1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4 
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7 #ifdef __KERNEL__
8 #include <linux/stddef.h>
9 #else
10 #include <stddef.h>
11 #endif
12 
13 /*
14  * This header contains the structure definitions and constants used
15  * by file system objects that can be retrieved using
16  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
17  * is needed to describe a leaf node's key or item contents.
18  */
19 
20 /* holds pointers to all of the tree roots */
21 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
22 
23 /* stores information about which extents are in use, and reference counts */
24 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
25 
26 /*
27  * chunk tree stores translations from logical -> physical block numbering
28  * the super block points to the chunk tree
29  */
30 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
31 
32 /*
33  * stores information about which areas of a given device are in use.
34  * one per device.  The tree of tree roots points to the device tree
35  */
36 #define BTRFS_DEV_TREE_OBJECTID 4ULL
37 
38 /* one per subvolume, storing files and directories */
39 #define BTRFS_FS_TREE_OBJECTID 5ULL
40 
41 /* directory objectid inside the root tree */
42 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
43 
44 /* holds checksums of all the data extents */
45 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
46 
47 /* holds quota configuration and tracking */
48 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
49 
50 /* for storing items that use the BTRFS_UUID_KEY* types */
51 #define BTRFS_UUID_TREE_OBJECTID 9ULL
52 
53 /* tracks free space in block groups. */
54 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
55 
56 /* device stats in the device tree */
57 #define BTRFS_DEV_STATS_OBJECTID 0ULL
58 
59 /* for storing balance parameters in the root tree */
60 #define BTRFS_BALANCE_OBJECTID -4ULL
61 
62 /* orhpan objectid for tracking unlinked/truncated files */
63 #define BTRFS_ORPHAN_OBJECTID -5ULL
64 
65 /* does write ahead logging to speed up fsyncs */
66 #define BTRFS_TREE_LOG_OBJECTID -6ULL
67 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
68 
69 /* for space balancing */
70 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
71 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
72 
73 /*
74  * extent checksums all have this objectid
75  * this allows them to share the logging tree
76  * for fsyncs
77  */
78 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
79 
80 /* For storing free space cache */
81 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
82 
83 /*
84  * The inode number assigned to the special inode for storing
85  * free ino cache
86  */
87 #define BTRFS_FREE_INO_OBJECTID -12ULL
88 
89 /* dummy objectid represents multiple objectids */
90 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
91 
92 /*
93  * All files have objectids in this range.
94  */
95 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
96 #define BTRFS_LAST_FREE_OBJECTID -256ULL
97 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
98 
99 
100 /*
101  * the device items go into the chunk tree.  The key is in the form
102  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
103  */
104 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
105 
106 #define BTRFS_BTREE_INODE_OBJECTID 1
107 
108 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
109 
110 #define BTRFS_DEV_REPLACE_DEVID 0ULL
111 
112 /*
113  * inode items have the data typically returned from stat and store other
114  * info about object characteristics.  There is one for every file and dir in
115  * the FS
116  */
117 #define BTRFS_INODE_ITEM_KEY		1
118 #define BTRFS_INODE_REF_KEY		12
119 #define BTRFS_INODE_EXTREF_KEY		13
120 #define BTRFS_XATTR_ITEM_KEY		24
121 #define BTRFS_ORPHAN_ITEM_KEY		48
122 /* reserve 2-15 close to the inode for later flexibility */
123 
124 /*
125  * dir items are the name -> inode pointers in a directory.  There is one
126  * for every name in a directory.
127  */
128 #define BTRFS_DIR_LOG_ITEM_KEY  60
129 #define BTRFS_DIR_LOG_INDEX_KEY 72
130 #define BTRFS_DIR_ITEM_KEY	84
131 #define BTRFS_DIR_INDEX_KEY	96
132 /*
133  * extent data is for file data
134  */
135 #define BTRFS_EXTENT_DATA_KEY	108
136 
137 /*
138  * extent csums are stored in a separate tree and hold csums for
139  * an entire extent on disk.
