1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Adaptec AAC series RAID controller driver
4 * (c) Copyright 2001 Red Hat Inc.
5 *
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
8 *
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 *
13 * Module Name:
14 * commsup.c
15 *
16 * Abstract: Contain all routines that are required for FSA host/adapter
17 * communication.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/crash_dump.h>
23 #include <linux/types.h>
24 #include <linux/sched.h>
25 #include <linux/pci.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/interrupt.h>
33 #include <linux/bcd.h>
34 #include <scsi/scsi.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_device.h>
37 #include <scsi/scsi_cmnd.h>
38
39 #include "aacraid.h"
40
41 /**
42 * fib_map_alloc - allocate the fib objects
43 * @dev: Adapter to allocate for
44 *
45 * Allocate and map the shared PCI space for the FIB blocks used to
46 * talk to the Adaptec firmware.
47 */
48
fib_map_alloc(struct aac_dev * dev)49 static int fib_map_alloc(struct aac_dev *dev)
50 {
51 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
52 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
53 else
54 dev->max_cmd_size = dev->max_fib_size;
55 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
56 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
57 } else {
58 dev->max_cmd_size = dev->max_fib_size;
59 }
60
61 dprintk((KERN_INFO
62 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
63 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
64 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
66 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
68 &dev->hw_fib_pa, GFP_KERNEL);
69 if (dev->hw_fib_va == NULL)
70 return -ENOMEM;
71 return 0;
72 }
73
74 /**
75 * aac_fib_map_free - free the fib objects
76 * @dev: Adapter to free
77 *
78 * Free the PCI mappings and the memory allocated for FIB blocks
79 * on this adapter.
80 */
81
aac_fib_map_free(struct aac_dev * dev)82 void aac_fib_map_free(struct aac_dev *dev)
83 {
84 size_t alloc_size;
85 size_t fib_size;
86 int num_fibs;
87
88 if(!dev->hw_fib_va || !dev->max_cmd_size)
89 return;
90
91 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
92 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
93 alloc_size = fib_size * num_fibs + ALIGN32 - 1;
94
95 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
96 dev->hw_fib_pa);
97
98 dev->hw_fib_va = NULL;
99 dev->hw_fib_pa = 0;
100 }
101
aac_fib_vector_assign(struct aac_dev * dev)102 void aac_fib_vector_assign(struct aac_dev *dev)
103 {
104 u32 i = 0;
105 u32 vector = 1;
106 struct fib *fibptr = NULL;
107
108 for (i = 0, fibptr = &dev->fibs[i];
109 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
110 i++, fibptr++) {
111 if ((dev->max_msix == 1) ||
112 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
113 - dev->vector_cap))) {
114 fibptr->vector_no = 0;
115 } else {
116 fibptr->vector_no = vector;
117 vector++;
118 if (vector == dev->max_msix)
119 vector = 1;
120 }
121 }
122 }
123
124 /**
125 * aac_fib_setup - setup the fibs
126 * @dev: Adapter to set up
127 *
128 * Allocate the PCI space for the fibs, map it and then initialise the
129 * fib area, the unmapped fib data and also the free list
130 */
131
aac_fib_setup(struct aac_dev * dev)132 int aac_fib_setup(struct aac_dev * dev)
133 {
134 struct fib *fibptr;
135 struct hw_fib *hw_fib;
136 dma_addr_t hw_fib_pa;
137 int i;
138 u32 max_cmds;
139
140 while (((i = fib_map_alloc(dev)) == -ENOMEM)
141 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
142 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
143 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
144 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
145 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
146 }
147 if (i<0)
148 return -ENOMEM;
149
150 memset(dev->hw_fib_va, 0,
151 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
152 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
153
154 /* 32 byte alignment for PMC */
155 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
156 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
157 (hw_fib_pa - dev->hw_fib_pa));
158
159 /* add Xport header */
160 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
161 sizeof(struct aac_fib_xporthdr));
162 hw_fib_pa += sizeof(struct aac_fib_xporthdr);
163
164 /*
165 * Initialise the fibs
166 */
167 for (i = 0, fibptr = &dev->fibs[i];
168 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
169 i++, fibptr++)
170 {
171 fibptr->flags = 0;
172 fibptr->size = sizeof(struct fib);
173 fibptr->dev = dev;
174 fibptr->hw_fib_va = hw_fib;
175 fibptr->data = (void *) fibptr->hw_fib_va->data;
176 fibptr->next = fibptr+1; /* Forward chain the fibs */
177 init_completion(&fibptr->event_wait);
178 spin_lock_init(&fibptr->event_lock);
179 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
180 hw_fib->header.SenderSize =
181 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
182 fibptr->hw_fib_pa = hw_fib_pa;
183 fibptr->hw_sgl_pa = hw_fib_pa +
184 offsetof(struct aac_hba_cmd_req, sge[2]);
185 /*
186 * one element is for the ptr to the separate sg list,
187 * second element for 32 byte alignment
188 */
189 fibptr->hw_error_pa = hw_fib_pa +
190 offsetof(struct aac_native_hba, resp.resp_bytes[0]);
191
192 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
193 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
194 hw_fib_pa = hw_fib_pa +
195 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
196 }
197
198 /*
199 *Assign vector numbers to fibs
200 */
201 aac_fib_vector_assign(dev);
202
203 /*
204 * Add the fib chain to the free list
205 */
206 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
207 /*
208 * Set 8 fibs aside for management tools
209 */
210 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
211 return 0;
212 }
213
214 /**
215 * aac_fib_alloc_tag-allocate a fib using tags
216 * @dev: Adapter to allocate the fib for
217 *
218 * Allocate a fib from the adapter fib pool using tags
219 * from the blk layer.
220 */
221
aac_fib_alloc_tag(struct aac_dev * dev,struct scsi_cmnd * scmd)222 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
223 {
224 struct fib *fibptr;
225
226 fibptr = &dev->fibs[scmd->request->tag];
227 /*
228 * Null out fields that depend on being zero at the start of
229 * each I/O
230 */
231 fibptr->hw_fib_va->header.XferState = 0;
232 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
233 fibptr->callback_data = NULL;
234 fibptr->callback = NULL;
235
236 return fibptr;
237 }
238
239 /**
240 * aac_fib_alloc - allocate a fib
241 * @dev: Adapter to allocate the fib for
242 *
243 * Allocate a fib from the adapter fib pool. If the pool is empty we
244 * return NULL.
245 */
246
aac_fib_alloc(struct aac_dev * dev)247 struct fib *aac_fib_alloc(struct aac_dev *dev)
248 {
249 struct fib * fibptr;
250 unsigned long flags;
251 spin_lock_irqsave(&dev->fib_lock, flags);
252 fibptr = dev->free_fib;
253 if(!fibptr){
254 spin_unlock_irqrestore(&dev->fib_lock, flags);
255 return fibptr;
256 }
257 dev->free_fib = fibptr->next;
258 spin_unlock_irqrestore(&dev->fib_lock, flags);
259 /*
260 * Set the proper node type code and node byte size
261 */
262 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
263 fibptr->size = sizeof(struct fib);
264 /*
265 * Null out fields that depend on being zero at the start of
266 * each I/O
267 */
268 fibptr->hw_fib_va->header.XferState = 0;
269 fibptr->flags = 0;
270 fibptr->callback = NULL;
271 fibptr->callback_data = NULL;
272
273 return fibptr;
274 }
275
276 /**
277 * aac_fib_free - free a fib
278 * @fibptr: fib to free up
279 *
280 * Frees up a fib and places it on the appropriate queue
281 */
282
aac_fib_free(struct fib * fibptr)283 void aac_fib_free(struct fib *fibptr)
284 {
285 unsigned long flags;
286
287 if (fibptr->done == 2)
288 return;
289
290 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
291 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
292 aac_config.fib_timeouts++;
293 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
294 fibptr->hw_fib_va->header.XferState != 0) {
295 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
296 (void*)fibptr,
297 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
298 }
299 fibptr->next = fibptr->dev->free_fib;
300 fibptr->dev->free_fib = fibptr;
301 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
302 }
303
304 /**
305 * aac_fib_init - initialise a fib
306 * @fibptr: The fib to initialize
307 *
308 * Set up the generic fib fields ready for use
309 */
310
aac_fib_init(struct fib * fibptr)311 void aac_fib_init(struct fib *fibptr)
312 {
313 struct hw_fib *hw_fib = fibptr->hw_fib_va;
314
315 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
316 hw_fib->header.StructType = FIB_MAGIC;
317 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
318 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
319 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
320 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
321 }
322
323 /**
324 * fib_deallocate - deallocate a fib
325 * @fibptr: fib to deallocate
326 *
327 * Will deallocate and return to the free pool the FIB pointed to by the
328 * caller.
329 */
330
fib_dealloc(struct fib * fibptr)331 static void fib_dealloc(struct fib * fibptr)
332 {
333 struct hw_fib *hw_fib = fibptr->hw_fib_va;
334 hw_fib->header.XferState = 0;
335 }
336
337 /*
338 * Commuication primitives define and support the queuing method we use to
339 * support host to adapter commuication. All queue accesses happen through
340 * these routines and are the only routines which have a knowledge of the
341 * how these queues are implemented.
342 */
343
344 /**
345 * aac_get_entry - get a queue entry
346 * @dev: Adapter
347 * @qid: Queue Number
348 * @entry: Entry return
349 * @index: Index return
350 * @nonotify: notification control
351 *
352 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
353 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
354 * returned.
355 */
356
aac_get_entry(struct aac_dev * dev,u32 qid,struct aac_entry ** entry,u32 * index,unsigned long * nonotify)357 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
358 {
359 struct aac_queue * q;
360 unsigned long idx;
361
362 /*
363 * All of the queues wrap when they reach the end, so we check
364 * to see if they have reached the end and if they have we just
365 * set the index back to zero. This is a wrap. You could or off
366 * the high bits in all updates but this is a bit faster I think.
