1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_STATE
14	select ARCH_HAS_DEBUG_VIRTUAL
15	select ARCH_HAS_DEBUG_VM_PGTABLE
16	select ARCH_HAS_DEVMEM_IS_ALLOWED
17	select ARCH_HAS_DMA_PREP_COHERENT
18	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
19	select ARCH_HAS_FAST_MULTIPLIER
20	select ARCH_HAS_FORTIFY_SOURCE
21	select ARCH_HAS_GCOV_PROFILE_ALL
22	select ARCH_HAS_GIGANTIC_PAGE
23	select ARCH_HAS_KCOV
24	select ARCH_HAS_KEEPINITRD
25	select ARCH_HAS_MEMBARRIER_SYNC_CORE
26	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
27	select ARCH_HAS_PTE_DEVMAP
28	select ARCH_HAS_PTE_SPECIAL
29	select ARCH_HAS_SETUP_DMA_OPS
30	select ARCH_HAS_SET_DIRECT_MAP
31	select ARCH_HAS_SET_MEMORY
32	select ARCH_STACKWALK
33	select ARCH_HAS_STRICT_KERNEL_RWX
34	select ARCH_HAS_STRICT_MODULE_RWX
35	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
36	select ARCH_HAS_SYNC_DMA_FOR_CPU
37	select ARCH_HAS_SYSCALL_WRAPPER
38	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
39	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
40	select ARCH_HAVE_ELF_PROT
41	select ARCH_HAVE_NMI_SAFE_CMPXCHG
42	select ARCH_INLINE_READ_LOCK if !PREEMPTION
43	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
44	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
45	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
46	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
47	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
48	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
49	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
50	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
51	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
52	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
53	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
54	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
55	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
56	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
57	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
58	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
59	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
60	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
61	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
62	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
63	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
64	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
65	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
66	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
67	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
68	select ARCH_KEEP_MEMBLOCK
69	select ARCH_USE_CMPXCHG_LOCKREF
70	select ARCH_USE_GNU_PROPERTY
71	select ARCH_USE_QUEUED_RWLOCKS
72	select ARCH_USE_QUEUED_SPINLOCKS
73	select ARCH_USE_SYM_ANNOTATIONS
74	select ARCH_SUPPORTS_MEMORY_FAILURE
75	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
76	select ARCH_SUPPORTS_ATOMIC_RMW
77	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
78	select ARCH_SUPPORTS_NUMA_BALANCING
79	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
80	select ARCH_WANT_DEFAULT_BPF_JIT
81	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
82	select ARCH_WANT_FRAME_POINTERS
83	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
84	select ARCH_WANT_LD_ORPHAN_WARN
85	select ARCH_HAS_UBSAN_SANITIZE_ALL
86	select ARM_AMBA
87	select ARM_ARCH_TIMER
88	select ARM_GIC
89	select AUDIT_ARCH_COMPAT_GENERIC
90	select ARM_GIC_V2M if PCI
91	select ARM_GIC_V3
92	select ARM_GIC_V3_ITS if PCI
93	select ARM_PSCI_FW
94	select BUILDTIME_TABLE_SORT
95	select CLONE_BACKWARDS
96	select COMMON_CLK
97	select CPU_PM if (SUSPEND || CPU_IDLE)
98	select CRC32
99	select DCACHE_WORD_ACCESS
100	select DMA_DIRECT_REMAP
101	select EDAC_SUPPORT
102	select FRAME_POINTER
103	select GENERIC_ALLOCATOR
104	select GENERIC_ARCH_TOPOLOGY
105	select GENERIC_CLOCKEVENTS
106	select GENERIC_CLOCKEVENTS_BROADCAST
107	select GENERIC_CPU_AUTOPROBE
108	select GENERIC_CPU_VULNERABILITIES
109	select GENERIC_EARLY_IOREMAP
110	select GENERIC_IDLE_POLL_SETUP
111	select GENERIC_IRQ_IPI
112	select GENERIC_IRQ_MULTI_HANDLER
113	select GENERIC_IRQ_PROBE
114	select GENERIC_IRQ_SHOW
115	select GENERIC_IRQ_SHOW_LEVEL
116	select GENERIC_PCI_IOMAP
117	select GENERIC_PTDUMP
118	select GENERIC_SCHED_CLOCK
119	select GENERIC_SMP_IDLE_THREAD
120	select GENERIC_STRNCPY_FROM_USER
121	select GENERIC_STRNLEN_USER
122	select GENERIC_TIME_VSYSCALL
123	select GENERIC_GETTIMEOFDAY
124	select GENERIC_VDSO_TIME_NS
125	select HANDLE_DOMAIN_IRQ
126	select HARDIRQS_SW_RESEND
127	select HAVE_MOVE_PMD
128	select HAVE_PCI
129	select HAVE_ACPI_APEI if (ACPI && EFI)
130	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
131	select HAVE_ARCH_AUDITSYSCALL
132	select HAVE_ARCH_BITREVERSE
133	select HAVE_ARCH_COMPILER_H
134	select HAVE_ARCH_HUGE_VMAP
135	select HAVE_ARCH_JUMP_LABEL
136	select HAVE_ARCH_JUMP_LABEL_RELATIVE
137	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
138	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
139	select HAVE_ARCH_KGDB
140	select HAVE_ARCH_MMAP_RND_BITS
141	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
142	select HAVE_ARCH_PREL32_RELOCATIONS
143	select HAVE_ARCH_SECCOMP_FILTER
144	select HAVE_ARCH_STACKLEAK
145	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
146	select HAVE_ARCH_TRACEHOOK
147	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
148	select HAVE_ARCH_VMAP_STACK
149	select HAVE_ARM_SMCCC
150	select HAVE_ASM_MODVERSIONS
151	select HAVE_EBPF_JIT
152	select HAVE_C_RECORDMCOUNT
153	select HAVE_CMPXCHG_DOUBLE
154	select HAVE_CMPXCHG_LOCAL
155	select HAVE_CONTEXT_TRACKING
156	select HAVE_DEBUG_BUGVERBOSE
157	select HAVE_DEBUG_KMEMLEAK
158	select HAVE_DMA_CONTIGUOUS
159	select HAVE_DYNAMIC_FTRACE
160	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
161		if $(cc-option,-fpatchable-function-entry=2)
162	select HAVE_EFFICIENT_UNALIGNED_ACCESS
163	select HAVE_FAST_GUP
164	select HAVE_FTRACE_MCOUNT_RECORD
165	select HAVE_FUNCTION_TRACER
166	select HAVE_FUNCTION_ERROR_INJECTION
167	select HAVE_FUNCTION_GRAPH_TRACER
168	select HAVE_GCC_PLUGINS
169	select HAVE_HW_BREAKPOINT if PERF_EVENTS
170	select HAVE_IRQ_TIME_ACCOUNTING
171	select HAVE_NMI
172	select HAVE_PATA_PLATFORM
173	select HAVE_PERF_EVENTS
174	select HAVE_PERF_REGS
175	select HAVE_PERF_USER_STACK_DUMP
176	select HAVE_REGS_AND_STACK_ACCESS_API
177	select HAVE_FUNCTION_ARG_ACCESS_API
178	select HAVE_FUTEX_CMPXCHG if FUTEX
179	select MMU_GATHER_RCU_TABLE_FREE
180	select HAVE_RSEQ
181	select HAVE_STACKPROTECTOR
182	select HAVE_SYSCALL_TRACEPOINTS
183	select HAVE_KPROBES
184	select HAVE_KRETPROBES
185	select HAVE_GENERIC_VDSO
186	select IOMMU_DMA if IOMMU_SUPPORT
187	select IRQ_DOMAIN
188	select IRQ_FORCED_THREADING
189	select MODULES_USE_ELF_RELA
190	select NEED_DMA_MAP_STATE
191	select NEED_SG_DMA_LENGTH
192	select OF
193	select OF_EARLY_FLATTREE
194	select PCI_DOMAINS_GENERIC if PCI
195	select PCI_ECAM if (ACPI && PCI)
