1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  Copyright (C) 1991,1992  Linus Torvalds
4 *
5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
6 *
7 * Stack layout while running C code:
8 *	ptrace needs to have all registers on the stack.
9 *	If the order here is changed, it needs to be
10 *	updated in fork.c:copy_process(), signal.c:do_signal(),
11 *	ptrace.c and ptrace.h
12 *
13 *	 0(%esp) - %ebx
14 *	 4(%esp) - %ecx
15 *	 8(%esp) - %edx
16 *	 C(%esp) - %esi
17 *	10(%esp) - %edi
18 *	14(%esp) - %ebp
19 *	18(%esp) - %eax
20 *	1C(%esp) - %ds
21 *	20(%esp) - %es
22 *	24(%esp) - %fs
23 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
24 *	2C(%esp) - orig_eax
25 *	30(%esp) - %eip
26 *	34(%esp) - %cs
27 *	38(%esp) - %eflags
28 *	3C(%esp) - %oldesp
29 *	40(%esp) - %oldss
30 */
31
32#include <linux/linkage.h>
33#include <linux/err.h>
34#include <asm/thread_info.h>
35#include <asm/irqflags.h>
36#include <asm/errno.h>
37#include <asm/segment.h>
38#include <asm/smp.h>
39#include <asm/percpu.h>
40#include <asm/processor-flags.h>
41#include <asm/irq_vectors.h>
42#include <asm/cpufeatures.h>
43#include <asm/alternative-asm.h>
44#include <asm/asm.h>
45#include <asm/smap.h>
46#include <asm/frame.h>
47#include <asm/nospec-branch.h>
48
49	.section .entry.text, "ax"
50
51/*
52 * We use macros for low-level operations which need to be overridden
53 * for paravirtualization.  The following will never clobber any registers:
54 *   INTERRUPT_RETURN (aka. "iret")
55 *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
56 *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
57 *
58 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
59 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
60 * Allowing a register to be clobbered can shrink the paravirt replacement
61 * enough to patch inline, increasing performance.
62 */
63
64#ifdef CONFIG_PREEMPT
65# define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
66#else
67# define preempt_stop(clobbers)
68# define resume_kernel		restore_all_kernel
69#endif
70
71.macro TRACE_IRQS_IRET
72#ifdef CONFIG_TRACE_IRQFLAGS
73	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
74	jz	1f
75	TRACE_IRQS_ON
761:
77#endif
78.endm
79
80#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
81
82/*
83 * User gs save/restore
84 *
85 * %gs is used for userland TLS and kernel only uses it for stack
86 * canary which is required to be at %gs:20 by gcc.  Read the comment
87 * at the top of stackprotector.h for more info.
88 *
89 * Local labels 98 and 99 are used.
90 */
91#ifdef CONFIG_X86_32_LAZY_GS
92
93 /* unfortunately push/pop can't be no-op */
94.macro PUSH_GS
95	pushl	$0
96.endm
97.macro POP_GS pop=0
98	addl	$(4 + \pop), %esp
99.endm
100.macro POP_GS_EX
101.endm
102
103 /* all the rest are no-op */
104.macro PTGS_TO_GS
105.endm
106.macro PTGS_TO_GS_EX
107.endm
108.macro GS_TO_REG reg
109.endm
110.macro REG_TO_PTGS reg
111.endm
112.macro SET_KERNEL_GS reg
113.endm
114
115#else	/* CONFIG_X86_32_LAZY_GS */
116
117.macro PUSH_GS
118	pushl	%gs
119.endm
120
121.macro POP_GS pop=0
12298:	popl	%gs
123  .if \pop <> 0
124	add	$\pop, %esp
125  .endif
126.endm
127.macro POP_GS_EX
128.pushsection .fixup, "ax"
12999:	movl	$0, (%esp)
130	jmp	98b
131.popsection
132	_ASM_EXTABLE(98b, 99b)
133.endm
134
135.macro PTGS_TO_GS
13698:	mov	PT_GS(%esp), %gs
137.endm
138.macro PTGS_TO_GS_EX
139.pushsection .fixup, "ax"
14099:	movl	$0, PT_GS(%esp)
141	jmp	98b
142.popsection
143	_ASM_EXTABLE(98b, 99b)
144.endm
145
146.macro GS_TO_REG reg
147	movl	%gs, \reg
148.endm
149.macro REG_TO_PTGS reg
150	movl	\reg, PT_GS(%esp)
151.endm
152.macro SET_KERNEL_GS reg
153	movl	$(__KERNEL_STACK_CANARY), \reg
154	movl	\reg, %gs
155.endm
156
157#endif /* CONFIG_X86_32_LAZY_GS */
158
159/* Unconditionally switch to user cr3 */
160.macro SWITCH_TO_USER_CR3 scratch_reg:req
161	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
162
163	movl	%cr3, \scratch_reg
164	orl	$PTI_SWITCH_MASK, \scratch_reg
165	movl	\scratch_reg, %cr3
166.Lend_\@:
167.endm
168
169.macro BUG_IF_WRONG_CR3 no_user_check=0
170#ifdef CONFIG_DEBUG_ENTRY
171	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
172	.if \no_user_check == 0
173	/* coming from usermode? */
174	testl	$SEGMENT_RPL_MASK, PT_CS(%esp)
175	jz	.Lend_\@
176	.endif
177	/* On user-cr3? */
178	movl	%cr3, %eax
179	testl	$PTI_SWITCH_MASK, %eax
180	jnz	.Lend_\@
181	/* From userspace with kernel cr3 - BUG */
182	ud2
183.Lend_\@:
184#endif
185.endm
186
187/*
188 * Switch to kernel cr3 if not already loaded and return current cr3 in
189 * \scratch_reg
190 */
191.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
192	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
193	movl	%cr3, \scratch_reg
194	/* Test if we are already on kernel CR3 */
195	testl	$PTI_SWITCH_MASK, \scratch_reg
196	jz	.Lend_\@
197	andl	$(~PTI_SWITCH_MASK), \scratch_reg
198	movl	\scratch_reg, %cr3
199	/* Return original CR3 in \scratch_reg */
200	orl	$PTI_SWITCH_MASK, \scratch_reg
201.Lend_\@:
202.endm
203
204.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0
205	cld
206	PUSH_GS
207	pushl	%fs
208	pushl	%es
209	pushl	%ds
210	pushl	\pt_regs_ax
211	pushl	%ebp
212	pushl	%edi
213	pushl	%esi
214	pushl	%edx
215	pushl	%ecx
216	pushl	%ebx
217	movl	$(__USER_DS), %edx
218	movl	%edx, %ds
219	movl	%edx, %es
220	movl	$(__KERNEL_PERCPU), %edx
221	movl	%edx, %fs
222	SET_KERNEL_GS %edx
223
224	/* Switch to kernel stack if necessary */
225.if \switch_stacks > 0
226	SWITCH_TO_KERNEL_STACK
227.endif
228
229.endm
230
231.macro SAVE_ALL_NMI cr3_reg:req
232	SAVE_ALL
233
234	BUG_IF_WRONG_CR3
235
236	/*
237	 * Now switch the CR3 when PTI is enabled.
