1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/bug.h>
22 #include <asm/page.h>
23 #include <asm/uv.h>
24
25 extern pgd_t swapper_pg_dir[];
26 extern void paging_init(void);
27 extern unsigned long s390_invalid_asce;
28
29 enum {
30 PG_DIRECT_MAP_4K = 0,
31 PG_DIRECT_MAP_1M,
32 PG_DIRECT_MAP_2G,
33 PG_DIRECT_MAP_MAX
34 };
35
36 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
37
update_page_count(int level,long count)38 static inline void update_page_count(int level, long count)
39 {
40 if (IS_ENABLED(CONFIG_PROC_FS))
41 atomic_long_add(count, &direct_pages_count[level]);
42 }
43
44 struct seq_file;
45 void arch_report_meminfo(struct seq_file *m);
46
47 /*
48 * The S390 doesn't have any external MMU info: the kernel page
49 * tables contain all the necessary information.
50 */
51 #define update_mmu_cache(vma, address, ptep) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53
54 /*
55 * ZERO_PAGE is a global shared page that is always zero; used
56 * for zero-mapped memory areas etc..
57 */
58
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61
62 #define ZERO_PAGE(vaddr) \
63 (virt_to_page((void *)(empty_zero_page + \
64 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68
69 #define pte_ERROR(e) \
70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79
80 /*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
87 */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93
94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95
96 extern unsigned long __bootdata_preserved(MODULES_VADDR);
97 extern unsigned long __bootdata_preserved(MODULES_END);
98 #define MODULES_VADDR MODULES_VADDR
99 #define MODULES_END MODULES_END
100 #define MODULES_LEN (1UL << 31)
101
is_module_addr(void * addr)102 static inline int is_module_addr(void *addr)
103 {
104 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 if (addr < (void *)MODULES_VADDR)
106 return 0;
107 if (addr > (void *)MODULES_END)
108 return 0;
109 return 1;
110 }
111
112 /*
113 * A 64 bit pagetable entry of S390 has following format:
114 * | PFRA |0IPC| OS |
115 * 0000000000111111111122222222223333333333444444444455555555556666
116 * 0123456789012345678901234567890123456789012345678901234567890123
117 *
118 * I Page-Invalid Bit: Page is not available for address-translation
119 * P Page-Protection Bit: Store access not possible for page
120 * C Change-bit override: HW is not required to set change bit
121 *
122 * A 64 bit segmenttable entry of S390 has following format:
123 * | P-table origin | TT
124 * 0000000000111111111122222222223333333333444444444455555555556666
125 * 0123456789012345678901234567890123456789012345678901234567890123
126 *
127 * I Segment-Invalid Bit: Segment is not available for address-translation
128 * C Common-Segment Bit: Segment is not private (PoP 3-30)
129 * P Page-Protection Bit: Store access not possible for page
130 * TT Type 00
131 *
132 * A 64 bit region table entry of S390 has following format:
133 * | S-table origin | TF TTTL
134 * 0000000000111111111122222222223333333333444444444455555555556666
135 * 0123456789012345678901234567890123456789012345678901234567890123
136 *
137 * I Segment-Invalid Bit: Segment is not available for address-translation
138 * TT Type 01
139 * TF
140 * TL Table length
141 *
142 * The 64 bit regiontable origin of S390 has following format:
143 * | region table origon | DTTL
144 * 0000000000111111111122222222223333333333444444444455555555556666
145 * 0123456789012345678901234567890123456789012345678901234567890123
146 *
147 * X Space-Switch event:
148 * G Segment-Invalid Bit:
149 * P Private-Space Bit:
150 * S Storage-Alteration:
151 * R Real space
152 * TL Table-Length:
153 *
154 * A storage key has the following format:
155 * | ACC |F|R|C|0|
156 * 0 3 4 5 6 7
157 * ACC: access key
158 * F : fetch protection bit
159 * R : referenced bit
160 * C : changed bit
161 */
162
163 /* Hardware bits in the page table entry */
164 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
165 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
166 #define _PAGE_INVALID 0x400 /* HW invalid bit */
167 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
168
169 /* Software bits in the page table entry */
170 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
171 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
172 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
173 #define _PAGE_READ 0x010 /* SW pte read bit */
174 #define _PAGE_WRITE 0x020 /* SW pte write bit */
175 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
176 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
177
178 #ifdef CONFIG_MEM_SOFT_DIRTY
179 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
180 #else
181 #define _PAGE_SOFT_DIRTY 0x000
182 #endif
183
184 /* Set of bits not changed in pte_modify */
185 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
186 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
187
188 /*
189 * handle_pte_fault uses pte_present and pte_none to find out the pte type
190 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
191 * distinguish present from not-present ptes. It is changed only with the page
192 * table lock held.
