1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7
8 /*
9 * This header contains the structure definitions and constants used
10 * by file system objects that can be retrieved using
11 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
12 * is needed to describe a leaf node's key or item contents.
13 */
14
15 /* holds pointers to all of the tree roots */
16 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
17
18 /* stores information about which extents are in use, and reference counts */
19 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
20
21 /*
22 * chunk tree stores translations from logical -> physical block numbering
23 * the super block points to the chunk tree
24 */
25 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
26
27 /*
28 * stores information about which areas of a given device are in use.
29 * one per device. The tree of tree roots points to the device tree
30 */
31 #define BTRFS_DEV_TREE_OBJECTID 4ULL
32
33 /* one per subvolume, storing files and directories */
34 #define BTRFS_FS_TREE_OBJECTID 5ULL
35
36 /* directory objectid inside the root tree */
37 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
38
39 /* holds checksums of all the data extents */
40 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
41
42 /* holds quota configuration and tracking */
43 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
44
45 /* for storing items that use the BTRFS_UUID_KEY* types */
46 #define BTRFS_UUID_TREE_OBJECTID 9ULL
47
48 /* tracks free space in block groups. */
49 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
50
51 /* device stats in the device tree */
52 #define BTRFS_DEV_STATS_OBJECTID 0ULL
53
54 /* for storing balance parameters in the root tree */
55 #define BTRFS_BALANCE_OBJECTID -4ULL
56
57 /* orhpan objectid for tracking unlinked/truncated files */
58 #define BTRFS_ORPHAN_OBJECTID -5ULL
59
60 /* does write ahead logging to speed up fsyncs */
61 #define BTRFS_TREE_LOG_OBJECTID -6ULL
62 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
63
64 /* for space balancing */
65 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
66 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
67
68 /*
69 * extent checksums all have this objectid
70 * this allows them to share the logging tree
71 * for fsyncs
72 */
73 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
74
75 /* For storing free space cache */
76 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
77
78 /*
79 * The inode number assigned to the special inode for storing
80 * free ino cache
81 */
82 #define BTRFS_FREE_INO_OBJECTID -12ULL
83
84 /* dummy objectid represents multiple objectids */
85 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
86
87 /*
88 * All files have objectids in this range.
89 */
90 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
91 #define BTRFS_LAST_FREE_OBJECTID -256ULL
92 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
93
94
95 /*
96 * the device items go into the chunk tree. The key is in the form
97 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
98 */
99 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
100
101 #define BTRFS_BTREE_INODE_OBJECTID 1
102
103 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
104
105 #define BTRFS_DEV_REPLACE_DEVID 0ULL
106
107 /*
108 * inode items have the data typically returned from stat and store other
109 * info about object characteristics. There is one for every file and dir in
110 * the FS
111 */
112 #define BTRFS_INODE_ITEM_KEY 1
113 #define BTRFS_INODE_REF_KEY 12
114 #define BTRFS_INODE_EXTREF_KEY 13
115 #define BTRFS_XATTR_ITEM_KEY 24
116 #define BTRFS_ORPHAN_ITEM_KEY 48
117 /* reserve 2-15 close to the inode for later flexibility */
118
119 /*
120 * dir items are the name -> inode pointers in a directory. There is one
121 * for every name in a directory.
122 */
123 #define BTRFS_DIR_LOG_ITEM_KEY 60
124 #define BTRFS_DIR_LOG_INDEX_KEY 72
125 #define BTRFS_DIR_ITEM_KEY 84
126 #define BTRFS_DIR_INDEX_KEY 96
127 /*
128 * extent data is for file data
129 */
130 #define BTRFS_EXTENT_DATA_KEY 108
131
132 /*
133 * extent csums are stored in a separate tree and hold csums for
134 * an entire extent on disk.