238	 *
239	 * We can enter with either user or kernel cr3, the code will
240	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
241	 * if necessary.
242	 */
243	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
244
245.Lend_\@:
246.endm
247
248/*
249 * This is a sneaky trick to help the unwinder find pt_regs on the stack.  The
250 * frame pointer is replaced with an encoded pointer to pt_regs.  The encoding
251 * is just clearing the MSB, which makes it an invalid stack address and is also
252 * a signal to the unwinder that it's a pt_regs pointer in disguise.
253 *
254 * NOTE: This macro must be used *after* SAVE_ALL because it corrupts the
255 * original rbp.
256 */
257.macro ENCODE_FRAME_POINTER
258#ifdef CONFIG_FRAME_POINTER
259	mov %esp, %ebp
260	andl $0x7fffffff, %ebp
261#endif
262.endm
263
264.macro RESTORE_INT_REGS
265	popl	%ebx
266	popl	%ecx
267	popl	%edx
268	popl	%esi
269	popl	%edi
270	popl	%ebp
271	popl	%eax
272.endm
273
274.macro RESTORE_REGS pop=0
275	RESTORE_INT_REGS
2761:	popl	%ds
2772:	popl	%es
2783:	popl	%fs
279	POP_GS \pop
280.pushsection .fixup, "ax"
2814:	movl	$0, (%esp)
282	jmp	1b
2835:	movl	$0, (%esp)
284	jmp	2b
2856:	movl	$0, (%esp)
286	jmp	3b
287.popsection
288	_ASM_EXTABLE(1b, 4b)
289	_ASM_EXTABLE(2b, 5b)
290	_ASM_EXTABLE(3b, 6b)
291	POP_GS_EX
292.endm
293
294.macro RESTORE_ALL_NMI cr3_reg:req pop=0
295	/*
296	 * Now switch the CR3 when PTI is enabled.
297	 *
298	 * We enter with kernel cr3 and switch the cr3 to the value
299	 * stored on \cr3_reg, which is either a user or a kernel cr3.
300	 */
301	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
302
303	testl	$PTI_SWITCH_MASK, \cr3_reg
304	jz	.Lswitched_\@
305
306	/* User cr3 in \cr3_reg - write it to hardware cr3 */
307	movl	\cr3_reg, %cr3
308
309.Lswitched_\@:
310
311	BUG_IF_WRONG_CR3
312
313	RESTORE_REGS pop=\pop
314.endm
315
316.macro CHECK_AND_APPLY_ESPFIX
317#ifdef CONFIG_X86_ESPFIX32
318#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)
319
320	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX
321
322	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
323	/*
324	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
325	 * are returning to the kernel.
326	 * See comments in process.c:copy_thread() for details.
327	 */
328	movb	PT_OLDSS(%esp), %ah
329	movb	PT_CS(%esp), %al
330	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
331	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
332	jne	.Lend_\@	# returning to user-space with LDT SS
333
334	/*
335	 * Setup and switch to ESPFIX stack
336	 *
337	 * We're returning to userspace with a 16 bit stack. The CPU will not
338	 * restore the high word of ESP for us on executing iret... This is an
339	 * "official" bug of all the x86-compatible CPUs, which we can work
340	 * around to make dosemu and wine happy. We do this by preloading the
341	 * high word of ESP with the high word of the userspace ESP while
342	 * compensating for the offset by changing to the ESPFIX segment with
343	 * a base address that matches for the difference.
344	 */
345	mov	%esp, %edx			/* load kernel esp */
346	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
347	mov	%dx, %ax			/* eax: new kernel esp */
348	sub	%eax, %edx			/* offset (low word is 0) */
349	shr	$16, %edx
350	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
351	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
352	pushl	$__ESPFIX_SS
353	pushl	%eax				/* new kernel esp */
354	/*
355	 * Disable interrupts, but do not irqtrace this section: we
356	 * will soon execute iret and the tracer was already set to
357	 * the irqstate after the IRET:
358	 */
359	DISABLE_INTERRUPTS(CLBR_ANY)
360	lss	(%esp), %esp			/* switch to espfix segment */
361.Lend_\@:
362#endif /* CONFIG_X86_ESPFIX32 */
363.endm
364
365/*
366 * Called with pt_regs fully populated and kernel segments loaded,
367 * so we can access PER_CPU and use the integer registers.
368 *
369 * We need to be very careful here with the %esp switch, because an NMI
370 * can happen everywhere. If the NMI handler finds itself on the
371 * entry-stack, it will overwrite the task-stack and everything we
372 * copied there. So allocate the stack-frame on the task-stack and
373 * switch to it before we do any copying.
374 */
375
376#define CS_FROM_ENTRY_STACK	(1 << 31)
377#define CS_FROM_USER_CR3	(1 << 30)
378
379.macro SWITCH_TO_KERNEL_STACK
380
381	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV
382
383	BUG_IF_WRONG_CR3
384
385	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
386
387	/*
388	 * %eax now contains the entry cr3 and we carry it forward in
389	 * that register for the time this macro runs
390	 */
391
392	/*
393	 * The high bits of the CS dword (__csh) are used for
394	 * CS_FROM_ENTRY_STACK and CS_FROM_USER_CR3. Clear them in case
395	 * hardware didn't do this for us.
