In case of HASH transformation, it is possible for a smaller
389  *		   block than @cra_blocksize to be passed to the crypto API for
390  *		   transformation, in case of any other transformation type, an
391  * 		   error will be returned upon any attempt to transform smaller
392  *		   than @cra_blocksize chunks.
393  * @cra_ctxsize: Size of the operational context of the transformation. This
394  *		 value informs the kernel crypto API about the memory size
395  *		 needed to be allocated for the transformation context.
396  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
397  *		   buffer containing the input data for the algorithm must be
398  *		   aligned to this alignment mask. The data buffer for the
399  *		   output data must be aligned to this alignment mask. Note that
400  *		   the Crypto API will do the re-alignment in software, but
401  *		   only under special conditions and there is a performance hit.
402  *		   The re-alignment happens at these occasions for different
403  *		   @cra_u types: cipher -- For both input data and output data
404  *		   buffer; ahash -- For output hash destination buf; shash --
405  *		   For output hash destination buf.
406  *		   This is needed on hardware which is flawed by design and
407  *		   cannot pick data from arbitrary addresses.
408  * @cra_priority: Priority of this transformation implementation. In case
409  *		  multiple transformations with same @cra_name are available to
410  *		  the Crypto API, the kernel will use the one with highest
411  *		  @cra_priority.
412  * @cra_name: Generic name (usable by multiple implementations) of the
413  *	      transformation algorithm. This is the name of the transformation
414  *	      itself. This field is used by the kernel when looking up the
415  *	      providers of particular transformation.
416  * @cra_driver_name: Unique name of the transformation provider. This is the
417  *		     name of the provider of the transformation. This can be any
418  *		     arbitrary value, but in the usual case, this contains the
419  *		     name of the chip or provider and the name of the
420  *		     transformation algorithm.
421  * @cra_type: Type of the cryptographic transformation. This is a pointer to
422  *	      struct crypto_type, which implements callbacks common for all
423  *	      transformation types. There are multiple options, such as
424  *	      &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
425  *	      This field might be empty. In that case, there are no common
426  *	      callbacks. This is the case for: cipher, compress, shash.
427  * @cra_u: Callbacks implementing the transformation. This is a union of
428  *	   multiple structures. Depending on the type of transformation selected
429  *	   by @cra_type and @cra_flags above, the associated structure must be
430  *	   filled with callbacks. This field might be empty. This is the case
431  *	   for ahash, shash.
432  * @cra_init: Initialize the cryptographic transformation object. This function
433  *	      is used to initialize the cryptographic transformation object.
434  *	      This function is called only once at the instantiation time, right
435  *	      after the transformation context was allocated. In case the
436  *	      cryptographic hardware has some special requirements which need to
437  *	      be handled by software, this function shall check for the precise
438  *	      requirement of the transformation and put any software fallbacks
439  *	      in place.
440  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
441  *	      counterpart to @cra_init, used to remove various changes set in
442  *	      @cra_init.
443  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
444  *		  definition. See @struct @cipher_alg.
445  * @cra_u.compress: Union member which contains a (de)compression algorithm.
446  *		    See @struct @compress_alg.
447  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
448  * @cra_list: internally used
449  * @cra_users: internally used
450  * @cra_refcnt: internally used
451  * @cra_destroy: internally used
452  *
453  * @stats: union of all possible crypto_istat_xxx structures
454  * @stats.aead:		statistics for AEAD algorithm
455  * @stats.akcipher:	statistics for akcipher algorithm
456  * @stats.cipher:	statistics for cipher algorithm
457  * @stats.compress:	statistics for compress algorithm
458  * @stats.hash:		statistics for hash algorithm
459  * @stats.rng:		statistics for rng algorithm
460  * @stats.kpp:		statistics for KPP algorithm
461  *
462  * The struct crypto_alg describes a generic Crypto API algorithm and is common
463  * for all of the transformations. Any variable not documented here shall not
464  * be used by a cipher implementation as it is internal to the Crypto API.