367 */
368
369 q = &dev->queues->queue[qid];
370
371 idx = *index = le32_to_cpu(*(q->headers.producer));
372 /* Interrupt Moderation, only interrupt for first two entries */
373 if (idx != le32_to_cpu(*(q->headers.consumer))) {
374 if (--idx == 0) {
375 if (qid == AdapNormCmdQueue)
376 idx = ADAP_NORM_CMD_ENTRIES;
377 else
378 idx = ADAP_NORM_RESP_ENTRIES;
379 }
380 if (idx != le32_to_cpu(*(q->headers.consumer)))
381 *nonotify = 1;
382 }
383
384 if (qid == AdapNormCmdQueue) {
385 if (*index >= ADAP_NORM_CMD_ENTRIES)
386 *index = 0; /* Wrap to front of the Producer Queue. */
387 } else {
388 if (*index >= ADAP_NORM_RESP_ENTRIES)
389 *index = 0; /* Wrap to front of the Producer Queue. */
390 }
391
392 /* Queue is full */
393 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
394 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
395 qid, atomic_read(&q->numpending));
396 return 0;
397 } else {
398 *entry = q->base + *index;
399 return 1;
400 }
401 }
402
403 /**
404 * aac_queue_get - get the next free QE
405 * @dev: Adapter
406 * @index: Returned index
407 * @priority: Priority of fib
408 * @fib: Fib to associate with the queue entry
409 * @wait: Wait if queue full
410 * @fibptr: Driver fib object to go with fib
411 * @nonotify: Don't notify the adapter
412 *
413 * Gets the next free QE off the requested priorty adapter command
414 * queue and associates the Fib with the QE. The QE represented by
415 * index is ready to insert on the queue when this routine returns
416 * success.
417 */
418
aac_queue_get(struct aac_dev * dev,u32 * index,u32 qid,struct hw_fib * hw_fib,int wait,struct fib * fibptr,unsigned long * nonotify)419 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
420 {
421 struct aac_entry * entry = NULL;
422 int map = 0;
423
424 if (qid == AdapNormCmdQueue) {
425 /* if no entries wait for some if caller wants to */
426 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
427 printk(KERN_ERR "GetEntries failed\n");
428 }
429 /*
430 * Setup queue entry with a command, status and fib mapped
431 */
432 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
433 map = 1;
434 } else {
435 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
436 /* if no entries wait for some if caller wants to */
437 }
438 /*
439 * Setup queue entry with command, status and fib mapped
440 */
441 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
442 entry->addr = hw_fib->header.SenderFibAddress;
443 /* Restore adapters pointer to the FIB */
444 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
445 map = 0;
446 }
447 /*
448 * If MapFib is true than we need to map the Fib and put pointers
449 * in the queue entry.
450 */
451 if (map)
452 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
453 return 0;
454 }
455
456 /*
457 * Define the highest level of host to adapter communication routines.
458 * These routines will support host to adapter FS commuication. These
459 * routines have no knowledge of the commuication method used. This level
460 * sends and receives FIBs. This level has no knowledge of how these FIBs
461 * get passed back and forth.
462 */
463
464 /**
465 * aac_fib_send - send a fib to the adapter
466 * @command: Command to send
467 * @fibptr: The fib
468 * @size: Size of fib data area
469 * @priority: Priority of Fib
470 * @wait: Async/sync select
471 * @reply: True if a reply is wanted
472 * @callback: Called with reply
473 * @callback_data: Passed to callback
474 *
475 * Sends the requested FIB to the adapter and optionally will wait for a
476 * response FIB. If the caller does not wish to wait for a response than
477 * an event to wait on must be supplied. This event will be set when a
478 * response FIB is received from the adapter.
479 */
480
aac_fib_send(u16 command,struct fib * fibptr,unsigned long size,int priority,int wait,int reply,fib_callback callback,void * callback_data)481 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
482 int priority, int wait, int reply, fib_callback callback,
483 void *callback_data)
484 {
485 struct aac_dev * dev = fibptr->dev;
486 struct hw_fib * hw_fib = fibptr->hw_fib_va;
487 unsigned long flags = 0;
488 unsigned long mflags = 0;
489 unsigned long sflags = 0;
490
491 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
492 return -EBUSY;
493
494 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
495 return -EINVAL;
496
497 /*
498 * There are 5 cases with the wait and response requested flags.
499 * The only invalid cases are if the caller requests to wait and
500 * does not request a response and if the caller does not want a
501 * response and the Fib is not allocated from pool. If a response
502 * is not requested the Fib will just be deallocaed by the DPC
503 * routine when the response comes back from the adapter. No
504 * further processing will be done besides deleting the Fib. We
505 * will have a debug mode where the adapter can notify the host
506 * it had a problem and the host can log that fact.
507 */
508 fibptr->flags = 0;
509 if (wait && !reply) {
510 return -EINVAL;
511 } else if (!wait && reply) {
512 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
513 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
514 } else if (!wait && !reply) {
515 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
516 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
517 } else if (wait && reply) {
518 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
519 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
520 }
521 /*
522 * Map the fib into 32bits by using the fib number
523 */
524
525 hw_fib->header.SenderFibAddress =
526 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
527
528 /* use the same shifted value for handle to be compatible
529 * with the new native hba command handle
530 */
531 hw_fib->header.Handle =
532 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
533
534 /*
535 * Set FIB state to indicate where it came from and if we want a
536 * response from the adapter. Also load the command from the
537 * caller.
538 *
539 * Map the hw fib pointer as a 32bit value
540 */
541 hw_fib->header.Command = cpu_to_le16(command);
542 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
543 /*
544 * Set the size of the Fib we want to send to the adapter
545 */
546 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
547 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
548 return -EMSGSIZE;
549 }
550 /*
551 * Get a queue entry connect the FIB to it and send an notify
552 * the adapter a command is ready.
553 */
554 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
555
556 /*
557 * Fill in the Callback and CallbackContext if we are not
558 * going to wait.
559 */
560 if (!wait) {
561 fibptr->callback = callback;
562 fibptr->callback_data = callback_data;
563 fibptr->flags = FIB_CONTEXT_FLAG;
564 }
565
566 fibptr->done = 0;
567
568 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
569
570 dprintk((KERN_DEBUG "Fib contents:.\n"));
571 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
572 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
573 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
574 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
575 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
576 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
577
578 if (!dev->queues)
579 return -EBUSY;
580
581 if (wait) {
582
583 spin_lock_irqsave(&dev->manage_lock, mflags);
584 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
585 printk(KERN_INFO "No management Fibs Available:%d\n",
586 dev->management_fib_count);
587 spin_unlock_irqrestore(&dev->manage_lock, mflags);
588 return -EBUSY;
589 }
590 dev->management_fib_count++;
591 spin_unlock_irqrestore(&dev->manage_lock, mflags);
592 spin_lock_irqsave(&fibptr->event_lock, flags);
593 }
594
595 if (dev->sync_mode) {
596 if (wait)
597 spin_unlock_irqrestore(&fibptr->event_lock, flags);
598 spin_lock_irqsave(&dev->sync_lock, sflags);
599 if (dev->sync_fib) {
600 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
601 spin_unlock_irqrestore(&dev->sync_lock, sflags);
602 } else {
603 dev->sync_fib = fibptr;
604 spin_unlock_irqrestore(&dev->sync_lock, sflags);
605 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
606 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
607 NULL, NULL, NULL, NULL, NULL);
608 }
609 if (wait) {
610 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
611 if (wait_for_completion_interruptible(&fibptr->event_wait)) {
612 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
613 return -EFAULT;
614 }
615 return 0;
616 }
617 return -EINPROGRESS;
618 }
619
620 if (aac_adapter_deliver(fibptr) != 0) {
621 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
622 if (wait) {
623 spin_unlock_irqrestore(&fibptr->event_lock, flags);
624 spin_lock_irqsave(&dev->manage_lock, mflags);
625 dev->management_fib_count--;
626 spin_unlock_irqrestore(&dev->manage_lock, mflags);
627 }
628 return -EBUSY;
629 }
630
631
632 /*
633 * If the caller wanted us to wait for response wait now.
634 */
635
636 if (wait) {
637 spin_unlock_irqrestore(&fibptr->event_lock, flags);
638 /* Only set for first known interruptable command */
639 if (wait < 0) {
640 /*
641 * *VERY* Dangerous to time out a command, the
642 * assumption is made that we have no hope of
643 * functioning because an interrupt routing or other
644 * hardware failure has occurred.