396	 */
397	andl	$(0x0000ffff), PT_CS(%esp)
398
399	/* Are we on the entry stack? Bail out if not! */
400	movl	PER_CPU_VAR(cpu_entry_area), %ecx
401	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
402	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
403	cmpl	$SIZEOF_entry_stack, %ecx
404	jae	.Lend_\@
405
406	/* Load stack pointer into %esi and %edi */
407	movl	%esp, %esi
408	movl	%esi, %edi
409
410	/* Move %edi to the top of the entry stack */
411	andl	$(MASK_entry_stack), %edi
412	addl	$(SIZEOF_entry_stack), %edi
413
414	/* Load top of task-stack into %edi */
415	movl	TSS_entry2task_stack(%edi), %edi
416
417	/* Special case - entry from kernel mode via entry stack */
418#ifdef CONFIG_VM86
419	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
420	movb	PT_CS(%esp), %cl
421	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
422#else
423	movl	PT_CS(%esp), %ecx
424	andl	$SEGMENT_RPL_MASK, %ecx
425#endif
426	cmpl	$USER_RPL, %ecx
427	jb	.Lentry_from_kernel_\@
428
429	/* Bytes to copy */
430	movl	$PTREGS_SIZE, %ecx
431
432#ifdef CONFIG_VM86
433	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
434	jz	.Lcopy_pt_regs_\@
435
436	/*
437	 * Stack-frame contains 4 additional segment registers when
438	 * coming from VM86 mode
439	 */
440	addl	$(4 * 4), %ecx
441
442#endif
443.Lcopy_pt_regs_\@:
444
445	/* Allocate frame on task-stack */
446	subl	%ecx, %edi
447
448	/* Switch to task-stack */
449	movl	%edi, %esp
450
451	/*
452	 * We are now on the task-stack and can safely copy over the
453	 * stack-frame
454	 */
455	shrl	$2, %ecx
456	cld
457	rep movsl
458
459	jmp .Lend_\@
460
461.Lentry_from_kernel_\@:
462
463	/*
464	 * This handles the case when we enter the kernel from
465	 * kernel-mode and %esp points to the entry-stack. When this
466	 * happens we need to switch to the task-stack to run C code,
467	 * but switch back to the entry-stack again when we approach
468	 * iret and return to the interrupted code-path. This usually
469	 * happens when we hit an exception while restoring user-space
470	 * segment registers on the way back to user-space or when the
471	 * sysenter handler runs with eflags.tf set.
472	 *
473	 * When we switch to the task-stack here, we can't trust the
474	 * contents of the entry-stack anymore, as the exception handler
475	 * might be scheduled out or moved to another CPU. Therefore we
476	 * copy the complete entry-stack to the task-stack and set a
477	 * marker in the iret-frame (bit 31 of the CS dword) to detect
478	 * what we've done on the iret path.
479	 *
480	 * On the iret path we copy everything back and switch to the
481	 * entry-stack, so that the interrupted kernel code-path
482	 * continues on the same stack it was interrupted with.
483	 *
484	 * Be aware that an NMI can happen anytime in this code.
485	 *
486	 * %esi: Entry-Stack pointer (same as %esp)
487	 * %edi: Top of the task stack
488	 * %eax: CR3 on kernel entry
489	 */
490
491	/* Calculate number of bytes on the entry stack in %ecx */
492	movl	%esi, %ecx
493
494	/* %ecx to the top of entry-stack */
495	andl	$(MASK_entry_stack), %ecx
496	addl	$(SIZEOF_entry_stack), %ecx
497
498	/* Number of bytes on the entry stack to %ecx */
499	sub	%esi, %ecx
500
501	/* Mark stackframe as coming from entry stack */
502	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
503
504	/*
505	 * Test the cr3 used to enter the kernel and add a marker
506	 * so that we can switch back to it before iret.
507	 */
508	testl	$PTI_SWITCH_MASK, %eax
509	jz	.Lcopy_pt_regs_\@
510	orl	$CS_FROM_USER_CR3, PT_CS(%esp)
511
512	/*
513	 * %esi and %edi are unchanged, %ecx contains the number of
514	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
515	 * the stack-frame on task-stack and copy everything over
516	 */
517	jmp .Lcopy_pt_regs_\@
518
519.Lend_\@:
520.endm
521
522/*
523 * Switch back from the kernel stack to the entry stack.
524 *
525 * The %esp register must point to pt_regs on the task stack. It will
526 * first calculate the size of the stack-frame to copy, depending on
527 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
528 * to copy the contents of the stack over to the entry stack.
529 *
530 * We must be very careful here, as we can't trust the contents of the
531 * task-stack once we switched to the entry-stack. When an NMI happens
532 * while on the entry-stack, the NMI handler will switch back to the top
533 * of the task stack, overwriting our stack-frame we are about to copy.
534 * Therefore we switch the stack only after everything is copied over.
535 */
536.macro SWITCH_TO_ENTRY_STACK
537
538	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV
539
540	/* Bytes to copy */
541	movl	$PTREGS_SIZE, %ecx
542
543#ifdef CONFIG_VM86
544	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
545	jz	.Lcopy_pt_regs_\@
546
547	/* Additional 4 registers to copy when returning to VM86 mode */
548	addl    $(4 * 4), %ecx
549
550.Lcopy_pt_regs_\@:
551#endif
552
553	/* Initialize source and destination for movsl */
554	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
555	subl	%ecx, %edi
556	movl	%esp, %esi
557
558	/* Save future stack pointer in %ebx */
559	movl	%edi, %ebx
560
561	/* Copy over the stack-frame */
562	shrl	$2, %ecx
563	cld
564	rep movsl
565
566	/*
567	 * Switch to entry-stack - needs to happen after everything is
568	 * copied because the NMI handler will overwrite the task-stack
569	 * when on entry-stack
570	 */
571	movl	%ebx, %esp
572
573.Lend_\@:
574.endm
575
576/*
577 * This macro handles the case when we return to kernel-mode on the iret
578 * path and have to switch back to the entry stack and/or user-cr3
579 *
580 * See the comments below the .Lentry_from_kernel_\@ label in the
581 * SWITCH_TO_KERNEL_STACK macro for more details.
