1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7
8 #ifdef CONFIG_BLOCK
9
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30
31 struct module;
32 struct scsi_ioctl_command;
33
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46
47 #define BLKDEV_MIN_RQ 4
48 #define BLKDEV_MAX_RQ 128 /* Default maximum */
49
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55
56 /*
57 * Maximum number of blkcg policies allowed to be registered concurrently.
58 * Defined here to simplify include dependency.
59 */
60 #define BLKCG_MAX_POLS 5
61
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63
64 /*
65 * request flags */
66 typedef __u32 __bitwise req_flags_t;
67
68 /* elevator knows about this request */
69 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
82 /* set for "ide_preempt" requests and also for requests for which the SCSI
83 "quiesce" state must be ignored. */
84 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
85 /* contains copies of user pages */
86 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
87 /* vaguely specified driver internal error. Ignored by the block layer */
88 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
89 /* don't warn about errors */
90 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
91 /* elevator private data attached */
92 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
93 /* account into disk and partition IO statistics */
94 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
95 /* request came from our alloc pool */
96 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
97 /* runtime pm request */
98 #define RQF_PM ((__force req_flags_t)(1 << 15))
99 /* on IO scheduler merge hash */
100 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
101 /* track IO completion time */
102 #define RQF_STATS ((__force req_flags_t)(1 << 17))
103 /* Look at ->special_vec for the actual data payload instead of the
104 bio chain. */
105 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
106 /* The per-zone write lock is held for this request */
107 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
108 /* already slept for hybrid poll */
109 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
110 /* ->timeout has been called, don't expire again */
111 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
112
113 /* flags that prevent us from merging requests: */
114 #define RQF_NOMERGE_FLAGS \
115 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
116
117 /*
118 * Request state for blk-mq.
119 */
120 enum mq_rq_state {
121 MQ_RQ_IDLE = 0,
122 MQ_RQ_IN_FLIGHT = 1,
123 MQ_RQ_COMPLETE = 2,
124 };
125
126 /*
127 * Try to put the fields that are referenced together in the same cacheline.
128 *
129 * If you modify this structure, make sure to update blk_rq_init() and
130 * especially blk_mq_rq_ctx_init() to take care of the added fields.
131 */
132 struct request {
133 struct request_queue *q;
134 struct blk_mq_ctx *mq_ctx;
135 struct blk_mq_hw_ctx *mq_hctx;
136
137 unsigned int cmd_flags; /* op and common flags */
138 req_flags_t rq_flags;
139
140 int tag;
141 int internal_tag;
142
143 /* the following two fields are internal, NEVER access directly */
144 unsigned int __data_len; /* total data len */
145 sector_t __sector; /* sector cursor */
146
147 struct bio *bio;
148 struct bio *biotail;
149
150 struct list_head queuelist;
151
152 /*
153 * The hash is used inside the scheduler, and killed once the
154 * request reaches the dispatch list. The ipi_list is only used
155 * to queue the request for softirq completion, which is long
156 * after the request has been unhashed (and even removed from
157 * the dispatch list).
158 */
159 union {
160 struct hlist_node hash; /* merge hash */
161 struct list_head ipi_list;
162 };
163
164 /*
165 * The rb_node is only used inside the io scheduler, requests
166 * are pruned when moved to the dispatch queue. So let the
167 * completion_data share space with the rb_node.
168 */
169 union {
170 struct rb_node rb_node; /* sort/lookup */
171 struct bio_vec special_vec;
172 void *completion_data;
173 int error_count; /* for legacy drivers, don't use */
174 };
175
176 /*
177 * Three pointers are available for the IO schedulers, if they need
178 * more they have to dynamically allocate it. Flush requests are
179 * never put on the IO scheduler. So let the flush fields share
180 * space with the elevator data.
181 */
182 union {
183 struct {
184 struct io_cq *icq;
185 void *priv[2];
186 } elv;
187
188 struct {
189 unsigned int seq;
190 struct list_head list;
191 rq_end_io_fn *saved_end_io;
192 } flush;
193 };
194
195 struct gendisk *rq_disk;
196 struct hd_struct *part;
197 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
198 /* Time that the first bio started allocating this request. */
199 u64 alloc_time_ns;
200 #endif
201 /* Time that this request was allocated for this IO. */
202 u64 start_time_ns;
203 /* Time that I/O was submitted to the device. */
204 u64 io_start_time_ns;
205
206 #ifdef CONFIG_BLK_WBT
207 unsigned short wbt_flags;
208 #endif
209 /*
210 * rq sectors used for blk stats. It has the same value
211 * with blk_rq_sectors(rq), except that it never be zeroed
212 * by completion.
213 */
214 unsigned short stats_sectors;
215
216 /*
217 * Number of scatter-gather DMA addr+len pairs after
218 * physical address coalescing is performed.
219 */
220 unsigned short nr_phys_segments;
221
222 #if defined(CONFIG_BLK_DEV_INTEGRITY)
223 unsigned short nr_integrity_segments;
224 #endif
225
226 unsigned short write_hint;
227 unsigned short ioprio;
228
229 unsigned int extra_len; /* length of alignment and padding */
230
231 enum mq_rq_state state;
232 refcount_t ref;
233
234 unsigned int timeout;
235 unsigned long deadline;
236
237 union {
238 struct __call_single_data csd;
239 u64 fifo_time;
240 };
241
242 /*
243 * completion callback.
244 */
245 rq_end_io_fn *end_io;
246 void *end_io_data;
247 };
248
blk_op_is_scsi(unsigned int op)249 static inline bool blk_op_is_scsi(unsigned int op)
250 {
251 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
252 }
253
blk_op_is_private(unsigned int op)254 static inline bool blk_op_is_private(unsigned int op)
255 {
256 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
257 }
258
blk_rq_is_scsi(struct request * rq)259 static inline bool blk_rq_is_scsi(struct request *rq)
260 {
261 return blk_op_is_scsi(req_op(rq));
262 }
263
blk_rq_is_private(struct request * rq)264 static inline bool blk_rq_is_private(struct request *rq)
265 {
266 return blk_op_is_private(req_op(rq));
267 }
268
blk_rq_is_passthrough(struct request * rq)269 static inline bool blk_rq_is_passthrough(struct request *rq)
270 {
271 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
272 }
273
bio_is_passthrough(struct bio * bio)274 static inline bool bio_is_passthrough(struct bio *bio)
275 {
276 unsigned op = bio_op(bio);
277
278 return blk_op_is_scsi(op) || blk_op_is_private(op);
279 }
280
req_get_ioprio(struct request * req)281 static inline unsigned short req_get_ioprio(struct request *req)
282 {
283 return req->ioprio;
284 }
285
286 #include <linux/elevator.h>
287
288 struct blk_queue_ctx;
289
290 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
291
292 struct bio_vec;
293 typedef int (dma_drain_needed_fn)(struct request *);
294
295 enum blk_eh_timer_return {
296 BLK_EH_DONE, /* drivers has completed the command */
297 BLK_EH_RESET_TIMER, /* reset timer and try again */
298 };
299
300 enum blk_queue_state {
301 Queue_down,
302 Queue_up,
303 };
304
305 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
306 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
307
308 #define BLK_SCSI_MAX_CMDS (256)
309 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
310
311 /*
312 * Zoned block device models (zoned limit).