135 */
136 #define BTRFS_EXTENT_CSUM_KEY 128
137
138 /*
139 * root items point to tree roots. They are typically in the root
140 * tree used by the super block to find all the other trees
141 */
142 #define BTRFS_ROOT_ITEM_KEY 132
143
144 /*
145 * root backrefs tie subvols and snapshots to the directory entries that
146 * reference them
147 */
148 #define BTRFS_ROOT_BACKREF_KEY 144
149
150 /*
151 * root refs make a fast index for listing all of the snapshots and
152 * subvolumes referenced by a given root. They point directly to the
153 * directory item in the root that references the subvol
154 */
155 #define BTRFS_ROOT_REF_KEY 156
156
157 /*
158 * extent items are in the extent map tree. These record which blocks
159 * are used, and how many references there are to each block
160 */
161 #define BTRFS_EXTENT_ITEM_KEY 168
162
163 /*
164 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
165 * the length, so we save the level in key->offset instead of the length.
166 */
167 #define BTRFS_METADATA_ITEM_KEY 169
168
169 #define BTRFS_TREE_BLOCK_REF_KEY 176
170
171 #define BTRFS_EXTENT_DATA_REF_KEY 178
172
173 #define BTRFS_EXTENT_REF_V0_KEY 180
174
175 #define BTRFS_SHARED_BLOCK_REF_KEY 182
176
177 #define BTRFS_SHARED_DATA_REF_KEY 184
178
179 /*
180 * block groups give us hints into the extent allocation trees. Which
181 * blocks are free etc etc
182 */
183 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
184
185 /*
186 * Every block group is represented in the free space tree by a free space info
187 * item, which stores some accounting information. It is keyed on
188 * (block_group_start, FREE_SPACE_INFO, block_group_length).
189 */
190 #define BTRFS_FREE_SPACE_INFO_KEY 198
191
192 /*
193 * A free space extent tracks an extent of space that is free in a block group.
194 * It is keyed on (start, FREE_SPACE_EXTENT, length).
195 */
196 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
197
198 /*
199 * When a block group becomes very fragmented, we convert it to use bitmaps
200 * instead of extents. A free space bitmap is keyed on
201 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
202 * (length / sectorsize) bits.
203 */
204 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
205
206 #define BTRFS_DEV_EXTENT_KEY 204
207 #define BTRFS_DEV_ITEM_KEY 216
208 #define BTRFS_CHUNK_ITEM_KEY 228
209
210 /*
211 * Records the overall state of the qgroups.
212 * There's only one instance of this key present,
213 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
214 */
215 #define BTRFS_QGROUP_STATUS_KEY 240
216 /*
217 * Records the currently used space of the qgroup.
218 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
219 */
220 #define BTRFS_QGROUP_INFO_KEY 242
221 /*
222 * Contains the user configured limits for the qgroup.
223 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
224 */
225 #define BTRFS_QGROUP_LIMIT_KEY 244
226 /*
227 * Records the child-parent relationship of qgroups. For
228 * each relation, 2 keys are present:
229 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
230 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
231 */
232 #define BTRFS_QGROUP_RELATION_KEY 246
233
234 /*
235 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
236 */
237 #define BTRFS_BALANCE_ITEM_KEY 248
238
239 /*
240 * The key type for tree items that are stored persistently, but do not need to
241 * exist for extended period of time. The items can exist in any tree.
242 *
243 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
244 *
245 * Existing items:
246 *
247 * - balance status item
248 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
249 */
250 #define BTRFS_TEMPORARY_ITEM_KEY 248
251
252 /*
253 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
254 */
255 #define BTRFS_DEV_STATS_KEY 249
256
257 /*
258 * The key type for tree items that are stored persistently and usually exist
259 * for a long period, eg. filesystem lifetime. The item kinds can be status
260 * information, stats or preference values. The item can exist in any tree.
261 *
262 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
263 *
264 * Existing items:
265 *
266 * - device statistics, store IO stats in the device tree, one key for all
267 * stats
268 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
269 */
270 #define BTRFS_PERSISTENT_ITEM_KEY 249
271
272 /*
273 * Persistantly stores the device replace state in the device tree.