140  */
141 #define BTRFS_EXTENT_CSUM_KEY	128
142 
143 /*
144  * root items point to tree roots.  They are typically in the root
145  * tree used by the super block to find all the other trees
146  */
147 #define BTRFS_ROOT_ITEM_KEY	132
148 
149 /*
150  * root backrefs tie subvols and snapshots to the directory entries that
151  * reference them
152  */
153 #define BTRFS_ROOT_BACKREF_KEY	144
154 
155 /*
156  * root refs make a fast index for listing all of the snapshots and
157  * subvolumes referenced by a given root.  They point directly to the
158  * directory item in the root that references the subvol
159  */
160 #define BTRFS_ROOT_REF_KEY	156
161 
162 /*
163  * extent items are in the extent map tree.  These record which blocks
164  * are used, and how many references there are to each block
165  */
166 #define BTRFS_EXTENT_ITEM_KEY	168
167 
168 /*
169  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
170  * the length, so we save the level in key->offset instead of the length.
171  */
172 #define BTRFS_METADATA_ITEM_KEY	169
173 
174 #define BTRFS_TREE_BLOCK_REF_KEY	176
175 
176 #define BTRFS_EXTENT_DATA_REF_KEY	178
177 
178 #define BTRFS_EXTENT_REF_V0_KEY		180
179 
180 #define BTRFS_SHARED_BLOCK_REF_KEY	182
181 
182 #define BTRFS_SHARED_DATA_REF_KEY	184
183 
184 /*
185  * block groups give us hints into the extent allocation trees.  Which
186  * blocks are free etc etc
187  */
188 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
189 
190 /*
191  * Every block group is represented in the free space tree by a free space info
192  * item, which stores some accounting information. It is keyed on
193  * (block_group_start, FREE_SPACE_INFO, block_group_length).
194  */
195 #define BTRFS_FREE_SPACE_INFO_KEY 198
196 
197 /*
198  * A free space extent tracks an extent of space that is free in a block group.
199  * It is keyed on (start, FREE_SPACE_EXTENT, length).
200  */
201 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
202 
203 /*
204  * When a block group becomes very fragmented, we convert it to use bitmaps
205  * instead of extents. A free space bitmap is keyed on
206  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
207  * (length / sectorsize) bits.
208  */
209 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
210 
211 #define BTRFS_DEV_EXTENT_KEY	204
212 #define BTRFS_DEV_ITEM_KEY	216
213 #define BTRFS_CHUNK_ITEM_KEY	228
214 
215 /*
216  * Records the overall state of the qgroups.
217  * There's only one instance of this key present,
218  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
219  */
220 #define BTRFS_QGROUP_STATUS_KEY         240
221 /*
222  * Records the currently used space of the qgroup.
223  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
224  */
225 #define BTRFS_QGROUP_INFO_KEY           242
226 /*
227  * Contains the user configured limits for the qgroup.
228  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
229  */
230 #define BTRFS_QGROUP_LIMIT_KEY          244
231 /*
232  * Records the child-parent relationship of qgroups. For
233  * each relation, 2 keys are present:
234  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
235  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
236  */
237 #define BTRFS_QGROUP_RELATION_KEY       246
238 
239 /*
240  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
241  */
242 #define BTRFS_BALANCE_ITEM_KEY	248
243 
244 /*
245  * The key type for tree items that are stored persistently, but do not need to
246  * exist for extended period of time. The items can exist in any tree.
247  *
248  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
249  *
250  * Existing items:
251  *
252  * - balance status item
253  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
254  */
255 #define BTRFS_TEMPORARY_ITEM_KEY	248
256 
257 /*
258  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
259  */
260 #define BTRFS_DEV_STATS_KEY		249
261 
262 /*
263  * The key type for tree items that are stored persistently and usually exist
264  * for a long period, eg. filesystem lifetime. The item kinds can be status
265  * information, stats or preference values. The item can exist in any tree.
266  *
267  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
268  *
269  * Existing items:
270  *
271  * - device statistics, store IO stats in the device tree, one key for all
272  *   stats
273  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
274  */
275 #define BTRFS_PERSISTENT_ITEM_KEY	249
276 
277 /*
278  * Persistantly stores the device replace state in the device tree.
279  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
280  */
281 #define BTRFS_DEV_REPLACE_KEY	250
282 
283 /*
284  * Stores items that allow to quickly map UUIDs to something else.
285  * These items are part of the filesystem UUID tree.
286  * The key is built like this:
287  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
288  */
289 #if BTRFS_UUID_SIZE != 16
290 #error "UUID items require BTRFS_UUID_SIZE == 16!"