313 */
314 enum blk_zoned_model {
315 BLK_ZONED_NONE, /* Regular block device */
316 BLK_ZONED_HA, /* Host-aware zoned block device */
317 BLK_ZONED_HM, /* Host-managed zoned block device */
318 };
319
320 struct queue_limits {
321 unsigned long bounce_pfn;
322 unsigned long seg_boundary_mask;
323 unsigned long virt_boundary_mask;
324
325 unsigned int max_hw_sectors;
326 unsigned int max_dev_sectors;
327 unsigned int chunk_sectors;
328 unsigned int max_sectors;
329 unsigned int max_segment_size;
330 unsigned int physical_block_size;
331 unsigned int alignment_offset;
332 unsigned int io_min;
333 unsigned int io_opt;
334 unsigned int max_discard_sectors;
335 unsigned int max_hw_discard_sectors;
336 unsigned int max_write_same_sectors;
337 unsigned int max_write_zeroes_sectors;
338 unsigned int discard_granularity;
339 unsigned int discard_alignment;
340
341 unsigned short logical_block_size;
342 unsigned short max_segments;
343 unsigned short max_integrity_segments;
344 unsigned short max_discard_segments;
345
346 unsigned char misaligned;
347 unsigned char discard_misaligned;
348 unsigned char raid_partial_stripes_expensive;
349 enum blk_zoned_model zoned;
350 };
351
352 #ifdef CONFIG_BLK_DEV_ZONED
353
354 /*
355 * Maximum number of zones to report with a single report zones command.
356 */
357 #define BLK_ZONED_REPORT_MAX_ZONES 8192U
358
359 extern unsigned int blkdev_nr_zones(struct block_device *bdev);
360 extern int blkdev_report_zones(struct block_device *bdev,
361 sector_t sector, struct blk_zone *zones,
362 unsigned int *nr_zones);
363 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
364 sector_t nr_sectors, gfp_t gfp_mask);
365 extern int blk_revalidate_disk_zones(struct gendisk *disk);
366
367 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
368 unsigned int cmd, unsigned long arg);
369 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
370 unsigned int cmd, unsigned long arg);
371
372 #else /* CONFIG_BLK_DEV_ZONED */
373
blkdev_nr_zones(struct block_device * bdev)374 static inline unsigned int blkdev_nr_zones(struct block_device *bdev)
375 {
376 return 0;
377 }
378
blk_revalidate_disk_zones(struct gendisk * disk)379 static inline int blk_revalidate_disk_zones(struct gendisk *disk)
380 {
381 return 0;
382 }
383
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)384 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
385 fmode_t mode, unsigned int cmd,
386 unsigned long arg)
387 {
388 return -ENOTTY;
389 }
390
blkdev_reset_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)391 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
392 fmode_t mode, unsigned int cmd,
393 unsigned long arg)
394 {
395 return -ENOTTY;
396 }
397
398 #endif /* CONFIG_BLK_DEV_ZONED */
399
400 struct request_queue {
401 struct request *last_merge;
402 struct elevator_queue *elevator;
403
404 struct blk_queue_stats *stats;
405 struct rq_qos *rq_qos;
406
407 make_request_fn *make_request_fn;
408 dma_drain_needed_fn *dma_drain_needed;
409
410 const struct blk_mq_ops *mq_ops;
411
412 /* sw queues */
413 struct blk_mq_ctx __percpu *queue_ctx;
414 unsigned int nr_queues;
415
416 unsigned int queue_depth;
417
418 /* hw dispatch queues */
419 struct blk_mq_hw_ctx **queue_hw_ctx;
420 unsigned int nr_hw_queues;
421
422 struct backing_dev_info *backing_dev_info;
423
424 /*
425 * The queue owner gets to use this for whatever they like.
426 * ll_rw_blk doesn't touch it.
427 */
428 void *queuedata;
429
430 /*
431 * various queue flags, see QUEUE_* below
432 */
433 unsigned long queue_flags;
434 /*
435 * Number of contexts that have called blk_set_pm_only(). If this
436 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
437 * processed.
438 */
439 atomic_t pm_only;
440
441 /*
442 * ida allocated id for this queue. Used to index queues from
443 * ioctx.
444 */
445 int id;
446
447 /*
448 * queue needs bounce pages for pages above this limit
449 */
450 gfp_t bounce_gfp;
451
452 spinlock_t queue_lock;
453
454 /*
455 * queue kobject
456 */
457 struct kobject kobj;
458
459 /*
460 * mq queue kobject
461 */
462 struct kobject *mq_kobj;
463
464 #ifdef CONFIG_BLK_DEV_INTEGRITY
465 struct blk_integrity integrity;
466 #endif /* CONFIG_BLK_DEV_INTEGRITY */
467
468 #ifdef CONFIG_PM
469 struct device *dev;
470 int rpm_status;
471 unsigned int nr_pending;
472 #endif
473
474 /*
475 * queue settings
476 */
477 unsigned long nr_requests; /* Max # of requests */
478
479 unsigned int dma_drain_size;
480 void *dma_drain_buffer;
481 unsigned int dma_pad_mask;
482 unsigned int dma_alignment;
483
484 unsigned int rq_timeout;
485 int poll_nsec;
486
487 struct blk_stat_callback *poll_cb;
488 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
489
490 struct timer_list timeout;
491 struct work_struct timeout_work;
492
493 struct list_head icq_list;
494 #ifdef CONFIG_BLK_CGROUP
495 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
496 struct blkcg_gq *root_blkg;
497 struct list_head blkg_list;
498 #endif
499
500 struct queue_limits limits;
501
502 unsigned int required_elevator_features;
503
504 #ifdef CONFIG_BLK_DEV_ZONED
505 /*
506 * Zoned block device information for request dispatch control.
507 * nr_zones is the total number of zones of the device. This is always
508 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
509 * bits which indicates if a zone is conventional (bit clear) or
510 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
511 * bits which indicates if a zone is write locked, that is, if a write
512 * request targeting the zone was dispatched. All three fields are
513 * initialized by the low level device driver (e.g. scsi/sd.c).