274 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
275 */
276 #define BTRFS_DEV_REPLACE_KEY 250
277
278 /*
279 * Stores items that allow to quickly map UUIDs to something else.
280 * These items are part of the filesystem UUID tree.
281 * The key is built like this:
282 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
283 */
284 #if BTRFS_UUID_SIZE != 16
285 #error "UUID items require BTRFS_UUID_SIZE == 16!"
286 #endif
287 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
288 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
289 * received subvols */
290
291 /*
292 * string items are for debugging. They just store a short string of
293 * data in the FS
294 */
295 #define BTRFS_STRING_ITEM_KEY 253
296
297
298
299 /* 32 bytes in various csum fields */
300 #define BTRFS_CSUM_SIZE 32
301
302 /* csum types */
303 enum btrfs_csum_type {
304 BTRFS_CSUM_TYPE_CRC32 = 0,
305 };
306
307 /*
308 * flags definitions for directory entry item type
309 *
310 * Used by:
311 * struct btrfs_dir_item.type
312 *
313 * Values 0..7 must match common file type values in fs_types.h.
314 */
315 #define BTRFS_FT_UNKNOWN 0
316 #define BTRFS_FT_REG_FILE 1
317 #define BTRFS_FT_DIR 2
318 #define BTRFS_FT_CHRDEV 3
319 #define BTRFS_FT_BLKDEV 4
320 #define BTRFS_FT_FIFO 5
321 #define BTRFS_FT_SOCK 6
322 #define BTRFS_FT_SYMLINK 7
323 #define BTRFS_FT_XATTR 8
324 #define BTRFS_FT_MAX 9
325
326 /*
327 * The key defines the order in the tree, and so it also defines (optimal)
328 * block layout.
329 *
330 * objectid corresponds to the inode number.
331 *
332 * type tells us things about the object, and is a kind of stream selector.
333 * so for a given inode, keys with type of 1 might refer to the inode data,
334 * type of 2 may point to file data in the btree and type == 3 may point to
335 * extents.
336 *
337 * offset is the starting byte offset for this key in the stream.
338 *
339 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
340 * in cpu native order. Otherwise they are identical and their sizes
341 * should be the same (ie both packed)
342 */
343 struct btrfs_disk_key {
344 __le64 objectid;
345 __u8 type;
346 __le64 offset;
347 } __attribute__ ((__packed__));
348
349 struct btrfs_key {
350 __u64 objectid;
351 __u8 type;
352 __u64 offset;
353 } __attribute__ ((__packed__));
354
355 struct btrfs_dev_item {
356 /* the internal btrfs device id */
357 __le64 devid;
358
359 /* size of the device */
360 __le64 total_bytes;
361
362 /* bytes used */
363 __le64 bytes_used;
364
365 /* optimal io alignment for this device */
366 __le32 io_align;
367
368 /* optimal io width for this device */
369 __le32 io_width;
370
371 /* minimal io size for this device */
372 __le32 sector_size;
373
374 /* type and info about this device */
375 __le64 type;
376
377 /* expected generation for this device */
378 __le64 generation;
379
380 /*
381 * starting byte of this partition on the device,
382 * to allow for stripe alignment in the future
383 */
384 __le64 start_offset;
385
386 /* grouping information for allocation decisions */
387 __le32 dev_group;
388
389 /* seek speed 0-100 where 100 is fastest */
390 __u8 seek_speed;
391
392 /* bandwidth 0-100 where 100 is fastest */
393 __u8 bandwidth;
394
395 /* btrfs generated uuid for this device */
396 __u8 uuid[BTRFS_UUID_SIZE];
397
398 /* uuid of FS who owns this device */
399 __u8 fsid[BTRFS_UUID_SIZE];
400 } __attribute__ ((__packed__));
401
402 struct btrfs_stripe {
403 __le64 devid;
404 __le64 offset;
405 __u8 dev_uuid[BTRFS_UUID_SIZE];