193 *
194 * The following table gives the different possible bit combinations for
195 * the pte hardware and software bits in the last 12 bits of a pte
196 * (. unassigned bit, x don't care, t swap type):
197 *
198 * 842100000000
199 * 000084210000
200 * 000000008421
201 * .IR.uswrdy.p
202 * empty .10.00000000
203 * swap .11..ttttt.0
204 * prot-none, clean, old .11.xx0000.1
205 * prot-none, clean, young .11.xx0001.1
206 * prot-none, dirty, old .11.xx0010.1
207 * prot-none, dirty, young .11.xx0011.1
208 * read-only, clean, old .11.xx0100.1
209 * read-only, clean, young .01.xx0101.1
210 * read-only, dirty, old .11.xx0110.1
211 * read-only, dirty, young .01.xx0111.1
212 * read-write, clean, old .11.xx1100.1
213 * read-write, clean, young .01.xx1101.1
214 * read-write, dirty, old .10.xx1110.1
215 * read-write, dirty, young .00.xx1111.1
216 * HW-bits: R read-only, I invalid
217 * SW-bits: p present, y young, d dirty, r read, w write, s special,
218 * u unused, l large
219 *
220 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
221 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
222 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
223 */
224
225 /* Bits in the segment/region table address-space-control-element */
226 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
227 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
228 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
229 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
230 #define _ASCE_REAL_SPACE 0x20 /* real space control */
231 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
232 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
233 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
234 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
235 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
236 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
237
238 /* Bits in the region table entry */
239 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
240 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
241 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
242 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
243 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
244 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
245 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
246 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
247 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
248 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
249
250 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
251 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
252 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
253 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
254 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
255 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
256
257 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
258 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
259 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
260 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
261 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
262 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
263
264 #ifdef CONFIG_MEM_SOFT_DIRTY
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
266 #else
267 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
268 #endif
269
270 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
271
272 /* Bits in the segment table entry */
273 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
276 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
277 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
278 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
279 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
280 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
281 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
282
283 #define _SEGMENT_ENTRY (0)
284 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
285
286 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
287 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
288 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
289 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
290 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
291
292 #ifdef CONFIG_MEM_SOFT_DIRTY
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294 #else
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296 #endif
297
298 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
299 #define _PAGE_ENTRIES 256 /* number of page table entries */
300
301 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303
304 #define _REGION1_SHIFT 53
305 #define _REGION2_SHIFT 42
306 #define _REGION3_SHIFT 31
307 #define _SEGMENT_SHIFT 20
308
309 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
310 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
311 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
312 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
313 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
314
315 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
316 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
317 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
318 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
319
320 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
321 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
322 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
323 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
324
325 #define PMD_SHIFT _SEGMENT_SHIFT
326 #define PUD_SHIFT _REGION3_SHIFT
327 #define P4D_SHIFT _REGION2_SHIFT
328 #define PGDIR_SHIFT _REGION1_SHIFT
329
330 #define PMD_SIZE _SEGMENT_SIZE
331 #define PUD_SIZE _REGION3_SIZE
332 #define P4D_SIZE _REGION2_SIZE
333 #define PGDIR_SIZE _REGION1_SIZE
334
335 #define PMD_MASK _SEGMENT_MASK
336 #define PUD_MASK _REGION3_MASK
337 #define P4D_MASK _REGION2_MASK
338 #define PGDIR_MASK _REGION1_MASK
339
340 #define PTRS_PER_PTE _PAGE_ENTRIES
341 #define PTRS_PER_PMD _CRST_ENTRIES
342 #define PTRS_PER_PUD _CRST_ENTRIES
343 #define PTRS_PER_P4D _CRST_ENTRIES
344 #define PTRS_PER_PGD _CRST_ENTRIES
345
346 /*
347 * Segment table and region3 table entry encoding
348 * (R = read-only, I = invalid, y = young bit):
349 * dy..R...I...wr
350 * prot-none, clean, old 00..1...1...00
351 * prot-none, clean, young 01..1...1...00
352 * prot-none, dirty, old 10..1...1...00
353 * prot-none, dirty, young 11..1...1...00
354 * read-only, clean, old 00..1...1...01
355 * read-only, clean, young 01..1...0...01
356 * read-only, dirty, old 10..1...1...01
357 * read-only, dirty, young 11..1...0...01
358 * read-write, clean, old 00..1...1...11
359 * read-write, clean, young 01..1...0...11
360 * read-write, dirty, old 10..0...1...11
361 * read-write, dirty, young 11..0...0...11
362 * The segment table origin is used to distinguish empty (origin==0) from
363 * read-write, old segment table entries (origin!=0)
364 * HW-bits: R read-only, I invalid
365 * SW-bits: y young, d dirty, r read, w write
366 */
367
368 /* Page status table bits for virtualization */
369 #define PGSTE_ACC_BITS 0xf000000000000000UL
370 #define PGSTE_FP_BIT 0x0800000000000000UL
371 #define PGSTE_PCL_BIT 0x0080000000000000UL
372 #define PGSTE_HR_BIT 0x0040000000000000UL
373 #define PGSTE_HC_BIT 0x0020000000000000UL
374 #define PGSTE_GR_BIT 0x0004000000000000UL
375 #define PGSTE_GC_BIT 0x0002000000000000UL
376 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
377 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
378 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
379
380 /* Guest Page State used for virtualization */
381 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
382 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
383 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
384 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
385 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
386 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
387 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
388
389 /*
390 * A user page table pointer has the space-switch-event bit, the
391 * private-space-control bit and the storage-alteration-event-control
392 * bit set. A kernel page table pointer doesn't need them.
393 */
394 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
395 _ASCE_ALT_EVENT)
396
397 /*
398 * Page protection definitions.
399 */
400 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
401 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_INVALID | _PAGE_PROTECT)
409
410 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
412 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
415 _PAGE_PROTECT | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
417 _PAGE_YOUNG | _PAGE_DIRTY)
418
419 /*
420 * On s390 the page table entry has an invalid bit and a read-only bit.
421 * Read permission implies execute permission and write permission
422 * implies read permission.
423 */
424 /*xwr*/
425 #define __P000 PAGE_NONE
426 #define __P001 PAGE_RO
427 #define __P010 PAGE_RO
428 #define __P011 PAGE_RO
429 #define __P100 PAGE_RX
430 #define __P101 PAGE_RX
431 #define __P110 PAGE_RX
432 #define __P111 PAGE_RX
433
434 #define __S000 PAGE_NONE
435 #define __S001 PAGE_RO
436 #define __S010 PAGE_RW
437 #define __S011 PAGE_RW
438 #define __S100 PAGE_RX
439 #define __S101 PAGE_RX
440 #define __S110 PAGE_RWX
441 #define __S111 PAGE_RWX
442
443 /*
444 * Segment entry (large page) protection definitions.