514 * Stacking drivers (device mappers) may or may not initialize
515 * these fields.
516 *
517 * Reads of this information must be protected with blk_queue_enter() /
518 * blk_queue_exit(). Modifying this information is only allowed while
519 * no requests are being processed. See also blk_mq_freeze_queue() and
520 * blk_mq_unfreeze_queue().
521 */
522 unsigned int nr_zones;
523 unsigned long *seq_zones_bitmap;
524 unsigned long *seq_zones_wlock;
525 #endif /* CONFIG_BLK_DEV_ZONED */
526
527 /*
528 * sg stuff
529 */
530 unsigned int sg_timeout;
531 unsigned int sg_reserved_size;
532 int node;
533 #ifdef CONFIG_BLK_DEV_IO_TRACE
534 struct blk_trace *blk_trace;
535 struct mutex blk_trace_mutex;
536 #endif
537 /*
538 * for flush operations
539 */
540 struct blk_flush_queue *fq;
541
542 struct list_head requeue_list;
543 spinlock_t requeue_lock;
544 struct delayed_work requeue_work;
545
546 struct mutex sysfs_lock;
547 struct mutex sysfs_dir_lock;
548
549 /*
550 * for reusing dead hctx instance in case of updating
551 * nr_hw_queues
552 */
553 struct list_head unused_hctx_list;
554 spinlock_t unused_hctx_lock;
555
556 int mq_freeze_depth;
557
558 #if defined(CONFIG_BLK_DEV_BSG)
559 struct bsg_class_device bsg_dev;
560 #endif
561
562 #ifdef CONFIG_BLK_DEV_THROTTLING
563 /* Throttle data */
564 struct throtl_data *td;
565 #endif
566 struct rcu_head rcu_head;
567 wait_queue_head_t mq_freeze_wq;
568 /*
569 * Protect concurrent access to q_usage_counter by
570 * percpu_ref_kill() and percpu_ref_reinit().
571 */
572 struct mutex mq_freeze_lock;
573 struct percpu_ref q_usage_counter;
574
575 struct blk_mq_tag_set *tag_set;
576 struct list_head tag_set_list;
577 struct bio_set bio_split;
578
579 #ifdef CONFIG_BLK_DEBUG_FS
580 struct dentry *debugfs_dir;
581 struct dentry *sched_debugfs_dir;
582 struct dentry *rqos_debugfs_dir;
583 #endif
584
585 bool mq_sysfs_init_done;
586
587 size_t cmd_size;
588
589 struct work_struct release_work;
590
591 #define BLK_MAX_WRITE_HINTS 5
592 u64 write_hints[BLK_MAX_WRITE_HINTS];
593 };
594
595 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
596 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
597 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
598 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
599 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
600 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
601 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
602 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
603 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
604 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
605 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
606 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
607 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
608 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
609 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
610 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
611 #define QUEUE_FLAG_WC 17 /* Write back caching */
612 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
613 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
614 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
615 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
616 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
617 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
618 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
619 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
620 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
621 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
622
623 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
624 (1 << QUEUE_FLAG_SAME_COMP))
625
626 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
627 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
628 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
629
630 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
631 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
632 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
633 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
634 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
635 #define blk_queue_noxmerges(q) \
636 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
637 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
638 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
639 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
640 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
641 #define blk_queue_zone_resetall(q) \
642 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
643 #define blk_queue_secure_erase(q) \
644 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
645 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
646 #define blk_queue_scsi_passthrough(q) \
647 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
648 #define blk_queue_pci_p2pdma(q) \
649 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
650 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
651 #define blk_queue_rq_alloc_time(q) \
652 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
653 #else
654 #define blk_queue_rq_alloc_time(q) false
655 #endif
656
657 #define blk_noretry_request(rq) \
658 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
659 REQ_FAILFAST_DRIVER))
660 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
661 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
662 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
663 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
664
665 extern void blk_set_pm_only(struct request_queue *q);
666 extern void blk_clear_pm_only(struct request_queue *q);
667
blk_account_rq(struct request * rq)668 static inline bool blk_account_rq(struct request *rq)
669 {
670 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
671 }
672
673 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
674
675 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
676
677 #define rq_dma_dir(rq) \
678 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
679
680 #define dma_map_bvec(dev, bv, dir, attrs) \
681 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
682 (dir), (attrs))
683
queue_is_mq(struct request_queue * q)684 static inline bool queue_is_mq(struct request_queue *q)
685 {
686 return q->mq_ops;
687 }
688
689 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)690 blk_queue_zoned_model(struct request_queue *q)
691 {
692 return q->limits.zoned;
693 }
694
blk_queue_is_zoned(struct request_queue * q)695 static inline bool blk_queue_is_zoned(struct request_queue *q)
696 {
697 switch (blk_queue_zoned_model(q)) {
698 case BLK_ZONED_HA:
699 case BLK_ZONED_HM:
700 return true;
701 default:
702 return false;
703 }
704 }
705
blk_queue_zone_sectors(struct request_queue * q)706 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
707 {
708 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
709 }
710
711 #ifdef CONFIG_BLK_DEV_ZONED
blk_queue_nr_zones(struct request_queue * q)712 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
713 {
714 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
715 }
716
blk_queue_zone_no(struct request_queue * q,sector_t sector)717 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
718 sector_t sector)
719 {
720 if (!blk_queue_is_zoned(q))
721 return 0;
722 return sector >> ilog2(q->limits.chunk_sectors);
723 }
724
blk_queue_zone_is_seq(struct request_queue * q,sector_t sector)725 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
726 sector_t sector)
727 {
728 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
729 return false;
730 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
731 }
732 #else /* CONFIG_BLK_DEV_ZONED */
blk_queue_nr_zones(struct request_queue * q)733 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
734 {
735 return 0;
736 }
737 #endif /* CONFIG_BLK_DEV_ZONED */
738
rq_is_sync(struct request * rq)739 static inline bool rq_is_sync(struct request *rq)
740 {
741 return op_is_sync(rq->cmd_flags);
742 }
743