291 #endif
292 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
293 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
294 						 * received subvols */
295 
296 /*
297  * string items are for debugging.  They just store a short string of
298  * data in the FS
299  */
300 #define BTRFS_STRING_ITEM_KEY	253
301 
302 
303 
304 /* 32 bytes in various csum fields */
305 #define BTRFS_CSUM_SIZE 32
306 
307 /* csum types */
308 enum btrfs_csum_type {
309 	BTRFS_CSUM_TYPE_CRC32	= 0,
310 	BTRFS_CSUM_TYPE_XXHASH	= 1,
311 	BTRFS_CSUM_TYPE_SHA256	= 2,
312 	BTRFS_CSUM_TYPE_BLAKE2	= 3,
313 };
314 
315 /*
316  * flags definitions for directory entry item type
317  *
318  * Used by:
319  * struct btrfs_dir_item.type
320  *
321  * Values 0..7 must match common file type values in fs_types.h.
322  */
323 #define BTRFS_FT_UNKNOWN	0
324 #define BTRFS_FT_REG_FILE	1
325 #define BTRFS_FT_DIR		2
326 #define BTRFS_FT_CHRDEV		3
327 #define BTRFS_FT_BLKDEV		4
328 #define BTRFS_FT_FIFO		5
329 #define BTRFS_FT_SOCK		6
330 #define BTRFS_FT_SYMLINK	7
331 #define BTRFS_FT_XATTR		8
332 #define BTRFS_FT_MAX		9
333 
334 /*
335  * The key defines the order in the tree, and so it also defines (optimal)
336  * block layout.
337  *
338  * objectid corresponds to the inode number.
339  *
340  * type tells us things about the object, and is a kind of stream selector.
341  * so for a given inode, keys with type of 1 might refer to the inode data,
342  * type of 2 may point to file data in the btree and type == 3 may point to
343  * extents.
344  *
345  * offset is the starting byte offset for this key in the stream.
346  *
347  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
348  * in cpu native order.  Otherwise they are identical and their sizes
349  * should be the same (ie both packed)
350  */
351 struct btrfs_disk_key {
352 	__le64 objectid;
353 	__u8 type;
354 	__le64 offset;
355 } __attribute__ ((__packed__));
356 
357 struct btrfs_key {
358 	__u64 objectid;
359 	__u8 type;
360 	__u64 offset;
361 } __attribute__ ((__packed__));
362 
363 struct btrfs_dev_item {
364 	/* the internal btrfs device id */
365 	__le64 devid;
366 
367 	/* size of the device */
368 	__le64 total_bytes;
369 
370 	/* bytes used */
371 	__le64 bytes_used;
372 
373 	/* optimal io alignment for this device */
374 	__le32 io_align;
375 
376 	/* optimal io width for this device */
377 	__le32 io_width;
378 
379 	/* minimal io size for this device */
380 	__le32 sector_size;
381 
382 	/* type and info about this device */
383 	__le64 type;
384 
385 	/* expected generation for this device */
386 	__le64 generation;
387 
388 	/*
389 	 * starting byte of this partition on the device,
390 	 * to allow for stripe alignment in the future
391 	 */
392 	__le64 start_offset;
393 
394 	/* grouping information for allocation decisions */
395 	__le32 dev_group;
396 
397 	/* seek speed 0-100 where 100 is fastest */
398 	__u8 seek_speed;
399 
400 	/* bandwidth 0-100 where 100 is fastest */
401 	__u8 bandwidth;
402 
403 	/* btrfs generated uuid for this device */
404 	__u8 uuid[BTRFS_UUID_SIZE];
405 
406 	/* uuid of FS who owns this device */
407 	__u8 fsid[BTRFS_UUID_SIZE];
408 } __attribute__ ((__packed__));
409 
410 struct btrfs_stripe {
411 	__le64 devid;
412 	__le64 offset;
413 	__u8 dev_uuid[BTRFS_UUID_SIZE];
414 } __attribute__ ((__packed__));
415 
416 struct btrfs_chunk {
417 	/* size of this chunk in bytes */
418 	__le64 length;
419 
420 	/* objectid of the root referencing this chunk */
421 	__le64 owner;
422 
423 	__le64 stripe_len;
424 	__le64 type;
425 
426 	/* optimal io alignment for this chunk */
427 	__le32 io_align;
428 
429 	/* optimal io width for this chunk */
430 	__le32 io_width;
431 
432 	/* minimal io size for this chunk */
433 	__le32 sector_size;
434 
435 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
436 	 * item in the btree
437 	 */
438 	__le16 num_stripes;
439 
440 	/* sub stripes only matter for raid10 */
441 	__le16 sub_stripes;
442 	struct btrfs_stripe stripe;
443 	/* additional stripes go here */
444 } __attribute__ ((__packed__));
445 
446 #define BTRFS_FREE_SPACE_EXTENT	1
447 #define BTRFS_FREE_SPACE_BITMAP	2