582 */
583.macro PARANOID_EXIT_TO_KERNEL_MODE
584
585	/*
586	 * Test if we entered the kernel with the entry-stack. Most
587	 * likely we did not, because this code only runs on the
588	 * return-to-kernel path.
589	 */
590	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
591	jz	.Lend_\@
592
593	/* Unlikely slow-path */
594
595	/* Clear marker from stack-frame */
596	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
597
598	/* Copy the remaining task-stack contents to entry-stack */
599	movl	%esp, %esi
600	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
601
602	/* Bytes on the task-stack to ecx */
603	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
604	subl	%esi, %ecx
605
606	/* Allocate stack-frame on entry-stack */
607	subl	%ecx, %edi
608
609	/*
610	 * Save future stack-pointer, we must not switch until the
611	 * copy is done, otherwise the NMI handler could destroy the
612	 * contents of the task-stack we are about to copy.
613	 */
614	movl	%edi, %ebx
615
616	/* Do the copy */
617	shrl	$2, %ecx
618	cld
619	rep movsl
620
621	/* Safe to switch to entry-stack now */
622	movl	%ebx, %esp
623
624	/*
625	 * We came from entry-stack and need to check if we also need to
626	 * switch back to user cr3.
627	 */
628	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
629	jz	.Lend_\@
630
631	/* Clear marker from stack-frame */
632	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)
633
634	SWITCH_TO_USER_CR3 scratch_reg=%eax
635
636.Lend_\@:
637.endm
638/*
639 * %eax: prev task
640 * %edx: next task
641 */
642ENTRY(__switch_to_asm)
643	/*
644	 * Save callee-saved registers
645	 * This must match the order in struct inactive_task_frame
646	 */
647	pushl	%ebp
648	pushl	%ebx
649	pushl	%edi
650	pushl	%esi
651
652	/* switch stack */
653	movl	%esp, TASK_threadsp(%eax)
654	movl	TASK_threadsp(%edx), %esp
655
656#ifdef CONFIG_STACKPROTECTOR
657	movl	TASK_stack_canary(%edx), %ebx
658	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
659#endif
660
661#ifdef CONFIG_RETPOLINE
662	/*
663	 * When switching from a shallower to a deeper call stack
664	 * the RSB may either underflow or use entries populated
665	 * with userspace addresses. On CPUs where those concerns
666	 * exist, overwrite the RSB with entries which capture
667	 * speculative execution to prevent attack.
668	 */
669	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
670#endif
671
672	/* restore callee-saved registers */
673	popl	%esi
674	popl	%edi
675	popl	%ebx
676	popl	%ebp
677
678	jmp	__switch_to
679END(__switch_to_asm)
680
681/*
682 * The unwinder expects the last frame on the stack to always be at the same
683 * offset from the end of the page, which allows it to validate the stack.
684 * Calling schedule_tail() directly would break that convention because its an
685 * asmlinkage function so its argument has to be pushed on the stack.  This
686 * wrapper creates a proper "end of stack" frame header before the call.
687 */
688ENTRY(schedule_tail_wrapper)
689	FRAME_BEGIN
690
691	pushl	%eax
692	call	schedule_tail
693	popl	%eax
694
695	FRAME_END
696	ret
697ENDPROC(schedule_tail_wrapper)
698/*
699 * A newly forked process directly context switches into this address.
700 *
701 * eax: prev task we switched from
702 * ebx: kernel thread func (NULL for user thread)
703 * edi: kernel thread arg
704 */
705ENTRY(ret_from_fork)
706	call	schedule_tail_wrapper
707
708	testl	%ebx, %ebx
709	jnz	1f		/* kernel threads are uncommon */
710
7112:
712	/* When we fork, we trace the syscall return in the child, too. */
713	movl    %esp, %eax
714	call    syscall_return_slowpath
715	jmp     restore_all
716
717	/* kernel thread */
7181:	movl	%edi, %eax
719	CALL_NOSPEC %ebx
720	/*
721	 * A kernel thread is allowed to return here after successfully
722	 * calling do_execve().  Exit to userspace to complete the execve()
723	 * syscall.
724	 */
725	movl	$0, PT_EAX(%esp)
726	jmp	2b
727END(ret_from_fork)
728
729/*
730 * Return to user mode is not as complex as all this looks,
731 * but we want the default path for a system call return to
732 * go as quickly as possible which is why some of this is
733 * less clear than it otherwise should be.
734 */
735
736	# userspace resumption stub bypassing syscall exit tracing
737	ALIGN
738ret_from_exception:
739	preempt_stop(CLBR_ANY)
740ret_from_intr:
741#ifdef CONFIG_VM86
742	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
743	movb	PT_CS(%esp), %al
744	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
745#else
746	/*
747	 * We can be coming here from child spawned by kernel_thread().
748	 */
749	movl	PT_CS(%esp), %eax
750	andl	$SEGMENT_RPL_MASK, %eax
751#endif
752	cmpl	$USER_RPL, %eax
753	jb	resume_kernel			# not returning to v8086 or userspace
754
755ENTRY(resume_userspace)
756	DISABLE_INTERRUPTS(CLBR_ANY)
757	TRACE_IRQS_OFF
758	movl	%esp, %eax
759	call	prepare_exit_to_usermode
760	jmp	restore_all
761END(ret_from_exception)
762
763#ifdef CONFIG_PREEMPT
764ENTRY(resume_kernel)
765	DISABLE_INTERRUPTS(CLBR_ANY)
766.Lneed_resched:
767	cmpl	$0, PER_CPU_VAR(__preempt_count)
768	jnz	restore_all_kernel
769	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
770	jz	restore_all_kernel
771	call	preempt_schedule_irq
772	jmp	.Lneed_resched
773END(resume_kernel)
774#endif
775
776GLOBAL(__begin_SYSENTER_singlestep_region)
777/*
778 * All code from here through __end_SYSENTER_singlestep_region is subject
779 * to being single-stepped if a user program sets TF and executes SYSENTER.
780 * There is absolutely nothing that we can do to prevent this from happening
781 * (thanks Intel!).  To keep our handling of this situation as simple as
782 * possible, we handle TF just like AC and NT, except that our #DB handler
783 * will ignore all of the single-step traps generated in this range.