rq_mergeable(struct request * rq)744 static inline bool rq_mergeable(struct request *rq)
745 {
746 if (blk_rq_is_passthrough(rq))
747 return false;
748
749 if (req_op(rq) == REQ_OP_FLUSH)
750 return false;
751
752 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
753 return false;
754
755 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
756 return false;
757 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
758 return false;
759
760 return true;
761 }
762
blk_write_same_mergeable(struct bio * a,struct bio * b)763 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
764 {
765 if (bio_page(a) == bio_page(b) &&
766 bio_offset(a) == bio_offset(b))
767 return true;
768
769 return false;
770 }
771
blk_queue_depth(struct request_queue * q)772 static inline unsigned int blk_queue_depth(struct request_queue *q)
773 {
774 if (q->queue_depth)
775 return q->queue_depth;
776
777 return q->nr_requests;
778 }
779
780 extern unsigned long blk_max_low_pfn, blk_max_pfn;
781
782 /*
783 * standard bounce addresses:
784 *
785 * BLK_BOUNCE_HIGH : bounce all highmem pages
786 * BLK_BOUNCE_ANY : don't bounce anything
787 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
788 */
789
790 #if BITS_PER_LONG == 32
791 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
792 #else
793 #define BLK_BOUNCE_HIGH -1ULL
794 #endif
795 #define BLK_BOUNCE_ANY (-1ULL)
796 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
797
798 /*
799 * default timeout for SG_IO if none specified
800 */
801 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
802 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
803
804 struct rq_map_data {
805 struct page **pages;
806 int page_order;
807 int nr_entries;
808 unsigned long offset;
809 int null_mapped;
810 int from_user;
811 };
812
813 struct req_iterator {
814 struct bvec_iter iter;
815 struct bio *bio;
816 };
817
818 /* This should not be used directly - use rq_for_each_segment */
819 #define for_each_bio(_bio) \
820 for (; _bio; _bio = _bio->bi_next)
821 #define __rq_for_each_bio(_bio, rq) \
822 if ((rq->bio)) \
823 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
824
825 #define rq_for_each_segment(bvl, _rq, _iter) \
826 __rq_for_each_bio(_iter.bio, _rq) \
827 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
828
829 #define rq_for_each_bvec(bvl, _rq, _iter) \
830 __rq_for_each_bio(_iter.bio, _rq) \
831 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
832
833 #define rq_iter_last(bvec, _iter) \
834 (_iter.bio->bi_next == NULL && \
835 bio_iter_last(bvec, _iter.iter))
836
837 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
838 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
839 #endif
840 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
841 extern void rq_flush_dcache_pages(struct request *rq);
842 #else
rq_flush_dcache_pages(struct request * rq)843 static inline void rq_flush_dcache_pages(struct request *rq)
844 {
845 }
846 #endif
847
848 extern int blk_register_queue(struct gendisk *disk);
849 extern void blk_unregister_queue(struct gendisk *disk);
850 extern blk_qc_t generic_make_request(struct bio *bio);
851 extern blk_qc_t direct_make_request(struct bio *bio);
852 extern void blk_rq_init(struct request_queue *q, struct request *rq);
853 extern void blk_put_request(struct request *);
854 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
855 blk_mq_req_flags_t flags);
856 extern int blk_lld_busy(struct request_queue *q);
857 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
858 struct bio_set *bs, gfp_t gfp_mask,
859 int (*bio_ctr)(struct bio *, struct bio *, void *),
860 void *data);
861 extern void blk_rq_unprep_clone(struct request *rq);
862 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
863 struct request *rq);
864 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
865 extern void blk_queue_split(struct request_queue *, struct bio **);
866 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
867 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
868 unsigned int, void __user *);
869 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
870 unsigned int, void __user *);
871 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
872 struct scsi_ioctl_command __user *);
873
874 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
875 extern void blk_queue_exit(struct request_queue *q);
876 extern void blk_sync_queue(struct request_queue *q);
877 extern int blk_rq_map_user(struct request_queue *, struct request *,
878 struct rq_map_data *, void __user *, unsigned long,
879 gfp_t);
880 extern int blk_rq_unmap_user(struct bio *);
881 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
882 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
883 struct rq_map_data *, const struct iov_iter *,
884 gfp_t);
885 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
886 struct request *, int);
887 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
888 struct request *, int, rq_end_io_fn *);
889
890 /* Helper to convert REQ_OP_XXX to its string format XXX */
891 extern const char *blk_op_str(unsigned int op);
892
893 int blk_status_to_errno(blk_status_t status);
894 blk_status_t errno_to_blk_status(int errno);
895
896 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
897
bdev_get_queue(struct block_device * bdev)898 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
899 {
900 return bdev->bd_disk->queue; /* this is never NULL */
901 }
902
903 /*
904 * The basic unit of block I/O is a sector. It is used in a number of contexts
905 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
906 * bytes. Variables of type sector_t represent an offset or size that is a
907 * multiple of 512 bytes. Hence these two constants.
908 */
909 #ifndef SECTOR_SHIFT
910 #define SECTOR_SHIFT 9
911 #endif
912 #ifndef SECTOR_SIZE
913 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
914 #endif
915
916 /*
917 * blk_rq_pos() : the current sector
918 * blk_rq_bytes() : bytes left in the entire request
919 * blk_rq_cur_bytes() : bytes left in the current segment
920 * blk_rq_err_bytes() : bytes left till the next error boundary
921 * blk_rq_sectors() : sectors left in the entire request
922 * blk_rq_cur_sectors() : sectors left in the current segment
923 * blk_rq_stats_sectors() : sectors of the entire request used for stats
924 */
blk_rq_pos(const struct request * rq)925 static inline sector_t blk_rq_pos(const struct request *rq)
926 {
927 return rq->__sector;
928 }
929
blk_rq_bytes(const struct request * rq)930 static inline unsigned int blk_rq_bytes(const struct request *rq)
931 {
932 return rq->__data_len;
933 }
934
blk_rq_cur_bytes(const struct request * rq)935 static inline int blk_rq_cur_bytes(const struct request *rq)
936 {
937 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
938 }
939
940 extern unsigned int blk_rq_err_bytes(const struct request *rq);
941
blk_rq_sectors(const struct request * rq)942 static inline unsigned int blk_rq_sectors(const struct request *rq)
943 {
944 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
945 }
946
blk_rq_cur_sectors(const struct request * rq)947 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
948 {
949 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
950 }
951
blk_rq_stats_sectors(const struct request * rq)952 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
953 {
954 return rq->stats_sectors;
955 }
956
957 #ifdef CONFIG_BLK_DEV_ZONED
blk_rq_zone_no(struct request * rq)958 static inline unsigned int blk_rq_zone_no(struct request *rq)
959 {
960 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
961 }
962
blk_rq_zone_is_seq(struct request * rq)963 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
964 {
965 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
966 }
967 #endif /* CONFIG_BLK_DEV_ZONED */
968
969 /*
970 * Some commands like WRITE SAME have a payload or data transfer size which
971 * is different from the size of the request. Any driver that supports such
972 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
973 * calculate the data transfer size.