445 */
446 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
447 _SEGMENT_ENTRY_PROTECT)
448 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
449 _SEGMENT_ENTRY_READ | \
450 _SEGMENT_ENTRY_NOEXEC)
451 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
452 _SEGMENT_ENTRY_READ)
453 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
454 _SEGMENT_ENTRY_WRITE | \
455 _SEGMENT_ENTRY_NOEXEC)
456 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE)
458 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
459 _SEGMENT_ENTRY_LARGE | \
460 _SEGMENT_ENTRY_READ | \
461 _SEGMENT_ENTRY_WRITE | \
462 _SEGMENT_ENTRY_YOUNG | \
463 _SEGMENT_ENTRY_DIRTY | \
464 _SEGMENT_ENTRY_NOEXEC)
465 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
466 _SEGMENT_ENTRY_LARGE | \
467 _SEGMENT_ENTRY_READ | \
468 _SEGMENT_ENTRY_YOUNG | \
469 _SEGMENT_ENTRY_PROTECT | \
470 _SEGMENT_ENTRY_NOEXEC)
471 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
472 _SEGMENT_ENTRY_LARGE | \
473 _SEGMENT_ENTRY_READ | \
474 _SEGMENT_ENTRY_WRITE | \
475 _SEGMENT_ENTRY_YOUNG | \
476 _SEGMENT_ENTRY_DIRTY)
477
478 /*
479 * Region3 entry (large page) protection definitions.
480 */
481
482 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
483 _REGION3_ENTRY_LARGE | \
484 _REGION3_ENTRY_READ | \
485 _REGION3_ENTRY_WRITE | \
486 _REGION3_ENTRY_YOUNG | \
487 _REGION3_ENTRY_DIRTY | \
488 _REGION_ENTRY_NOEXEC)
489 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
490 _REGION3_ENTRY_LARGE | \
491 _REGION3_ENTRY_READ | \
492 _REGION3_ENTRY_YOUNG | \
493 _REGION_ENTRY_PROTECT | \
494 _REGION_ENTRY_NOEXEC)
495
mm_p4d_folded(struct mm_struct * mm)496 static inline bool mm_p4d_folded(struct mm_struct *mm)
497 {
498 return mm->context.asce_limit <= _REGION1_SIZE;
499 }
500 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
501
mm_pud_folded(struct mm_struct * mm)502 static inline bool mm_pud_folded(struct mm_struct *mm)
503 {
504 return mm->context.asce_limit <= _REGION2_SIZE;
505 }
506 #define mm_pud_folded(mm) mm_pud_folded(mm)
507
mm_pmd_folded(struct mm_struct * mm)508 static inline bool mm_pmd_folded(struct mm_struct *mm)
509 {
510 return mm->context.asce_limit <= _REGION3_SIZE;
511 }
512 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
513
mm_has_pgste(struct mm_struct * mm)514 static inline int mm_has_pgste(struct mm_struct *mm)
515 {
516 #ifdef CONFIG_PGSTE
517 if (unlikely(mm->context.has_pgste))
518 return 1;
519 #endif
520 return 0;
521 }
522
mm_is_protected(struct mm_struct * mm)523 static inline int mm_is_protected(struct mm_struct *mm)
524 {
525 #ifdef CONFIG_PGSTE
526 if (unlikely(atomic_read(&mm->context.is_protected)))
527 return 1;
528 #endif
529 return 0;
530 }
531
mm_alloc_pgste(struct mm_struct * mm)532 static inline int mm_alloc_pgste(struct mm_struct *mm)
533 {
534 #ifdef CONFIG_PGSTE
535 if (unlikely(mm->context.alloc_pgste))
536 return 1;
537 #endif
538 return 0;
539 }
540
541 /*
542 * In the case that a guest uses storage keys
543 * faults should no longer be backed by zero pages
544 */
545 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)546 static inline int mm_uses_skeys(struct mm_struct *mm)
547 {
548 #ifdef CONFIG_PGSTE
549 if (mm->context.uses_skeys)
550 return 1;
551 #endif
552 return 0;
553 }
554
csp(unsigned int * ptr,unsigned int old,unsigned int new)555 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
556 {
557 union register_pair r1 = { .even = old, .odd = new, };
558 unsigned long address = (unsigned long)ptr | 1;
559
560 asm volatile(
561 " csp %[r1],%[address]"
562 : [r1] "+&d" (r1.pair), "+m" (*ptr)
563 : [address] "d" (address)
564 : "cc");
565 }
566
cspg(unsigned long * ptr,unsigned long old,unsigned long new)567 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
568 {
569 union register_pair r1 = { .even = old, .odd = new, };
570 unsigned long address = (unsigned long)ptr | 1;
571
572 asm volatile(
573 " .insn rre,0xb98a0000,%[r1],%[address]"
574 : [r1] "+&d" (r1.pair), "+m" (*ptr)
575 : [address] "d" (address)
576 : "cc");
577 }
578
579 #define CRDTE_DTT_PAGE 0x00UL
580 #define CRDTE_DTT_SEGMENT 0x10UL
581 #define CRDTE_DTT_REGION3 0x14UL
582 #define CRDTE_DTT_REGION2 0x18UL
583 #define CRDTE_DTT_REGION1 0x1cUL
584
crdte(unsigned long old,unsigned long new,unsigned long table,unsigned long dtt,unsigned long address,unsigned long asce)585 static inline void crdte(unsigned long old, unsigned long new,
586 unsigned long table, unsigned long dtt,
587 unsigned long address, unsigned long asce)
588 {
589 union register_pair r1 = { .even = old, .odd = new, };
590 union register_pair r2 = { .even = table | dtt, .odd = address, };
591
592 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
593 : [r1] "+&d" (r1.pair)
594 : [r2] "d" (r2.pair), [asce] "a" (asce)
595 : "memory", "cc");
596 }
597
598 /*
599 * pgd/p4d/pud/pmd/pte query functions
600 */
pgd_folded(pgd_t pgd)601 static inline int pgd_folded(pgd_t pgd)
602 {
603 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
604 }
605
pgd_present(pgd_t pgd)606 static inline int pgd_present(pgd_t pgd)
607 {
608 if (pgd_folded(pgd))
609 return 1;
610 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
611 }
612
pgd_none(pgd_t pgd)613 static inline int pgd_none(pgd_t pgd)
614 {
615 if (pgd_folded(pgd))
616 return 0;
617 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
618 }
619
pgd_bad(pgd_t pgd)620 static inline int pgd_bad(pgd_t pgd)
621 {
622 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
623 return 0;
624 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
625 }
626
pgd_pfn(pgd_t pgd)627 static inline unsigned long pgd_pfn(pgd_t pgd)
628 {
629 unsigned long origin_mask;
630
631 origin_mask = _REGION_ENTRY_ORIGIN;
632 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
633 }