448 
449 struct btrfs_free_space_entry {
450 	__le64 offset;
451 	__le64 bytes;
452 	__u8 type;
453 } __attribute__ ((__packed__));
454 
455 struct btrfs_free_space_header {
456 	struct btrfs_disk_key location;
457 	__le64 generation;
458 	__le64 num_entries;
459 	__le64 num_bitmaps;
460 } __attribute__ ((__packed__));
461 
462 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
463 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
464 
465 /* Super block flags */
466 /* Errors detected */
467 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
468 
469 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
470 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
471 #define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
472 #define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
473 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
474 
475 
476 /*
477  * items in the extent btree are used to record the objectid of the
478  * owner of the block and the number of references
479  */
480 
481 struct btrfs_extent_item {
482 	__le64 refs;
483 	__le64 generation;
484 	__le64 flags;
485 } __attribute__ ((__packed__));
486 
487 struct btrfs_extent_item_v0 {
488 	__le32 refs;
489 } __attribute__ ((__packed__));
490 
491 
492 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
493 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
494 
495 /* following flags only apply to tree blocks */
496 
497 /* use full backrefs for extent pointers in the block */
498 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
499 
500 /*
501  * this flag is only used internally by scrub and may be changed at any time
502  * it is only declared here to avoid collisions
503  */
504 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
505 
506 struct btrfs_tree_block_info {
507 	struct btrfs_disk_key key;
508 	__u8 level;
509 } __attribute__ ((__packed__));
510 
511 struct btrfs_extent_data_ref {
512 	__le64 root;
513 	__le64 objectid;
514 	__le64 offset;
515 	__le32 count;
516 } __attribute__ ((__packed__));
517 
518 struct btrfs_shared_data_ref {
519 	__le32 count;
520 } __attribute__ ((__packed__));
521 
522 struct btrfs_extent_inline_ref {
523 	__u8 type;
524 	__le64 offset;
525 } __attribute__ ((__packed__));
526 
527 /* dev extents record free space on individual devices.  The owner
528  * field points back to the chunk allocation mapping tree that allocated
529  * the extent.  The chunk tree uuid field is a way to double check the owner
530  */
531 struct btrfs_dev_extent {
532 	__le64 chunk_tree;
533 	__le64 chunk_objectid;
534 	__le64 chunk_offset;
535 	__le64 length;
536 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
537 } __attribute__ ((__packed__));
538 
539 struct btrfs_inode_ref {
540 	__le64 index;
541 	__le16 name_len;
542 	/* name goes here */
543 } __attribute__ ((__packed__));
544 
545 struct btrfs_inode_extref {
546 	__le64 parent_objectid;
547 	__le64 index;
548 	__le16 name_len;
549 	__u8   name[0];
550 	/* name goes here */
551 } __attribute__ ((__packed__));
552 
553 struct btrfs_timespec {
554 	__le64 sec;
555 	__le32 nsec;
556 } __attribute__ ((__packed__));
557 
558 struct btrfs_inode_item {
559 	/* nfs style generation number */
560 	__le64 generation;
561 	/* transid that last touched this inode */
562 	__le64 transid;
563 	__le64 size;
564 	__le64 nbytes;
565 	__le64 block_group;
566 	__le32 nlink;
567 	__le32 uid;
568 	__le32 gid;
569 	__le32 mode;
570 	__le64 rdev;
571 	__le64 flags;
572 
573 	/* modification sequence number for NFS */
574 	__le64 sequence;
575 
576 	/*
577 	 * a little future expansion, for more than this we can
578 	 * just grow the inode item and version it
579 	 */
580 	__le64 reserved[4];
581 	struct btrfs_timespec atime;
582 	struct btrfs_timespec ctime;
583 	struct btrfs_timespec mtime;
584 	struct btrfs_timespec otime;
585 } __attribute__ ((__packed__));
586 
587 struct btrfs_dir_log_item {
588 	__le64 end;
589 } __attribute__ ((__packed__));
590 
591 struct btrfs_dir_item {
592 	struct btrfs_disk_key location;
593 	__le64 transid;
594 	__le16 data_len;
595 	__le16 name_len;
596 	__u8 type;