196	select PCI_SYSCALL if PCI
197	select POWER_RESET
198	select POWER_SUPPLY
199	select SET_FS
200	select SPARSE_IRQ
201	select SWIOTLB
202	select SYSCTL_EXCEPTION_TRACE
203	select THREAD_INFO_IN_TASK
204	help
205	  ARM 64-bit (AArch64) Linux support.
206
207config 64BIT
208	def_bool y
209
210config MMU
211	def_bool y
212
213config ARM64_PAGE_SHIFT
214	int
215	default 16 if ARM64_64K_PAGES
216	default 14 if ARM64_16K_PAGES
217	default 12
218
219config ARM64_CONT_PTE_SHIFT
220	int
221	default 5 if ARM64_64K_PAGES
222	default 7 if ARM64_16K_PAGES
223	default 4
224
225config ARM64_CONT_PMD_SHIFT
226	int
227	default 5 if ARM64_64K_PAGES
228	default 5 if ARM64_16K_PAGES
229	default 4
230
231config ARCH_MMAP_RND_BITS_MIN
232       default 14 if ARM64_64K_PAGES
233       default 16 if ARM64_16K_PAGES
234       default 18
235
236# max bits determined by the following formula:
237#  VA_BITS - PAGE_SHIFT - 3
238config ARCH_MMAP_RND_BITS_MAX
239       default 19 if ARM64_VA_BITS=36
240       default 24 if ARM64_VA_BITS=39
241       default 27 if ARM64_VA_BITS=42
242       default 30 if ARM64_VA_BITS=47
243       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
244       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
245       default 33 if ARM64_VA_BITS=48
246       default 14 if ARM64_64K_PAGES
247       default 16 if ARM64_16K_PAGES
248       default 18
249
250config ARCH_MMAP_RND_COMPAT_BITS_MIN
251       default 7 if ARM64_64K_PAGES
252       default 9 if ARM64_16K_PAGES
253       default 11
254
255config ARCH_MMAP_RND_COMPAT_BITS_MAX
256       default 16
257
258config NO_IOPORT_MAP
259	def_bool y if !PCI
260
261config STACKTRACE_SUPPORT
262	def_bool y
263
264config ILLEGAL_POINTER_VALUE
265	hex
266	default 0xdead000000000000
267
268config LOCKDEP_SUPPORT
269	def_bool y
270
271config TRACE_IRQFLAGS_SUPPORT
272	def_bool y
273
274config GENERIC_BUG
275	def_bool y
276	depends on BUG
277
278config GENERIC_BUG_RELATIVE_POINTERS
279	def_bool y
280	depends on GENERIC_BUG
281
282config GENERIC_HWEIGHT
283	def_bool y
284
285config GENERIC_CSUM
286        def_bool y
287
288config GENERIC_CALIBRATE_DELAY
289	def_bool y
290
291config ZONE_DMA
292	bool "Support DMA zone" if EXPERT
293	default y
294
295config ZONE_DMA32
296	bool "Support DMA32 zone" if EXPERT
297	default y
298
299config ARCH_ENABLE_MEMORY_HOTPLUG
300	def_bool y
301
302config ARCH_ENABLE_MEMORY_HOTREMOVE
303	def_bool y
304
305config SMP
306	def_bool y
307
308config KERNEL_MODE_NEON
309	def_bool y
310
311config FIX_EARLYCON_MEM
312	def_bool y
313
314config PGTABLE_LEVELS
315	int
316	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
317	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
318	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
319	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
320	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
321	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
322
323config ARCH_SUPPORTS_UPROBES
324	def_bool y
325
326config ARCH_PROC_KCORE_TEXT
327	def_bool y
328
329config BROKEN_GAS_INST
330	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
331
332config KASAN_SHADOW_OFFSET
333	hex
334	depends on KASAN
335	default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
336	default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
337	default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
338	default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
339	default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
340	default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
341	default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
342	default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
343	default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
344	default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
345	default 0xffffffffffffffff
346
347source "arch/arm64/Kconfig.platforms"
348
349menu "Kernel Features"
350
351menu "ARM errata workarounds via the alternatives framework"
352
353config ARM64_WORKAROUND_CLEAN_CACHE
354	bool
355
356config ARM64_ERRATUM_826319
357	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
358	default y
359	select ARM64_WORKAROUND_CLEAN_CACHE
360	help
361	  This option adds an alternative code sequence to work around ARM
362	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
363	  AXI master interface and an L2 cache.
364
365	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
366	  and is unable to accept a certain write via this interface, it will
367	  not progress on read data presented on the read data channel and the
368	  system can deadlock.
369
370	  The workaround promotes data cache clean instructions to
371	  data cache clean-and-invalidate.
372	  Please note that this does not necessarily enable the workaround,
373	  as it depends on the alternative framework, which will only patch
374	  the kernel if an affected CPU is detected.
375
376	  If unsure, say Y.
377
378config ARM64_ERRATUM_827319
379	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
380	default y
381	select ARM64_WORKAROUND_CLEAN_CACHE
382	help
383	  This option adds an alternative code sequence to work around ARM
384	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
385	  master interface and an L2 cache.
386
387	  Under certain conditions this erratum can cause a clean line eviction
388	  to occur at the same time as another transaction to the same address
389	  on the AMBA 5 CHI interface, which can cause data corruption if the
390	  interconnect reorders the two transactions.
391
392	  The workaround promotes data cache clean instructions to
393	  data cache clean-and-invalidate.
394	  Please note that this does not necessarily enable the workaround,
395	  as it depends on the alternative framework, which will only patch
396	  the kernel if an affected CPU is detected.
397
398	  If unsure, say Y.
399
400config ARM64_ERRATUM_824069
401	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
402	default y
403	select ARM64_WORKAROUND_CLEAN_CACHE
404	help
405	  This option adds an alternative code sequence to work around ARM
406	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
407	  to a coherent interconnect.
408
409	  If a Cortex-A53 processor is executing a store or prefetch for
410	  write instruction at the same time as a processor in another
411	  cluster is executing a cache maintenance operation to the same
412	  address, then this erratum might cause a clean cache line to be
413	  incorrectly marked as dirty.
414
415	  The workaround promotes data cache clean instructions to
416	  data cache clean-and-invalidate.
417	  Please note that this option does not necessarily enable the
418	  workaround, as it depends on the alternative framework, which will
419	  only patch the kernel if an affected CPU is detected.
420
421	  If unsure, say Y.
422
423config ARM64_ERRATUM_819472
424	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
425	default y
426	select ARM64_WORKAROUND_CLEAN_CACHE
427	help
428	  This option adds an alternative code sequence to work around ARM
429	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
430	  present when it is connected to a coherent interconnect.
431
432	  If the processor is executing a load and store exclusive sequence at
433	  the same time as a processor in another cluster is executing a cache
434	  maintenance operation to the same address, then this erratum might
435	  cause data corruption.
436
437	  The workaround promotes data cache clean instructions to
438	  data cache clean-and-invalidate.
439	  Please note that this does not necessarily enable the workaround,
440	  as it depends on the alternative framework, which will only patch
441	  the kernel if an affected CPU is detected.
442
443	  If unsure, say Y.
444
445config ARM64_ERRATUM_832075
446	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
447	default y
448	help
449	  This option adds an alternative code sequence to work around ARM
450	  erratum 832075 on Cortex-A57 parts up to r1p2.
451
452	  Affected Cortex-A57 parts might deadlock when exclusive load/store
453	  instructions to Write-Back memory are mixed with Device loads.
454
455	  The workaround is to promote device loads to use Load-Acquire
456	  semantics.
457	  Please note that this does not necessarily enable the workaround,
458	  as it depends on the alternative framework, which will only patch
459	  the kernel if an affected CPU is detected.
460
461	  If unsure, say Y.
462
463config ARM64_ERRATUM_834220
464	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
465	depends on KVM
466	default y
467	help
468	  This option adds an alternative code sequence to work around ARM
469	  erratum 834220 on Cortex-A57 parts up to r1p2.
470
471	  Affected Cortex-A57 parts might report a Stage 2 translation
472	  fault as the result of a Stage 1 fault for load crossing a
473	  page boundary when there is a permission or device memory
474	  alignment fault at Stage 1 and a translation fault at Stage 2.
475
476	  The workaround is to verify that the Stage 1 translation
477	  doesn't generate a fault before handling the Stage 2 fault.
478	  Please note that this does not necessarily enable the workaround,
479	  as it depends on the alternative framework, which will only patch
480	  the kernel if an affected CPU is detected.