634
p4d_folded(p4d_t p4d)635 static inline int p4d_folded(p4d_t p4d)
636 {
637 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
638 }
639
p4d_present(p4d_t p4d)640 static inline int p4d_present(p4d_t p4d)
641 {
642 if (p4d_folded(p4d))
643 return 1;
644 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
645 }
646
p4d_none(p4d_t p4d)647 static inline int p4d_none(p4d_t p4d)
648 {
649 if (p4d_folded(p4d))
650 return 0;
651 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
652 }
653
p4d_pfn(p4d_t p4d)654 static inline unsigned long p4d_pfn(p4d_t p4d)
655 {
656 unsigned long origin_mask;
657
658 origin_mask = _REGION_ENTRY_ORIGIN;
659 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
660 }
661
pud_folded(pud_t pud)662 static inline int pud_folded(pud_t pud)
663 {
664 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
665 }
666
pud_present(pud_t pud)667 static inline int pud_present(pud_t pud)
668 {
669 if (pud_folded(pud))
670 return 1;
671 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
672 }
673
pud_none(pud_t pud)674 static inline int pud_none(pud_t pud)
675 {
676 if (pud_folded(pud))
677 return 0;
678 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
679 }
680
681 #define pud_leaf pud_large
pud_large(pud_t pud)682 static inline int pud_large(pud_t pud)
683 {
684 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
685 return 0;
686 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
687 }
688
689 #define pmd_leaf pmd_large
pmd_large(pmd_t pmd)690 static inline int pmd_large(pmd_t pmd)
691 {
692 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
693 }
694
pmd_bad(pmd_t pmd)695 static inline int pmd_bad(pmd_t pmd)
696 {
697 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
698 return 1;
699 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
700 }
701
pud_bad(pud_t pud)702 static inline int pud_bad(pud_t pud)
703 {
704 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
705
706 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
707 return 1;
708 if (type < _REGION_ENTRY_TYPE_R3)
709 return 0;
710 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
711 }
712
p4d_bad(p4d_t p4d)713 static inline int p4d_bad(p4d_t p4d)
714 {
715 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
716
717 if (type > _REGION_ENTRY_TYPE_R2)
718 return 1;
719 if (type < _REGION_ENTRY_TYPE_R2)
720 return 0;
721 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
722 }
723
pmd_present(pmd_t pmd)724 static inline int pmd_present(pmd_t pmd)
725 {
726 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
727 }
728
pmd_none(pmd_t pmd)729 static inline int pmd_none(pmd_t pmd)
730 {
731 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
732 }
733
734 #define pmd_write pmd_write
pmd_write(pmd_t pmd)735 static inline int pmd_write(pmd_t pmd)
736 {
737 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
738 }
739
740 #define pud_write pud_write
pud_write(pud_t pud)741 static inline int pud_write(pud_t pud)
742 {
743 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
744 }
745
pmd_dirty(pmd_t pmd)746 static inline int pmd_dirty(pmd_t pmd)
747 {
748 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
749 }
750
pmd_young(pmd_t pmd)751 static inline int pmd_young(pmd_t pmd)
752 {
753 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
754 }
755
pte_present(pte_t pte)756 static inline int pte_present(pte_t pte)
757 {
758 /* Bit pattern: (pte & 0x001) == 0x001 */
759 return (pte_val(pte) & _PAGE_PRESENT) != 0;
760 }
761
pte_none(pte_t pte)762 static inline int pte_none(pte_t pte)
763 {
764 /* Bit pattern: pte == 0x400 */
765 return pte_val(pte) == _PAGE_INVALID;
766 }
767
pte_swap(pte_t pte)768 static inline int pte_swap(pte_t pte)
769 {
770 /* Bit pattern: (pte & 0x201) == 0x200 */
771 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
772 == _PAGE_PROTECT;
773 }
774
pte_special(pte_t pte)775 static inline int pte_special(pte_t pte)
776 {
777 return (pte_val(pte) & _PAGE_SPECIAL);
778 }
779
780 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)781 static inline int pte_same(pte_t a, pte_t b)
782 {
783 return pte_val(a) == pte_val(b);
784 }
785
786 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)787 static inline int pte_protnone(pte_t pte)
788 {
789 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
790 }
791
pmd_protnone(pmd_t pmd)792 static inline int pmd_protnone(pmd_t pmd)
793 {
794 /* pmd_large(pmd) implies pmd_present(pmd) */
795 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
796 }
797 #endif
798
pte_soft_dirty(pte_t pte)799 static inline int pte_soft_dirty(pte_t pte)
800 {
801 return pte_val(pte) & _PAGE_SOFT_DIRTY;
802 }
803 #define pte_swp_soft_dirty pte_soft_dirty
804
pte_mksoft_dirty(pte_t pte)805 static inline pte_t pte_mksoft_dirty(pte_t pte)
806 {
807 pte_val(pte) |= _PAGE_SOFT_DIRTY;
808 return pte;
809 }
810 #define pte_swp_mksoft_dirty pte_mksoft_dirty
811
pte_clear_soft_dirty(pte_t pte)812 static inline pte_t pte_clear_soft_dirty(pte_t pte)
813 {
814 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
815 return pte;
816 }
817 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
818
pmd_soft_dirty(pmd_t pmd)819 static inline int pmd_soft_dirty(pmd_t pmd)
820 {
821 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
822 }
823
pmd_mksoft_dirty(pmd_t pmd)824 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
825 {
826 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
827 return pmd;
828 }
829
pmd_clear_soft_dirty(pmd_t pmd)830 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
831 {
832 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
833 return pmd;
834 }
835
836 /*
837 * query functions pte_write/pte_dirty/pte_young only work if
838 * pte_present() is true. Undefined behaviour if not..