597 } __attribute__ ((__packed__));
598 
599 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
600 
601 /*
602  * Internal in-memory flag that a subvolume has been marked for deletion but
603  * still visible as a directory
604  */
605 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
606 
607 struct btrfs_root_item {
608 	struct btrfs_inode_item inode;
609 	__le64 generation;
610 	__le64 root_dirid;
611 	__le64 bytenr;
612 	__le64 byte_limit;
613 	__le64 bytes_used;
614 	__le64 last_snapshot;
615 	__le64 flags;
616 	__le32 refs;
617 	struct btrfs_disk_key drop_progress;
618 	__u8 drop_level;
619 	__u8 level;
620 
621 	/*
622 	 * The following fields appear after subvol_uuids+subvol_times
623 	 * were introduced.
624 	 */
625 
626 	/*
627 	 * This generation number is used to test if the new fields are valid
628 	 * and up to date while reading the root item. Every time the root item
629 	 * is written out, the "generation" field is copied into this field. If
630 	 * anyone ever mounted the fs with an older kernel, we will have
631 	 * mismatching generation values here and thus must invalidate the
632 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
633 	 * details.
634 	 * the offset of generation_v2 is also used as the start for the memset
635 	 * when invalidating the fields.
636 	 */
637 	__le64 generation_v2;
638 	__u8 uuid[BTRFS_UUID_SIZE];
639 	__u8 parent_uuid[BTRFS_UUID_SIZE];
640 	__u8 received_uuid[BTRFS_UUID_SIZE];
641 	__le64 ctransid; /* updated when an inode changes */
642 	__le64 otransid; /* trans when created */
643 	__le64 stransid; /* trans when sent. non-zero for received subvol */
644 	__le64 rtransid; /* trans when received. non-zero for received subvol */
645 	struct btrfs_timespec ctime;
646 	struct btrfs_timespec otime;
647 	struct btrfs_timespec stime;
648 	struct btrfs_timespec rtime;
649 	__le64 reserved[8]; /* for future */
650 } __attribute__ ((__packed__));
651 
652 /*
653  * Btrfs root item used to be smaller than current size.  The old format ends
654  * at where member generation_v2 is.
655  */
btrfs_legacy_root_item_size(void)656 static inline __u32 btrfs_legacy_root_item_size(void)
657 {
658 	return offsetof(struct btrfs_root_item, generation_v2);
659 }
660 
661 /*
662  * this is used for both forward and backward root refs
663  */
664 struct btrfs_root_ref {
665 	__le64 dirid;
666 	__le64 sequence;
667 	__le16 name_len;
668 } __attribute__ ((__packed__));
669 
670 struct btrfs_disk_balance_args {
671 	/*
672 	 * profiles to operate on, single is denoted by
673 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
674 	 */
675 	__le64 profiles;
676 
677 	/*
678 	 * usage filter
679 	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
680 	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
681 	 */
682 	union {
683 		__le64 usage;
684 		struct {
685 			__le32 usage_min;
686 			__le32 usage_max;
687 		};
688 	};
689 
690 	/* devid filter */
691 	__le64 devid;
692 
693 	/* devid subset filter [pstart..pend) */
694 	__le64 pstart;
695 	__le64 pend;
696 
697 	/* btrfs virtual address space subset filter [vstart..vend) */
698 	__le64 vstart;
699 	__le64 vend;
700 
701 	/*
702 	 * profile to convert to, single is denoted by
703 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
704 	 */
705 	__le64 target;
706 
707 	/* BTRFS_BALANCE_ARGS_* */
708 	__le64 flags;
709 
710 	/*
711 	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
712 	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
713 	 * and maximum
714 	 */
715 	union {
716 		__le64 limit;
717 		struct {
718 			__le32 limit_min;
719 			__le32 limit_max;
720 		};
721 	};
722 
723 	/*
724 	 * Process chunks that cross stripes_min..stripes_max devices,
725 	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
726 	 */
727 	__le32 stripes_min;
728 	__le32 stripes_max;
729 
730 	__le64 unused[6];
731 } __attribute__ ((__packed__));
732 
733 /*
734  * store balance parameters to disk so that balance can be properly
735  * resumed after crash or unmount
736  */
737 struct btrfs_balance_item {
738 	/* BTRFS_BALANCE_* */
739 	__le64 flags;
740 