481
482	  If unsure, say Y.
483
484config ARM64_ERRATUM_845719
485	bool "Cortex-A53: 845719: a load might read incorrect data"
486	depends on COMPAT
487	default y
488	help
489	  This option adds an alternative code sequence to work around ARM
490	  erratum 845719 on Cortex-A53 parts up to r0p4.
491
492	  When running a compat (AArch32) userspace on an affected Cortex-A53
493	  part, a load at EL0 from a virtual address that matches the bottom 32
494	  bits of the virtual address used by a recent load at (AArch64) EL1
495	  might return incorrect data.
496
497	  The workaround is to write the contextidr_el1 register on exception
498	  return to a 32-bit task.
499	  Please note that this does not necessarily enable the workaround,
500	  as it depends on the alternative framework, which will only patch
501	  the kernel if an affected CPU is detected.
502
503	  If unsure, say Y.
504
505config ARM64_ERRATUM_843419
506	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
507	default y
508	select ARM64_MODULE_PLTS if MODULES
509	help
510	  This option links the kernel with '--fix-cortex-a53-843419' and
511	  enables PLT support to replace certain ADRP instructions, which can
512	  cause subsequent memory accesses to use an incorrect address on
513	  Cortex-A53 parts up to r0p4.
514
515	  If unsure, say Y.
516
517config ARM64_ERRATUM_1024718
518	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
519	default y
520	help
521	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
522
523	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
524	  update of the hardware dirty bit when the DBM/AP bits are updated
525	  without a break-before-make. The workaround is to disable the usage
526	  of hardware DBM locally on the affected cores. CPUs not affected by
527	  this erratum will continue to use the feature.
528
529	  If unsure, say Y.
530
531config ARM64_ERRATUM_1418040
532	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
533	default y
534	depends on COMPAT
535	help
536	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
537	  errata 1188873 and 1418040.
538
539	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
540	  cause register corruption when accessing the timer registers
541	  from AArch32 userspace.
542
543	  If unsure, say Y.
544
545config ARM64_WORKAROUND_SPECULATIVE_AT
546	bool
547
548config ARM64_ERRATUM_1165522
549	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
550	default y
551	select ARM64_WORKAROUND_SPECULATIVE_AT
552	help
553	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
554
555	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
556	  corrupted TLBs by speculating an AT instruction during a guest
557	  context switch.
558
559	  If unsure, say Y.
560
561config ARM64_ERRATUM_1319367
562	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
563	default y
564	select ARM64_WORKAROUND_SPECULATIVE_AT
565	help
566	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
567	  and A72 erratum 1319367
568
569	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
570	  speculating an AT instruction during a guest context switch.
571
572	  If unsure, say Y.
573
574config ARM64_ERRATUM_1530923
575	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
576	default y
577	select ARM64_WORKAROUND_SPECULATIVE_AT
578	help
579	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
580
581	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
582	  corrupted TLBs by speculating an AT instruction during a guest
583	  context switch.
584
585	  If unsure, say Y.
586
587config ARM64_WORKAROUND_REPEAT_TLBI
588	bool
589
590config ARM64_ERRATUM_1286807
591	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
592	default y
593	select ARM64_WORKAROUND_REPEAT_TLBI
594	help
595	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
596
597	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
598	  address for a cacheable mapping of a location is being
599	  accessed by a core while another core is remapping the virtual
600	  address to a new physical page using the recommended
601	  break-before-make sequence, then under very rare circumstances
602	  TLBI+DSB completes before a read using the translation being
603	  invalidated has been observed by other observers. The
604	  workaround repeats the TLBI+DSB operation.
605
606config ARM64_ERRATUM_1463225
607	bool "Cortex-A76: Software Step might prevent interrupt recognition"
608	default y
609	help
610	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
611
612	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
613	  of a system call instruction (SVC) can prevent recognition of
614	  subsequent interrupts when software stepping is disabled in the
615	  exception handler of the system call and either kernel debugging
616	  is enabled or VHE is in use.
617
618	  Work around the erratum by triggering a dummy step exception
619	  when handling a system call from a task that is being stepped
620	  in a VHE configuration of the kernel.
621
622	  If unsure, say Y.
623
624config ARM64_ERRATUM_1542419
625	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
626	default y
627	help
628	  This option adds a workaround for ARM Neoverse-N1 erratum
629	  1542419.
630
631	  Affected Neoverse-N1 cores could execute a stale instruction when
632	  modified by another CPU. The workaround depends on a firmware
633	  counterpart.
634
635	  Workaround the issue by hiding the DIC feature from EL0. This
636	  forces user-space to perform cache maintenance.
637
638	  If unsure, say Y.
639
640config ARM64_ERRATUM_1508412
641	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
642	default y
643	help
644	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
645
646	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
647	  of a store-exclusive or read of PAR_EL1 and a load with device or
648	  non-cacheable memory attributes. The workaround depends on a firmware
649	  counterpart.
650
651	  KVM guests must also have the workaround implemented or they can
652	  deadlock the system.
653
654	  Work around the issue by inserting DMB SY barriers around PAR_EL1
655	  register reads and warning KVM users. The DMB barrier is sufficient
656	  to prevent a speculative PAR_EL1 read.
657
658	  If unsure, say Y.
659
660config CAVIUM_ERRATUM_22375
661	bool "Cavium erratum 22375, 24313"
662	default y
663	help
664	  Enable workaround for errata 22375 and 24313.
665
666	  This implements two gicv3-its errata workarounds for ThunderX. Both
667	  with a small impact affecting only ITS table allocation.
668
669	    erratum 22375: only alloc 8MB table size
670	    erratum 24313: ignore memory access type
671
672	  The fixes are in ITS initialization and basically ignore memory access
673	  type and table size provided by the TYPER and BASER registers.
674
675	  If unsure, say Y.
676
677config CAVIUM_ERRATUM_23144
678	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
679	depends on NUMA
680	default y
681	help
682	  ITS SYNC command hang for cross node io and collections/cpu mapping.
683
684	  If unsure, say Y.
685
686config CAVIUM_ERRATUM_23154
687	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
688	default y
689	help
690	  The gicv3 of ThunderX requires a modified version for
691	  reading the IAR status to ensure data synchronization
692	  (access to icc_iar1_el1 is not sync'ed before and after).
693
694	  If unsure, say Y.
695
696config CAVIUM_ERRATUM_27456
697	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
698	default y
699	help
700	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
701	  instructions may cause the icache to become corrupted if it
702	  contains data for a non-current ASID.  The fix is to
703	  invalidate the icache when changing the mm context.
704
705	  If unsure, say Y.
706
707config CAVIUM_ERRATUM_30115
708	bool "Cavium erratum 30115: Guest may disable interrupts in host"
709	default y
710	help
711	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
712	  1.2, and T83 Pass 1.0, KVM guest execution may disable
713	  interrupts in host. Trapping both GICv3 group-0 and group-1
714	  accesses sidesteps the issue.
715
716	  If unsure, say Y.
717
718config CAVIUM_TX2_ERRATUM_219
719	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
720	default y
721	help
722	  On Cavium ThunderX2, a load, store or prefetch instruction between a
723	  TTBR update and the corresponding context synchronizing operation can
724	  cause a spurious Data Abort to be delivered to any hardware thread in
725	  the CPU core.
726
727	  Work around the issue by avoiding the problematic code sequence and
728	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
729	  trap handler performs the corresponding register access, skips the
730	  instruction and ensures context synchronization by virtue of the
731	  exception return.
732
733	  If unsure, say Y.
734
735config FUJITSU_ERRATUM_010001
736	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
737	default y
738	help
739	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
740	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
741	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
742	  This fault occurs under a specific hardware condition when a
743	  load/store instruction performs an address translation using:
744	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
745	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
746	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
747	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
748
749	  The workaround is to ensure these bits are clear in TCR_ELx.
750	  The workaround only affects the Fujitsu-A64FX.
751
752	  If unsure, say Y.
753
754config HISILICON_ERRATUM_161600802
755	bool "Hip07 161600802: Erroneous redistributor VLPI base"
756	default y
757	help
758	  The HiSilicon Hip07 SoC uses the wrong redistributor base
759	  when issued ITS commands such as VMOVP and VMAPP, and requires
760	  a 128kB offset to be applied to the target address in this commands.
