1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * fs/f2fs/segment.h
4   *
5   * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6   *             http://www.samsung.com/
7   */
8  #include <linux/blkdev.h>
9  #include <linux/backing-dev.h>
10  
11  /* constant macro */
12  #define NULL_SEGNO			((unsigned int)(~0))
13  #define NULL_SECNO			((unsigned int)(~0))
14  
15  #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16  #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17  
18  #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19  #define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20  
21  /* L: Logical segment # in volume, R: Relative segment # in main area */
22  #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23  #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24  
25  #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26  #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27  
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)28  static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
29  						unsigned short seg_type)
30  {
31  	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
32  }
33  
34  #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
35  #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
36  #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
37  
38  #define IS_CURSEG(sbi, seg)						\
39  	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
40  	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
41  	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
42  	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
43  	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
44  	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
45  	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
46  	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
47  
48  #define IS_CURSEC(sbi, secno)						\
49  	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
50  	  (sbi)->segs_per_sec) ||	\
51  	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
52  	  (sbi)->segs_per_sec) ||	\
53  	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
54  	  (sbi)->segs_per_sec) ||	\
55  	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
56  	  (sbi)->segs_per_sec) ||	\
57  	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
58  	  (sbi)->segs_per_sec) ||	\
59  	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
60  	  (sbi)->segs_per_sec) ||	\
61  	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
62  	  (sbi)->segs_per_sec) ||	\
63  	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
64  	  (sbi)->segs_per_sec))
65  
66  #define MAIN_BLKADDR(sbi)						\
67  	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
68  		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
69  #define SEG0_BLKADDR(sbi)						\
70  	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
71  		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
72  
73  #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
74  #define MAIN_SECS(sbi)	((sbi)->total_sections)
75  
76  #define TOTAL_SEGS(sbi)							\
77  	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
78  		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
79  #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
80  
81  #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
82  #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
83  					(sbi)->log_blocks_per_seg))
84  
85  #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
86  	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
87  
88  #define NEXT_FREE_BLKADDR(sbi, curseg)					\
89  	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
90  
91  #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
92  #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
93  	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
94  #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
95  	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
96  
97  #define GET_SEGNO(sbi, blk_addr)					\
98  	((!__is_valid_data_blkaddr(blk_addr)) ?			\
99  	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
100  		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
101  #define BLKS_PER_SEC(sbi)					\
102  	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
103  #define GET_SEC_FROM_SEG(sbi, segno)				\
104  	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
105  #define GET_SEG_FROM_SEC(sbi, secno)				\
106  	((secno) * (sbi)->segs_per_sec)
107  #define GET_ZONE_FROM_SEC(sbi, secno)				\
108  	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
109  #define GET_ZONE_FROM_SEG(sbi, segno)				\
110  	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
111  
112  #define GET_SUM_BLOCK(sbi, segno)				\
113  	((sbi)->sm_info->ssa_blkaddr + (segno))
114  
115  #define GET_SUM_TYPE(footer) ((footer)->entry_type)
116  #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
117  
118  #define SIT_ENTRY_OFFSET(sit_i, segno)					\
119  	((segno) % (sit_i)->sents_per_block)
120  #define SIT_BLOCK_OFFSET(segno)					\
121  	((segno) / SIT_ENTRY_PER_BLOCK)
122  #define	START_SEGNO(segno)		\
123  	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
124  #define SIT_BLK_CNT(sbi)			\
125  	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
126  #define f2fs_bitmap_size(nr)			\
127  	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
128  
129  #define SECTOR_FROM_BLOCK(blk_addr)					\
130  	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
131  #define SECTOR_TO_BLOCK(sectors)					\
132  	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
133  
134  /*
135   * indicate a block allocation direction: RIGHT and LEFT.
136   * RIGHT means allocating new sections towards the end of volume.
137   * LEFT means the opposite direction.