645 */
646 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
647 while (!try_wait_for_completion(&fibptr->event_wait)) {
648 int blink;
649 if (time_is_before_eq_jiffies(timeout)) {
650 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
651 atomic_dec(&q->numpending);
652 if (wait == -1) {
653 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
654 "Usually a result of a PCI interrupt routing problem;\n"
655 "update mother board BIOS or consider utilizing one of\n"
656 "the SAFE mode kernel options (acpi, apic etc)\n");
657 }
658 return -ETIMEDOUT;
659 }
660
661 if (unlikely(aac_pci_offline(dev)))
662 return -EFAULT;
663
664 if ((blink = aac_adapter_check_health(dev)) > 0) {
665 if (wait == -1) {
666 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
667 "Usually a result of a serious unrecoverable hardware problem\n",
668 blink);
669 }
670 return -EFAULT;
671 }
672 /*
673 * Allow other processes / CPUS to use core
674 */
675 schedule();
676 }
677 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
678 /* Do nothing ... satisfy
679 * wait_for_completion_interruptible must_check */
680 }
681
682 spin_lock_irqsave(&fibptr->event_lock, flags);
683 if (fibptr->done == 0) {
684 fibptr->done = 2; /* Tell interrupt we aborted */
685 spin_unlock_irqrestore(&fibptr->event_lock, flags);
686 return -ERESTARTSYS;
687 }
688 spin_unlock_irqrestore(&fibptr->event_lock, flags);
689 BUG_ON(fibptr->done == 0);
690
691 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
692 return -ETIMEDOUT;
693 return 0;
694 }
695 /*
696 * If the user does not want a response than return success otherwise
697 * return pending
698 */
699 if (reply)
700 return -EINPROGRESS;
701 else
702 return 0;
703 }
704
aac_hba_send(u8 command,struct fib * fibptr,fib_callback callback,void * callback_data)705 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
706 void *callback_data)
707 {
708 struct aac_dev *dev = fibptr->dev;
709 int wait;
710 unsigned long flags = 0;
711 unsigned long mflags = 0;
712 struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
713 fibptr->hw_fib_va;
714
715 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
716 if (callback) {
717 wait = 0;
718 fibptr->callback = callback;
719 fibptr->callback_data = callback_data;
720 } else
721 wait = 1;
722
723
724 hbacmd->iu_type = command;
725
726 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
727 /* bit1 of request_id must be 0 */
728 hbacmd->request_id =
729 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
730 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
731 } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
732 return -EINVAL;
733
734
735 if (wait) {
736 spin_lock_irqsave(&dev->manage_lock, mflags);
737 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
738 spin_unlock_irqrestore(&dev->manage_lock, mflags);
739 return -EBUSY;
740 }
741 dev->management_fib_count++;
742 spin_unlock_irqrestore(&dev->manage_lock, mflags);
743 spin_lock_irqsave(&fibptr->event_lock, flags);
744 }
745
746 if (aac_adapter_deliver(fibptr) != 0) {
747 if (wait) {
748 spin_unlock_irqrestore(&fibptr->event_lock, flags);
749 spin_lock_irqsave(&dev->manage_lock, mflags);
750 dev->management_fib_count--;
751 spin_unlock_irqrestore(&dev->manage_lock, mflags);
752 }
753 return -EBUSY;
754 }
755 FIB_COUNTER_INCREMENT(aac_config.NativeSent);
756
757 if (wait) {
758
759 spin_unlock_irqrestore(&fibptr->event_lock, flags);
760
761 if (unlikely(aac_pci_offline(dev)))
762 return -EFAULT;
763
764 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
765 if (wait_for_completion_interruptible(&fibptr->event_wait))
766 fibptr->done = 2;
767 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
768
769 spin_lock_irqsave(&fibptr->event_lock, flags);
770 if ((fibptr->done == 0) || (fibptr->done == 2)) {
771 fibptr->done = 2; /* Tell interrupt we aborted */
772 spin_unlock_irqrestore(&fibptr->event_lock, flags);
773 return -ERESTARTSYS;
774 }
775 spin_unlock_irqrestore(&fibptr->event_lock, flags);
776 WARN_ON(fibptr->done == 0);
777
778 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
779 return -ETIMEDOUT;
780
781 return 0;
782 }
783
784 return -EINPROGRESS;
785 }
786
787 /**
788 * aac_consumer_get - get the top of the queue
789 * @dev: Adapter
790 * @q: Queue
791 * @entry: Return entry
792 *
793 * Will return a pointer to the entry on the top of the queue requested that
794 * we are a consumer of, and return the address of the queue entry. It does
795 * not change the state of the queue.
796 */
797
aac_consumer_get(struct aac_dev * dev,struct aac_queue * q,struct aac_entry ** entry)798 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
799 {
800 u32 index;
801 int status;
802 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
803 status = 0;
804 } else {
805 /*
806 * The consumer index must be wrapped if we have reached
807 * the end of the queue, else we just use the entry
808 * pointed to by the header index
809 */
810 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
811 index = 0;
812 else
813 index = le32_to_cpu(*q->headers.consumer);
814 *entry = q->base + index;
815 status = 1;
816 }
817 return(status);
818 }
819
820 /**
821 * aac_consumer_free - free consumer entry
822 * @dev: Adapter
823 * @q: Queue
824 * @qid: Queue ident
825 *
826 * Frees up the current top of the queue we are a consumer of. If the
827 * queue was full notify the producer that the queue is no longer full.
828 */
829
aac_consumer_free(struct aac_dev * dev,struct aac_queue * q,u32 qid)830 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
831 {
832 int wasfull = 0;
833 u32 notify;
834
835 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
836 wasfull = 1;
837
838 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
839 *q->headers.consumer = cpu_to_le32(1);
840 else
841 le32_add_cpu(q->headers.consumer, 1);
842
843 if (wasfull) {
844 switch (qid) {
845
846 case HostNormCmdQueue:
847 notify = HostNormCmdNotFull;
848 break;
849 case HostNormRespQueue:
850 notify = HostNormRespNotFull;
851 break;
852 default:
853 BUG();
854 return;
855 }
856 aac_adapter_notify(dev, notify);
857 }
858 }
859
860 /**
861 * aac_fib_adapter_complete - complete adapter issued fib
862 * @fibptr: fib to complete
863 * @size: size of fib
864 *
865 * Will do all necessary work to complete a FIB that was sent from
866 * the adapter.
867 */
868
aac_fib_adapter_complete(struct fib * fibptr,unsigned short size)869 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
870 {
871 struct hw_fib * hw_fib = fibptr->hw_fib_va;
872 struct aac_dev * dev = fibptr->dev;
873 struct aac_queue * q;
874 unsigned long nointr = 0;
875 unsigned long qflags;
876
877 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
878 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
879 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
880 kfree(hw_fib);
881 return 0;
882 }
883
884 if (hw_fib->header.XferState == 0) {
885 if (dev->comm_interface == AAC_COMM_MESSAGE)
886 kfree(hw_fib);
887 return 0;
888 }
889 /*
890 * If we plan to do anything check the structure type first.
891 */
892 if (hw_fib->header.StructType != FIB_MAGIC &&
893 hw_fib->header.StructType != FIB_MAGIC2 &&
894 hw_fib->header.StructType != FIB_MAGIC2_64) {
895 if (dev->comm_interface == AAC_COMM_MESSAGE)
896 kfree(hw_fib);
897 return -EINVAL;
898 }
899 /*
900 * This block handles the case where the adapter had sent us a
901 * command and we have finished processing the command. We
902 * call completeFib when we are done processing the command
903 * and want to send a response back to the adapter. This will
904 * send the completed cdb to the adapter.
905 */
906 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
907 if (dev->comm_interface == AAC_COMM_MESSAGE) {
908 kfree (hw_fib);
909 } else {
910 u32 index;
911 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
912 if (size) {
913 size += sizeof(struct aac_fibhdr);
914 if (size > le16_to_cpu(hw_fib->header.SenderSize))
915 return -EMSGSIZE;
916 hw_fib->header.Size = cpu_to_le16(size);
917 }
918 q = &dev->queues->queue[AdapNormRespQueue];
919 spin_lock_irqsave(q->lock, qflags);
920 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
921 *(q->headers.producer) = cpu_to_le32(index + 1);
922 spin_unlock_irqrestore(q->lock, qflags);
923 if (!(nointr & (int)aac_config.irq_mod))
924 aac_adapter_notify(dev, AdapNormRespQueue);
925 }
926 } else {
927 printk(KERN_WARNING "aac_fib_adapter_complete: "
928 "Unknown xferstate detected.\n");
929 BUG();
930 }
931 return 0;
932 }
933
934 /**
935 * aac_fib_complete - fib completion handler
936 * @fib: FIB to complete
937 *
938 * Will do all necessary work to complete a FIB.
939 */
940
aac_fib_complete(struct fib * fibptr)941 int aac_fib_complete(struct fib *fibptr)
942 {
943 struct hw_fib * hw_fib = fibptr->hw_fib_va;
944
945 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
946 fib_dealloc(fibptr);
947 return 0;
948 }
949
950 /*
951 * Check for a fib which has already been completed or with a
952 * status wait timeout
953 */
954
955 if (hw_fib->header.XferState == 0 || fibptr->done == 2)
956 return 0;
957 /*
958 * If we plan to do anything check the structure type first.
959 */
960
961 if (hw_fib->header.StructType != FIB_MAGIC &&
962 hw_fib->header.StructType != FIB_MAGIC2 &&
963 hw_fib->header.StructType != FIB_MAGIC2_64)
964 return -EINVAL;
965 /*
966 * This block completes a cdb which orginated on the host and we
967 * just need to deallocate the cdb or reinit it. At this point the
968 * command is complete that we had sent to the adapter and this
969 * cdb could be reused.