761
762	  If unsure, say Y.
763
764config QCOM_FALKOR_ERRATUM_1003
765	bool "Falkor E1003: Incorrect translation due to ASID change"
766	default y
767	help
768	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
769	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
770	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
771	  then only for entries in the walk cache, since the leaf translation
772	  is unchanged. Work around the erratum by invalidating the walk cache
773	  entries for the trampoline before entering the kernel proper.
774
775config QCOM_FALKOR_ERRATUM_1009
776	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
777	default y
778	select ARM64_WORKAROUND_REPEAT_TLBI
779	help
780	  On Falkor v1, the CPU may prematurely complete a DSB following a
781	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
782	  one more time to fix the issue.
783
784	  If unsure, say Y.
785
786config QCOM_QDF2400_ERRATUM_0065
787	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
788	default y
789	help
790	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
791	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
792	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
793
794	  If unsure, say Y.
795
796config QCOM_FALKOR_ERRATUM_E1041
797	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
798	default y
799	help
800	  Falkor CPU may speculatively fetch instructions from an improper
801	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
802	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
803
804	  If unsure, say Y.
805
806config SOCIONEXT_SYNQUACER_PREITS
807	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
808	default y
809	help
810	  Socionext Synquacer SoCs implement a separate h/w block to generate
811	  MSI doorbell writes with non-zero values for the device ID.
812
813	  If unsure, say Y.
814
815endmenu
816
817
818choice
819	prompt "Page size"
820	default ARM64_4K_PAGES
821	help
822	  Page size (translation granule) configuration.
823
824config ARM64_4K_PAGES
825	bool "4KB"
826	help
827	  This feature enables 4KB pages support.
828
829config ARM64_16K_PAGES
830	bool "16KB"
831	help
832	  The system will use 16KB pages support. AArch32 emulation
833	  requires applications compiled with 16K (or a multiple of 16K)
834	  aligned segments.
835
836config ARM64_64K_PAGES
837	bool "64KB"
838	help
839	  This feature enables 64KB pages support (4KB by default)
840	  allowing only two levels of page tables and faster TLB
841	  look-up. AArch32 emulation requires applications compiled
842	  with 64K aligned segments.
843
844endchoice
845
846choice
847	prompt "Virtual address space size"
848	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
849	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
850	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
851	help
852	  Allows choosing one of multiple possible virtual address
853	  space sizes. The level of translation table is determined by
854	  a combination of page size and virtual address space size.
855
856config ARM64_VA_BITS_36
857	bool "36-bit" if EXPERT
858	depends on ARM64_16K_PAGES
859
860config ARM64_VA_BITS_39
861	bool "39-bit"
862	depends on ARM64_4K_PAGES
863
864config ARM64_VA_BITS_42
865	bool "42-bit"
866	depends on ARM64_64K_PAGES
867
868config ARM64_VA_BITS_47
869	bool "47-bit"
870	depends on ARM64_16K_PAGES
871
872config ARM64_VA_BITS_48
873	bool "48-bit"
874
875config ARM64_VA_BITS_52
876	bool "52-bit"
877	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
878	help
879	  Enable 52-bit virtual addressing for userspace when explicitly
880	  requested via a hint to mmap(). The kernel will also use 52-bit
881	  virtual addresses for its own mappings (provided HW support for
882	  this feature is available, otherwise it reverts to 48-bit).
883
884	  NOTE: Enabling 52-bit virtual addressing in conjunction with
885	  ARMv8.3 Pointer Authentication will result in the PAC being
886	  reduced from 7 bits to 3 bits, which may have a significant
887	  impact on its susceptibility to brute-force attacks.
888
889	  If unsure, select 48-bit virtual addressing instead.
890
891endchoice
892
893config ARM64_FORCE_52BIT
894	bool "Force 52-bit virtual addresses for userspace"
895	depends on ARM64_VA_BITS_52 && EXPERT
896	help
897	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
898	  to maintain compatibility with older software by providing 48-bit VAs
899	  unless a hint is supplied to mmap.
900
901	  This configuration option disables the 48-bit compatibility logic, and
902	  forces all userspace addresses to be 52-bit on HW that supports it. One
903	  should only enable this configuration option for stress testing userspace
904	  memory management code. If unsure say N here.
905
906config ARM64_VA_BITS
907	int
908	default 36 if ARM64_VA_BITS_36
909	default 39 if ARM64_VA_BITS_39
910	default 42 if ARM64_VA_BITS_42
911	default 47 if ARM64_VA_BITS_47
912	default 48 if ARM64_VA_BITS_48
913	default 52 if ARM64_VA_BITS_52
914
915choice
916	prompt "Physical address space size"
917	default ARM64_PA_BITS_48
918	help
919	  Choose the maximum physical address range that the kernel will
920	  support.
921
922config ARM64_PA_BITS_48
923	bool "48-bit"
924
925config ARM64_PA_BITS_52
926	bool "52-bit (ARMv8.2)"
927	depends on ARM64_64K_PAGES
928	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
929	help
930	  Enable support for a 52-bit physical address space, introduced as
931	  part of the ARMv8.2-LPA extension.
932
933	  With this enabled, the kernel will also continue to work on CPUs that
934	  do not support ARMv8.2-LPA, but with some added memory overhead (and
935	  minor performance overhead).
936
937endchoice
938
939config ARM64_PA_BITS
940	int
941	default 48 if ARM64_PA_BITS_48
942	default 52 if ARM64_PA_BITS_52
943
944choice
945	prompt "Endianness"
946	default CPU_LITTLE_ENDIAN
947	help
948	  Select the endianness of data accesses performed by the CPU. Userspace
949	  applications will need to be compiled and linked for the endianness
950	  that is selected here.
951
952config CPU_BIG_ENDIAN
953       bool "Build big-endian kernel"
954       help
955	  Say Y if you plan on running a kernel with a big-endian userspace.
956
957config CPU_LITTLE_ENDIAN
958	bool "Build little-endian kernel"
959	help
960	  Say Y if you plan on running a kernel with a little-endian userspace.
961	  This is usually the case for distributions targeting arm64.
962
963endchoice
964
965config SCHED_MC
966	bool "Multi-core scheduler support"
967	help
968	  Multi-core scheduler support improves the CPU scheduler's decision
969	  making when dealing with multi-core CPU chips at a cost of slightly
970	  increased overhead in some places. If unsure say N here.
971
972config SCHED_SMT
973	bool "SMT scheduler support"
974	help
975	  Improves the CPU scheduler's decision making when dealing with
976	  MultiThreading at a cost of slightly increased overhead in some
977	  places. If unsure say N here.
978
979config NR_CPUS
980	int "Maximum number of CPUs (2-4096)"
981	range 2 4096
982	default "256"
983
984config HOTPLUG_CPU
985	bool "Support for hot-pluggable CPUs"
986	select GENERIC_IRQ_MIGRATION
987	help
988	  Say Y here to experiment with turning CPUs off and on.  CPUs
989	  can be controlled through /sys/devices/system/cpu.
990
991# Common NUMA Features
992config NUMA
993	bool "NUMA Memory Allocation and Scheduler Support"
994	select ACPI_NUMA if ACPI
995	select OF_NUMA
996	help
997	  Enable NUMA (Non-Uniform Memory Access) support.
998
999	  The kernel will try to allocate memory used by a CPU on the
1000	  local memory of the CPU and add some more
1001	  NUMA awareness to the kernel.
1002
1003config NODES_SHIFT
1004	int "Maximum NUMA Nodes (as a power of 2)"
1005	range 1 10
1006	default "4"
1007	depends on NEED_MULTIPLE_NODES
1008	help
1009	  Specify the maximum number of NUMA Nodes available on the target
1010	  system.  Increases memory reserved to accommodate various tables.