138   */
139  enum {
140  	ALLOC_RIGHT = 0,
141  	ALLOC_LEFT
142  };
143  
144  /*
145   * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
146   * LFS writes data sequentially with cleaning operations.
147   * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
148   * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
149   * fragmented segment which has similar aging degree.
150   */
151  enum {
152  	LFS = 0,
153  	SSR,
154  	AT_SSR,
155  };
156  
157  /*
158   * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
159   * GC_CB is based on cost-benefit algorithm.
160   * GC_GREEDY is based on greedy algorithm.
161   * GC_AT is based on age-threshold algorithm.
162   */
163  enum {
164  	GC_CB = 0,
165  	GC_GREEDY,
166  	GC_AT,
167  	ALLOC_NEXT,
168  	FLUSH_DEVICE,
169  	MAX_GC_POLICY,
170  };
171  
172  /*
173   * BG_GC means the background cleaning job.
174   * FG_GC means the on-demand cleaning job.
175   */
176  enum {
177  	BG_GC = 0,
178  	FG_GC,
179  };
180  
181  /* for a function parameter to select a victim segment */
182  struct victim_sel_policy {
183  	int alloc_mode;			/* LFS or SSR */
184  	int gc_mode;			/* GC_CB or GC_GREEDY */
185  	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
186  	unsigned int max_search;	/*
187  					 * maximum # of segments/sections
188  					 * to search
189  					 */
190  	unsigned int offset;		/* last scanned bitmap offset */
191  	unsigned int ofs_unit;		/* bitmap search unit */
192  	unsigned int min_cost;		/* minimum cost */
193  	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
194  	unsigned int min_segno;		/* segment # having min. cost */
195  	unsigned long long age;		/* mtime of GCed section*/
196  	unsigned long long age_threshold;/* age threshold */
197  };
198  
199  struct seg_entry {
200  	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
201  	unsigned int valid_blocks:10;	/* # of valid blocks */
202  	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
203  	unsigned int padding:6;		/* padding */
204  	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
205  #ifdef CONFIG_F2FS_CHECK_FS
206  	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
207  #endif
208  	/*
209  	 * # of valid blocks and the validity bitmap stored in the last
210  	 * checkpoint pack. This information is used by the SSR mode.
211  	 */
212  	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
213  	unsigned char *discard_map;
214  	unsigned long long mtime;	/* modification time of the segment */
215  };
216  
217  struct sec_entry {
218  	unsigned int valid_blocks;	/* # of valid blocks in a section */
219  };
220  
221  struct segment_allocation {
222  	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
223  };
224  
225  #define MAX_SKIP_GC_COUNT			16
226  
227  struct inmem_pages {
228  	struct list_head list;
229  	struct page *page;
230  	block_t old_addr;		/* for revoking when fail to commit */
231  };
232  
233  struct sit_info {
234  	const struct segment_allocation *s_ops;
235  
236  	block_t sit_base_addr;		/* start block address of SIT area */
237  	block_t sit_blocks;		/* # of blocks used by SIT area */
238  	block_t written_valid_blocks;	/* # of valid blocks in main area */
239  	char *bitmap;			/* all bitmaps pointer */
240  	char *sit_bitmap;		/* SIT bitmap pointer */
241  #ifdef CONFIG_F2FS_CHECK_FS
242  	char *sit_bitmap_mir;		/* SIT bitmap mirror */
243  
244  	/* bitmap of segments to be ignored by GC in case of errors */
245  	unsigned long *invalid_segmap;
246  #endif
247  	unsigned int bitmap_size;	/* SIT bitmap size */
248  
249  	unsigned long *tmp_map;			/* bitmap for temporal use */
250  	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
251  	unsigned int dirty_sentries;		/* # of dirty sentries */
252  	unsigned int sents_per_block;		/* # of SIT entries per block */
253  	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
254  	struct seg_entry *sentries;		/* SIT segment-level cache */
255  	struct sec_entry *sec_entries;		/* SIT section-level cache */
256  
257  	/* for cost-benefit algorithm in cleaning procedure */