839 */
pte_write(pte_t pte)840 static inline int pte_write(pte_t pte)
841 {
842 return (pte_val(pte) & _PAGE_WRITE) != 0;
843 }
844
pte_dirty(pte_t pte)845 static inline int pte_dirty(pte_t pte)
846 {
847 return (pte_val(pte) & _PAGE_DIRTY) != 0;
848 }
849
pte_young(pte_t pte)850 static inline int pte_young(pte_t pte)
851 {
852 return (pte_val(pte) & _PAGE_YOUNG) != 0;
853 }
854
855 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)856 static inline int pte_unused(pte_t pte)
857 {
858 return pte_val(pte) & _PAGE_UNUSED;
859 }
860
861 /*
862 * Extract the pgprot value from the given pte while at the same time making it
863 * usable for kernel address space mappings where fault driven dirty and
864 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
865 * must not be set.
866 */
pte_pgprot(pte_t pte)867 static inline pgprot_t pte_pgprot(pte_t pte)
868 {
869 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
870
871 if (pte_write(pte))
872 pte_flags |= pgprot_val(PAGE_KERNEL);
873 else
874 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
875 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
876
877 return __pgprot(pte_flags);
878 }
879
880 /*
881 * pgd/pmd/pte modification functions
882 */
883
pgd_clear(pgd_t * pgd)884 static inline void pgd_clear(pgd_t *pgd)
885 {
886 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
887 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
888 }
889
p4d_clear(p4d_t * p4d)890 static inline void p4d_clear(p4d_t *p4d)
891 {
892 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
893 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
894 }
895
pud_clear(pud_t * pud)896 static inline void pud_clear(pud_t *pud)
897 {
898 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
899 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
900 }
901
pmd_clear(pmd_t * pmdp)902 static inline void pmd_clear(pmd_t *pmdp)
903 {
904 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
905 }
906
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)907 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
908 {
909 pte_val(*ptep) = _PAGE_INVALID;
910 }
911
912 /*
913 * The following pte modification functions only work if
914 * pte_present() is true. Undefined behaviour if not..
915 */
pte_modify(pte_t pte,pgprot_t newprot)916 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
917 {
918 pte_val(pte) &= _PAGE_CHG_MASK;
919 pte_val(pte) |= pgprot_val(newprot);
920 /*
921 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
922 * has the invalid bit set, clear it again for readable, young pages
923 */
924 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
925 pte_val(pte) &= ~_PAGE_INVALID;
926 /*
927 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
928 * protection bit set, clear it again for writable, dirty pages
929 */
930 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
931 pte_val(pte) &= ~_PAGE_PROTECT;
932 return pte;
933 }
934
pte_wrprotect(pte_t pte)935 static inline pte_t pte_wrprotect(pte_t pte)
936 {
937 pte_val(pte) &= ~_PAGE_WRITE;
938 pte_val(pte) |= _PAGE_PROTECT;
939 return pte;
940 }
941
pte_mkwrite(pte_t pte)942 static inline pte_t pte_mkwrite(pte_t pte)
943 {
944 pte_val(pte) |= _PAGE_WRITE;
945 if (pte_val(pte) & _PAGE_DIRTY)
946 pte_val(pte) &= ~_PAGE_PROTECT;
947 return pte;
948 }
949
pte_mkclean(pte_t pte)950 static inline pte_t pte_mkclean(pte_t pte)
951 {
952 pte_val(pte) &= ~_PAGE_DIRTY;
953 pte_val(pte) |= _PAGE_PROTECT;
954 return pte;
955 }
956
pte_mkdirty(pte_t pte)957 static inline pte_t pte_mkdirty(pte_t pte)
958 {
959 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
960 if (pte_val(pte) & _PAGE_WRITE)
961 pte_val(pte) &= ~_PAGE_PROTECT;
962 return pte;
963 }
964
pte_mkold(pte_t pte)965 static inline pte_t pte_mkold(pte_t pte)
966 {
967 pte_val(pte) &= ~_PAGE_YOUNG;
968 pte_val(pte) |= _PAGE_INVALID;
969 return pte;
970 }
971
pte_mkyoung(pte_t pte)972 static inline pte_t pte_mkyoung(pte_t pte)
973 {
974 pte_val(pte) |= _PAGE_YOUNG;
975 if (pte_val(pte) & _PAGE_READ)
976 pte_val(pte) &= ~_PAGE_INVALID;
977 return pte;
978 }
979
pte_mkspecial(pte_t pte)980 static inline pte_t pte_mkspecial(pte_t pte)
981 {
982 pte_val(pte) |= _PAGE_SPECIAL;
983 return pte;
984 }
985
986 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)987 static inline pte_t pte_mkhuge(pte_t pte)
988 {
989 pte_val(pte) |= _PAGE_LARGE;
990 return pte;
991 }
992 #endif
993
994 #define IPTE_GLOBAL 0
995 #define IPTE_LOCAL 1
996
997 #define IPTE_NODAT 0x400
998 #define IPTE_GUEST_ASCE 0x800
999
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1000 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1001 unsigned long opt, unsigned long asce,
1002 int local)
1003 {
1004 unsigned long pto = (unsigned long) ptep;
1005
1006 if (__builtin_constant_p(opt) && opt == 0) {
1007 /* Invalidation + TLB flush for the pte */
1008 asm volatile(
1009 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1010 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1011 [m4] "i" (local));
1012 return;
1013 }
1014
1015 /* Invalidate ptes with options + TLB flush of the ptes */
1016 opt = opt | (asce & _ASCE_ORIGIN);
1017 asm volatile(
1018 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1019 : [r2] "+a" (address), [r3] "+a" (opt)
1020 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1021 }
1022
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1023 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1024 pte_t *ptep, int local)
1025 {
1026 unsigned long pto = (unsigned long) ptep;
1027
1028 /* Invalidate a range of ptes + TLB flush of the ptes */
1029 do {
1030 asm volatile(
1031 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1032 : [r2] "+a" (address), [r3] "+a" (nr)
1033 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1034 } while (nr != 255);
1035 }
1036
1037 /*
1038 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1039 * both clear the TLB for the unmapped pte. The reason is that
1040 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1041 * to modify an active pte. The sequence is
1042 * 1) ptep_get_and_clear
1043 * 2) set_pte_at
1044 * 3) flush_tlb_range
1045 * On s390 the tlb needs to get flushed with the modification of the pte
1046 * if the pte is active. The only way how this can be implemented is to
1047 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1048 * is a nop.