970 */
971
972 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
973 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
974 {
975 fib_dealloc(fibptr);
976 }
977 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
978 {
979 /*
980 * This handles the case when the host has aborted the I/O
981 * to the adapter because the adapter is not responding
982 */
983 fib_dealloc(fibptr);
984 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
985 fib_dealloc(fibptr);
986 } else {
987 BUG();
988 }
989 return 0;
990 }
991
992 /**
993 * aac_printf - handle printf from firmware
994 * @dev: Adapter
995 * @val: Message info
996 *
997 * Print a message passed to us by the controller firmware on the
998 * Adaptec board
999 */
1000
aac_printf(struct aac_dev * dev,u32 val)1001 void aac_printf(struct aac_dev *dev, u32 val)
1002 {
1003 char *cp = dev->printfbuf;
1004 if (dev->printf_enabled)
1005 {
1006 int length = val & 0xffff;
1007 int level = (val >> 16) & 0xffff;
1008
1009 /*
1010 * The size of the printfbuf is set in port.c
1011 * There is no variable or define for it
1012 */
1013 if (length > 255)
1014 length = 255;
1015 if (cp[length] != 0)
1016 cp[length] = 0;
1017 if (level == LOG_AAC_HIGH_ERROR)
1018 printk(KERN_WARNING "%s:%s", dev->name, cp);
1019 else
1020 printk(KERN_INFO "%s:%s", dev->name, cp);
1021 }
1022 memset(cp, 0, 256);
1023 }
1024
aac_aif_data(struct aac_aifcmd * aifcmd,uint32_t index)1025 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1026 {
1027 return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1028 }
1029
1030
aac_handle_aif_bu(struct aac_dev * dev,struct aac_aifcmd * aifcmd)1031 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1032 {
1033 switch (aac_aif_data(aifcmd, 1)) {
1034 case AifBuCacheDataLoss:
1035 if (aac_aif_data(aifcmd, 2))
1036 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1037 aac_aif_data(aifcmd, 2));
1038 else
1039 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1040 break;
1041 case AifBuCacheDataRecover:
1042 if (aac_aif_data(aifcmd, 2))
1043 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1044 aac_aif_data(aifcmd, 2));
1045 else
1046 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1047 break;
1048 }
1049 }
1050
1051 /**
1052 * aac_handle_aif - Handle a message from the firmware
1053 * @dev: Which adapter this fib is from
1054 * @fibptr: Pointer to fibptr from adapter
1055 *
1056 * This routine handles a driver notify fib from the adapter and
1057 * dispatches it to the appropriate routine for handling.
1058 */
1059
1060 #define AIF_SNIFF_TIMEOUT (500*HZ)
aac_handle_aif(struct aac_dev * dev,struct fib * fibptr)1061 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1062 {
1063 struct hw_fib * hw_fib = fibptr->hw_fib_va;
1064 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1065 u32 channel, id, lun, container;
1066 struct scsi_device *device;
1067 enum {
1068 NOTHING,
1069 DELETE,
1070 ADD,
1071 CHANGE
1072 } device_config_needed = NOTHING;
1073
1074 /* Sniff for container changes */
1075
1076 if (!dev || !dev->fsa_dev)
1077 return;
1078 container = channel = id = lun = (u32)-1;
1079
1080 /*
1081 * We have set this up to try and minimize the number of
1082 * re-configures that take place. As a result of this when
1083 * certain AIF's come in we will set a flag waiting for another
1084 * type of AIF before setting the re-config flag.
1085 */
1086 switch (le32_to_cpu(aifcmd->command)) {
1087 case AifCmdDriverNotify:
1088 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1089 case AifRawDeviceRemove:
1090 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1091 if ((container >> 28)) {
1092 container = (u32)-1;
1093 break;
1094 }
1095 channel = (container >> 24) & 0xF;
1096 if (channel >= dev->maximum_num_channels) {
1097 container = (u32)-1;
1098 break;
1099 }
1100 id = container & 0xFFFF;
1101 if (id >= dev->maximum_num_physicals) {
1102 container = (u32)-1;
1103 break;
1104 }
1105 lun = (container >> 16) & 0xFF;
1106 container = (u32)-1;
1107 channel = aac_phys_to_logical(channel);
1108 device_config_needed = DELETE;
1109 break;
1110
1111 /*
1112 * Morph or Expand complete
1113 */
1114 case AifDenMorphComplete:
1115 case AifDenVolumeExtendComplete:
1116 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1117 if (container >= dev->maximum_num_containers)
1118 break;
1119
1120 /*
1121 * Find the scsi_device associated with the SCSI
1122 * address. Make sure we have the right array, and if
1123 * so set the flag to initiate a new re-config once we
1124 * see an AifEnConfigChange AIF come through.
1125 */
1126
1127 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1128 device = scsi_device_lookup(dev->scsi_host_ptr,
1129 CONTAINER_TO_CHANNEL(container),
1130 CONTAINER_TO_ID(container),
1131 CONTAINER_TO_LUN(container));
1132 if (device) {
1133 dev->fsa_dev[container].config_needed = CHANGE;
1134 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1135 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1136 scsi_device_put(device);
1137 }
1138 }
1139 }
1140
1141 /*
1142 * If we are waiting on something and this happens to be
1143 * that thing then set the re-configure flag.
1144 */
1145 if (container != (u32)-1) {
1146 if (container >= dev->maximum_num_containers)
1147 break;
1148 if ((dev->fsa_dev[container].config_waiting_on ==
1149 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1150 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1151 dev->fsa_dev[container].config_waiting_on = 0;
1152 } else for (container = 0;
1153 container < dev->maximum_num_containers; ++container) {
1154 if ((dev->fsa_dev[container].config_waiting_on ==
1155 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1156 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1157 dev->fsa_dev[container].config_waiting_on = 0;
1158 }
1159 break;
1160
1161 case AifCmdEventNotify:
1162 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1163 case AifEnBatteryEvent:
1164 dev->cache_protected =
1165 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1166 break;
1167 /*
1168 * Add an Array.
1169 */
1170 case AifEnAddContainer:
1171 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1172 if (container >= dev->maximum_num_containers)
1173 break;
1174 dev->fsa_dev[container].config_needed = ADD;
1175 dev->fsa_dev[container].config_waiting_on =
1176 AifEnConfigChange;
1177 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1178 break;
1179
1180 /*
1181 * Delete an Array.
1182 */
1183 case AifEnDeleteContainer:
1184 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1185 if (container >= dev->maximum_num_containers)
1186 break;
1187 dev->fsa_dev[container].config_needed = DELETE;
1188 dev->fsa_dev[container].config_waiting_on =
1189 AifEnConfigChange;
1190 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1191 break;
1192
1193 /*
1194 * Container change detected. If we currently are not
1195 * waiting on something else, setup to wait on a Config Change.
1196 */
1197 case AifEnContainerChange:
1198 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1199 if (container >= dev->maximum_num_containers)
1200 break;
1201 if (dev->fsa_dev[container].config_waiting_on &&
1202 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1203 break;
1204 dev->fsa_dev[container].config_needed = CHANGE;
1205 dev->fsa_dev[container].config_waiting_on =
1206 AifEnConfigChange;
1207 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1208 break;
1209
1210 case AifEnConfigChange:
1211 break;
1212
1213 case AifEnAddJBOD:
1214 case AifEnDeleteJBOD:
1215 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1216 if ((container >> 28)) {
1217 container = (u32)-1;
1218 break;
1219 }
1220 channel = (container >> 24) & 0xF;
1221 if (channel >= dev->maximum_num_channels) {
1222 container = (u32)-1;
1223 break;
1224 }
1225 id = container & 0xFFFF;
1226 if (id >= dev->maximum_num_physicals) {
1227 container = (u32)-1;
1228 break;
1229 }
1230 lun = (container >> 16) & 0xFF;
1231 container = (u32)-1;
1232 channel = aac_phys_to_logical(channel);
1233 device_config_needed =
1234 (((__le32 *)aifcmd->data)[0] ==
1235 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1236 if (device_config_needed == ADD) {
1237 device = scsi_device_lookup(dev->scsi_host_ptr,
1238 channel,
1239 id,
1240 lun);
1241 if (device) {
1242 scsi_remove_device(device);
1243 scsi_device_put(device);
1244 }
1245 }
1246 break;
1247
1248 case AifEnEnclosureManagement:
1249 /*
1250 * If in JBOD mode, automatic exposure of new
1251 * physical target to be suppressed until configured.
1252 */
1253 if (dev->jbod)
1254 break;
1255 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1256 case EM_DRIVE_INSERTION:
1257 case EM_DRIVE_REMOVAL:
1258 case EM_SES_DRIVE_INSERTION:
1259 case EM_SES_DRIVE_REMOVAL:
1260 container = le32_to_cpu(
1261 ((__le32 *)aifcmd->data)[2]);
1262 if ((container >> 28)) {
1263 container = (u32)-1;
1264 break;
1265 }
1266 channel = (container >> 24) & 0xF;
1267 if (channel >= dev->maximum_num_channels) {
1268 container = (u32)-1;
1269 break;
1270 }
1271 id = container & 0xFFFF;
1272 lun = (container >> 16) & 0xFF;
1273 container = (u32)-1;
1274 if (id >= dev->maximum_num_physicals) {
1275 /* legacy dev_t ? */
1276 if ((0x2000 <= id) || lun || channel ||
1277 ((channel = (id >> 7) & 0x3F) >=
1278 dev->maximum_num_channels))
1279 break;
1280 lun = (id >> 4) & 7;
1281 id &= 0xF;
1282 }
1283 channel = aac_phys_to_logical(channel);
1284 device_config_needed =
1285 ((((__le32 *)aifcmd->data)[3]
1286 == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1287 (((__le32 *)aifcmd->data)[3]
1288 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1289 ADD : DELETE;
1290 break;
1291 }
1292 break;
1293 case AifBuManagerEvent:
1294 aac_handle_aif_bu(dev, aifcmd);
1295 break;
1296 }
1297
1298 /*
1299 * If we are waiting on something and this happens to be
1300 * that thing then set the re-configure flag.
1301 */
1302 if (container != (u32)-1) {
1303 if (container >= dev->maximum_num_containers)
1304 break;
1305 if ((dev->fsa_dev[container].config_waiting_on ==
1306 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1307 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1308 dev->fsa_dev[container].config_waiting_on = 0;
1309 } else for (container = 0;
1310 container < dev->maximum_num_containers; ++container) {
1311 if ((dev->fsa_dev[container].config_waiting_on ==
1312 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1313 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1314 dev->fsa_dev[container].config_waiting_on = 0;
1315 }
1316 break;
1317
1318 case AifCmdJobProgress:
1319 /*
1320 * These are job progress AIF's. When a Clear is being
1321 * done on a container it is initially created then hidden from
1322 * the OS. When the clear completes we don't get a config
1323 * change so we monitor the job status complete on a clear then
1324 * wait for a container change.