258  	unsigned long long elapsed_time;	/* elapsed time after mount */
259  	unsigned long long mounted_time;	/* mount time */
260  	unsigned long long min_mtime;		/* min. modification time */
261  	unsigned long long max_mtime;		/* max. modification time */
262  	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
263  	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
264  
265  	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
266  };
267  
268  struct free_segmap_info {
269  	unsigned int start_segno;	/* start segment number logically */
270  	unsigned int free_segments;	/* # of free segments */
271  	unsigned int free_sections;	/* # of free sections */
272  	spinlock_t segmap_lock;		/* free segmap lock */
273  	unsigned long *free_segmap;	/* free segment bitmap */
274  	unsigned long *free_secmap;	/* free section bitmap */
275  };
276  
277  /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
278  enum dirty_type {
279  	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
280  	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
281  	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
282  	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
283  	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
284  	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
285  	DIRTY,			/* to count # of dirty segments */
286  	PRE,			/* to count # of entirely obsolete segments */
287  	NR_DIRTY_TYPE
288  };
289  
290  struct dirty_seglist_info {
291  	const struct victim_selection *v_ops;	/* victim selction operation */
292  	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
293  	unsigned long *dirty_secmap;
294  	struct mutex seglist_lock;		/* lock for segment bitmaps */
295  	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
296  	unsigned long *victim_secmap;		/* background GC victims */
297  };
298  
299  /* victim selection function for cleaning and SSR */
300  struct victim_selection {
301  	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
302  					int, int, char, unsigned long long);
303  };
304  
305  /* for active log information */
306  struct curseg_info {
307  	struct mutex curseg_mutex;		/* lock for consistency */
308  	struct f2fs_summary_block *sum_blk;	/* cached summary block */
309  	struct rw_semaphore journal_rwsem;	/* protect journal area */
310  	struct f2fs_journal *journal;		/* cached journal info */
311  	unsigned char alloc_type;		/* current allocation type */
312  	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
313  	unsigned int segno;			/* current segment number */
314  	unsigned short next_blkoff;		/* next block offset to write */
315  	unsigned int zone;			/* current zone number */
316  	unsigned int next_segno;		/* preallocated segment */
317  	bool inited;				/* indicate inmem log is inited */
318  };
319  
320  struct sit_entry_set {
321  	struct list_head set_list;	/* link with all sit sets */
322  	unsigned int start_segno;	/* start segno of sits in set */
323  	unsigned int entry_cnt;		/* the # of sit entries in set */
324  };
325  
326  /*
327   * inline functions
328   */
CURSEG_I(struct f2fs_sb_info * sbi,int type)329  static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
330  {
331  	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
332  }
333  
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)334  static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
335  						unsigned int segno)
336  {
337  	struct sit_info *sit_i = SIT_I(sbi);
338  	return &sit_i->sentries[segno];
339  }
340  
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)341  static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
342  						unsigned int segno)
343  {
344  	struct sit_info *sit_i = SIT_I(sbi);
345  	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
346  }
347  
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)348  static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
349  				unsigned int segno, bool use_section)
350  {
351  	/*
352  	 * In order to get # of valid blocks in a section instantly from many
353  	 * segments, f2fs manages two counting structures separately.