784 */
785
786#ifdef CONFIG_XEN
787/*
788 * Xen doesn't set %esp to be precisely what the normal SYSENTER
789 * entry point expects, so fix it up before using the normal path.
790 */
791ENTRY(xen_sysenter_target)
792	addl	$5*4, %esp			/* remove xen-provided frame */
793	jmp	.Lsysenter_past_esp
794#endif
795
796/*
797 * 32-bit SYSENTER entry.
798 *
799 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
800 * if X86_FEATURE_SEP is available.  This is the preferred system call
801 * entry on 32-bit systems.
802 *
803 * The SYSENTER instruction, in principle, should *only* occur in the
804 * vDSO.  In practice, a small number of Android devices were shipped
805 * with a copy of Bionic that inlined a SYSENTER instruction.  This
806 * never happened in any of Google's Bionic versions -- it only happened
807 * in a narrow range of Intel-provided versions.
808 *
809 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
810 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
811 * SYSENTER does not save anything on the stack,
812 * and does not save old EIP (!!!), ESP, or EFLAGS.
813 *
814 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
815 * user and/or vm86 state), we explicitly disable the SYSENTER
816 * instruction in vm86 mode by reprogramming the MSRs.
817 *
818 * Arguments:
819 * eax  system call number
820 * ebx  arg1
821 * ecx  arg2
822 * edx  arg3
823 * esi  arg4
824 * edi  arg5
825 * ebp  user stack
826 * 0(%ebp) arg6
827 */
828ENTRY(entry_SYSENTER_32)
829	/*
830	 * On entry-stack with all userspace-regs live - save and
831	 * restore eflags and %eax to use it as scratch-reg for the cr3
832	 * switch.
833	 */
834	pushfl
835	pushl	%eax
836	BUG_IF_WRONG_CR3 no_user_check=1
837	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
838	popl	%eax
839	popfl
840
841	/* Stack empty again, switch to task stack */
842	movl	TSS_entry2task_stack(%esp), %esp
843
844.Lsysenter_past_esp:
845	pushl	$__USER_DS		/* pt_regs->ss */
846	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
847	pushfl				/* pt_regs->flags (except IF = 0) */
848	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
849	pushl	$__USER_CS		/* pt_regs->cs */
850	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
851	pushl	%eax			/* pt_regs->orig_ax */
852	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
853
854	/*
855	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
856	 * and TF ourselves.  To save a few cycles, we can check whether
857	 * either was set instead of doing an unconditional popfq.
858	 * This needs to happen before enabling interrupts so that
859	 * we don't get preempted with NT set.
860	 *
861	 * If TF is set, we will single-step all the way to here -- do_debug
862	 * will ignore all the traps.  (Yes, this is slow, but so is
863	 * single-stepping in general.  This allows us to avoid having
864	 * a more complicated code to handle the case where a user program
865	 * forces us to single-step through the SYSENTER entry code.)
866	 *
867	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
868	 * out-of-line as an optimization: NT is unlikely to be set in the
869	 * majority of the cases and instead of polluting the I$ unnecessarily,
870	 * we're keeping that code behind a branch which will predict as
871	 * not-taken and therefore its instructions won't be fetched.
872	 */
873	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
874	jnz	.Lsysenter_fix_flags
875.Lsysenter_flags_fixed:
876
877	/*
878	 * User mode is traced as though IRQs are on, and SYSENTER
879	 * turned them off.
880	 */
881	TRACE_IRQS_OFF
882
883	movl	%esp, %eax
884	call	do_fast_syscall_32
885	/* XEN PV guests always use IRET path */
886	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
887		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
888
889/* Opportunistic SYSEXIT */
890	TRACE_IRQS_ON			/* User mode traces as IRQs on. */
891
892	/*
893	 * Setup entry stack - we keep the pointer in %eax and do the
894	 * switch after almost all user-state is restored.
895	 */
896
897	/* Load entry stack pointer and allocate frame for eflags/eax */
898	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
899	subl	$(2*4), %eax
900
901	/* Copy eflags and eax to entry stack */
902	movl	PT_EFLAGS(%esp), %edi
903	movl	PT_EAX(%esp), %esi
904	movl	%edi, (%eax)
905	movl	%esi, 4(%eax)
906
907	/* Restore user registers and segments */
908	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
909	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
9101:	mov	PT_FS(%esp), %fs
911	PTGS_TO_GS
912
913	popl	%ebx			/* pt_regs->bx */
914	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
915	popl	%esi			/* pt_regs->si */
916	popl	%edi			/* pt_regs->di */
917	popl	%ebp			/* pt_regs->bp */
918
919	/* Switch to entry stack */
920	movl	%eax, %esp
921
922	/* Now ready to switch the cr3 */
923	SWITCH_TO_USER_CR3 scratch_reg=%eax
924
925	/*
926	 * Restore all flags except IF. (We restore IF separately because
927	 * STI gives a one-instruction window in which we won't be interrupted,
928	 * whereas POPF does not.)
929	 */
930	btrl	$X86_EFLAGS_IF_BIT, (%esp)
931	BUG_IF_WRONG_CR3 no_user_check=1
932	popfl
933	popl	%eax
934
935	/*
936	 * Return back to the vDSO, which will pop ecx and edx.
937	 * Don't bother with DS and ES (they already contain __USER_DS).
938	 */
939	sti
940	sysexit
941
942.pushsection .fixup, "ax"
9432:	movl	$0, PT_FS(%esp)
944	jmp	1b
945.popsection
946	_ASM_EXTABLE(1b, 2b)
947	PTGS_TO_GS_EX
948
949.Lsysenter_fix_flags:
950	pushl	$X86_EFLAGS_FIXED
951	popfl
952	jmp	.Lsysenter_flags_fixed
953GLOBAL(__end_SYSENTER_singlestep_region)
954ENDPROC(entry_SYSENTER_32)
955
956/*
957 * 32-bit legacy system call entry.
958 *
959 * 32-bit x86 Linux system calls traditionally used the INT $0x80
960 * instruction.  INT $0x80 lands here.