1325 */
1326
1327 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1328 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1329 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1330 for (container = 0;
1331 container < dev->maximum_num_containers;
1332 ++container) {
1333 /*
1334 * Stomp on all config sequencing for all
1335 * containers?
1336 */
1337 dev->fsa_dev[container].config_waiting_on =
1338 AifEnContainerChange;
1339 dev->fsa_dev[container].config_needed = ADD;
1340 dev->fsa_dev[container].config_waiting_stamp =
1341 jiffies;
1342 }
1343 }
1344 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1345 ((__le32 *)aifcmd->data)[6] == 0 &&
1346 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1347 for (container = 0;
1348 container < dev->maximum_num_containers;
1349 ++container) {
1350 /*
1351 * Stomp on all config sequencing for all
1352 * containers?
1353 */
1354 dev->fsa_dev[container].config_waiting_on =
1355 AifEnContainerChange;
1356 dev->fsa_dev[container].config_needed = DELETE;
1357 dev->fsa_dev[container].config_waiting_stamp =
1358 jiffies;
1359 }
1360 }
1361 break;
1362 }
1363
1364 container = 0;
1365 retry_next:
1366 if (device_config_needed == NOTHING) {
1367 for (; container < dev->maximum_num_containers; ++container) {
1368 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1369 (dev->fsa_dev[container].config_needed != NOTHING) &&
1370 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1371 device_config_needed =
1372 dev->fsa_dev[container].config_needed;
1373 dev->fsa_dev[container].config_needed = NOTHING;
1374 channel = CONTAINER_TO_CHANNEL(container);
1375 id = CONTAINER_TO_ID(container);
1376 lun = CONTAINER_TO_LUN(container);
1377 break;
1378 }
1379 }
1380 }
1381 if (device_config_needed == NOTHING)
1382 return;
1383
1384 /*
1385 * If we decided that a re-configuration needs to be done,
1386 * schedule it here on the way out the door, please close the door
1387 * behind you.
1388 */
1389
1390 /*
1391 * Find the scsi_device associated with the SCSI address,
1392 * and mark it as changed, invalidating the cache. This deals
1393 * with changes to existing device IDs.
1394 */
1395
1396 if (!dev || !dev->scsi_host_ptr)
1397 return;
1398 /*
1399 * force reload of disk info via aac_probe_container
1400 */
1401 if ((channel == CONTAINER_CHANNEL) &&
1402 (device_config_needed != NOTHING)) {
1403 if (dev->fsa_dev[container].valid == 1)
1404 dev->fsa_dev[container].valid = 2;
1405 aac_probe_container(dev, container);
1406 }
1407 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1408 if (device) {
1409 switch (device_config_needed) {
1410 case DELETE:
1411 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1412 scsi_remove_device(device);
1413 #else
1414 if (scsi_device_online(device)) {
1415 scsi_device_set_state(device, SDEV_OFFLINE);
1416 sdev_printk(KERN_INFO, device,
1417 "Device offlined - %s\n",
1418 (channel == CONTAINER_CHANNEL) ?
1419 "array deleted" :
1420 "enclosure services event");
1421 }
1422 #endif
1423 break;
1424 case ADD:
1425 if (!scsi_device_online(device)) {
1426 sdev_printk(KERN_INFO, device,
1427 "Device online - %s\n",
1428 (channel == CONTAINER_CHANNEL) ?
1429 "array created" :
1430 "enclosure services event");
1431 scsi_device_set_state(device, SDEV_RUNNING);
1432 }
1433 /* FALLTHRU */
1434 case CHANGE:
1435 if ((channel == CONTAINER_CHANNEL)
1436 && (!dev->fsa_dev[container].valid)) {
1437 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1438 scsi_remove_device(device);
1439 #else
1440 if (!scsi_device_online(device))
1441 break;
1442 scsi_device_set_state(device, SDEV_OFFLINE);
1443 sdev_printk(KERN_INFO, device,
1444 "Device offlined - %s\n",
1445 "array failed");
1446 #endif
1447 break;
1448 }
1449 scsi_rescan_device(&device->sdev_gendev);
1450
1451 default:
1452 break;
1453 }
1454 scsi_device_put(device);
1455 device_config_needed = NOTHING;
1456 }
1457 if (device_config_needed == ADD)
1458 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1459 if (channel == CONTAINER_CHANNEL) {
1460 container++;
1461 device_config_needed = NOTHING;
1462 goto retry_next;
1463 }
1464 }
1465
_aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1466 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1467 {
1468 int index, quirks;
1469 int retval;
1470 struct Scsi_Host *host;
1471 struct scsi_device *dev;
1472 struct scsi_cmnd *command;
1473 struct scsi_cmnd *command_list;
1474 int jafo = 0;
1475 int bled;
1476 u64 dmamask;
1477 int num_of_fibs = 0;
1478
1479 /*
1480 * Assumptions:
1481 * - host is locked, unless called by the aacraid thread.
1482 * (a matter of convenience, due to legacy issues surrounding
1483 * eh_host_adapter_reset).
1484 * - in_reset is asserted, so no new i/o is getting to the
1485 * card.
1486 * - The card is dead, or will be very shortly ;-/ so no new
1487 * commands are completing in the interrupt service.
1488 */
1489 host = aac->scsi_host_ptr;
1490 scsi_block_requests(host);
1491 aac_adapter_disable_int(aac);
1492 if (aac->thread && aac->thread->pid != current->pid) {
1493 spin_unlock_irq(host->host_lock);
1494 kthread_stop(aac->thread);
1495 aac->thread = NULL;
1496 jafo = 1;
1497 }
1498
1499 /*
1500 * If a positive health, means in a known DEAD PANIC
1501 * state and the adapter could be reset to `try again'.
1502 */
1503 bled = forced ? 0 : aac_adapter_check_health(aac);
1504 retval = aac_adapter_restart(aac, bled, reset_type);
1505
1506 if (retval)
1507 goto out;
1508
1509 /*
1510 * Loop through the fibs, close the synchronous FIBS
1511 */
1512 retval = 1;
1513 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1514 for (index = 0; index < num_of_fibs; index++) {
1515
1516 struct fib *fib = &aac->fibs[index];
1517 __le32 XferState = fib->hw_fib_va->header.XferState;
1518 bool is_response_expected = false;
1519
1520 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1521 (XferState & cpu_to_le32(ResponseExpected)))
1522 is_response_expected = true;
1523
1524 if (is_response_expected
1525 || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1526 unsigned long flagv;
1527 spin_lock_irqsave(&fib->event_lock, flagv);
1528 complete(&fib->event_wait);
1529 spin_unlock_irqrestore(&fib->event_lock, flagv);
1530 schedule();
1531 retval = 0;
1532 }
1533 }
1534 /* Give some extra time for ioctls to complete. */
1535 if (retval == 0)
1536 ssleep(2);
1537 index = aac->cardtype;
1538
1539 /*
1540 * Re-initialize the adapter, first free resources, then carefully
1541 * apply the initialization sequence to come back again. Only risk
1542 * is a change in Firmware dropping cache, it is assumed the caller
1543 * will ensure that i/o is queisced and the card is flushed in that
1544 * case.
1545 */
1546 aac_free_irq(aac);
1547 aac_fib_map_free(aac);
1548 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1549 aac->comm_phys);
1550 aac->comm_addr = NULL;
1551 aac->comm_phys = 0;
1552 kfree(aac->queues);
1553 aac->queues = NULL;
1554 kfree(aac->fsa_dev);
1555 aac->fsa_dev = NULL;
1556
1557 dmamask = DMA_BIT_MASK(32);
1558 quirks = aac_get_driver_ident(index)->quirks;
1559 if (quirks & AAC_QUIRK_31BIT)
1560 retval = pci_set_dma_mask(aac->pdev, dmamask);
1561 else if (!(quirks & AAC_QUIRK_SRC))
1562 retval = pci_set_dma_mask(aac->pdev, dmamask);
1563 else
1564 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1565
1566 if (quirks & AAC_QUIRK_31BIT && !retval) {
1567 dmamask = DMA_BIT_MASK(31);
1568 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1569 }
1570
1571 if (retval)
1572 goto out;
1573
1574 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1575 goto out;
1576
1577 if (jafo) {
1578 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1579 aac->name);
1580 if (IS_ERR(aac->thread)) {
1581 retval = PTR_ERR(aac->thread);
1582 aac->thread = NULL;
1583 goto out;
1584 }
1585 }
1586 (void)aac_get_adapter_info(aac);
1587 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1588 host->sg_tablesize = 34;
1589 host->max_sectors = (host->sg_tablesize * 8) + 112;
1590 }
1591 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1592 host->sg_tablesize = 17;
1593 host->max_sectors = (host->sg_tablesize * 8) + 112;
1594 }
1595 aac_get_config_status(aac, 1);
1596 aac_get_containers(aac);
1597 /*
1598 * This is where the assumption that the Adapter is quiesced
1599 * is important.