465  */
466 struct crypto_alg {
467 	struct list_head cra_list;
468 	struct list_head cra_users;
469 
470 	u32 cra_flags;
471 	unsigned int cra_blocksize;
472 	unsigned int cra_ctxsize;
473 	unsigned int cra_alignmask;
474 
475 	int cra_priority;
476 	refcount_t cra_refcnt;
477 
478 	char cra_name[CRYPTO_MAX_ALG_NAME];
479 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
480 
481 	const struct crypto_type *cra_type;
482 
483 	union {
484 		struct cipher_alg cipher;
485 		struct compress_alg compress;
486 	} cra_u;
487 
488 	int (*cra_init)(struct crypto_tfm *tfm);
489 	void (*cra_exit)(struct crypto_tfm *tfm);
490 	void (*cra_destroy)(struct crypto_alg *alg);
491 
492 	struct module *cra_module;
493 
494 #ifdef CONFIG_CRYPTO_STATS
495 	union {
496 		struct crypto_istat_aead aead;
497 		struct crypto_istat_akcipher akcipher;
498 		struct crypto_istat_cipher cipher;
499 		struct crypto_istat_compress compress;
500 		struct crypto_istat_hash hash;
501 		struct crypto_istat_rng rng;
502 		struct crypto_istat_kpp kpp;
503 	} stats;
504 #endif /* CONFIG_CRYPTO_STATS */
505 
506 } CRYPTO_MINALIGN_ATTR;
507 
508 #ifdef CONFIG_CRYPTO_STATS
509 void crypto_stats_init(struct crypto_alg *alg);
510 void crypto_stats_get(struct crypto_alg *alg);
511 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
512 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
513 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
514 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
515 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
516 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
517 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
518 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
519 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
520 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
521 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
522 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
523 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
524 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
525 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
526 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
527 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
528 #else
crypto_stats_init(struct crypto_alg * alg)529 static inline void crypto_stats_init(struct crypto_alg *alg)
530 {}
crypto_stats_get(struct crypto_alg * alg)531 static inline void crypto_stats_get(struct crypto_alg *alg)
532 {}
crypto_stats_aead_encrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)533 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
534 {}
crypto_stats_aead_decrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)535 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
536 {}
crypto_stats_ahash_update(unsigned int nbytes,int ret,struct crypto_alg * alg)537 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
538 {}
crypto_stats_ahash_final(unsigned int nbytes,int ret,struct crypto_alg * alg)539 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
540 {}
crypto_stats_akcipher_encrypt(unsigned int src_len,int ret,struct crypto_alg * alg)541 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
542 {}
crypto_stats_akcipher_decrypt(unsigned int src_len,int ret,struct crypto_alg * alg)543 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
544 {}
crypto_stats_akcipher_sign(int ret,struct crypto_alg * alg)545 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
546 {}
crypto_stats_akcipher_verify(int ret,struct crypto_alg * alg)547 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
548 {}
crypto_stats_compress(unsigned int slen,int ret,struct crypto_alg * alg)549 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
550 {}
crypto_stats_decompress(unsigned int slen,int ret,struct crypto_alg * alg)551 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
552 {}
crypto_stats_kpp_set_secret(struct crypto_alg * alg,int ret)553 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
554 {}
crypto_stats_kpp_generate_public_key(struct crypto_alg * alg,int ret)555 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
556 {}
crypto_stats_kpp_compute_shared_secret(struct crypto_alg * alg,int ret)557 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
558 {}
crypto_stats_rng_seed(struct crypto_alg * alg,int ret)559 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
560 {}
crypto_stats_rng_generate(struct crypto_alg * alg,unsigned int dlen,int ret)561 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
562 {}
crypto_stats_skcipher_encrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)563 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
564 {}
crypto_stats_skcipher_decrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)565 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
566 {}
567 #endif
568 /*
569  * A helper struct for waiting for completion of async crypto ops
570  */
571 struct crypto_wait {
572 	struct completion completion;
573 	int err;
574 };
575 
576 /*
577  * Macro for declaring a crypto op async wait object on stack
578  */
579 #define DECLARE_CRYPTO_WAIT(_wait) \
580 	struct crypto_wait _wait = { \
581 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
582 
583 /*
584  * Async ops completion helper functioons
585  */
586 void crypto_req_done(struct crypto_async_request *req, int err);
587 
crypto_wait_req(int err,struct crypto_wait * wait)588 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
589 {
590 	switch (err) {
591 	case -EINPROGRESS:
592 	case -EBUSY:
593 		wait_for_completion(&wait->completion);
594 		reinit_completion(&wait->completion);
595 		err = wait->err;
596 		break;
597 	}
598 
599 	return err;
600 }
601 
crypto_init_wait(struct crypto_wait * wait)602 static inline void crypto_init_wait(struct crypto_wait *wait)
603 {
604 	init_completion(&wait->completion);
605 }
606 
607 /*
608  * Algorithm registration interface.