974 */
blk_rq_payload_bytes(struct request * rq)975 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
976 {
977 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
978 return rq->special_vec.bv_len;
979 return blk_rq_bytes(rq);
980 }
981
982 /*
983 * Return the first full biovec in the request. The caller needs to check that
984 * there are any bvecs before calling this helper.
985 */
req_bvec(struct request * rq)986 static inline struct bio_vec req_bvec(struct request *rq)
987 {
988 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
989 return rq->special_vec;
990 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
991 }
992
blk_queue_get_max_sectors(struct request_queue * q,int op)993 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
994 int op)
995 {
996 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
997 return min(q->limits.max_discard_sectors,
998 UINT_MAX >> SECTOR_SHIFT);
999
1000 if (unlikely(op == REQ_OP_WRITE_SAME))
1001 return q->limits.max_write_same_sectors;
1002
1003 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1004 return q->limits.max_write_zeroes_sectors;
1005
1006 return q->limits.max_sectors;
1007 }
1008
1009 /*
1010 * Return maximum size of a request at given offset. Only valid for
1011 * file system requests.
1012 */
blk_max_size_offset(struct request_queue * q,sector_t offset)1013 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1014 sector_t offset)
1015 {
1016 if (!q->limits.chunk_sectors)
1017 return q->limits.max_sectors;
1018
1019 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1020 (offset & (q->limits.chunk_sectors - 1))));
1021 }
1022
blk_rq_get_max_sectors(struct request * rq,sector_t offset)1023 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1024 sector_t offset)
1025 {
1026 struct request_queue *q = rq->q;
1027
1028 if (blk_rq_is_passthrough(rq))
1029 return q->limits.max_hw_sectors;
1030
1031 if (!q->limits.chunk_sectors ||
1032 req_op(rq) == REQ_OP_DISCARD ||
1033 req_op(rq) == REQ_OP_SECURE_ERASE)
1034 return blk_queue_get_max_sectors(q, req_op(rq));
1035
1036 return min(blk_max_size_offset(q, offset),
1037 blk_queue_get_max_sectors(q, req_op(rq)));
1038 }
1039
blk_rq_count_bios(struct request * rq)1040 static inline unsigned int blk_rq_count_bios(struct request *rq)
1041 {
1042 unsigned int nr_bios = 0;
1043 struct bio *bio;
1044
1045 __rq_for_each_bio(bio, rq)
1046 nr_bios++;
1047
1048 return nr_bios;
1049 }
1050
1051 void blk_steal_bios(struct bio_list *list, struct request *rq);
1052
1053 /*
1054 * Request completion related functions.
1055 *
1056 * blk_update_request() completes given number of bytes and updates
1057 * the request without completing it.
1058 */
1059 extern bool blk_update_request(struct request *rq, blk_status_t error,
1060 unsigned int nr_bytes);
1061
1062 extern void __blk_complete_request(struct request *);
1063 extern void blk_abort_request(struct request *);
1064
1065 /*
1066 * Access functions for manipulating queue properties
1067 */
1068 extern void blk_cleanup_queue(struct request_queue *);
1069 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1070 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1071 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1072 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1073 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1074 extern void blk_queue_max_discard_segments(struct request_queue *,
1075 unsigned short);
1076 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1077 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1078 unsigned int max_discard_sectors);
1079 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1080 unsigned int max_write_same_sectors);
1081 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1082 unsigned int max_write_same_sectors);
1083 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1084 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1085 extern void blk_queue_alignment_offset(struct request_queue *q,
1086 unsigned int alignment);
1087 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1088 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1089 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1090 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1091 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1092 extern void blk_set_default_limits(struct queue_limits *lim);
1093 extern void blk_set_stacking_limits(struct queue_limits *lim);
1094 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1095 sector_t offset);
1096 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1097 sector_t offset);
1098 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1099 sector_t offset);
1100 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1101 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1102 extern int blk_queue_dma_drain(struct request_queue *q,
1103 dma_drain_needed_fn *dma_drain_needed,
1104 void *buf, unsigned int size);
1105 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1106 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1107 extern void blk_queue_dma_alignment(struct request_queue *, int);
1108 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1109 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1110 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1111 extern void blk_queue_required_elevator_features(struct request_queue *q,
1112 unsigned int features);
1113 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1114 struct device *dev);
1115
1116 /*
1117 * Number of physical segments as sent to the device.
1118 *
1119 * Normally this is the number of discontiguous data segments sent by the
1120 * submitter. But for data-less command like discard we might have no
1121 * actual data segments submitted, but the driver might have to add it's
1122 * own special payload. In that case we still return 1 here so that this
1123 * special payload will be mapped.
1124 */
blk_rq_nr_phys_segments(struct request * rq)1125 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1126 {
1127 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1128 return 1;
1129 return rq->nr_phys_segments;
1130 }
1131
1132 /*
1133 * Number of discard segments (or ranges) the driver needs to fill in.
1134 * Each discard bio merged into a request is counted as one segment.
1135 */
blk_rq_nr_discard_segments(struct request * rq)1136 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1137 {
1138 return max_t(unsigned short, rq->nr_phys_segments, 1);
1139 }
1140
1141 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1142 extern void blk_dump_rq_flags(struct request *, char *);
1143 extern long nr_blockdev_pages(void);
1144
1145 bool __must_check blk_get_queue(struct request_queue *);
1146 struct request_queue *blk_alloc_queue(gfp_t);
1147 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
1148 extern void blk_put_queue(struct request_queue *);
1149 extern void blk_set_queue_dying(struct request_queue *);
1150
1151 /*
1152 * blk_plug permits building a queue of related requests by holding the I/O
1153 * fragments for a short period. This allows merging of sequential requests
1154 * into single larger request. As the requests are moved from a per-task list to
1155 * the device's request_queue in a batch, this results in improved scalability
1156 * as the lock contention for request_queue lock is reduced.
1157 *
1158 * It is ok not to disable preemption when adding the request to the plug list
1159 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1160 * the plug list when the task sleeps by itself. For details, please see
1161 * schedule() where blk_schedule_flush_plug() is called.