406 } __attribute__ ((__packed__));
407
408 struct btrfs_chunk {
409 /* size of this chunk in bytes */
410 __le64 length;
411
412 /* objectid of the root referencing this chunk */
413 __le64 owner;
414
415 __le64 stripe_len;
416 __le64 type;
417
418 /* optimal io alignment for this chunk */
419 __le32 io_align;
420
421 /* optimal io width for this chunk */
422 __le32 io_width;
423
424 /* minimal io size for this chunk */
425 __le32 sector_size;
426
427 /* 2^16 stripes is quite a lot, a second limit is the size of a single
428 * item in the btree
429 */
430 __le16 num_stripes;
431
432 /* sub stripes only matter for raid10 */
433 __le16 sub_stripes;
434 struct btrfs_stripe stripe;
435 /* additional stripes go here */
436 } __attribute__ ((__packed__));
437
438 #define BTRFS_FREE_SPACE_EXTENT 1
439 #define BTRFS_FREE_SPACE_BITMAP 2
440
441 struct btrfs_free_space_entry {
442 __le64 offset;
443 __le64 bytes;
444 __u8 type;
445 } __attribute__ ((__packed__));
446
447 struct btrfs_free_space_header {
448 struct btrfs_disk_key location;
449 __le64 generation;
450 __le64 num_entries;
451 __le64 num_bitmaps;
452 } __attribute__ ((__packed__));
453
454 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
455 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
456
457 /* Super block flags */
458 /* Errors detected */
459 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
460
461 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
462 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
463 #define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
464 #define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
465 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
466
467
468 /*
469 * items in the extent btree are used to record the objectid of the
470 * owner of the block and the number of references
471 */
472
473 struct btrfs_extent_item {
474 __le64 refs;
475 __le64 generation;
476 __le64 flags;
477 } __attribute__ ((__packed__));
478
479 struct btrfs_extent_item_v0 {
480 __le32 refs;
481 } __attribute__ ((__packed__));
482
483
484 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
485 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
486
487 /* following flags only apply to tree blocks */
488
489 /* use full backrefs for extent pointers in the block */
490 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
491
492 /*
493 * this flag is only used internally by scrub and may be changed at any time
494 * it is only declared here to avoid collisions
495 */
496 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
497
498 struct btrfs_tree_block_info {
499 struct btrfs_disk_key key;
500 __u8 level;
501 } __attribute__ ((__packed__));
502
503 struct btrfs_extent_data_ref {
504 __le64 root;
505 __le64 objectid;
506 __le64 offset;
507 __le32 count;
508 } __attribute__ ((__packed__));
509
510 struct btrfs_shared_data_ref {
511 __le32 count;
512 } __attribute__ ((__packed__));
513
514 struct btrfs_extent_inline_ref {
515 __u8 type;
516 __le64 offset;
517 } __attribute__ ((__packed__));
518
519 /* old style backrefs item */
520 struct btrfs_extent_ref_v0 {
521 __le64 root;
522 __le64 generation;
523 __le64 objectid;
524 __le32 count;
525 } __attribute__ ((__packed__));
526
527
528 /* dev extents record free space on individual devices. The owner
529 * field points back to the chunk allocation mapping tree that allocated
530 * the extent. The chunk tree uuid field is a way to double check the owner
531 */
532 struct btrfs_dev_extent {
533 __le64 chunk_tree;
534 __le64 chunk_objectid;