741 	struct btrfs_disk_balance_args data;
742 	struct btrfs_disk_balance_args meta;
743 	struct btrfs_disk_balance_args sys;
744 
745 	__le64 unused[4];
746 } __attribute__ ((__packed__));
747 
748 enum {
749 	BTRFS_FILE_EXTENT_INLINE   = 0,
750 	BTRFS_FILE_EXTENT_REG      = 1,
751 	BTRFS_FILE_EXTENT_PREALLOC = 2,
752 	BTRFS_NR_FILE_EXTENT_TYPES = 3,
753 };
754 
755 struct btrfs_file_extent_item {
756 	/*
757 	 * transaction id that created this extent
758 	 */
759 	__le64 generation;
760 	/*
761 	 * max number of bytes to hold this extent in ram
762 	 * when we split a compressed extent we can't know how big
763 	 * each of the resulting pieces will be.  So, this is
764 	 * an upper limit on the size of the extent in ram instead of
765 	 * an exact limit.
766 	 */
767 	__le64 ram_bytes;
768 
769 	/*
770 	 * 32 bits for the various ways we might encode the data,
771 	 * including compression and encryption.  If any of these
772 	 * are set to something a given disk format doesn't understand
773 	 * it is treated like an incompat flag for reading and writing,
774 	 * but not for stat.
775 	 */
776 	__u8 compression;
777 	__u8 encryption;
778 	__le16 other_encoding; /* spare for later use */
779 
780 	/* are we inline data or a real extent? */
781 	__u8 type;
782 
783 	/*
784 	 * disk space consumed by the extent, checksum blocks are included
785 	 * in these numbers
786 	 *
787 	 * At this offset in the structure, the inline extent data start.
788 	 */
789 	__le64 disk_bytenr;
790 	__le64 disk_num_bytes;
791 	/*
792 	 * the logical offset in file blocks (no csums)
793 	 * this extent record is for.  This allows a file extent to point
794 	 * into the middle of an existing extent on disk, sharing it
795 	 * between two snapshots (useful if some bytes in the middle of the
796 	 * extent have changed
797 	 */
798 	__le64 offset;
799 	/*
800 	 * the logical number of file blocks (no csums included).  This
801 	 * always reflects the size uncompressed and without encoding.
802 	 */
803 	__le64 num_bytes;
804 
805 } __attribute__ ((__packed__));
806 
807 struct btrfs_csum_item {
808 	__u8 csum;
809 } __attribute__ ((__packed__));
810 
811 struct btrfs_dev_stats_item {
812 	/*
813 	 * grow this item struct at the end for future enhancements and keep
814 	 * the existing values unchanged
815 	 */
816 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
817 } __attribute__ ((__packed__));
818 
819 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
820 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
821 
822 struct btrfs_dev_replace_item {
823 	/*
824 	 * grow this item struct at the end for future enhancements and keep
825 	 * the existing values unchanged
826 	 */
827 	__le64 src_devid;
828 	__le64 cursor_left;
829 	__le64 cursor_right;
830 	__le64 cont_reading_from_srcdev_mode;
831 
832 	__le64 replace_state;
833 	__le64 time_started;
834 	__le64 time_stopped;
835 	__le64 num_write_errors;
836 	__le64 num_uncorrectable_read_errors;
837 } __attribute__ ((__packed__));
838 
839 /* different types of block groups (and chunks) */
840 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
841 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
842 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
843 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
844 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
845 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
846 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
847 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
848 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
849 #define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
850 #define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
851 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
852 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
853 
854 enum btrfs_raid_types {
855 	BTRFS_RAID_RAID10,
856 	BTRFS_RAID_RAID1,
857 	BTRFS_RAID_DUP,
858 	BTRFS_RAID_RAID0,
859 	BTRFS_RAID_SINGLE,
860 	BTRFS_RAID_RAID5,
861 	BTRFS_RAID_RAID6,
862 	BTRFS_RAID_RAID1C3,
863 	BTRFS_RAID_RAID1C4,
864 	BTRFS_NR_RAID_TYPES
865 };
866 