961 *
962 * This entry point can be used by any 32-bit perform system calls.
963 * Instances of INT $0x80 can be found inline in various programs and
964 * libraries.  It is also used by the vDSO's __kernel_vsyscall
965 * fallback for hardware that doesn't support a faster entry method.
966 * Restarted 32-bit system calls also fall back to INT $0x80
967 * regardless of what instruction was originally used to do the system
968 * call.  (64-bit programs can use INT $0x80 as well, but they can
969 * only run on 64-bit kernels and therefore land in
970 * entry_INT80_compat.)
971 *
972 * This is considered a slow path.  It is not used by most libc
973 * implementations on modern hardware except during process startup.
974 *
975 * Arguments:
976 * eax  system call number
977 * ebx  arg1
978 * ecx  arg2
979 * edx  arg3
980 * esi  arg4
981 * edi  arg5
982 * ebp  arg6
983 */
984ENTRY(entry_INT80_32)
985	ASM_CLAC
986	pushl	%eax			/* pt_regs->orig_ax */
987
988	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
989
990	/*
991	 * User mode is traced as though IRQs are on, and the interrupt gate
992	 * turned them off.
993	 */
994	TRACE_IRQS_OFF
995
996	movl	%esp, %eax
997	call	do_int80_syscall_32
998.Lsyscall_32_done:
999
1000restore_all:
1001	TRACE_IRQS_IRET
1002	SWITCH_TO_ENTRY_STACK
1003.Lrestore_all_notrace:
1004	CHECK_AND_APPLY_ESPFIX
1005.Lrestore_nocheck:
1006	/* Switch back to user CR3 */
1007	SWITCH_TO_USER_CR3 scratch_reg=%eax
1008
1009	BUG_IF_WRONG_CR3
1010
1011	/* Restore user state */
1012	RESTORE_REGS pop=4			# skip orig_eax/error_code
1013.Lirq_return:
1014	/*
1015	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
1016	 * when returning from IPI handler and when returning from
1017	 * scheduler to user-space.
1018	 */
1019	INTERRUPT_RETURN
1020
1021restore_all_kernel:
1022	TRACE_IRQS_IRET
1023	PARANOID_EXIT_TO_KERNEL_MODE
1024	BUG_IF_WRONG_CR3
1025	RESTORE_REGS 4
1026	jmp	.Lirq_return
1027
1028.section .fixup, "ax"
1029ENTRY(iret_exc	)
1030	pushl	$0				# no error code
1031	pushl	$do_iret_error
1032
1033#ifdef CONFIG_DEBUG_ENTRY
1034	/*
1035	 * The stack-frame here is the one that iret faulted on, so its a
1036	 * return-to-user frame. We are on kernel-cr3 because we come here from
1037	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
1038	 * as the checker expects it.
1039	 */
1040	pushl	%eax
1041	SWITCH_TO_USER_CR3 scratch_reg=%eax
1042	popl	%eax
1043#endif
1044
1045	jmp	common_exception
1046.previous
1047	_ASM_EXTABLE(.Lirq_return, iret_exc)
1048ENDPROC(entry_INT80_32)
1049
1050.macro FIXUP_ESPFIX_STACK
1051/*
1052 * Switch back for ESPFIX stack to the normal zerobased stack
1053 *
1054 * We can't call C functions using the ESPFIX stack. This code reads
1055 * the high word of the segment base from the GDT and swiches to the
1056 * normal stack and adjusts ESP with the matching offset.
1057 */
1058#ifdef CONFIG_X86_ESPFIX32
1059	/* fixup the stack */
1060	mov	GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
1061	mov	GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
1062	shl	$16, %eax
1063	addl	%esp, %eax			/* the adjusted stack pointer */
1064	pushl	$__KERNEL_DS
1065	pushl	%eax
1066	lss	(%esp), %esp			/* switch to the normal stack segment */
1067#endif
1068.endm
1069.macro UNWIND_ESPFIX_STACK
1070#ifdef CONFIG_X86_ESPFIX32
1071	movl	%ss, %eax
1072	/* see if on espfix stack */
1073	cmpw	$__ESPFIX_SS, %ax
1074	jne	27f
1075	movl	$__KERNEL_DS, %eax
1076	movl	%eax, %ds
1077	movl	%eax, %es
1078	/* switch to normal stack */
1079	FIXUP_ESPFIX_STACK
108027:
1081#endif
1082.endm
1083
1084/*
1085 * Build the entry stubs with some assembler magic.
1086 * We pack 1 stub into every 8-byte block.