1011
1012config USE_PERCPU_NUMA_NODE_ID
1013	def_bool y
1014	depends on NUMA
1015
1016config HAVE_SETUP_PER_CPU_AREA
1017	def_bool y
1018	depends on NUMA
1019
1020config NEED_PER_CPU_EMBED_FIRST_CHUNK
1021	def_bool y
1022	depends on NUMA
1023
1024config HOLES_IN_ZONE
1025	def_bool y
1026
1027source "kernel/Kconfig.hz"
1028
1029config ARCH_SUPPORTS_DEBUG_PAGEALLOC
1030	def_bool y
1031
1032config ARCH_SPARSEMEM_ENABLE
1033	def_bool y
1034	select SPARSEMEM_VMEMMAP_ENABLE
1035
1036config ARCH_SPARSEMEM_DEFAULT
1037	def_bool ARCH_SPARSEMEM_ENABLE
1038
1039config ARCH_SELECT_MEMORY_MODEL
1040	def_bool ARCH_SPARSEMEM_ENABLE
1041
1042config ARCH_FLATMEM_ENABLE
1043	def_bool !NUMA
1044
1045config HAVE_ARCH_PFN_VALID
1046	def_bool y
1047
1048config HW_PERF_EVENTS
1049	def_bool y
1050	depends on ARM_PMU
1051
1052config SYS_SUPPORTS_HUGETLBFS
1053	def_bool y
1054
1055config ARCH_WANT_HUGE_PMD_SHARE
1056
1057config ARCH_HAS_CACHE_LINE_SIZE
1058	def_bool y
1059
1060config ARCH_ENABLE_SPLIT_PMD_PTLOCK
1061	def_bool y if PGTABLE_LEVELS > 2
1062
1063# Supported by clang >= 7.0
1064config CC_HAVE_SHADOW_CALL_STACK
1065	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1066
1067config PARAVIRT
1068	bool "Enable paravirtualization code"
1069	help
1070	  This changes the kernel so it can modify itself when it is run
1071	  under a hypervisor, potentially improving performance significantly
1072	  over full virtualization.
1073
1074config PARAVIRT_TIME_ACCOUNTING
1075	bool "Paravirtual steal time accounting"
1076	select PARAVIRT
1077	help
1078	  Select this option to enable fine granularity task steal time
1079	  accounting. Time spent executing other tasks in parallel with
1080	  the current vCPU is discounted from the vCPU power. To account for
1081	  that, there can be a small performance impact.
1082
1083	  If in doubt, say N here.
1084
1085config KEXEC
1086	depends on PM_SLEEP_SMP
1087	select KEXEC_CORE
1088	bool "kexec system call"
1089	help
1090	  kexec is a system call that implements the ability to shutdown your
1091	  current kernel, and to start another kernel.  It is like a reboot
1092	  but it is independent of the system firmware.   And like a reboot
1093	  you can start any kernel with it, not just Linux.
1094
1095config KEXEC_FILE
1096	bool "kexec file based system call"
1097	select KEXEC_CORE
1098	help
1099	  This is new version of kexec system call. This system call is
1100	  file based and takes file descriptors as system call argument
1101	  for kernel and initramfs as opposed to list of segments as
1102	  accepted by previous system call.
1103
1104config KEXEC_SIG
1105	bool "Verify kernel signature during kexec_file_load() syscall"
1106	depends on KEXEC_FILE
1107	help
1108	  Select this option to verify a signature with loaded kernel
1109	  image. If configured, any attempt of loading a image without
1110	  valid signature will fail.
1111
1112	  In addition to that option, you need to enable signature
1113	  verification for the corresponding kernel image type being
1114	  loaded in order for this to work.
1115
1116config KEXEC_IMAGE_VERIFY_SIG
1117	bool "Enable Image signature verification support"
1118	default y
1119	depends on KEXEC_SIG
1120	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1121	help
1122	  Enable Image signature verification support.
1123
1124comment "Support for PE file signature verification disabled"
1125	depends on KEXEC_SIG
1126	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1127
1128config CRASH_DUMP
1129	bool "Build kdump crash kernel"
1130	help
1131	  Generate crash dump after being started by kexec. This should
1132	  be normally only set in special crash dump kernels which are
1133	  loaded in the main kernel with kexec-tools into a specially
1134	  reserved region and then later executed after a crash by
1135	  kdump/kexec.
1136
1137	  For more details see Documentation/admin-guide/kdump/kdump.rst
1138
1139config XEN_DOM0
1140	def_bool y
1141	depends on XEN
1142
1143config XEN
1144	bool "Xen guest support on ARM64"
1145	depends on ARM64 && OF
1146	select SWIOTLB_XEN
1147	select PARAVIRT
1148	help
1149	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1150
1151config FORCE_MAX_ZONEORDER
1152	int
1153	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1154	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1155	default "11"
1156	help
1157	  The kernel memory allocator divides physically contiguous memory
1158	  blocks into "zones", where each zone is a power of two number of
1159	  pages.  This option selects the largest power of two that the kernel
1160	  keeps in the memory allocator.  If you need to allocate very large
1161	  blocks of physically contiguous memory, then you may need to
1162	  increase this value.
1163
1164	  This config option is actually maximum order plus one. For example,
1165	  a value of 11 means that the largest free memory block is 2^10 pages.
1166
1167	  We make sure that we can allocate upto a HugePage size for each configuration.
1168	  Hence we have :
1169		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1170
1171	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1172	  4M allocations matching the default size used by generic code.
1173
1174config UNMAP_KERNEL_AT_EL0
1175	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1176	default y
1177	help
1178	  Speculation attacks against some high-performance processors can
1179	  be used to bypass MMU permission checks and leak kernel data to
1180	  userspace. This can be defended against by unmapping the kernel
1181	  when running in userspace, mapping it back in on exception entry
1182	  via a trampoline page in the vector table.
1183
1184	  If unsure, say Y.
1185
1186config RODATA_FULL_DEFAULT_ENABLED
1187	bool "Apply r/o permissions of VM areas also to their linear aliases"
1188	default y
1189	help
1190	  Apply read-only attributes of VM areas to the linear alias of
1191	  the backing pages as well. This prevents code or read-only data
1192	  from being modified (inadvertently or intentionally) via another
1193	  mapping of the same memory page. This additional enhancement can
1194	  be turned off at runtime by passing rodata=[off|on] (and turned on
1195	  with rodata=full if this option is set to 'n')
1196
1197	  This requires the linear region to be mapped down to pages,
1198	  which may adversely affect performance in some cases.
1199
1200config ARM64_SW_TTBR0_PAN
1201	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1202	help
1203	  Enabling this option prevents the kernel from accessing
1204	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1205	  zeroed area and reserved ASID. The user access routines
1206	  restore the valid TTBR0_EL1 temporarily.
1207
1208config ARM64_TAGGED_ADDR_ABI
1209	bool "Enable the tagged user addresses syscall ABI"
1210	default y
1211	help
1212	  When this option is enabled, user applications can opt in to a
1213	  relaxed ABI via prctl() allowing tagged addresses to be passed
1214	  to system calls as pointer arguments. For details, see
1215	  Documentation/arm64/tagged-address-abi.rst.
1216
1217menuconfig COMPAT
1218	bool "Kernel support for 32-bit EL0"
1219	depends on ARM64_4K_PAGES || EXPERT
1220	select COMPAT_BINFMT_ELF if BINFMT_ELF
1221	select HAVE_UID16
1222	select OLD_SIGSUSPEND3
1223	select COMPAT_OLD_SIGACTION
1224	help
1225	  This option enables support for a 32-bit EL0 running under a 64-bit
1226	  kernel at EL1. AArch32-specific components such as system calls,
1227	  the user helper functions, VFP support and the ptrace interface are
1228	  handled appropriately by the kernel.
1229
1230	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1231	  that you will only be able to execute AArch32 binaries that were compiled
1232	  with page size aligned segments.
1233
1234	  If you want to execute 32-bit userspace applications, say Y.
1235
1236if COMPAT
1237
1238config KUSER_HELPERS
1239	bool "Enable kuser helpers page for 32-bit applications"
1240	default y
1241	help
1242	  Warning: disabling this option may break 32-bit user programs.
1243
1244	  Provide kuser helpers to compat tasks. The kernel provides
1245	  helper code to userspace in read only form at a fixed location
1246	  to allow userspace to be independent of the CPU type fitted to
1247	  the system. This permits binaries to be run on ARMv4 through
1248	  to ARMv8 without modification.
1249
1250	  See Documentation/arm/kernel_user_helpers.rst for details.
1251
1252	  However, the fixed address nature of these helpers can be used
1253	  by ROP (return orientated programming) authors when creating
1254	  exploits.