609  */
610 int crypto_register_alg(struct crypto_alg *alg);
611 void crypto_unregister_alg(struct crypto_alg *alg);
612 int crypto_register_algs(struct crypto_alg *algs, int count);
613 void crypto_unregister_algs(struct crypto_alg *algs, int count);
614 
615 /*
616  * Algorithm query interface.
617  */
618 int crypto_has_alg(const char *name, u32 type, u32 mask);
619 
620 /*
621  * Transforms: user-instantiated objects which encapsulate algorithms
622  * and core processing logic.  Managed via crypto_alloc_*() and
623  * crypto_free_*(), as well as the various helpers below.
624  */
625 
626 struct crypto_tfm {
627 
628 	u32 crt_flags;
629 
630 	int node;
631 
632 	void (*exit)(struct crypto_tfm *tfm);
633 
634 	struct crypto_alg *__crt_alg;
635 
636 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
637 };
638 
639 struct crypto_cipher {
640 	struct crypto_tfm base;
641 };
642 
643 struct crypto_comp {
644 	struct crypto_tfm base;
645 };
646 
647 enum {
648 	CRYPTOA_UNSPEC,
649 	CRYPTOA_ALG,
650 	CRYPTOA_TYPE,
651 	CRYPTOA_U32,
652 	__CRYPTOA_MAX,
653 };
654 
655 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
656 
657 /* Maximum number of (rtattr) parameters for each template. */
658 #define CRYPTO_MAX_ATTRS 32
659 
660 struct crypto_attr_alg {
661 	char name[CRYPTO_MAX_ALG_NAME];
662 };
663 
664 struct crypto_attr_type {
665 	u32 type;
666 	u32 mask;
667 };
668 
669 struct crypto_attr_u32 {
670 	u32 num;
671 };
672 
673 /*
674  * Transform user interface.
675  */
676 
677 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
678 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
679 
crypto_free_tfm(struct crypto_tfm * tfm)680 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
681 {
682 	return crypto_destroy_tfm(tfm, tfm);
683 }
684 
685 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
686 
687 /*
688  * Transform helpers which query the underlying algorithm.