1087 */
1088	.align 8
1089ENTRY(irq_entries_start)
1090    vector=FIRST_EXTERNAL_VECTOR
1091    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
1092	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
1093    vector=vector+1
1094	jmp	common_interrupt
1095	.align	8
1096    .endr
1097END(irq_entries_start)
1098
1099/*
1100 * the CPU automatically disables interrupts when executing an IRQ vector,
1101 * so IRQ-flags tracing has to follow that:
1102 */
1103	.p2align CONFIG_X86_L1_CACHE_SHIFT
1104common_interrupt:
1105	ASM_CLAC
1106	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
1107
1108	SAVE_ALL switch_stacks=1
1109	ENCODE_FRAME_POINTER
1110	TRACE_IRQS_OFF
1111	movl	%esp, %eax
1112	call	do_IRQ
1113	jmp	ret_from_intr
1114ENDPROC(common_interrupt)
1115
1116#define BUILD_INTERRUPT3(name, nr, fn)			\
1117ENTRY(name)						\
1118	ASM_CLAC;					\
1119	pushl	$~(nr);					\
1120	SAVE_ALL switch_stacks=1;			\
1121	ENCODE_FRAME_POINTER;				\
1122	TRACE_IRQS_OFF					\
1123	movl	%esp, %eax;				\
1124	call	fn;					\
1125	jmp	ret_from_intr;				\
1126ENDPROC(name)
1127
1128#define BUILD_INTERRUPT(name, nr)		\
1129	BUILD_INTERRUPT3(name, nr, smp_##name);	\
1130
1131/* The include is where all of the SMP etc. interrupts come from */
1132#include <asm/entry_arch.h>
1133
1134ENTRY(coprocessor_error)
1135	ASM_CLAC
1136	pushl	$0
1137	pushl	$do_coprocessor_error
1138	jmp	common_exception
1139END(coprocessor_error)
1140
1141ENTRY(simd_coprocessor_error)
1142	ASM_CLAC
1143	pushl	$0
1144#ifdef CONFIG_X86_INVD_BUG
1145	/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
1146	ALTERNATIVE "pushl	$do_general_protection",	\
1147		    "pushl	$do_simd_coprocessor_error",	\
1148		    X86_FEATURE_XMM
1149#else
1150	pushl	$do_simd_coprocessor_error
1151#endif
1152	jmp	common_exception
1153END(simd_coprocessor_error)
1154
1155ENTRY(device_not_available)
1156	ASM_CLAC
1157	pushl	$-1				# mark this as an int
1158	pushl	$do_device_not_available
1159	jmp	common_exception
1160END(device_not_available)
1161
1162#ifdef CONFIG_PARAVIRT
1163ENTRY(native_iret)
1164	iret
1165	_ASM_EXTABLE(native_iret, iret_exc)
1166END(native_iret)
1167#endif
1168
1169ENTRY(overflow)
1170	ASM_CLAC
1171	pushl	$0
1172	pushl	$do_overflow
1173	jmp	common_exception
1174END(overflow)
1175
1176ENTRY(bounds)
1177	ASM_CLAC
1178	pushl	$0
1179	pushl	$do_bounds
1180	jmp	common_exception
1181END(bounds)
1182
1183ENTRY(invalid_op)
1184	ASM_CLAC
1185	pushl	$0
1186	pushl	$do_invalid_op
1187	jmp	common_exception
1188END(invalid_op)
1189
1190ENTRY(coprocessor_segment_overrun)
1191	ASM_CLAC
1192	pushl	$0
1193	pushl	$do_coprocessor_segment_overrun
1194	jmp	common_exception
1195END(coprocessor_segment_overrun)
1196
1197ENTRY(invalid_TSS)
1198	ASM_CLAC
1199	pushl	$do_invalid_TSS
1200	jmp	common_exception
1201END(invalid_TSS)
1202
1203ENTRY(segment_not_present)
1204	ASM_CLAC
1205	pushl	$do_segment_not_present
1206	jmp	common_exception
1207END(segment_not_present)
1208
1209ENTRY(stack_segment)
1210	ASM_CLAC
1211	pushl	$do_stack_segment
1212	jmp	common_exception
1213END(stack_segment)
1214
1215ENTRY(alignment_check)
1216	ASM_CLAC
1217	pushl	$do_alignment_check
1218	jmp	common_exception
1219END(alignment_check)
1220
1221ENTRY(divide_error)
1222	ASM_CLAC
1223	pushl	$0				# no error code
1224	pushl	$do_divide_error
1225	jmp	common_exception
1226END(divide_error)
1227
1228#ifdef CONFIG_X86_MCE
1229ENTRY(machine_check)
1230	ASM_CLAC
1231	pushl	$0
1232	pushl	machine_check_vector
1233	jmp	common_exception
1234END(machine_check)
1235#endif
1236
1237ENTRY(spurious_interrupt_bug)
1238	ASM_CLAC
1239	pushl	$0
1240	pushl	$do_spurious_interrupt_bug
1241	jmp	common_exception
1242END(spurious_interrupt_bug)
1243
1244#ifdef CONFIG_XEN
1245ENTRY(xen_hypervisor_callback)
1246	pushl	$-1				/* orig_ax = -1 => not a system call */
1247	SAVE_ALL
1248	ENCODE_FRAME_POINTER
1249	TRACE_IRQS_OFF
1250
1251	/*
1252	 * Check to see if we got the event in the critical
1253	 * region in xen_iret_direct, after we've reenabled
1254	 * events and checked for pending events.  This simulates
1255	 * iret instruction's behaviour where it delivers a
1256	 * pending interrupt when enabling interrupts:
1257	 */
1258	movl	PT_EIP(%esp), %eax
1259	cmpl	$xen_iret_start_crit, %eax
1260	jb	1f
1261	cmpl	$xen_iret_end_crit, %eax
1262	jae	1f
1263
1264	jmp	xen_iret_crit_fixup
1265
1266ENTRY(xen_do_upcall)
12671:	mov	%esp, %eax
1268	call	xen_evtchn_do_upcall
1269#ifndef CONFIG_PREEMPT
1270	call	xen_maybe_preempt_hcall
1271#endif
1272	jmp	ret_from_intr
1273ENDPROC(xen_hypervisor_callback)
1274
1275/*
1276 * Hypervisor uses this for application faults while it executes.
1277 * We get here for two reasons:
1278 *  1. Fault while reloading DS, ES, FS or GS
1279 *  2. Fault while executing IRET
1280 * Category 1 we fix up by reattempting the load, and zeroing the segment
1281 * register if the load fails.
1282 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
1283 * normal Linux return path in this case because if we use the IRET hypercall
1284 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1285 * We distinguish between categories by maintaining a status value in EAX.