1255
1256	  If all of the binaries and libraries which run on your platform
1257	  are built specifically for your platform, and make no use of
1258	  these helpers, then you can turn this option off to hinder
1259	  such exploits. However, in that case, if a binary or library
1260	  relying on those helpers is run, it will not function correctly.
1261
1262	  Say N here only if you are absolutely certain that you do not
1263	  need these helpers; otherwise, the safe option is to say Y.
1264
1265config COMPAT_VDSO
1266	bool "Enable vDSO for 32-bit applications"
1267	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1268	select GENERIC_COMPAT_VDSO
1269	default y
1270	help
1271	  Place in the process address space of 32-bit applications an
1272	  ELF shared object providing fast implementations of gettimeofday
1273	  and clock_gettime.
1274
1275	  You must have a 32-bit build of glibc 2.22 or later for programs
1276	  to seamlessly take advantage of this.
1277
1278config THUMB2_COMPAT_VDSO
1279	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1280	depends on COMPAT_VDSO
1281	default y
1282	help
1283	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1284	  otherwise with '-marm'.
1285
1286menuconfig ARMV8_DEPRECATED
1287	bool "Emulate deprecated/obsolete ARMv8 instructions"
1288	depends on SYSCTL
1289	help
1290	  Legacy software support may require certain instructions
1291	  that have been deprecated or obsoleted in the architecture.
1292
1293	  Enable this config to enable selective emulation of these
1294	  features.
1295
1296	  If unsure, say Y
1297
1298if ARMV8_DEPRECATED
1299
1300config SWP_EMULATION
1301	bool "Emulate SWP/SWPB instructions"
1302	help
1303	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1304	  they are always undefined. Say Y here to enable software
1305	  emulation of these instructions for userspace using LDXR/STXR.
1306	  This feature can be controlled at runtime with the abi.swp
1307	  sysctl which is disabled by default.
1308
1309	  In some older versions of glibc [<=2.8] SWP is used during futex
1310	  trylock() operations with the assumption that the code will not
1311	  be preempted. This invalid assumption may be more likely to fail
1312	  with SWP emulation enabled, leading to deadlock of the user
1313	  application.
1314
1315	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1316	  on an external transaction monitoring block called a global
1317	  monitor to maintain update atomicity. If your system does not
1318	  implement a global monitor, this option can cause programs that
1319	  perform SWP operations to uncached memory to deadlock.
1320
1321	  If unsure, say Y
1322
1323config CP15_BARRIER_EMULATION
1324	bool "Emulate CP15 Barrier instructions"
1325	help
1326	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1327	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1328	  strongly recommended to use the ISB, DSB, and DMB
1329	  instructions instead.
1330
1331	  Say Y here to enable software emulation of these
1332	  instructions for AArch32 userspace code. When this option is
1333	  enabled, CP15 barrier usage is traced which can help
1334	  identify software that needs updating. This feature can be
1335	  controlled at runtime with the abi.cp15_barrier sysctl.
1336
1337	  If unsure, say Y
1338
1339config SETEND_EMULATION
1340	bool "Emulate SETEND instruction"
1341	help
1342	  The SETEND instruction alters the data-endianness of the
1343	  AArch32 EL0, and is deprecated in ARMv8.
1344
1345	  Say Y here to enable software emulation of the instruction
1346	  for AArch32 userspace code. This feature can be controlled
1347	  at runtime with the abi.setend sysctl.
1348
1349	  Note: All the cpus on the system must have mixed endian support at EL0
1350	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1351	  endian - is hotplugged in after this feature has been enabled, there could
1352	  be unexpected results in the applications.
1353
1354	  If unsure, say Y
1355endif
1356
1357endif
1358
1359menu "ARMv8.1 architectural features"
1360
1361config ARM64_HW_AFDBM
1362	bool "Support for hardware updates of the Access and Dirty page flags"
1363	default y
1364	help
1365	  The ARMv8.1 architecture extensions introduce support for
1366	  hardware updates of the access and dirty information in page
1367	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1368	  capable processors, accesses to pages with PTE_AF cleared will
1369	  set this bit instead of raising an access flag fault.
1370	  Similarly, writes to read-only pages with the DBM bit set will
1371	  clear the read-only bit (AP[2]) instead of raising a
1372	  permission fault.
1373
1374	  Kernels built with this configuration option enabled continue
1375	  to work on pre-ARMv8.1 hardware and the performance impact is
1376	  minimal. If unsure, say Y.
1377
1378config ARM64_PAN
1379	bool "Enable support for Privileged Access Never (PAN)"
1380	default y
1381	help
1382	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1383	 prevents the kernel or hypervisor from accessing user-space (EL0)
1384	 memory directly.
1385
1386	 Choosing this option will cause any unprotected (not using
1387	 copy_to_user et al) memory access to fail with a permission fault.
1388
1389	 The feature is detected at runtime, and will remain as a 'nop'
1390	 instruction if the cpu does not implement the feature.
1391
1392config ARM64_LSE_ATOMICS
1393	bool
1394	default ARM64_USE_LSE_ATOMICS
1395	depends on $(as-instr,.arch_extension lse)
1396
1397config ARM64_USE_LSE_ATOMICS
1398	bool "Atomic instructions"
1399	depends on JUMP_LABEL
1400	default y
1401	help
1402	  As part of the Large System Extensions, ARMv8.1 introduces new
1403	  atomic instructions that are designed specifically to scale in
1404	  very large systems.
1405
1406	  Say Y here to make use of these instructions for the in-kernel
1407	  atomic routines. This incurs a small overhead on CPUs that do
1408	  not support these instructions and requires the kernel to be
1409	  built with binutils >= 2.25 in order for the new instructions
1410	  to be used.
1411
1412config ARM64_VHE
1413	bool "Enable support for Virtualization Host Extensions (VHE)"
1414	default y
1415	help
1416	  Virtualization Host Extensions (VHE) allow the kernel to run
1417	  directly at EL2 (instead of EL1) on processors that support
1418	  it. This leads to better performance for KVM, as they reduce
1419	  the cost of the world switch.
1420
1421	  Selecting this option allows the VHE feature to be detected
1422	  at runtime, and does not affect processors that do not
1423	  implement this feature.
1424
1425endmenu
1426
1427menu "ARMv8.2 architectural features"
1428
1429config ARM64_UAO
1430	bool "Enable support for User Access Override (UAO)"
1431	default y
1432	help
1433	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1434	  causes the 'unprivileged' variant of the load/store instructions to
1435	  be overridden to be privileged.
1436
1437	  This option changes get_user() and friends to use the 'unprivileged'
1438	  variant of the load/store instructions. This ensures that user-space
1439	  really did have access to the supplied memory. When addr_limit is
1440	  set to kernel memory the UAO bit will be set, allowing privileged
1441	  access to kernel memory.
1442
1443	  Choosing this option will cause copy_to_user() et al to use user-space
1444	  memory permissions.
1445
1446	  The feature is detected at runtime, the kernel will use the
1447	  regular load/store instructions if the cpu does not implement the
1448	  feature.
1449
1450config ARM64_PMEM
1451	bool "Enable support for persistent memory"
1452	select ARCH_HAS_PMEM_API
1453	select ARCH_HAS_UACCESS_FLUSHCACHE
1454	help
1455	  Say Y to enable support for the persistent memory API based on the
1456	  ARMv8.2 DCPoP feature.
1457
1458	  The feature is detected at runtime, and the kernel will use DC CVAC
1459	  operations if DC CVAP is not supported (following the behaviour of
1460	  DC CVAP itself if the system does not define a point of persistence).
1461
1462config ARM64_RAS_EXTN
1463	bool "Enable support for RAS CPU Extensions"
1464	default y
1465	help
1466	  CPUs that support the Reliability, Availability and Serviceability
1467	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1468	  errors, classify them and report them to software.
1469
1470	  On CPUs with these extensions system software can use additional
1471	  barriers to determine if faults are pending and read the
1472	  classification from a new set of registers.
1473
1474	  Selecting this feature will allow the kernel to use these barriers
1475	  and access the new registers if the system supports the extension.
1476	  Platform RAS features may additionally depend on firmware support.
1477
1478config ARM64_CNP
1479	bool "Enable support for Common Not Private (CNP) translations"
1480	default y
1481	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1482	help
1483	  Common Not Private (CNP) allows translation table entries to
1484	  be shared between different PEs in the same inner shareable
1485	  domain, so the hardware can use this fact to optimise the
1486	  caching of such entries in the TLB.