689  */
crypto_tfm_alg_name(struct crypto_tfm * tfm)690 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
691 {
692 	return tfm->__crt_alg->cra_name;
693 }
694 
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)695 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
696 {
697 	return tfm->__crt_alg->cra_driver_name;
698 }
699 
crypto_tfm_alg_priority(struct crypto_tfm * tfm)700 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
701 {
702 	return tfm->__crt_alg->cra_priority;
703 }
704 
crypto_tfm_alg_type(struct crypto_tfm * tfm)705 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
706 {
707 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
708 }
709 
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)710 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
711 {
712 	return tfm->__crt_alg->cra_blocksize;
713 }
714 
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)715 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
716 {
717 	return tfm->__crt_alg->cra_alignmask;
718 }
719 
crypto_tfm_get_flags(struct crypto_tfm * tfm)720 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
721 {
722 	return tfm->crt_flags;
723 }
724 
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)725 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
726 {
727 	tfm->crt_flags |= flags;
728 }
729 
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)730 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
731 {
732 	tfm->crt_flags &= ~flags;
733 }
734 
crypto_tfm_ctx(struct crypto_tfm * tfm)735 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
736 {
737 	return tfm->__crt_ctx;
738 }
739 
crypto_tfm_ctx_alignment(void)740 static inline unsigned int crypto_tfm_ctx_alignment(void)
741 {
742 	struct crypto_tfm *tfm;
743 	return __alignof__(tfm->__crt_ctx);
744 }
745 
746 /**
747  * DOC: Single Block Cipher API
748  *
749  * The single block cipher API is used with the ciphers of type
750  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
751  *
752  * Using the single block cipher API calls, operations with the basic cipher
753  * primitive can be implemented. These cipher primitives exclude any block
754  * chaining operations including IV handling.
755  *
756  * The purpose of this single block cipher API is to support the implementation
757  * of templates or other concepts that only need to perform the cipher operation
758  * on one block at a time. Templates invoke the underlying cipher primitive
759  * block-wise and process either the input or the output data of these cipher
760  * operations.
761  */
762 
__crypto_cipher_cast(struct crypto_tfm * tfm)763 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
764 {
765 	return (struct crypto_cipher *)tfm;
766 }
767 
768 /**
769  * crypto_alloc_cipher() - allocate single block cipher handle
770  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
771  *	     single block cipher
772  * @type: specifies the type of the cipher
773  * @mask: specifies the mask for the cipher
774  *
775  * Allocate a cipher handle for a single block cipher. The returned struct
776  * crypto_cipher is the cipher handle that is required for any subsequent API
777  * invocation for that single block cipher.
778  *
779  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
780  *	   of an error, PTR_ERR() returns the error code.
781  */
crypto_alloc_cipher(const char * alg_name,u32 type,u32 mask)782 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
783 							u32 type, u32 mask)
784 {
785 	type &= ~CRYPTO_ALG_TYPE_MASK;
786 	type |= CRYPTO_ALG_TYPE_CIPHER;
787 	mask |= CRYPTO_ALG_TYPE_MASK;
788 
789 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
790 }
791 
crypto_cipher_tfm(struct crypto_cipher * tfm)792 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
793 {
794 	return &tfm->base;
795 }
796 
797 /**
798  * crypto_free_cipher() - zeroize and free the single block cipher handle
799  * @tfm: cipher handle to be freed
800  */
crypto_free_cipher(struct crypto_cipher * tfm)801 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
802 {
803 	crypto_free_tfm(crypto_cipher_tfm(tfm));
804 }
805 
806 /**
807  * crypto_has_cipher() - Search for the availability of a single block cipher
808  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
809  *	     single block cipher
810  * @type: specifies the type of the cipher
811  * @mask: specifies the mask for the cipher
812  *
813  * Return: true when the single block cipher is known to the kernel crypto API;
814  *	   false otherwise
815  */
crypto_has_cipher(const char * alg_name,u32 type,u32 mask)816 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
817 {
818 	type &= ~CRYPTO_ALG_TYPE_MASK;
819 	type |= CRYPTO_ALG_TYPE_CIPHER;
820 	mask |= CRYPTO_ALG_TYPE_MASK;
821 
822 	return crypto_has_alg(alg_name, type, mask);
823 }
824 
825 /**
826  * crypto_cipher_blocksize() - obtain block size for cipher
827  * @tfm: cipher handle
828  *
829  * The block size for the single block cipher referenced with the cipher handle
830  * tfm is returned. The caller may use that information to allocate appropriate
831  * memory for the data returned by the encryption or decryption operation
832  *
833  * Return: block size of cipher
834  */
crypto_cipher_blocksize(struct crypto_cipher * tfm)835 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
836 {
837 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
838 }
839 
crypto_cipher_alignmask(struct crypto_cipher * tfm)840 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
841 {
842 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
843 }
844 
crypto_cipher_get_flags(struct crypto_cipher * tfm)845 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
846 {
847 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
848 }
849 
crypto_cipher_set_flags(struct crypto_cipher * tfm,u32 flags)850 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
851 					   u32 flags)
852 {
853 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
854 }
855 
crypto_cipher_clear_flags(struct crypto_cipher * tfm,u32 flags)856 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
857 					     u32 flags)
858 {
859 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
860 }
861 
862 /**
863  * crypto_cipher_setkey() - set key for cipher
864  * @tfm: cipher handle
865  * @key: buffer holding the key
866  * @keylen: length of the key in bytes
867  *
868  * The caller provided key is set for the single block cipher referenced by the
869  * cipher handle.