535 __le64 chunk_offset;
536 __le64 length;
537 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
538 } __attribute__ ((__packed__));
539
540 struct btrfs_inode_ref {
541 __le64 index;
542 __le16 name_len;
543 /* name goes here */
544 } __attribute__ ((__packed__));
545
546 struct btrfs_inode_extref {
547 __le64 parent_objectid;
548 __le64 index;
549 __le16 name_len;
550 __u8 name[0];
551 /* name goes here */
552 } __attribute__ ((__packed__));
553
554 struct btrfs_timespec {
555 __le64 sec;
556 __le32 nsec;
557 } __attribute__ ((__packed__));
558
559 struct btrfs_inode_item {
560 /* nfs style generation number */
561 __le64 generation;
562 /* transid that last touched this inode */
563 __le64 transid;
564 __le64 size;
565 __le64 nbytes;
566 __le64 block_group;
567 __le32 nlink;
568 __le32 uid;
569 __le32 gid;
570 __le32 mode;
571 __le64 rdev;
572 __le64 flags;
573
574 /* modification sequence number for NFS */
575 __le64 sequence;
576
577 /*
578 * a little future expansion, for more than this we can
579 * just grow the inode item and version it
580 */
581 __le64 reserved[4];
582 struct btrfs_timespec atime;
583 struct btrfs_timespec ctime;
584 struct btrfs_timespec mtime;
585 struct btrfs_timespec otime;
586 } __attribute__ ((__packed__));
587
588 struct btrfs_dir_log_item {
589 __le64 end;
590 } __attribute__ ((__packed__));
591
592 struct btrfs_dir_item {
593 struct btrfs_disk_key location;
594 __le64 transid;
595 __le16 data_len;
596 __le16 name_len;
597 __u8 type;
598 } __attribute__ ((__packed__));
599
600 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
601
602 /*
603 * Internal in-memory flag that a subvolume has been marked for deletion but
604 * still visible as a directory
605 */
606 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
607
608 struct btrfs_root_item {
609 struct btrfs_inode_item inode;
610 __le64 generation;
611 __le64 root_dirid;
612 __le64 bytenr;
613 __le64 byte_limit;
614 __le64 bytes_used;
615 __le64 last_snapshot;
616 __le64 flags;
617 __le32 refs;
618 struct btrfs_disk_key drop_progress;
619 __u8 drop_level;
620 __u8 level;
621
622 /*
623 * The following fields appear after subvol_uuids+subvol_times
624 * were introduced.
625 */
626
627 /*
628 * This generation number is used to test if the new fields are valid
629 * and up to date while reading the root item. Every time the root item
630 * is written out, the "generation" field is copied into this field. If
631 * anyone ever mounted the fs with an older kernel, we will have
632 * mismatching generation values here and thus must invalidate the
633 * new fields. See btrfs_update_root and btrfs_find_last_root for
634 * details.
635 * the offset of generation_v2 is also used as the start for the memset
636 * when invalidating the fields.
637 */
638 __le64 generation_v2;
639 __u8 uuid[BTRFS_UUID_SIZE];
640 __u8 parent_uuid[BTRFS_UUID_SIZE];
641 __u8 received_uuid[BTRFS_UUID_SIZE];
642 __le64 ctransid; /* updated when an inode changes */
643 __le64 otransid; /* trans when created */
644 __le64 stransid; /* trans when sent. non-zero for received subvol */
645 __le64 rtransid; /* trans when received. non-zero for received subvol */
646 struct btrfs_timespec ctime;
647 struct btrfs_timespec otime;
648 struct btrfs_timespec stime;
649 struct btrfs_timespec rtime;
650 __le64 reserved[8]; /* for future */
651 } __attribute__ ((__packed__));
652
653 /*
654 * this is used for both forward and backward root refs
655 */
656 struct btrfs_root_ref {
657 __le64 dirid;
658 __le64 sequence;