867 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
868 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
869 					 BTRFS_BLOCK_GROUP_METADATA)
870 
871 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
872 					 BTRFS_BLOCK_GROUP_RAID1 |   \
873 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
874 					 BTRFS_BLOCK_GROUP_RAID1C4 | \
875 					 BTRFS_BLOCK_GROUP_RAID5 |   \
876 					 BTRFS_BLOCK_GROUP_RAID6 |   \
877 					 BTRFS_BLOCK_GROUP_DUP |     \
878 					 BTRFS_BLOCK_GROUP_RAID10)
879 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
880 					 BTRFS_BLOCK_GROUP_RAID6)
881 
882 #define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
883 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
884 					 BTRFS_BLOCK_GROUP_RAID1C4)
885 
886 /*
887  * We need a bit for restriper to be able to tell when chunks of type
888  * SINGLE are available.  This "extended" profile format is used in
889  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
890  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
891  * to avoid remappings between two formats in future.
892  */
893 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
894 
895 /*
896  * A fake block group type that is used to communicate global block reserve
897  * size to userspace via the SPACE_INFO ioctl.
898  */
899 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
900 
901 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
902 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
903 
chunk_to_extended(__u64 flags)904 static inline __u64 chunk_to_extended(__u64 flags)
905 {
906 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
907 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
908 
909 	return flags;
910 }
extended_to_chunk(__u64 flags)911 static inline __u64 extended_to_chunk(__u64 flags)
912 {
913 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
914 }
915 
916 struct btrfs_block_group_item {
917 	__le64 used;
918 	__le64 chunk_objectid;
919 	__le64 flags;
920 } __attribute__ ((__packed__));
921 
922 struct btrfs_free_space_info {
923 	__le32 extent_count;
924 	__le32 flags;
925 } __attribute__ ((__packed__));
926 
927 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
928 
929 #define BTRFS_QGROUP_LEVEL_SHIFT		48
btrfs_qgroup_level(__u64 qgroupid)930 static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
931 {
932 	return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
933 }
934 
935 /*
936  * is subvolume quota turned on?
937  */
938 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
939 /*
940  * RESCAN is set during the initialization phase
941  */
942 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
943 /*
944  * Some qgroup entries are known to be out of date,
945  * either because the configuration has changed in a way that
946  * makes a rescan necessary, or because the fs has been mounted
947  * with a non-qgroup-aware version.
948  * Turning qouta off and on again makes it inconsistent, too.
949  */
950 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
951 
952 #define BTRFS_QGROUP_STATUS_VERSION        1
953 
954 struct btrfs_qgroup_status_item {
955 	__le64 version;
956 	/*
957 	 * the generation is updated during every commit. As older
958 	 * versions of btrfs are not aware of qgroups, it will be
959 	 * possible to detect inconsistencies by checking the
960 	 * generation on mount time
961 	 */
962 	__le64 generation;
963 
964 	/* flag definitions see above */
965 	__le64 flags;
966 
967 	/*
968 	 * only used during scanning to record the progress
969 	 * of the scan. It contains a logical address
970 	 */
971 	__le64 rescan;
972 } __attribute__ ((__packed__));
973 
974 struct btrfs_qgroup_info_item {
975 	__le64 generation;
976 	__le64 rfer;
977 	__le64 rfer_cmpr;
978 	__le64 excl;
979 	__le64 excl_cmpr;
980 } __attribute__ ((__packed__));
981 
982 struct btrfs_qgroup_limit_item {
983 	/*
984 	 * only updated when any of the other values change
985 	 */
986 	__le64 flags;
987 	__le64 max_rfer;
988 	__le64 max_excl;
989 	__le64 rsv_rfer;
990 	__le64 rsv_excl;
991 } __attribute__ ((__packed__));
992 
993 #endif /* _BTRFS_CTREE_H_ */
994