1162 */
1163 struct blk_plug {
1164 struct list_head mq_list; /* blk-mq requests */
1165 struct list_head cb_list; /* md requires an unplug callback */
1166 unsigned short rq_count;
1167 bool multiple_queues;
1168 };
1169 #define BLK_MAX_REQUEST_COUNT 16
1170 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1171
1172 struct blk_plug_cb;
1173 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1174 struct blk_plug_cb {
1175 struct list_head list;
1176 blk_plug_cb_fn callback;
1177 void *data;
1178 };
1179 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1180 void *data, int size);
1181 extern void blk_start_plug(struct blk_plug *);
1182 extern void blk_finish_plug(struct blk_plug *);
1183 extern void blk_flush_plug_list(struct blk_plug *, bool);
1184
blk_flush_plug(struct task_struct * tsk)1185 static inline void blk_flush_plug(struct task_struct *tsk)
1186 {
1187 struct blk_plug *plug = tsk->plug;
1188
1189 if (plug)
1190 blk_flush_plug_list(plug, false);
1191 }
1192
blk_schedule_flush_plug(struct task_struct * tsk)1193 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1194 {
1195 struct blk_plug *plug = tsk->plug;
1196
1197 if (plug)
1198 blk_flush_plug_list(plug, true);
1199 }
1200
blk_needs_flush_plug(struct task_struct * tsk)1201 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1202 {
1203 struct blk_plug *plug = tsk->plug;
1204
1205 return plug &&
1206 (!list_empty(&plug->mq_list) ||
1207 !list_empty(&plug->cb_list));
1208 }
1209
1210 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1211 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1212 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1213
1214 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1215
1216 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1217 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1218 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1219 sector_t nr_sects, gfp_t gfp_mask, int flags,
1220 struct bio **biop);
1221
1222 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1223 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1224
1225 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1226 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1227 unsigned flags);
1228 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1229 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1230
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1231 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1232 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1233 {
1234 return blkdev_issue_discard(sb->s_bdev,
1235 block << (sb->s_blocksize_bits -
1236 SECTOR_SHIFT),
1237 nr_blocks << (sb->s_blocksize_bits -
1238 SECTOR_SHIFT),
1239 gfp_mask, flags);
1240 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1241 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1242 sector_t nr_blocks, gfp_t gfp_mask)
1243 {
1244 return blkdev_issue_zeroout(sb->s_bdev,
1245 block << (sb->s_blocksize_bits -
1246 SECTOR_SHIFT),
1247 nr_blocks << (sb->s_blocksize_bits -
1248 SECTOR_SHIFT),
1249 gfp_mask, 0);
1250 }
1251
1252 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1253
1254 enum blk_default_limits {
1255 BLK_MAX_SEGMENTS = 128,
1256 BLK_SAFE_MAX_SECTORS = 255,
1257 BLK_DEF_MAX_SECTORS = 2560,
1258 BLK_MAX_SEGMENT_SIZE = 65536,
1259 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1260 };
1261
queue_segment_boundary(const struct request_queue * q)1262 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1263 {
1264 return q->limits.seg_boundary_mask;
1265 }
1266
queue_virt_boundary(const struct request_queue * q)1267 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1268 {
1269 return q->limits.virt_boundary_mask;
1270 }
1271
queue_max_sectors(const struct request_queue * q)1272 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1273 {
1274 return q->limits.max_sectors;
1275 }
1276
queue_max_hw_sectors(const struct request_queue * q)1277 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1278 {
1279 return q->limits.max_hw_sectors;
1280 }
1281
queue_max_segments(const struct request_queue * q)1282 static inline unsigned short queue_max_segments(const struct request_queue *q)
1283 {
1284 return q->limits.max_segments;
1285 }
1286
queue_max_discard_segments(const struct request_queue * q)1287 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1288 {
1289 return q->limits.max_discard_segments;
1290 }
1291
queue_max_segment_size(const struct request_queue * q)1292 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1293 {
1294 return q->limits.max_segment_size;
1295 }
1296
queue_logical_block_size(const struct request_queue * q)1297 static inline unsigned short queue_logical_block_size(const struct request_queue *q)
1298 {
1299 int retval = 512;
1300
1301 if (q && q->limits.logical_block_size)
1302 retval = q->limits.logical_block_size;
1303
1304 return retval;
1305 }
1306
bdev_logical_block_size(struct block_device * bdev)1307 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1308 {
1309 return queue_logical_block_size(bdev_get_queue(bdev));
1310 }
1311
queue_physical_block_size(const struct request_queue * q)1312 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1313 {
1314 return q->limits.physical_block_size;
1315 }
1316
bdev_physical_block_size(struct block_device * bdev)1317 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1318 {
1319 return queue_physical_block_size(bdev_get_queue(bdev));
1320 }
1321
queue_io_min(const struct request_queue * q)1322 static inline unsigned int queue_io_min(const struct request_queue *q)
1323 {
1324 return q->limits.io_min;
1325 }
1326
bdev_io_min(struct block_device * bdev)1327 static inline int bdev_io_min(struct block_device *bdev)
1328 {
1329 return queue_io_min(bdev_get_queue(bdev));
1330 }
1331
queue_io_opt(const struct request_queue * q)1332 static inline unsigned int queue_io_opt(const struct request_queue *q)
1333 {
1334 return q->limits.io_opt;
1335 }
1336
bdev_io_opt(struct block_device * bdev)1337 static inline int bdev_io_opt(struct block_device *bdev)
1338 {
1339 return queue_io_opt(bdev_get_queue(bdev));
1340 }
1341
queue_alignment_offset(const struct request_queue * q)1342 static inline int queue_alignment_offset(const struct request_queue *q)
1343 {
1344 if (q->limits.misaligned)
1345 return -1;
1346
1347 return q->limits.alignment_offset;
1348 }
1349
queue_limit_alignment_offset(struct queue_limits * lim,sector_t sector)1350 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1351 {
1352 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1353 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1354 << SECTOR_SHIFT;
1355
1356 return (granularity + lim->alignment_offset - alignment) % granularity;
1357 }
1358
bdev_alignment_offset(struct block_device * bdev)1359 static inline int bdev_alignment_offset(struct block_device *bdev)
1360 {
1361 struct request_queue *q = bdev_get_queue(bdev);
1362
1363 if (q->limits.misaligned)
1364 return -1;
1365
1366 if (bdev != bdev->bd_contains)
1367 return bdev->bd_part->alignment_offset;
1368
1369 return q->limits.alignment_offset;
1370 }
1371
queue_discard_alignment(const struct request_queue * q)1372 static inline int queue_discard_alignment(const struct request_queue *q)
1373 {
1374 if (q->limits.discard_misaligned)
1375 return -1;
1376
1377 return q->limits.discard_alignment;
1378 }
1379