659 __le16 name_len;
660 } __attribute__ ((__packed__));
661
662 struct btrfs_disk_balance_args {
663 /*
664 * profiles to operate on, single is denoted by
665 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
666 */
667 __le64 profiles;
668
669 /*
670 * usage filter
671 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
672 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
673 */
674 union {
675 __le64 usage;
676 struct {
677 __le32 usage_min;
678 __le32 usage_max;
679 };
680 };
681
682 /* devid filter */
683 __le64 devid;
684
685 /* devid subset filter [pstart..pend) */
686 __le64 pstart;
687 __le64 pend;
688
689 /* btrfs virtual address space subset filter [vstart..vend) */
690 __le64 vstart;
691 __le64 vend;
692
693 /*
694 * profile to convert to, single is denoted by
695 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
696 */
697 __le64 target;
698
699 /* BTRFS_BALANCE_ARGS_* */
700 __le64 flags;
701
702 /*
703 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
704 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
705 * and maximum
706 */
707 union {
708 __le64 limit;
709 struct {
710 __le32 limit_min;
711 __le32 limit_max;
712 };
713 };
714
715 /*
716 * Process chunks that cross stripes_min..stripes_max devices,
717 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
718 */
719 __le32 stripes_min;
720 __le32 stripes_max;
721
722 __le64 unused[6];
723 } __attribute__ ((__packed__));
724
725 /*
726 * store balance parameters to disk so that balance can be properly
727 * resumed after crash or unmount
728 */
729 struct btrfs_balance_item {
730 /* BTRFS_BALANCE_* */
731 __le64 flags;
732
733 struct btrfs_disk_balance_args data;
734 struct btrfs_disk_balance_args meta;
735 struct btrfs_disk_balance_args sys;
736
737 __le64 unused[4];
738 } __attribute__ ((__packed__));
739
740 #define BTRFS_FILE_EXTENT_INLINE 0
741 #define BTRFS_FILE_EXTENT_REG 1
742 #define BTRFS_FILE_EXTENT_PREALLOC 2
743 #define BTRFS_FILE_EXTENT_TYPES 2
744
745 struct btrfs_file_extent_item {
746 /*
747 * transaction id that created this extent
748 */
749 __le64 generation;
750 /*
751 * max number of bytes to hold this extent in ram
752 * when we split a compressed extent we can't know how big
753 * each of the resulting pieces will be. So, this is
754 * an upper limit on the size of the extent in ram instead of
755 * an exact limit.
756 */
757 __le64 ram_bytes;
758
759 /*
760 * 32 bits for the various ways we might encode the data,
761 * including compression and encryption. If any of these
762 * are set to something a given disk format doesn't understand
763 * it is treated like an incompat flag for reading and writing,
764 * but not for stat.
765 */
766 __u8 compression;
767 __u8 encryption;
768 __le16 other_encoding; /* spare for later use */
769
770 /* are we inline data or a real extent? */
771 __u8 type;
772
773 /*
774 * disk space consumed by the extent, checksum blocks are included
775 * in these numbers
776 *
777 * At this offset in the structure, the inline extent data start.
778 */
779 __le64 disk_bytenr;
780 __le64 disk_num_bytes;
781 /*
782 * the logical offset in file blocks (no csums)
783 * this extent record is for. This allows a file extent to point
784 * into the middle of an existing extent on disk, sharing it
785 * between two snapshots (useful if some bytes in the middle of the
786 * extent have changed
787 */
788 __le64 offset;
789 /*
790 * the logical number of file blocks (no csums included). This
791 * always reflects the size uncompressed and without encoding.