870  *
871  * Note, the key length determines the cipher type. Many block ciphers implement
872  * different cipher modes depending on the key size, such as AES-128 vs AES-192
873  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
874  * is performed.
875  *
876  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
877  */
878 int crypto_cipher_setkey(struct crypto_cipher *tfm,
879 			 const u8 *key, unsigned int keylen);
880 
881 /**
882  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
883  * @tfm: cipher handle
884  * @dst: points to the buffer that will be filled with the ciphertext
885  * @src: buffer holding the plaintext to be encrypted
886  *
887  * Invoke the encryption operation of one block. The caller must ensure that
888  * the plaintext and ciphertext buffers are at least one block in size.
889  */
890 void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
891 			       u8 *dst, const u8 *src);
892 
893 /**
894  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
895  * @tfm: cipher handle
896  * @dst: points to the buffer that will be filled with the plaintext
897  * @src: buffer holding the ciphertext to be decrypted
898  *
899  * Invoke the decryption operation of one block. The caller must ensure that
900  * the plaintext and ciphertext buffers are at least one block in size.
901  */
902 void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
903 			       u8 *dst, const u8 *src);
904 
__crypto_comp_cast(struct crypto_tfm * tfm)905 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
906 {
907 	return (struct crypto_comp *)tfm;
908 }
909 
crypto_alloc_comp(const char * alg_name,u32 type,u32 mask)910 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
911 						    u32 type, u32 mask)
912 {
913 	type &= ~CRYPTO_ALG_TYPE_MASK;
914 	type |= CRYPTO_ALG_TYPE_COMPRESS;
915 	mask |= CRYPTO_ALG_TYPE_MASK;
916 
917 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
918 }
919 
crypto_comp_tfm(struct crypto_comp * tfm)920 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
921 {
922 	return &tfm->base;
923 }
924 
crypto_free_comp(struct crypto_comp * tfm)925 static inline void crypto_free_comp(struct crypto_comp *tfm)
926 {
927 	crypto_free_tfm(crypto_comp_tfm(tfm));
928 }
929 
crypto_has_comp(const char * alg_name,u32 type,u32 mask)930 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
931 {
932 	type &= ~CRYPTO_ALG_TYPE_MASK;
933 	type |= CRYPTO_ALG_TYPE_COMPRESS;
934 	mask |= CRYPTO_ALG_TYPE_MASK;
935 
936 	return crypto_has_alg(alg_name, type, mask);
937 }
938 
crypto_comp_name(struct crypto_comp * tfm)939 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
940 {
941 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
942 }
943 
944 int crypto_comp_compress(struct crypto_comp *tfm,
945 			 const u8 *src, unsigned int slen,
946 			 u8 *dst, unsigned int *dlen);
947 
948 int crypto_comp_decompress(struct crypto_comp *tfm,
949 			   const u8 *src, unsigned int slen,
950 			   u8 *dst, unsigned int *dlen);
951 
952 #endif	/* _LINUX_CRYPTO_H */
953 
954