1600 */
1601 command_list = NULL;
1602 __shost_for_each_device(dev, host) {
1603 unsigned long flags;
1604 spin_lock_irqsave(&dev->list_lock, flags);
1605 list_for_each_entry(command, &dev->cmd_list, list)
1606 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1607 command->SCp.buffer = (struct scatterlist *)command_list;
1608 command_list = command;
1609 }
1610 spin_unlock_irqrestore(&dev->list_lock, flags);
1611 }
1612 while ((command = command_list)) {
1613 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1614 command->SCp.buffer = NULL;
1615 command->result = DID_OK << 16
1616 | COMMAND_COMPLETE << 8
1617 | SAM_STAT_TASK_SET_FULL;
1618 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1619 command->scsi_done(command);
1620 }
1621 /*
1622 * Any Device that was already marked offline needs to be marked
1623 * running
1624 */
1625 __shost_for_each_device(dev, host) {
1626 if (!scsi_device_online(dev))
1627 scsi_device_set_state(dev, SDEV_RUNNING);
1628 }
1629 retval = 0;
1630
1631 out:
1632 aac->in_reset = 0;
1633 scsi_unblock_requests(host);
1634
1635 /*
1636 * Issue bus rescan to catch any configuration that might have
1637 * occurred
1638 */
1639 if (!retval && !is_kdump_kernel()) {
1640 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1641 aac_schedule_safw_scan_worker(aac);
1642 }
1643
1644 if (jafo) {
1645 spin_lock_irq(host->host_lock);
1646 }
1647 return retval;
1648 }
1649
aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1650 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1651 {
1652 unsigned long flagv = 0;
1653 int retval;
1654 struct Scsi_Host * host;
1655 int bled;
1656
1657 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1658 return -EBUSY;
1659
1660 if (aac->in_reset) {
1661 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1662 return -EBUSY;
1663 }
1664 aac->in_reset = 1;
1665 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1666
1667 /*
1668 * Wait for all commands to complete to this specific
1669 * target (block maximum 60 seconds). Although not necessary,
1670 * it does make us a good storage citizen.
1671 */
1672 host = aac->scsi_host_ptr;
1673 scsi_block_requests(host);
1674
1675 /* Quiesce build, flush cache, write through mode */
1676 if (forced < 2)
1677 aac_send_shutdown(aac);
1678 spin_lock_irqsave(host->host_lock, flagv);
1679 bled = forced ? forced :
1680 (aac_check_reset != 0 && aac_check_reset != 1);
1681 retval = _aac_reset_adapter(aac, bled, reset_type);
1682 spin_unlock_irqrestore(host->host_lock, flagv);
1683
1684 if ((forced < 2) && (retval == -ENODEV)) {
1685 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1686 struct fib * fibctx = aac_fib_alloc(aac);
1687 if (fibctx) {
1688 struct aac_pause *cmd;
1689 int status;
1690
1691 aac_fib_init(fibctx);
1692
1693 cmd = (struct aac_pause *) fib_data(fibctx);
1694
1695 cmd->command = cpu_to_le32(VM_ContainerConfig);
1696 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1697 cmd->timeout = cpu_to_le32(1);
1698 cmd->min = cpu_to_le32(1);
1699 cmd->noRescan = cpu_to_le32(1);
1700 cmd->count = cpu_to_le32(0);
1701
1702 status = aac_fib_send(ContainerCommand,
1703 fibctx,
1704 sizeof(struct aac_pause),
1705 FsaNormal,
1706 -2 /* Timeout silently */, 1,
1707 NULL, NULL);
1708
1709 if (status >= 0)
1710 aac_fib_complete(fibctx);
1711 /* FIB should be freed only after getting
1712 * the response from the F/W */
1713 if (status != -ERESTARTSYS)
1714 aac_fib_free(fibctx);
1715 }
1716 }
1717
1718 return retval;
1719 }
1720
aac_check_health(struct aac_dev * aac)1721 int aac_check_health(struct aac_dev * aac)
1722 {
1723 int BlinkLED;
1724 unsigned long time_now, flagv = 0;
1725 struct list_head * entry;
1726
1727 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1728 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1729 return 0;
1730
1731 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1732 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1733 return 0; /* OK */
1734 }
1735
1736 aac->in_reset = 1;
1737
1738 /* Fake up an AIF:
1739 * aac_aifcmd.command = AifCmdEventNotify = 1
1740 * aac_aifcmd.seqnum = 0xFFFFFFFF
1741 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1742 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1743 * aac.aifcmd.data[2] = AifHighPriority = 3
1744 * aac.aifcmd.data[3] = BlinkLED
1745 */
1746
1747 time_now = jiffies/HZ;
1748 entry = aac->fib_list.next;
1749
1750 /*
1751 * For each Context that is on the
1752 * fibctxList, make a copy of the
1753 * fib, and then set the event to wake up the
1754 * thread that is waiting for it.
1755 */
1756 while (entry != &aac->fib_list) {
1757 /*
1758 * Extract the fibctx
1759 */
1760 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1761 struct hw_fib * hw_fib;
1762 struct fib * fib;
1763 /*
1764 * Check if the queue is getting
1765 * backlogged
1766 */
1767 if (fibctx->count > 20) {
1768 /*
1769 * It's *not* jiffies folks,
1770 * but jiffies / HZ, so do not
1771 * panic ...
1772 */
1773 u32 time_last = fibctx->jiffies;
1774 /*
1775 * Has it been > 2 minutes
1776 * since the last read off
1777 * the queue?
1778 */
1779 if ((time_now - time_last) > aif_timeout) {
1780 entry = entry->next;
1781 aac_close_fib_context(aac, fibctx);
1782 continue;
1783 }
1784 }
1785 /*
1786 * Warning: no sleep allowed while
1787 * holding spinlock
1788 */
1789 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1790 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1791 if (fib && hw_fib) {
1792 struct aac_aifcmd * aif;
1793
1794 fib->hw_fib_va = hw_fib;
1795 fib->dev = aac;
1796 aac_fib_init(fib);
1797 fib->type = FSAFS_NTC_FIB_CONTEXT;
1798 fib->size = sizeof (struct fib);
1799 fib->data = hw_fib->data;
1800 aif = (struct aac_aifcmd *)hw_fib->data;
1801 aif->command = cpu_to_le32(AifCmdEventNotify);
1802 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1803 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1804 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1805 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1806 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1807
1808 /*
1809 * Put the FIB onto the
1810 * fibctx's fibs
1811 */
1812 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1813 fibctx->count++;
1814 /*
1815 * Set the event to wake up the
1816 * thread that will waiting.
1817 */
1818 complete(&fibctx->completion);
1819 } else {
1820 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1821 kfree(fib);
1822 kfree(hw_fib);
1823 }
1824 entry = entry->next;
1825 }
1826
1827 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1828
1829 if (BlinkLED < 0) {
1830 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1831 aac->name, BlinkLED);
1832 goto out;
1833 }
1834
1835 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1836
1837 out:
1838 aac->in_reset = 0;
1839 return BlinkLED;
1840 }
1841
is_safw_raid_volume(struct aac_dev * aac,int bus,int target)1842 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1843 {
1844 return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1845 }
1846
aac_lookup_safw_scsi_device(struct aac_dev * dev,int bus,int target)1847 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1848 int bus,
1849 int target)
1850 {
1851 if (bus != CONTAINER_CHANNEL)
1852 bus = aac_phys_to_logical(bus);
1853
1854 return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1855 }
1856
aac_add_safw_device(struct aac_dev * dev,int bus,int target)1857 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1858 {
1859 if (bus != CONTAINER_CHANNEL)
1860 bus = aac_phys_to_logical(bus);
1861
1862 return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1863 }
1864
aac_put_safw_scsi_device(struct scsi_device * sdev)1865 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1866 {
1867 if (sdev)
1868 scsi_device_put(sdev);
1869 }
1870
aac_remove_safw_device(struct aac_dev * dev,int bus,int target)1871 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1872 {
1873 struct scsi_device *sdev;
1874
1875 sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1876 scsi_remove_device(sdev);
1877 aac_put_safw_scsi_device(sdev);
1878 }
1879
aac_is_safw_scan_count_equal(struct aac_dev * dev,int bus,int target)1880 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1881 int bus, int target)
1882 {
1883 return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1884 }
1885
aac_is_safw_target_valid(struct aac_dev * dev,int bus,int target)1886 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1887 {
1888 if (is_safw_raid_volume(dev, bus, target))
1889 return dev->fsa_dev[target].valid;
1890 else
1891 return aac_is_safw_scan_count_equal(dev, bus, target);
1892 }
1893
aac_is_safw_device_exposed(struct aac_dev * dev,int bus,int target)1894 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1895 {
1896 int is_exposed = 0;
1897 struct scsi_device *sdev;
1898
1899 sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1900 if (sdev)
1901 is_exposed = 1;
1902 aac_put_safw_scsi_device(sdev);
1903
1904 return is_exposed;
1905 }
1906
aac_update_safw_host_devices(struct aac_dev * dev)1907 static int aac_update_safw_host_devices(struct aac_dev *dev)
1908 {
1909 int i;
1910 int bus;
1911 int target;
1912 int is_exposed = 0;
1913 int rcode = 0;
1914
1915 rcode = aac_setup_safw_adapter(dev);
1916 if (unlikely(rcode < 0)) {
1917 goto out;
1918 }
1919
1920 for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1921
1922 bus = get_bus_number(i);
1923 target = get_target_number(i);
1924
1925 is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1926
1927 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1928 aac_add_safw_device(dev, bus, target);
1929 else if (!aac_is_safw_target_valid(dev, bus, target) &&
1930 is_exposed)
1931 aac_remove_safw_device(dev, bus, target);
1932 }
1933 out:
1934 return rcode;
1935 }
1936
aac_scan_safw_host(struct aac_dev * dev)1937 static int aac_scan_safw_host(struct aac_dev *dev)
1938 {
1939 int rcode = 0;
1940
1941 rcode = aac_update_safw_host_devices(dev);
1942 if (rcode)
1943 aac_schedule_safw_scan_worker(dev);
1944
1945 return rcode;
1946 }
1947
aac_scan_host(struct aac_dev * dev)1948 int aac_scan_host(struct aac_dev *dev)
1949 {
1950 int rcode = 0;
1951
1952 mutex_lock(&dev->scan_mutex);
1953 if (dev->sa_firmware)
1954 rcode = aac_scan_safw_host(dev);
1955 else
1956 scsi_scan_host(dev->scsi_host_ptr);
1957 mutex_unlock(&dev->scan_mutex);
1958
1959 return rcode;
1960 }
1961
1962 /**
1963 * aac_handle_sa_aif Handle a message from the firmware
1964 * @dev: Which adapter this fib is from
1965 * @fibptr: Pointer to fibptr from adapter
1966 *
1967 * This routine handles a driver notify fib from the adapter and
1968 * dispatches it to the appropriate routine for handling.