queue_limit_discard_alignment(struct queue_limits * lim,sector_t sector)1380 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1381 {
1382 unsigned int alignment, granularity, offset;
1383
1384 if (!lim->max_discard_sectors)
1385 return 0;
1386
1387 /* Why are these in bytes, not sectors? */
1388 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1389 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1390 if (!granularity)
1391 return 0;
1392
1393 /* Offset of the partition start in 'granularity' sectors */
1394 offset = sector_div(sector, granularity);
1395
1396 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1397 offset = (granularity + alignment - offset) % granularity;
1398
1399 /* Turn it back into bytes, gaah */
1400 return offset << SECTOR_SHIFT;
1401 }
1402
bdev_discard_alignment(struct block_device * bdev)1403 static inline int bdev_discard_alignment(struct block_device *bdev)
1404 {
1405 struct request_queue *q = bdev_get_queue(bdev);
1406
1407 if (bdev != bdev->bd_contains)
1408 return bdev->bd_part->discard_alignment;
1409
1410 return q->limits.discard_alignment;
1411 }
1412
bdev_write_same(struct block_device * bdev)1413 static inline unsigned int bdev_write_same(struct block_device *bdev)
1414 {
1415 struct request_queue *q = bdev_get_queue(bdev);
1416
1417 if (q)
1418 return q->limits.max_write_same_sectors;
1419
1420 return 0;
1421 }
1422
bdev_write_zeroes_sectors(struct block_device * bdev)1423 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1424 {
1425 struct request_queue *q = bdev_get_queue(bdev);
1426
1427 if (q)
1428 return q->limits.max_write_zeroes_sectors;
1429
1430 return 0;
1431 }
1432
bdev_zoned_model(struct block_device * bdev)1433 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1434 {
1435 struct request_queue *q = bdev_get_queue(bdev);
1436
1437 if (q)
1438 return blk_queue_zoned_model(q);
1439
1440 return BLK_ZONED_NONE;
1441 }
1442
bdev_is_zoned(struct block_device * bdev)1443 static inline bool bdev_is_zoned(struct block_device *bdev)
1444 {
1445 struct request_queue *q = bdev_get_queue(bdev);
1446
1447 if (q)
1448 return blk_queue_is_zoned(q);
1449
1450 return false;
1451 }
1452
bdev_zone_sectors(struct block_device * bdev)1453 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1454 {
1455 struct request_queue *q = bdev_get_queue(bdev);
1456
1457 if (q)
1458 return blk_queue_zone_sectors(q);
1459 return 0;
1460 }
1461
queue_dma_alignment(const struct request_queue * q)1462 static inline int queue_dma_alignment(const struct request_queue *q)
1463 {
1464 return q ? q->dma_alignment : 511;
1465 }
1466
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1467 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1468 unsigned int len)
1469 {
1470 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1471 return !(addr & alignment) && !(len & alignment);
1472 }
1473
1474 /* assumes size > 256 */
blksize_bits(unsigned int size)1475 static inline unsigned int blksize_bits(unsigned int size)
1476 {
1477 unsigned int bits = 8;
1478 do {
1479 bits++;
1480 size >>= 1;
1481 } while (size > 256);
1482 return bits;
1483 }
1484
block_size(struct block_device * bdev)1485 static inline unsigned int block_size(struct block_device *bdev)
1486 {
1487 return bdev->bd_block_size;
1488 }
1489
1490 typedef struct {struct page *v;} Sector;
1491
1492 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1493
put_dev_sector(Sector p)1494 static inline void put_dev_sector(Sector p)
1495 {
1496 put_page(p.v);
1497 }
1498
1499 int kblockd_schedule_work(struct work_struct *work);
1500 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1501 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1502
1503 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1504 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1505 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1506 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1507
1508 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1509
1510 enum blk_integrity_flags {
1511 BLK_INTEGRITY_VERIFY = 1 << 0,
1512 BLK_INTEGRITY_GENERATE = 1 << 1,
1513 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1514 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1515 };
1516
1517 struct blk_integrity_iter {
1518 void *prot_buf;
1519 void *data_buf;
1520 sector_t seed;
1521 unsigned int data_size;
1522 unsigned short interval;
1523 const char *disk_name;
1524 };
1525
1526 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1527 typedef void (integrity_prepare_fn) (struct request *);
1528 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1529
1530 struct blk_integrity_profile {
1531 integrity_processing_fn *generate_fn;
1532 integrity_processing_fn *verify_fn;
1533 integrity_prepare_fn *prepare_fn;
1534 integrity_complete_fn *complete_fn;
1535 const char *name;
1536 };
1537
1538 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1539 extern void blk_integrity_unregister(struct gendisk *);
1540 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1541 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1542 struct scatterlist *);
1543 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1544 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1545 struct request *);
1546 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1547 struct bio *);
1548
blk_get_integrity(struct gendisk * disk)1549 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1550 {
1551 struct blk_integrity *bi = &disk->queue->integrity;
1552
1553 if (!bi->profile)
1554 return NULL;
1555
1556 return bi;
1557 }
1558
1559 static inline
bdev_get_integrity(struct block_device * bdev)1560 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1561 {
1562 return blk_get_integrity(bdev->bd_disk);
1563 }
1564
blk_integrity_rq(struct request * rq)1565 static inline bool blk_integrity_rq(struct request *rq)
1566 {
1567 return rq->cmd_flags & REQ_INTEGRITY;
1568 }
1569
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1570 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1571 unsigned int segs)
1572 {
1573 q->limits.max_integrity_segments = segs;
1574 }
1575
1576 static inline unsigned short
queue_max_integrity_segments(const struct request_queue * q)1577 queue_max_integrity_segments(const struct request_queue *q)
1578 {
1579 return q->limits.max_integrity_segments;
1580 }
1581
1582 /**
1583 * bio_integrity_intervals - Return number of integrity intervals for a bio
1584 * @bi: blk_integrity profile for device
1585 * @sectors: Size of the bio in 512-byte sectors
1586 *
1587 * Description: The block layer calculates everything in 512 byte
1588 * sectors but integrity metadata is done in terms of the data integrity
1589 * interval size of the storage device. Convert the block layer sectors
1590 * to the appropriate number of integrity intervals.
1591 */
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1592 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1593 unsigned int sectors)
1594 {
1595 return sectors >> (bi->interval_exp - 9);
1596 }
1597
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1598 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1599 unsigned int sectors)
1600 {
1601 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1602 }
1603
1604 /*
1605 * Return the first bvec that contains integrity data. Only drivers that are
1606 * limited to a single integrity segment should use this helper.