1049 */
1050 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1051 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1052
1053 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1054 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1055 unsigned long addr, pte_t *ptep)
1056 {
1057 pte_t pte = *ptep;
1058
1059 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1060 return pte_young(pte);
1061 }
1062
1063 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1064 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1065 unsigned long address, pte_t *ptep)
1066 {
1067 return ptep_test_and_clear_young(vma, address, ptep);
1068 }
1069
1070 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1071 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1072 unsigned long addr, pte_t *ptep)
1073 {
1074 pte_t res;
1075
1076 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1077 if (mm_is_protected(mm) && pte_present(res))
1078 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1079 return res;
1080 }
1081
1082 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1083 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1084 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1085 pte_t *, pte_t, pte_t);
1086
1087 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1088 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1089 unsigned long addr, pte_t *ptep)
1090 {
1091 pte_t res;
1092
1093 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1094 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1095 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1096 return res;
1097 }
1098
1099 /*
1100 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1101 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1102 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1103 * cannot be accessed while the batched unmap is running. In this case
1104 * full==1 and a simple pte_clear is enough. See tlb.h.
1105 */
1106 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1107 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1108 unsigned long addr,
1109 pte_t *ptep, int full)
1110 {
1111 pte_t res;
1112
1113 if (full) {
1114 res = *ptep;
1115 *ptep = __pte(_PAGE_INVALID);
1116 } else {
1117 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1118 }
1119 if (mm_is_protected(mm) && pte_present(res))
1120 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1121 return res;
1122 }
1123
1124 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1125 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1126 unsigned long addr, pte_t *ptep)
1127 {
1128 pte_t pte = *ptep;
1129
1130 if (pte_write(pte))
1131 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1132 }
1133
1134 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1135 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1136 unsigned long addr, pte_t *ptep,
1137 pte_t entry, int dirty)
1138 {
1139 if (pte_same(*ptep, entry))
1140 return 0;
1141 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1142 return 1;
1143 }
1144
1145 /*
1146 * Additional functions to handle KVM guest page tables
1147 */
1148 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1149 pte_t *ptep, pte_t entry);
1150 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1151 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1152 pte_t *ptep, unsigned long bits);
1153 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1154 pte_t *ptep, int prot, unsigned long bit);
1155 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1156 pte_t *ptep , int reset);
1157 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1158 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1159 pte_t *sptep, pte_t *tptep, pte_t pte);
1160 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1161
1162 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1163 pte_t *ptep);
1164 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1165 unsigned char key, bool nq);
1166 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1167 unsigned char key, unsigned char *oldkey,
1168 bool nq, bool mr, bool mc);
1169 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1170 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1171 unsigned char *key);
1172
1173 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1174 unsigned long bits, unsigned long value);
1175 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1176 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1177 unsigned long *oldpte, unsigned long *oldpgste);
1178 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1179 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1180 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1181 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1182
1183 #define pgprot_writecombine pgprot_writecombine
1184 pgprot_t pgprot_writecombine(pgprot_t prot);
1185
1186 #define pgprot_writethrough pgprot_writethrough
1187 pgprot_t pgprot_writethrough(pgprot_t prot);
1188
1189 /*
1190 * Certain architectures need to do special things when PTEs
1191 * within a page table are directly modified. Thus, the following
1192 * hook is made available.
1193 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1194 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1195 pte_t *ptep, pte_t entry)
1196 {
1197 if (pte_present(entry))
1198 pte_val(entry) &= ~_PAGE_UNUSED;
1199 if (mm_has_pgste(mm))
1200 ptep_set_pte_at(mm, addr, ptep, entry);
1201 else
1202 *ptep = entry;
1203 }
1204
1205 /*
1206 * Conversion functions: convert a page and protection to a page entry,
1207 * and a page entry and page directory to the page they refer to.
1208 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1209 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1210 {
1211 pte_t __pte;
1212
1213 pte_val(__pte) = physpage | pgprot_val(pgprot);
1214 if (!MACHINE_HAS_NX)
1215 pte_val(__pte) &= ~_PAGE_NOEXEC;
1216 return pte_mkyoung(__pte);
1217 }
1218
mk_pte(struct page * page,pgprot_t pgprot)1219 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1220 {
1221 unsigned long physpage = page_to_phys(page);
1222 pte_t __pte = mk_pte_phys(physpage, pgprot);
1223
1224 if (pte_write(__pte) && PageDirty(page))
1225 __pte = pte_mkdirty(__pte);
1226 return __pte;
1227 }
1228
1229 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1230 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1231 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1232 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1233
1234 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1235 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1236
pmd_deref(pmd_t pmd)1237 static inline unsigned long pmd_deref(pmd_t pmd)
1238 {
1239 unsigned long origin_mask;
1240
1241 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1242 if (pmd_large(pmd))
1243 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1244 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1245 }
1246
pmd_pfn(pmd_t pmd)1247 static inline unsigned long pmd_pfn(pmd_t pmd)
1248 {
1249 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1250 }
1251
pud_deref(pud_t pud)1252 static inline unsigned long pud_deref(pud_t pud)
1253 {
1254 unsigned long origin_mask;
1255
1256 origin_mask = _REGION_ENTRY_ORIGIN;
1257 if (pud_large(pud))
1258 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1259 return (unsigned long)__va(pud_val(pud) & origin_mask);
1260 }
1261
pud_pfn(pud_t pud)1262 static inline unsigned long pud_pfn(pud_t pud)
1263 {
1264 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1265 }
1266
1267 /*
1268 * The pgd_offset function *always* adds the index for the top-level
1269 * region/segment table. This is done to get a sequence like the
1270 * following to work:
1271 * pgdp = pgd_offset(current->mm, addr);
1272 * pgd = READ_ONCE(*pgdp);
1273 * p4dp = p4d_offset(&pgd, addr);
1274 * ...