1969 */
aac_handle_sa_aif(struct aac_dev * dev,struct fib * fibptr)1970 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1971 {
1972 int i;
1973 u32 events = 0;
1974
1975 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1976 events = SA_AIF_HOTPLUG;
1977 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1978 events = SA_AIF_HARDWARE;
1979 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1980 events = SA_AIF_PDEV_CHANGE;
1981 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1982 events = SA_AIF_LDEV_CHANGE;
1983 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1984 events = SA_AIF_BPSTAT_CHANGE;
1985 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1986 events = SA_AIF_BPCFG_CHANGE;
1987
1988 switch (events) {
1989 case SA_AIF_HOTPLUG:
1990 case SA_AIF_HARDWARE:
1991 case SA_AIF_PDEV_CHANGE:
1992 case SA_AIF_LDEV_CHANGE:
1993 case SA_AIF_BPCFG_CHANGE:
1994
1995 aac_scan_host(dev);
1996
1997 break;
1998
1999 case SA_AIF_BPSTAT_CHANGE:
2000 /* currently do nothing */
2001 break;
2002 }
2003
2004 for (i = 1; i <= 10; ++i) {
2005 events = src_readl(dev, MUnit.IDR);
2006 if (events & (1<<23)) {
2007 pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2008 i, 10);
2009 ssleep(1);
2010 }
2011 }
2012 }
2013
get_fib_count(struct aac_dev * dev)2014 static int get_fib_count(struct aac_dev *dev)
2015 {
2016 unsigned int num = 0;
2017 struct list_head *entry;
2018 unsigned long flagv;
2019
2020 /*
2021 * Warning: no sleep allowed while
2022 * holding spinlock. We take the estimate
2023 * and pre-allocate a set of fibs outside the
2024 * lock.
2025 */
2026 num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2027 / sizeof(struct hw_fib); /* some extra */
2028 spin_lock_irqsave(&dev->fib_lock, flagv);
2029 entry = dev->fib_list.next;
2030 while (entry != &dev->fib_list) {
2031 entry = entry->next;
2032 ++num;
2033 }
2034 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2035
2036 return num;
2037 }
2038
fillup_pools(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,unsigned int num)2039 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2040 struct fib **fib_pool,
2041 unsigned int num)
2042 {
2043 struct hw_fib **hw_fib_p;
2044 struct fib **fib_p;
2045
2046 hw_fib_p = hw_fib_pool;
2047 fib_p = fib_pool;
2048 while (hw_fib_p < &hw_fib_pool[num]) {
2049 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2050 if (!(*(hw_fib_p++))) {
2051 --hw_fib_p;
2052 break;
2053 }
2054
2055 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2056 if (!(*(fib_p++))) {
2057 kfree(*(--hw_fib_p));
2058 break;
2059 }
2060 }
2061
2062 /*
2063 * Get the actual number of allocated fibs
2064 */
2065 num = hw_fib_p - hw_fib_pool;
2066 return num;
2067 }
2068
wakeup_fibctx_threads(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,struct fib * fib,struct hw_fib * hw_fib,unsigned int num)2069 static void wakeup_fibctx_threads(struct aac_dev *dev,
2070 struct hw_fib **hw_fib_pool,
2071 struct fib **fib_pool,
2072 struct fib *fib,
2073 struct hw_fib *hw_fib,
2074 unsigned int num)
2075 {
2076 unsigned long flagv;
2077 struct list_head *entry;
2078 struct hw_fib **hw_fib_p;
2079 struct fib **fib_p;
2080 u32 time_now, time_last;
2081 struct hw_fib *hw_newfib;
2082 struct fib *newfib;
2083 struct aac_fib_context *fibctx;
2084
2085 time_now = jiffies/HZ;
2086 spin_lock_irqsave(&dev->fib_lock, flagv);
2087 entry = dev->fib_list.next;
2088 /*
2089 * For each Context that is on the
2090 * fibctxList, make a copy of the
2091 * fib, and then set the event to wake up the
2092 * thread that is waiting for it.
2093 */
2094
2095 hw_fib_p = hw_fib_pool;
2096 fib_p = fib_pool;
2097 while (entry != &dev->fib_list) {
2098 /*
2099 * Extract the fibctx
2100 */
2101 fibctx = list_entry(entry, struct aac_fib_context,
2102 next);
2103 /*
2104 * Check if the queue is getting
2105 * backlogged
2106 */
2107 if (fibctx->count > 20) {
2108 /*
2109 * It's *not* jiffies folks,
2110 * but jiffies / HZ so do not
2111 * panic ...
2112 */
2113 time_last = fibctx->jiffies;
2114 /*
2115 * Has it been > 2 minutes
2116 * since the last read off
2117 * the queue?
2118 */
2119 if ((time_now - time_last) > aif_timeout) {
2120 entry = entry->next;
2121 aac_close_fib_context(dev, fibctx);
2122 continue;
2123 }
2124 }
2125 /*
2126 * Warning: no sleep allowed while
2127 * holding spinlock
2128 */
2129 if (hw_fib_p >= &hw_fib_pool[num]) {
2130 pr_warn("aifd: didn't allocate NewFib\n");
2131 entry = entry->next;
2132 continue;
2133 }
2134
2135 hw_newfib = *hw_fib_p;
2136 *(hw_fib_p++) = NULL;
2137 newfib = *fib_p;
2138 *(fib_p++) = NULL;
2139 /*
2140 * Make the copy of the FIB
2141 */
2142 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2143 memcpy(newfib, fib, sizeof(struct fib));
2144 newfib->hw_fib_va = hw_newfib;
2145 /*
2146 * Put the FIB onto the
2147 * fibctx's fibs
2148 */
2149 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2150 fibctx->count++;
2151 /*
2152 * Set the event to wake up the
2153 * thread that is waiting.
2154 */
2155 complete(&fibctx->completion);
2156
2157 entry = entry->next;
2158 }
2159 /*
2160 * Set the status of this FIB
2161 */
2162 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2163 aac_fib_adapter_complete(fib, sizeof(u32));
2164 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2165
2166 }
2167
aac_process_events(struct aac_dev * dev)2168 static void aac_process_events(struct aac_dev *dev)
2169 {
2170 struct hw_fib *hw_fib;
2171 struct fib *fib;
2172 unsigned long flags;
2173 spinlock_t *t_lock;
2174
2175 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2176 spin_lock_irqsave(t_lock, flags);
2177
2178 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2179 struct list_head *entry;
2180 struct aac_aifcmd *aifcmd;
2181 unsigned int num;
2182 struct hw_fib **hw_fib_pool, **hw_fib_p;
2183 struct fib **fib_pool, **fib_p;
2184
2185 set_current_state(TASK_RUNNING);
2186
2187 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2188 list_del(entry);
2189
2190 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2191 spin_unlock_irqrestore(t_lock, flags);
2192
2193 fib = list_entry(entry, struct fib, fiblink);
2194 hw_fib = fib->hw_fib_va;
2195 if (dev->sa_firmware) {
2196 /* Thor AIF */
2197 aac_handle_sa_aif(dev, fib);
2198 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2199 goto free_fib;
2200 }
2201 /*
2202 * We will process the FIB here or pass it to a
2203 * worker thread that is TBD. We Really can't
2204 * do anything at this point since we don't have
2205 * anything defined for this thread to do.
2206 */
2207 memset(fib, 0, sizeof(struct fib));
2208 fib->type = FSAFS_NTC_FIB_CONTEXT;
2209 fib->size = sizeof(struct fib);
2210 fib->hw_fib_va = hw_fib;
2211 fib->data = hw_fib->data;
2212 fib->dev = dev;
2213 /*
2214 * We only handle AifRequest fibs from the adapter.