1607 */
rq_integrity_vec(struct request * rq)1608 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1609 {
1610 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1611 return NULL;
1612 return rq->bio->bi_integrity->bip_vec;
1613 }
1614
1615 #else /* CONFIG_BLK_DEV_INTEGRITY */
1616
1617 struct bio;
1618 struct block_device;
1619 struct gendisk;
1620 struct blk_integrity;
1621
blk_integrity_rq(struct request * rq)1622 static inline int blk_integrity_rq(struct request *rq)
1623 {
1624 return 0;
1625 }
blk_rq_count_integrity_sg(struct request_queue * q,struct bio * b)1626 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1627 struct bio *b)
1628 {
1629 return 0;
1630 }
blk_rq_map_integrity_sg(struct request_queue * q,struct bio * b,struct scatterlist * s)1631 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1632 struct bio *b,
1633 struct scatterlist *s)
1634 {
1635 return 0;
1636 }
bdev_get_integrity(struct block_device * b)1637 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1638 {
1639 return NULL;
1640 }
blk_get_integrity(struct gendisk * disk)1641 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1642 {
1643 return NULL;
1644 }
blk_integrity_compare(struct gendisk * a,struct gendisk * b)1645 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1646 {
1647 return 0;
1648 }
blk_integrity_register(struct gendisk * d,struct blk_integrity * b)1649 static inline void blk_integrity_register(struct gendisk *d,
1650 struct blk_integrity *b)
1651 {
1652 }
blk_integrity_unregister(struct gendisk * d)1653 static inline void blk_integrity_unregister(struct gendisk *d)
1654 {
1655 }
blk_queue_max_integrity_segments(struct request_queue * q,unsigned int segs)1656 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1657 unsigned int segs)
1658 {
1659 }
queue_max_integrity_segments(const struct request_queue * q)1660 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1661 {
1662 return 0;
1663 }
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)1664 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1665 struct request *r1,
1666 struct request *r2)
1667 {
1668 return true;
1669 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)1670 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1671 struct request *r,
1672 struct bio *b)
1673 {
1674 return true;
1675 }
1676
bio_integrity_intervals(struct blk_integrity * bi,unsigned int sectors)1677 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1678 unsigned int sectors)
1679 {
1680 return 0;
1681 }
1682
bio_integrity_bytes(struct blk_integrity * bi,unsigned int sectors)1683 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1684 unsigned int sectors)
1685 {
1686 return 0;
1687 }
1688
rq_integrity_vec(struct request * rq)1689 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1690 {
1691 return NULL;
1692 }
1693
1694 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1695
1696 struct block_device_operations {
1697 int (*open) (struct block_device *, fmode_t);
1698 void (*release) (struct gendisk *, fmode_t);
1699 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1700 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1701 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1702 unsigned int (*check_events) (struct gendisk *disk,
1703 unsigned int clearing);
1704 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1705 int (*media_changed) (struct gendisk *);
1706 void (*unlock_native_capacity) (struct gendisk *);
1707 int (*revalidate_disk) (struct gendisk *);
1708 int (*getgeo)(struct block_device *, struct hd_geometry *);
1709 /* this callback is with swap_lock and sometimes page table lock held */
1710 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1711 int (*report_zones)(struct gendisk *, sector_t sector,
1712 struct blk_zone *zones, unsigned int *nr_zones);
1713 struct module *owner;
1714 const struct pr_ops *pr_ops;
1715 };
1716
1717 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1718 unsigned long);
1719 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1720 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1721 struct writeback_control *);
1722
1723 #ifdef CONFIG_BLK_DEV_ZONED
1724 bool blk_req_needs_zone_write_lock(struct request *rq);
1725 void __blk_req_zone_write_lock(struct request *rq);
1726 void __blk_req_zone_write_unlock(struct request *rq);
1727
blk_req_zone_write_lock(struct request * rq)1728 static inline void blk_req_zone_write_lock(struct request *rq)
1729 {
1730 if (blk_req_needs_zone_write_lock(rq))
1731 __blk_req_zone_write_lock(rq);
1732 }
1733
blk_req_zone_write_unlock(struct request * rq)1734 static inline void blk_req_zone_write_unlock(struct request *rq)
1735 {
1736 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1737 __blk_req_zone_write_unlock(rq);
1738 }
1739
blk_req_zone_is_write_locked(struct request * rq)1740 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1741 {
1742 return rq->q->seq_zones_wlock &&
1743 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1744 }
1745
blk_req_can_dispatch_to_zone(struct request * rq)1746 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1747 {
1748 if (!blk_req_needs_zone_write_lock(rq))
1749 return true;
1750 return !blk_req_zone_is_write_locked(rq);
1751 }
1752 #else
blk_req_needs_zone_write_lock(struct request * rq)1753 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1754 {
1755 return false;
1756 }
1757
blk_req_zone_write_lock(struct request * rq)1758 static inline void blk_req_zone_write_lock(struct request *rq)
1759 {
1760 }
1761
blk_req_zone_write_unlock(struct request * rq)1762 static inline void blk_req_zone_write_unlock(struct request *rq)
1763 {
1764 }
blk_req_zone_is_write_locked(struct request * rq)1765 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1766 {
1767 return false;
1768 }
1769
blk_req_can_dispatch_to_zone(struct request * rq)1770 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1771 {
1772 return true;
1773 }
1774 #endif /* CONFIG_BLK_DEV_ZONED */
1775
1776 #else /* CONFIG_BLOCK */
1777
1778 struct block_device;
1779
1780 /*
1781 * stubs for when the block layer is configured out
1782 */
1783 #define buffer_heads_over_limit 0
1784
nr_blockdev_pages(void)1785 static inline long nr_blockdev_pages(void)
1786 {
1787 return 0;
1788 }
1789
1790 struct blk_plug {
1791 };
1792
blk_start_plug(struct blk_plug * plug)1793 static inline void blk_start_plug(struct blk_plug *plug)
1794 {
1795 }
1796
blk_finish_plug(struct blk_plug * plug)1797 static inline void blk_finish_plug(struct blk_plug *plug)
1798 {
1799 }
1800
blk_flush_plug(struct task_struct * task)1801 static inline void blk_flush_plug(struct task_struct *task)
1802 {
1803 }
1804
blk_schedule_flush_plug(struct task_struct * task)1805 static inline void blk_schedule_flush_plug(struct task_struct *task)
1806 {
1807 }
1808
1809
blk_needs_flush_plug(struct task_struct * tsk)1810 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1811 {
1812 return false;
1813 }
1814
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask,sector_t * error_sector)1815 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1816 sector_t *error_sector)
1817 {
1818 return 0;
1819 }
1820
1821 #endif /* CONFIG_BLOCK */
1822
blk_wake_io_task(struct task_struct * waiter)1823 static inline void blk_wake_io_task(struct task_struct *waiter)
1824 {
1825 /*
1826 * If we're polling, the task itself is doing the completions. For
1827 * that case, we don't need to signal a wakeup, it's enough to just
1828 * mark us as RUNNING.
1829 */
1830 if (waiter == current)
1831 __set_current_state(TASK_RUNNING);
1832 else
1833 wake_up_process(waiter);
1834 }
1835
1836 #endif
1837