792 */
793 __le64 num_bytes;
794
795 } __attribute__ ((__packed__));
796
797 struct btrfs_csum_item {
798 __u8 csum;
799 } __attribute__ ((__packed__));
800
801 struct btrfs_dev_stats_item {
802 /*
803 * grow this item struct at the end for future enhancements and keep
804 * the existing values unchanged
805 */
806 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
807 } __attribute__ ((__packed__));
808
809 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
810 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
811
812 struct btrfs_dev_replace_item {
813 /*
814 * grow this item struct at the end for future enhancements and keep
815 * the existing values unchanged
816 */
817 __le64 src_devid;
818 __le64 cursor_left;
819 __le64 cursor_right;
820 __le64 cont_reading_from_srcdev_mode;
821
822 __le64 replace_state;
823 __le64 time_started;
824 __le64 time_stopped;
825 __le64 num_write_errors;
826 __le64 num_uncorrectable_read_errors;
827 } __attribute__ ((__packed__));
828
829 /* different types of block groups (and chunks) */
830 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
831 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
832 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
833 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
834 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
835 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
836 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
837 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
838 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
839 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
840 BTRFS_SPACE_INFO_GLOBAL_RSV)
841
842 enum btrfs_raid_types {
843 BTRFS_RAID_RAID10,
844 BTRFS_RAID_RAID1,
845 BTRFS_RAID_DUP,
846 BTRFS_RAID_RAID0,
847 BTRFS_RAID_SINGLE,
848 BTRFS_RAID_RAID5,
849 BTRFS_RAID_RAID6,
850 BTRFS_NR_RAID_TYPES
851 };
852
853 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
854 BTRFS_BLOCK_GROUP_SYSTEM | \
855 BTRFS_BLOCK_GROUP_METADATA)
856
857 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
858 BTRFS_BLOCK_GROUP_RAID1 | \
859 BTRFS_BLOCK_GROUP_RAID5 | \
860 BTRFS_BLOCK_GROUP_RAID6 | \
861 BTRFS_BLOCK_GROUP_DUP | \
862 BTRFS_BLOCK_GROUP_RAID10)
863 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
864 BTRFS_BLOCK_GROUP_RAID6)
865
866 #define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1)
867
868 /*
869 * We need a bit for restriper to be able to tell when chunks of type
870 * SINGLE are available. This "extended" profile format is used in
871 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
872 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
873 * to avoid remappings between two formats in future.
874 */
875 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
876
877 /*
878 * A fake block group type that is used to communicate global block reserve
879 * size to userspace via the SPACE_INFO ioctl.
880 */
881 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
882
883 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
884 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
885
chunk_to_extended(__u64 flags)886 static inline __u64 chunk_to_extended(__u64 flags)
887 {
888 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
889 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
890
891 return flags;
892 }
extended_to_chunk(__u64 flags)893 static inline __u64 extended_to_chunk(__u64 flags)
894 {
895 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
896 }
897
898 struct btrfs_block_group_item {
899 __le64 used;
900 __le64 chunk_objectid;
901 __le64 flags;
902 } __attribute__ ((__packed__));
903
904 struct btrfs_free_space_info {
905 __le32 extent_count;
906 __le32 flags;
907 } __attribute__ ((__packed__));
908
909 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
910
911 #define BTRFS_QGROUP_LEVEL_SHIFT 48
btrfs_qgroup_level(__u64 qgroupid)912 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
913 {
914 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
915 }
916
917 /*
918 * is subvolume quota turned on?
919 */
920 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
921 /*
922 * RESCAN is set during the initialization phase
923 */
924 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
925 /*
926 * Some qgroup entries are known to be out of date,
927 * either because the configuration has changed in a way that
928 * makes a rescan necessary, or because the fs has been mounted
929 * with a non-qgroup-aware version.
930 * Turning qouta off and on again makes it inconsistent, too.
931 */
932 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
933
934 #define BTRFS_QGROUP_STATUS_VERSION 1
935
936 struct btrfs_qgroup_status_item {
937 __le64 version;
938 /*
939 * the generation is updated during every commit. As older
940 * versions of btrfs are not aware of qgroups, it will be
941 * possible to detect inconsistencies by checking the
942 * generation on mount time
943 */
944 __le64 generation;
945
946 /* flag definitions see above */
947 __le64 flags;
948
949 /*
950 * only used during scanning to record the progress
951 * of the scan. It contains a logical address
952 */
953 __le64 rescan;
954 } __attribute__ ((__packed__));
955
956 struct btrfs_qgroup_info_item {
957 __le64 generation;
958 __le64 rfer;
959 __le64 rfer_cmpr;
960 __le64 excl;
961 __le64 excl_cmpr;
962 } __attribute__ ((__packed__));
963
964 struct btrfs_qgroup_limit_item {
965 /*
966 * only updated when any of the other values change
967 */
968 __le64 flags;
969 __le64 max_rfer;
970 __le64 max_excl;
971 __le64 rsv_rfer;
972 __le64 rsv_excl;
973 } __attribute__ ((__packed__));
974
975 #endif /* _BTRFS_CTREE_H_ */
976