1487
1488	  Selecting this option allows the CNP feature to be detected
1489	  at runtime, and does not affect PEs that do not implement
1490	  this feature.
1491
1492endmenu
1493
1494menu "ARMv8.3 architectural features"
1495
1496config ARM64_PTR_AUTH
1497	bool "Enable support for pointer authentication"
1498	default y
1499	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1500	# Modern compilers insert a .note.gnu.property section note for PAC
1501	# which is only understood by binutils starting with version 2.33.1.
1502	depends on LD_IS_LLD || LD_VERSION >= 233010000 || (CC_IS_GCC && GCC_VERSION < 90100)
1503	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1504	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1505	help
1506	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1507	  instructions for signing and authenticating pointers against secret
1508	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1509	  and other attacks.
1510
1511	  This option enables these instructions at EL0 (i.e. for userspace).
1512	  Choosing this option will cause the kernel to initialise secret keys
1513	  for each process at exec() time, with these keys being
1514	  context-switched along with the process.
1515
1516	  If the compiler supports the -mbranch-protection or
1517	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1518	  will also cause the kernel itself to be compiled with return address
1519	  protection. In this case, and if the target hardware is known to
1520	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1521	  disabled with minimal loss of protection.
1522
1523	  The feature is detected at runtime. If the feature is not present in
1524	  hardware it will not be advertised to userspace/KVM guest nor will it
1525	  be enabled.
1526
1527	  If the feature is present on the boot CPU but not on a late CPU, then
1528	  the late CPU will be parked. Also, if the boot CPU does not have
1529	  address auth and the late CPU has then the late CPU will still boot
1530	  but with the feature disabled. On such a system, this option should
1531	  not be selected.
1532
1533	  This feature works with FUNCTION_GRAPH_TRACER option only if
1534	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1535
1536config CC_HAS_BRANCH_PROT_PAC_RET
1537	# GCC 9 or later, clang 8 or later
1538	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1539
1540config CC_HAS_SIGN_RETURN_ADDRESS
1541	# GCC 7, 8
1542	def_bool $(cc-option,-msign-return-address=all)
1543
1544config AS_HAS_PAC
1545	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1546
1547config AS_HAS_CFI_NEGATE_RA_STATE
1548	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1549
1550endmenu
1551
1552menu "ARMv8.4 architectural features"
1553
1554config ARM64_AMU_EXTN
1555	bool "Enable support for the Activity Monitors Unit CPU extension"
1556	default y
1557	help
1558	  The activity monitors extension is an optional extension introduced
1559	  by the ARMv8.4 CPU architecture. This enables support for version 1
1560	  of the activity monitors architecture, AMUv1.
1561
1562	  To enable the use of this extension on CPUs that implement it, say Y.
1563
1564	  Note that for architectural reasons, firmware _must_ implement AMU
1565	  support when running on CPUs that present the activity monitors
1566	  extension. The required support is present in:
1567	    * Version 1.5 and later of the ARM Trusted Firmware
1568
1569	  For kernels that have this configuration enabled but boot with broken
1570	  firmware, you may need to say N here until the firmware is fixed.
1571	  Otherwise you may experience firmware panics or lockups when
1572	  accessing the counter registers. Even if you are not observing these
1573	  symptoms, the values returned by the register reads might not
1574	  correctly reflect reality. Most commonly, the value read will be 0,
1575	  indicating that the counter is not enabled.
1576
1577config AS_HAS_ARMV8_4
1578	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1579
1580config ARM64_TLB_RANGE
1581	bool "Enable support for tlbi range feature"
1582	default y
1583	depends on AS_HAS_ARMV8_4
1584	help
1585	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1586	  range of input addresses.
1587
1588	  The feature introduces new assembly instructions, and they were
1589	  support when binutils >= 2.30.
1590
1591endmenu
1592
1593menu "ARMv8.5 architectural features"
1594
1595config ARM64_BTI
1596	bool "Branch Target Identification support"
1597	default y
1598	help
1599	  Branch Target Identification (part of the ARMv8.5 Extensions)
1600	  provides a mechanism to limit the set of locations to which computed
1601	  branch instructions such as BR or BLR can jump.
1602
1603	  To make use of BTI on CPUs that support it, say Y.
1604
1605	  BTI is intended to provide complementary protection to other control
1606	  flow integrity protection mechanisms, such as the Pointer
1607	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1608	  For this reason, it does not make sense to enable this option without
1609	  also enabling support for pointer authentication.  Thus, when
1610	  enabling this option you should also select ARM64_PTR_AUTH=y.
1611
1612	  Userspace binaries must also be specifically compiled to make use of
1613	  this mechanism.  If you say N here or the hardware does not support
1614	  BTI, such binaries can still run, but you get no additional
1615	  enforcement of branch destinations.
1616
1617config ARM64_BTI_KERNEL
1618	bool "Use Branch Target Identification for kernel"
1619	default y
1620	depends on ARM64_BTI
1621	depends on ARM64_PTR_AUTH
1622	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1623	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1624	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1625	depends on !(CC_IS_CLANG && GCOV_KERNEL)
1626	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1627	help
1628	  Build the kernel with Branch Target Identification annotations
1629	  and enable enforcement of this for kernel code. When this option
1630	  is enabled and the system supports BTI all kernel code including
1631	  modular code must have BTI enabled.
1632
1633config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1634	# GCC 9 or later, clang 8 or later
1635	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1636
1637config ARM64_E0PD
1638	bool "Enable support for E0PD"
1639	default y
1640	help
1641	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1642	  that EL0 accesses made via TTBR1 always fault in constant time,
1643	  providing similar benefits to KASLR as those provided by KPTI, but
1644	  with lower overhead and without disrupting legitimate access to
1645	  kernel memory such as SPE.
1646
1647	  This option enables E0PD for TTBR1 where available.
1648
1649config ARCH_RANDOM
1650	bool "Enable support for random number generation"
1651	default y
1652	help
1653	  Random number generation (part of the ARMv8.5 Extensions)
1654	  provides a high bandwidth, cryptographically secure
1655	  hardware random number generator.
1656
1657config ARM64_AS_HAS_MTE
1658	# Initial support for MTE went in binutils 2.32.0, checked with
1659	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1660	# as a late addition to the final architecture spec (LDGM/STGM)
1661	# is only supported in the newer 2.32.x and 2.33 binutils
1662	# versions, hence the extra "stgm" instruction check below.
1663	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1664
1665config ARM64_MTE
1666	bool "Memory Tagging Extension support"
1667	default y
1668	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1669	select ARCH_USES_HIGH_VMA_FLAGS
1670	help
1671	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1672	  architectural support for run-time, always-on detection of
1673	  various classes of memory error to aid with software debugging
1674	  to eliminate vulnerabilities arising from memory-unsafe
1675	  languages.
1676
1677	  This option enables the support for the Memory Tagging
1678	  Extension at EL0 (i.e. for userspace).
1679
1680	  Selecting this option allows the feature to be detected at
1681	  runtime. Any secondary CPU not implementing this feature will
1682	  not be allowed a late bring-up.
1683
1684	  Userspace binaries that want to use this feature must
1685	  explicitly opt in. The mechanism for the userspace is
1686	  described in:
1687
1688	  Documentation/arm64/memory-tagging-extension.rst.
1689
1690endmenu
1691
1692config ARM64_SVE
1693	bool "ARM Scalable Vector Extension support"
1694	default y
1695	depends on !KVM || ARM64_VHE
1696	help
1697	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1698	  execution state which complements and extends the SIMD functionality
1699	  of the base architecture to support much larger vectors and to enable
1700	  additional vectorisation opportunities.
1701
1702	  To enable use of this extension on CPUs that implement it, say Y.
1703
1704	  On CPUs that support the SVE2 extensions, this option will enable
1705	  those too.
1706
1707	  Note that for architectural reasons, firmware _must_ implement SVE
1708	  support when running on SVE capable hardware.  The required support
1709	  is present in:
1710
1711	    * version 1.5 and later of the ARM Trusted Firmware
1712	    * the AArch64 boot wrapper since commit 5e1261e08abf
1713	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1714
1715	  For other firmware implementations, consult the firmware documentation
1716	  or vendor.