2215 */
2216
2217 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2218 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2219 /* Handle Driver Notify Events */
2220 aac_handle_aif(dev, fib);
2221 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2222 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2223 goto free_fib;
2224 }
2225 /*
2226 * The u32 here is important and intended. We are using
2227 * 32bit wrapping time to fit the adapter field
2228 */
2229
2230 /* Sniff events */
2231 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2232 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2233 aac_handle_aif(dev, fib);
2234 }
2235
2236 /*
2237 * get number of fibs to process
2238 */
2239 num = get_fib_count(dev);
2240 if (!num)
2241 goto free_fib;
2242
2243 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2244 GFP_KERNEL);
2245 if (!hw_fib_pool)
2246 goto free_fib;
2247
2248 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2249 if (!fib_pool)
2250 goto free_hw_fib_pool;
2251
2252 /*
2253 * Fill up fib pointer pools with actual fibs
2254 * and hw_fibs
2255 */
2256 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2257 if (!num)
2258 goto free_mem;
2259
2260 /*
2261 * wakeup the thread that is waiting for
2262 * the response from fw (ioctl)
2263 */
2264 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2265 fib, hw_fib, num);
2266
2267 free_mem:
2268 /* Free up the remaining resources */
2269 hw_fib_p = hw_fib_pool;
2270 fib_p = fib_pool;
2271 while (hw_fib_p < &hw_fib_pool[num]) {
2272 kfree(*hw_fib_p);
2273 kfree(*fib_p);
2274 ++fib_p;
2275 ++hw_fib_p;
2276 }
2277 kfree(fib_pool);
2278 free_hw_fib_pool:
2279 kfree(hw_fib_pool);
2280 free_fib:
2281 kfree(fib);
2282 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2283 spin_lock_irqsave(t_lock, flags);
2284 }
2285 /*
2286 * There are no more AIF's
2287 */
2288 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2289 spin_unlock_irqrestore(t_lock, flags);
2290 }
2291
aac_send_wellness_command(struct aac_dev * dev,char * wellness_str,u32 datasize)2292 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2293 u32 datasize)
2294 {
2295 struct aac_srb *srbcmd;
2296 struct sgmap64 *sg64;
2297 dma_addr_t addr;
2298 char *dma_buf;
2299 struct fib *fibptr;
2300 int ret = -ENOMEM;
2301 u32 vbus, vid;
2302
2303 fibptr = aac_fib_alloc(dev);
2304 if (!fibptr)
2305 goto out;
2306
2307 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2308 GFP_KERNEL);
2309 if (!dma_buf)
2310 goto fib_free_out;
2311
2312 aac_fib_init(fibptr);
2313
2314 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2315 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2316
2317 srbcmd = (struct aac_srb *)fib_data(fibptr);
2318
2319 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2320 srbcmd->channel = cpu_to_le32(vbus);
2321 srbcmd->id = cpu_to_le32(vid);
2322 srbcmd->lun = 0;
2323 srbcmd->flags = cpu_to_le32(SRB_DataOut);
2324 srbcmd->timeout = cpu_to_le32(10);
2325 srbcmd->retry_limit = 0;
2326 srbcmd->cdb_size = cpu_to_le32(12);
2327 srbcmd->count = cpu_to_le32(datasize);
2328
2329 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2330 srbcmd->cdb[0] = BMIC_OUT;
2331 srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2332 memcpy(dma_buf, (char *)wellness_str, datasize);
2333
2334 sg64 = (struct sgmap64 *)&srbcmd->sg;
2335 sg64->count = cpu_to_le32(1);
2336 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2337 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2338 sg64->sg[0].count = cpu_to_le32(datasize);
2339
2340 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2341 FsaNormal, 1, 1, NULL, NULL);
2342
2343 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2344
2345 /*
2346 * Do not set XferState to zero unless
2347 * receives a response from F/W
2348 */
2349 if (ret >= 0)
2350 aac_fib_complete(fibptr);
2351
2352 /*
2353 * FIB should be freed only after
2354 * getting the response from the F/W
2355 */
2356 if (ret != -ERESTARTSYS)
2357 goto fib_free_out;
2358
2359 out:
2360 return ret;
2361 fib_free_out:
2362 aac_fib_free(fibptr);
2363 goto out;
2364 }
2365
aac_send_safw_hostttime(struct aac_dev * dev,struct timespec64 * now)2366 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2367 {
2368 struct tm cur_tm;
2369 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2370 u32 datasize = sizeof(wellness_str);
2371 time64_t local_time;
2372 int ret = -ENODEV;
2373
2374 if (!dev->sa_firmware)
2375 goto out;
2376
2377 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2378 time64_to_tm(local_time, 0, &cur_tm);
2379 cur_tm.tm_mon += 1;
2380 cur_tm.tm_year += 1900;
2381 wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2382 wellness_str[9] = bin2bcd(cur_tm.tm_min);
2383 wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2384 wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2385 wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2386 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2387 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2388
2389 ret = aac_send_wellness_command(dev, wellness_str, datasize);
2390
2391 out:
2392 return ret;
2393 }
2394
aac_send_hosttime(struct aac_dev * dev,struct timespec64 * now)2395 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2396 {
2397 int ret = -ENOMEM;
2398 struct fib *fibptr;
2399 __le32 *info;
2400
2401 fibptr = aac_fib_alloc(dev);
2402 if (!fibptr)
2403 goto out;
2404
2405 aac_fib_init(fibptr);
2406 info = (__le32 *)fib_data(fibptr);
2407 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2408 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2409 1, 1, NULL, NULL);
2410
2411 /*
2412 * Do not set XferState to zero unless
2413 * receives a response from F/W
2414 */
2415 if (ret >= 0)
2416 aac_fib_complete(fibptr);
2417
2418 /*
2419 * FIB should be freed only after
2420 * getting the response from the F/W
2421 */
2422 if (ret != -ERESTARTSYS)
2423 aac_fib_free(fibptr);
2424
2425 out:
2426 return ret;
2427 }
2428
2429 /**
2430 * aac_command_thread - command processing thread
2431 * @dev: Adapter to monitor
2432 *
2433 * Waits on the commandready event in it's queue. When the event gets set
2434 * it will pull FIBs off it's queue. It will continue to pull FIBs off
2435 * until the queue is empty. When the queue is empty it will wait for
2436 * more FIBs.
2437 */
2438
aac_command_thread(void * data)2439 int aac_command_thread(void *data)
2440 {
2441 struct aac_dev *dev = data;
2442 DECLARE_WAITQUEUE(wait, current);
2443 unsigned long next_jiffies = jiffies + HZ;
2444 unsigned long next_check_jiffies = next_jiffies;
2445 long difference = HZ;
2446
2447 /*
2448 * We can only have one thread per adapter for AIF's.
2449 */
2450 if (dev->aif_thread)
2451 return -EINVAL;
2452
2453 /*
2454 * Let the DPC know it has a place to send the AIF's to.
2455 */
2456 dev->aif_thread = 1;
2457 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2458 set_current_state(TASK_INTERRUPTIBLE);
2459 dprintk ((KERN_INFO "aac_command_thread start\n"));
2460 while (1) {
2461
2462 aac_process_events(dev);
2463
2464 /*
2465 * Background activity
2466 */
2467 if ((time_before(next_check_jiffies,next_jiffies))
2468 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2469 next_check_jiffies = next_jiffies;
2470 if (aac_adapter_check_health(dev) == 0) {
2471 difference = ((long)(unsigned)check_interval)
2472 * HZ;
2473 next_check_jiffies = jiffies + difference;
2474 } else if (!dev->queues)
2475 break;
2476 }
2477 if (!time_before(next_check_jiffies,next_jiffies)
2478 && ((difference = next_jiffies - jiffies) <= 0)) {
2479 struct timespec64 now;
2480 int ret;
2481
2482 /* Don't even try to talk to adapter if its sick */
2483 ret = aac_adapter_check_health(dev);
2484 if (ret || !dev->queues)
2485 break;
2486 next_check_jiffies = jiffies
2487 + ((long)(unsigned)check_interval)
2488 * HZ;
2489 ktime_get_real_ts64(&now);
2490
2491 /* Synchronize our watches */
2492 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2493 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2494 difference = HZ + HZ / 2 -
2495 now.tv_nsec / (NSEC_PER_SEC / HZ);
2496 else {
2497 if (now.tv_nsec > NSEC_PER_SEC / 2)
2498 ++now.tv_sec;
2499
2500 if (dev->sa_firmware)
2501 ret =
2502 aac_send_safw_hostttime(dev, &now);
2503 else
2504 ret = aac_send_hosttime(dev, &now);
2505
2506 difference = (long)(unsigned)update_interval*HZ;
2507 }
2508 next_jiffies = jiffies + difference;
2509 if (time_before(next_check_jiffies,next_jiffies))
2510 difference = next_check_jiffies - jiffies;
2511 }
2512 if (difference <= 0)
2513 difference = 1;
2514 set_current_state(TASK_INTERRUPTIBLE);
2515
2516 if (kthread_should_stop())
2517 break;
2518
2519 /*
2520 * we probably want usleep_range() here instead of the
2521 * jiffies computation
2522 */
2523 schedule_timeout(difference);
2524
2525 if (kthread_should_stop())
2526 break;
2527 }
2528 if (dev->queues)
2529 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2530 dev->aif_thread = 0;
2531 return 0;
2532 }
2533
aac_acquire_irq(struct aac_dev * dev)2534 int aac_acquire_irq(struct aac_dev *dev)
2535 {
2536 int i;
2537 int j;
2538 int ret = 0;
2539
2540 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2541 for (i = 0; i < dev->max_msix; i++) {
2542 dev->aac_msix[i].vector_no = i;
2543 dev->aac_msix[i].dev = dev;
2544 if (request_irq(pci_irq_vector(dev->pdev, i),
2545 dev->a_ops.adapter_intr,
2546 0, "aacraid", &(dev->aac_msix[i]))) {
2547 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2548 dev->name, dev->id, i);
2549 for (j = 0 ; j < i ; j++)
2550 free_irq(pci_irq_vector(dev->pdev, j),
2551 &(dev->aac_msix[j]));
2552 pci_disable_msix(dev->pdev);
2553 ret = -1;
2554 }
2555 }
2556 } else {
2557 dev->aac_msix[0].vector_no = 0;
2558 dev->aac_msix[0].dev = dev;
2559
2560 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2561 IRQF_SHARED, "aacraid",
2562 &(dev->aac_msix[0])) < 0) {
2563 if (dev->msi)
2564 pci_disable_msi(dev->pdev);
2565 printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2566 dev->name, dev->id);
2567 ret = -1;
2568 }
2569 }
2570 return ret;
2571 }
2572
aac_free_irq(struct aac_dev * dev)2573 void aac_free_irq(struct aac_dev *dev)
2574 {
2575 int i;
2576
2577 if (aac_is_src(dev)) {
2578 if (dev->max_msix > 1) {
2579 for (i = 0; i < dev->max_msix; i++)
2580 free_irq(pci_irq_vector(dev->pdev, i),
2581 &(dev->aac_msix[i]));
2582 } else {
2583 free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2584 }
2585 } else {
2586 free_irq(dev->pdev->irq, dev);
2587 }
2588 if (dev->msi)
2589 pci_disable_msi(dev->pdev);
2590 else if (dev->max_msix > 1)
2591 pci_disable_msix(dev->pdev);
2592 }
2593