1275 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1276 * only add an index if they dereferenced the pointer.
1277 */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1278 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1279 {
1280 unsigned long rste;
1281 unsigned int shift;
1282
1283 /* Get the first entry of the top level table */
1284 rste = pgd_val(*pgd);
1285 /* Pick up the shift from the table type of the first entry */
1286 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1287 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1288 }
1289
1290 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1291
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1292 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1293 {
1294 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1295 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1296 return (p4d_t *) pgdp;
1297 }
1298 #define p4d_offset_lockless p4d_offset_lockless
1299
p4d_offset(pgd_t * pgdp,unsigned long address)1300 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1301 {
1302 return p4d_offset_lockless(pgdp, *pgdp, address);
1303 }
1304
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1305 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1306 {
1307 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1308 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1309 return (pud_t *) p4dp;
1310 }
1311 #define pud_offset_lockless pud_offset_lockless
1312
pud_offset(p4d_t * p4dp,unsigned long address)1313 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1314 {
1315 return pud_offset_lockless(p4dp, *p4dp, address);
1316 }
1317 #define pud_offset pud_offset
1318
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1319 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1320 {
1321 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1322 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1323 return (pmd_t *) pudp;
1324 }
1325 #define pmd_offset_lockless pmd_offset_lockless
1326
pmd_offset(pud_t * pudp,unsigned long address)1327 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1328 {
1329 return pmd_offset_lockless(pudp, *pudp, address);
1330 }
1331 #define pmd_offset pmd_offset
1332
pmd_page_vaddr(pmd_t pmd)1333 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1334 {
1335 return (unsigned long) pmd_deref(pmd);
1336 }
1337
gup_fast_permitted(unsigned long start,unsigned long end)1338 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1339 {
1340 return end <= current->mm->context.asce_limit;
1341 }
1342 #define gup_fast_permitted gup_fast_permitted
1343
1344 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1345 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1346 #define pte_page(x) pfn_to_page(pte_pfn(x))
1347
1348 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1349 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1350 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1351 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1352
pmd_wrprotect(pmd_t pmd)1353 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1354 {
1355 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1356 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1357 return pmd;
1358 }
1359
pmd_mkwrite(pmd_t pmd)1360 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1361 {
1362 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1363 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1364 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1365 return pmd;
1366 }
1367
pmd_mkclean(pmd_t pmd)1368 static inline pmd_t pmd_mkclean(pmd_t pmd)
1369 {
1370 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1371 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1372 return pmd;
1373 }
1374
pmd_mkdirty(pmd_t pmd)1375 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1376 {
1377 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1378 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1379 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1380 return pmd;
1381 }
1382
pud_wrprotect(pud_t pud)1383 static inline pud_t pud_wrprotect(pud_t pud)
1384 {
1385 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1386 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1387 return pud;
1388 }
1389
pud_mkwrite(pud_t pud)1390 static inline pud_t pud_mkwrite(pud_t pud)
1391 {
1392 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1393 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1394 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1395 return pud;
1396 }
1397
pud_mkclean(pud_t pud)1398 static inline pud_t pud_mkclean(pud_t pud)
1399 {
1400 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1401 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1402 return pud;
1403 }
1404
pud_mkdirty(pud_t pud)1405 static inline pud_t pud_mkdirty(pud_t pud)
1406 {
1407 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1408 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1409 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1410 return pud;
1411 }
1412
1413 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1414 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1415 {
1416 /*
1417 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1418 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1419 */
1420 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1421 return pgprot_val(SEGMENT_NONE);
1422 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1423 return pgprot_val(SEGMENT_RO);
1424 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1425 return pgprot_val(SEGMENT_RX);
1426 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1427 return pgprot_val(SEGMENT_RW);
1428 return pgprot_val(SEGMENT_RWX);
1429 }
1430
pmd_mkyoung(pmd_t pmd)1431 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1432 {
1433 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1434 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1435 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1436 return pmd;
1437 }
1438
pmd_mkold(pmd_t pmd)1439 static inline pmd_t pmd_mkold(pmd_t pmd)
1440 {
1441 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1442 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1443 return pmd;
1444 }
1445
pmd_modify(pmd_t pmd,pgprot_t newprot)1446 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1447 {
1448 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1449 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1450 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1451 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1452 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1453 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1454 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1455 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1456 return pmd;
1457 }
1458
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1459 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1460 {
1461 pmd_t __pmd;
1462 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1463 return __pmd;
1464 }
1465
1466 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1467
__pmdp_csp(pmd_t * pmdp)1468 static inline void __pmdp_csp(pmd_t *pmdp)
1469 {
1470 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1471 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1472 }
1473
1474 #define IDTE_GLOBAL 0
1475 #define IDTE_LOCAL 1
1476
1477 #define IDTE_PTOA 0x0800
1478 #define IDTE_NODAT 0x1000
1479 #define IDTE_GUEST_ASCE 0x2000
1480
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1481 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1482 unsigned long opt, unsigned long asce,
1483 int local)
1484 {
1485 unsigned long sto;
1486
1487 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1488 if (__builtin_constant_p(opt) && opt == 0) {
1489 /* flush without guest asce */
1490 asm volatile(
1491 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1492 : "+m" (*pmdp)
1493 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1494 [m4] "i" (local)