1286 */
1287ENTRY(xen_failsafe_callback)
1288	pushl	%eax
1289	movl	$1, %eax
12901:	mov	4(%esp), %ds
12912:	mov	8(%esp), %es
12923:	mov	12(%esp), %fs
12934:	mov	16(%esp), %gs
1294	/* EAX == 0 => Category 1 (Bad segment)
1295	   EAX != 0 => Category 2 (Bad IRET) */
1296	testl	%eax, %eax
1297	popl	%eax
1298	lea	16(%esp), %esp
1299	jz	5f
1300	jmp	iret_exc
13015:	pushl	$-1				/* orig_ax = -1 => not a system call */
1302	SAVE_ALL
1303	ENCODE_FRAME_POINTER
1304	jmp	ret_from_exception
1305
1306.section .fixup, "ax"
13076:	xorl	%eax, %eax
1308	movl	%eax, 4(%esp)
1309	jmp	1b
13107:	xorl	%eax, %eax
1311	movl	%eax, 8(%esp)
1312	jmp	2b
13138:	xorl	%eax, %eax
1314	movl	%eax, 12(%esp)
1315	jmp	3b
13169:	xorl	%eax, %eax
1317	movl	%eax, 16(%esp)
1318	jmp	4b
1319.previous
1320	_ASM_EXTABLE(1b, 6b)
1321	_ASM_EXTABLE(2b, 7b)
1322	_ASM_EXTABLE(3b, 8b)
1323	_ASM_EXTABLE(4b, 9b)
1324ENDPROC(xen_failsafe_callback)
1325
1326BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1327		 xen_evtchn_do_upcall)
1328
1329#endif /* CONFIG_XEN */
1330
1331#if IS_ENABLED(CONFIG_HYPERV)
1332
1333BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1334		 hyperv_vector_handler)
1335
1336BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
1337		 hyperv_reenlightenment_intr)
1338
1339BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
1340		 hv_stimer0_vector_handler)
1341
1342#endif /* CONFIG_HYPERV */
1343
1344ENTRY(page_fault)
1345	ASM_CLAC
1346	pushl	$do_page_fault
1347	ALIGN
1348	jmp common_exception
1349END(page_fault)
1350
1351common_exception:
1352	/* the function address is in %gs's slot on the stack */
1353	pushl	%fs
1354	pushl	%es
1355	pushl	%ds
1356	pushl	%eax
1357	movl	$(__USER_DS), %eax
1358	movl	%eax, %ds
1359	movl	%eax, %es
1360	movl	$(__KERNEL_PERCPU), %eax
1361	movl	%eax, %fs
1362	pushl	%ebp
1363	pushl	%edi
1364	pushl	%esi
1365	pushl	%edx
1366	pushl	%ecx
1367	pushl	%ebx
1368	SWITCH_TO_KERNEL_STACK
1369	ENCODE_FRAME_POINTER
1370	cld
1371	UNWIND_ESPFIX_STACK
1372	GS_TO_REG %ecx
1373	movl	PT_GS(%esp), %edi		# get the function address
1374	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
1375	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1376	REG_TO_PTGS %ecx
1377	SET_KERNEL_GS %ecx
1378	TRACE_IRQS_OFF
1379	movl	%esp, %eax			# pt_regs pointer
1380	CALL_NOSPEC %edi
1381	jmp	ret_from_exception
1382END(common_exception)
1383
1384ENTRY(debug)
1385	/*
1386	 * Entry from sysenter is now handled in common_exception
1387	 */
1388	ASM_CLAC
1389	pushl	$-1				# mark this as an int
1390	pushl	$do_debug
1391	jmp	common_exception
1392END(debug)
1393
1394/*
1395 * NMI is doubly nasty.  It can happen on the first instruction of
1396 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1397 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1398 * switched stacks.  We handle both conditions by simply checking whether we
1399 * interrupted kernel code running on the SYSENTER stack.
1400 */
1401ENTRY(nmi)
1402	ASM_CLAC
1403
1404#ifdef CONFIG_X86_ESPFIX32
1405	pushl	%eax
1406	movl	%ss, %eax
1407	cmpw	$__ESPFIX_SS, %ax
1408	popl	%eax
1409	je	.Lnmi_espfix_stack
1410#endif
1411
1412	pushl	%eax				# pt_regs->orig_ax
1413	SAVE_ALL_NMI cr3_reg=%edi
1414	ENCODE_FRAME_POINTER
1415	xorl	%edx, %edx			# zero error code
1416	movl	%esp, %eax			# pt_regs pointer
1417
1418	/* Are we currently on the SYSENTER stack? */
1419	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1420	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1421	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
1422	cmpl	$SIZEOF_entry_stack, %ecx
1423	jb	.Lnmi_from_sysenter_stack
1424
1425	/* Not on SYSENTER stack. */
1426	call	do_nmi
1427	jmp	.Lnmi_return
1428
1429.Lnmi_from_sysenter_stack:
1430	/*
1431	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1432	 * is using the thread stack right now, so it's safe for us to use it.
1433	 */
1434	movl	%esp, %ebx
1435	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
1436	call	do_nmi
1437	movl	%ebx, %esp
1438
1439.Lnmi_return:
1440	CHECK_AND_APPLY_ESPFIX
1441	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1442	jmp	.Lirq_return
1443
1444#ifdef CONFIG_X86_ESPFIX32
1445.Lnmi_espfix_stack:
1446	/*
1447	 * create the pointer to lss back
1448	 */
1449	pushl	%ss
1450	pushl	%esp
1451	addl	$4, (%esp)
1452	/* copy the iret frame of 12 bytes */
1453	.rept 3
1454	pushl	16(%esp)
1455	.endr
1456	pushl	%eax
1457	SAVE_ALL_NMI cr3_reg=%edi
1458	ENCODE_FRAME_POINTER
1459	FIXUP_ESPFIX_STACK			# %eax == %esp
1460	xorl	%edx, %edx			# zero error code
1461	call	do_nmi
1462	RESTORE_ALL_NMI cr3_reg=%edi
1463	lss	12+4(%esp), %esp		# back to espfix stack
1464	jmp	.Lirq_return
1465#endif
1466END(nmi)
1467
1468ENTRY(int3)
1469	ASM_CLAC
1470	pushl	$-1				# mark this as an int
1471
1472	SAVE_ALL switch_stacks=1
1473	ENCODE_FRAME_POINTER
1474	TRACE_IRQS_OFF
1475	xorl	%edx, %edx			# zero error code
1476	movl	%esp, %eax			# pt_regs pointer
1477	call	do_int3
1478	jmp	ret_from_exception
1479END(int3)
1480
1481ENTRY(general_protection)
1482	pushl	$do_general_protection
1483	jmp	common_exception
1484END(general_protection)
1485
1486#ifdef CONFIG_KVM_GUEST
1487ENTRY(async_page_fault)
1488	ASM_CLAC
1489	pushl	$do_async_page_fault
1490	jmp	common_exception
1491END(async_page_fault)
1492#endif
1493
1494ENTRY(rewind_stack_do_exit)
1495	/* Prevent any naive code from trying to unwind to our caller. */
1496	xorl	%ebp, %ebp
1497
1498	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
1499	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1500
1501	call	do_exit
15021:	jmp 1b
1503END(rewind_stack_do_exit)
1504