1717
1718	  If you need the kernel to boot on SVE-capable hardware with broken
1719	  firmware, you may need to say N here until you get your firmware
1720	  fixed.  Otherwise, you may experience firmware panics or lockups when
1721	  booting the kernel.  If unsure and you are not observing these
1722	  symptoms, you should assume that it is safe to say Y.
1723
1724	  CPUs that support SVE are architecturally required to support the
1725	  Virtualization Host Extensions (VHE), so the kernel makes no
1726	  provision for supporting SVE alongside KVM without VHE enabled.
1727	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1728	  KVM in the same kernel image.
1729
1730config ARM64_MODULE_PLTS
1731	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1732	depends on MODULES
1733	select HAVE_MOD_ARCH_SPECIFIC
1734	help
1735	  Allocate PLTs when loading modules so that jumps and calls whose
1736	  targets are too far away for their relative offsets to be encoded
1737	  in the instructions themselves can be bounced via veneers in the
1738	  module's PLT. This allows modules to be allocated in the generic
1739	  vmalloc area after the dedicated module memory area has been
1740	  exhausted.
1741
1742	  When running with address space randomization (KASLR), the module
1743	  region itself may be too far away for ordinary relative jumps and
1744	  calls, and so in that case, module PLTs are required and cannot be
1745	  disabled.
1746
1747	  Specific errata workaround(s) might also force module PLTs to be
1748	  enabled (ARM64_ERRATUM_843419).
1749
1750config ARM64_PSEUDO_NMI
1751	bool "Support for NMI-like interrupts"
1752	select ARM_GIC_V3
1753	help
1754	  Adds support for mimicking Non-Maskable Interrupts through the use of
1755	  GIC interrupt priority. This support requires version 3 or later of
1756	  ARM GIC.
1757
1758	  This high priority configuration for interrupts needs to be
1759	  explicitly enabled by setting the kernel parameter
1760	  "irqchip.gicv3_pseudo_nmi" to 1.
1761
1762	  If unsure, say N
1763
1764if ARM64_PSEUDO_NMI
1765config ARM64_DEBUG_PRIORITY_MASKING
1766	bool "Debug interrupt priority masking"
1767	help
1768	  This adds runtime checks to functions enabling/disabling
1769	  interrupts when using priority masking. The additional checks verify
1770	  the validity of ICC_PMR_EL1 when calling concerned functions.
1771
1772	  If unsure, say N
1773endif
1774
1775config RELOCATABLE
1776	bool "Build a relocatable kernel image" if EXPERT
1777	select ARCH_HAS_RELR
1778	default y
1779	help
1780	  This builds the kernel as a Position Independent Executable (PIE),
1781	  which retains all relocation metadata required to relocate the
1782	  kernel binary at runtime to a different virtual address than the
1783	  address it was linked at.
1784	  Since AArch64 uses the RELA relocation format, this requires a
1785	  relocation pass at runtime even if the kernel is loaded at the
1786	  same address it was linked at.
1787
1788config RANDOMIZE_BASE
1789	bool "Randomize the address of the kernel image"
1790	select ARM64_MODULE_PLTS if MODULES
1791	select RELOCATABLE
1792	help
1793	  Randomizes the virtual address at which the kernel image is
1794	  loaded, as a security feature that deters exploit attempts
1795	  relying on knowledge of the location of kernel internals.
1796
1797	  It is the bootloader's job to provide entropy, by passing a
1798	  random u64 value in /chosen/kaslr-seed at kernel entry.
1799
1800	  When booting via the UEFI stub, it will invoke the firmware's
1801	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1802	  to the kernel proper. In addition, it will randomise the physical
1803	  location of the kernel Image as well.
1804
1805	  If unsure, say N.
1806
1807config RANDOMIZE_MODULE_REGION_FULL
1808	bool "Randomize the module region over a 4 GB range"
1809	depends on RANDOMIZE_BASE
1810	default y
1811	help
1812	  Randomizes the location of the module region inside a 4 GB window
1813	  covering the core kernel. This way, it is less likely for modules
1814	  to leak information about the location of core kernel data structures
1815	  but it does imply that function calls between modules and the core
1816	  kernel will need to be resolved via veneers in the module PLT.
1817
1818	  When this option is not set, the module region will be randomized over
1819	  a limited range that contains the [_stext, _etext] interval of the
1820	  core kernel, so branch relocations are always in range.
1821
1822config CC_HAVE_STACKPROTECTOR_SYSREG
1823	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1824
1825config STACKPROTECTOR_PER_TASK
1826	def_bool y
1827	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1828
1829endmenu
1830
1831menu "Boot options"
1832
1833config ARM64_ACPI_PARKING_PROTOCOL
1834	bool "Enable support for the ARM64 ACPI parking protocol"
1835	depends on ACPI
1836	help
1837	  Enable support for the ARM64 ACPI parking protocol. If disabled
1838	  the kernel will not allow booting through the ARM64 ACPI parking
1839	  protocol even if the corresponding data is present in the ACPI
1840	  MADT table.
1841
1842config CMDLINE
1843	string "Default kernel command string"
1844	default ""
1845	help
1846	  Provide a set of default command-line options at build time by
1847	  entering them here. As a minimum, you should specify the the
1848	  root device (e.g. root=/dev/nfs).
1849
1850config CMDLINE_FORCE
1851	bool "Always use the default kernel command string"
1852	depends on CMDLINE != ""
1853	help
1854	  Always use the default kernel command string, even if the boot
1855	  loader passes other arguments to the kernel.
1856	  This is useful if you cannot or don't want to change the
1857	  command-line options your boot loader passes to the kernel.
1858
1859config EFI_STUB
1860	bool
1861
1862config EFI
1863	bool "UEFI runtime support"
1864	depends on OF && !CPU_BIG_ENDIAN
1865	depends on KERNEL_MODE_NEON
1866	select ARCH_SUPPORTS_ACPI
1867	select LIBFDT
1868	select UCS2_STRING
1869	select EFI_PARAMS_FROM_FDT
1870	select EFI_RUNTIME_WRAPPERS
1871	select EFI_STUB
1872	select EFI_GENERIC_STUB
1873	default y
1874	help
1875	  This option provides support for runtime services provided
1876	  by UEFI firmware (such as non-volatile variables, realtime
1877          clock, and platform reset). A UEFI stub is also provided to
1878	  allow the kernel to be booted as an EFI application. This
1879	  is only useful on systems that have UEFI firmware.
1880
1881config DMI
1882	bool "Enable support for SMBIOS (DMI) tables"
1883	depends on EFI
1884	default y
1885	help
1886	  This enables SMBIOS/DMI feature for systems.
1887
1888	  This option is only useful on systems that have UEFI firmware.
1889	  However, even with this option, the resultant kernel should
1890	  continue to boot on existing non-UEFI platforms.
1891
1892endmenu
1893
1894config SYSVIPC_COMPAT
1895	def_bool y
1896	depends on COMPAT && SYSVIPC
1897
1898config ARCH_ENABLE_HUGEPAGE_MIGRATION
1899	def_bool y
1900	depends on HUGETLB_PAGE && MIGRATION
1901
1902config ARCH_ENABLE_THP_MIGRATION
1903	def_bool y
1904	depends on TRANSPARENT_HUGEPAGE
1905
1906menu "Power management options"
1907
1908source "kernel/power/Kconfig"
1909
1910config ARCH_HIBERNATION_POSSIBLE
1911	def_bool y
1912	depends on CPU_PM
1913
1914config ARCH_HIBERNATION_HEADER
1915	def_bool y
1916	depends on HIBERNATION
1917
1918config ARCH_SUSPEND_POSSIBLE
1919	def_bool y
1920
1921endmenu
1922
1923menu "CPU Power Management"
1924
1925source "drivers/cpuidle/Kconfig"
1926
1927source "drivers/cpufreq/Kconfig"
1928
1929endmenu
1930
1931source "drivers/firmware/Kconfig"
1932
1933source "drivers/acpi/Kconfig"
1934
1935source "arch/arm64/kvm/Kconfig"
1936
1937if CRYPTO
1938source "arch/arm64/crypto/Kconfig"
1939endif
1940