1495 : "cc" );
1496 } else {
1497 /* flush with guest asce */
1498 asm volatile(
1499 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1500 : "+m" (*pmdp)
1501 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1502 [r3] "a" (asce), [m4] "i" (local)
1503 : "cc" );
1504 }
1505 }
1506
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1507 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1508 unsigned long opt, unsigned long asce,
1509 int local)
1510 {
1511 unsigned long r3o;
1512
1513 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1514 r3o |= _ASCE_TYPE_REGION3;
1515 if (__builtin_constant_p(opt) && opt == 0) {
1516 /* flush without guest asce */
1517 asm volatile(
1518 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1519 : "+m" (*pudp)
1520 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1521 [m4] "i" (local)
1522 : "cc");
1523 } else {
1524 /* flush with guest asce */
1525 asm volatile(
1526 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1527 : "+m" (*pudp)
1528 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1529 [r3] "a" (asce), [m4] "i" (local)
1530 : "cc" );
1531 }
1532 }
1533
1534 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1535 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1536 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1537
1538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1539
1540 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1541 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1542 pgtable_t pgtable);
1543
1544 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1545 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1546
1547 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1548 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1549 unsigned long addr, pmd_t *pmdp,
1550 pmd_t entry, int dirty)
1551 {
1552 VM_BUG_ON(addr & ~HPAGE_MASK);
1553
1554 entry = pmd_mkyoung(entry);
1555 if (dirty)
1556 entry = pmd_mkdirty(entry);
1557 if (pmd_val(*pmdp) == pmd_val(entry))
1558 return 0;
1559 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1560 return 1;
1561 }
1562
1563 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1564 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1565 unsigned long addr, pmd_t *pmdp)
1566 {
1567 pmd_t pmd = *pmdp;
1568
1569 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1570 return pmd_young(pmd);
1571 }
1572
1573 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1574 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1575 unsigned long addr, pmd_t *pmdp)
1576 {
1577 VM_BUG_ON(addr & ~HPAGE_MASK);
1578 return pmdp_test_and_clear_young(vma, addr, pmdp);
1579 }
1580
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1581 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1582 pmd_t *pmdp, pmd_t entry)
1583 {
1584 if (!MACHINE_HAS_NX)
1585 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1586 *pmdp = entry;
1587 }
1588
pmd_mkhuge(pmd_t pmd)1589 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1590 {
1591 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1592 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1593 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1594 return pmd;
1595 }
1596
1597 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1598 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1599 unsigned long addr, pmd_t *pmdp)
1600 {
1601 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1602 }
1603
1604 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1605 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1606 unsigned long addr,
1607 pmd_t *pmdp, int full)
1608 {
1609 if (full) {
1610 pmd_t pmd = *pmdp;
1611 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1612 return pmd;
1613 }
1614 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1615 }
1616
1617 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1618 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1619 unsigned long addr, pmd_t *pmdp)
1620 {
1621 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1622 }
1623
1624 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1625 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1626 unsigned long addr, pmd_t *pmdp)
1627 {
1628 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1629
1630 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1631 }
1632
1633 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1634 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1635 unsigned long addr, pmd_t *pmdp)
1636 {
1637 pmd_t pmd = *pmdp;
1638
1639 if (pmd_write(pmd))
1640 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1641 }
1642
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1643 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1644 unsigned long address,
1645 pmd_t *pmdp)
1646 {
1647 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1648 }
1649 #define pmdp_collapse_flush pmdp_collapse_flush
1650
1651 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1652 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1653
pmd_trans_huge(pmd_t pmd)1654 static inline int pmd_trans_huge(pmd_t pmd)
1655 {
1656 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1657 }
1658
1659 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1660 static inline int has_transparent_hugepage(void)
1661 {
1662 return MACHINE_HAS_EDAT1 ? 1 : 0;
1663 }
1664 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1665
1666 /*
1667 * 64 bit swap entry format:
1668 * A page-table entry has some bits we have to treat in a special way.
1669 * Bits 52 and bit 55 have to be zero, otherwise a specification
1670 * exception will occur instead of a page translation exception. The
1671 * specification exception has the bad habit not to store necessary
1672 * information in the lowcore.
1673 * Bits 54 and 63 are used to indicate the page type.
1674 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1675 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1676 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1677 * for the offset.
1678 * | offset |01100|type |00|
1679 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1680 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1681 */
1682
1683 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1684 #define __SWP_OFFSET_SHIFT 12
1685 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1686 #define __SWP_TYPE_SHIFT 2
1687
mk_swap_pte(unsigned long type,unsigned long offset)1688 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1689 {
1690 pte_t pte;
1691
1692 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1693 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1694 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1695 return pte;
1696 }
1697
__swp_type(swp_entry_t entry)1698 static inline unsigned long __swp_type(swp_entry_t entry)
1699 {
1700 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1701 }
1702
__swp_offset(swp_entry_t entry)1703 static inline unsigned long __swp_offset(swp_entry_t entry)
1704 {
1705 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1706 }
1707
__swp_entry(unsigned long type,unsigned long offset)1708 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1709 {
1710 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1711 }
1712
1713 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1714 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1715
1716 #define kern_addr_valid(addr) (1)
1717
1718 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1719 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1720 extern int s390_enable_sie(void);
1721 extern int s390_enable_skey(void);
1722 extern void s390_reset_cmma(struct mm_struct *mm);
1723
1724 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1725 #define HAVE_ARCH_UNMAPPED_AREA
1726 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1727
1728 #define pmd_pgtable(pmd) \
1729 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1730
1731 #endif /* _S390_PAGE_H */
1732