354  	 */
355  	if (use_section && __is_large_section(sbi))
356  		return get_sec_entry(sbi, segno)->valid_blocks;
357  	else
358  		return get_seg_entry(sbi, segno)->valid_blocks;
359  }
360  
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)361  static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
362  				unsigned int segno, bool use_section)
363  {
364  	if (use_section && __is_large_section(sbi)) {
365  		unsigned int start_segno = START_SEGNO(segno);
366  		unsigned int blocks = 0;
367  		int i;
368  
369  		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
370  			struct seg_entry *se = get_seg_entry(sbi, start_segno);
371  
372  			blocks += se->ckpt_valid_blocks;
373  		}
374  		return blocks;
375  	}
376  	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
377  }
378  
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)379  static inline void seg_info_from_raw_sit(struct seg_entry *se,
380  					struct f2fs_sit_entry *rs)
381  {
382  	se->valid_blocks = GET_SIT_VBLOCKS(rs);
383  	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
384  	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
385  	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
386  #ifdef CONFIG_F2FS_CHECK_FS
387  	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
388  #endif
389  	se->type = GET_SIT_TYPE(rs);
390  	se->mtime = le64_to_cpu(rs->mtime);
391  }
392  
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)393  static inline void __seg_info_to_raw_sit(struct seg_entry *se,
394  					struct f2fs_sit_entry *rs)
395  {
396  	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
397  					se->valid_blocks;
398  	rs->vblocks = cpu_to_le16(raw_vblocks);
399  	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
400  	rs->mtime = cpu_to_le64(se->mtime);
401  }
402  
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)403  static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
404  				struct page *page, unsigned int start)
405  {
406  	struct f2fs_sit_block *raw_sit;
407  	struct seg_entry *se;
408  	struct f2fs_sit_entry *rs;
409  	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
410  					(unsigned long)MAIN_SEGS(sbi));
411  	int i;
412  
413  	raw_sit = (struct f2fs_sit_block *)page_address(page);
414  	memset(raw_sit, 0, PAGE_SIZE);
415  	for (i = 0; i < end - start; i++) {
416  		rs = &raw_sit->entries[i];
417  		se = get_seg_entry(sbi, start + i);
418  		__seg_info_to_raw_sit(se, rs);
419  	}
420  }
421  
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)422  static inline void seg_info_to_raw_sit(struct seg_entry *se,
423  					struct f2fs_sit_entry *rs)
424  {
425  	__seg_info_to_raw_sit(se, rs);
426  
427  	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
428  	se->ckpt_valid_blocks = se->valid_blocks;
429  }
430  
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)431  static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
432  		unsigned int max, unsigned int segno)
433  {
434  	unsigned int ret;
435  	spin_lock(&free_i->segmap_lock);
436  	ret = find_next_bit(free_i->free_segmap, max, segno);
437  	spin_unlock(&free_i->segmap_lock);
438  	return ret;
439  }
440  
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)441  static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
442  {
443  	struct free_segmap_info *free_i = FREE_I(sbi);
444  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
445  	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
446  	unsigned int next;
447  	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
448  
449  	spin_lock(&free_i->segmap_lock);
450  	clear_bit(segno, free_i->free_segmap);
451  	free_i->free_segments++;
452  
453  	next = find_next_bit(free_i->free_segmap,
454  			start_segno + sbi->segs_per_sec, start_segno);
455  	if (next >= start_segno + usable_segs) {
456  		clear_bit(secno, free_i->free_secmap);
457  		free_i->free_sections++;
458  	}
459  	spin_unlock(&free_i->segmap_lock);
460  }
461  
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)462  static inline void __set_inuse(struct f2fs_sb_info *sbi,
463  		unsigned int segno)
464  {
465  	struct free_segmap_info *free_i = FREE_I(sbi);
466  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
467  
468  	set_bit(segno, free_i->free_segmap);
469  	free_i->free_segments--;
470  	if (!test_and_set_bit(secno, free_i->free_secmap))
471  		free_i->free_sections--;
472  }
473  
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)474  static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
475  		unsigned int segno, bool inmem)
476  {
477  	struct free_segmap_info *free_i = FREE_I(sbi);
478  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
479  	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
480  	unsigned int next;
481  	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
482  
483  	spin_lock(&free_i->segmap_lock);
484  	if (test_and_clear_bit(segno, free_i->free_segmap)) {
485  		free_i->free_segments++;
486  
487  		if (!inmem && IS_CURSEC(sbi, secno))
488  			goto skip_free;
489  		next = find_next_bit(free_i->free_segmap,
490  				start_segno + sbi->segs_per_sec, start_segno);
491  		if (next >= start_segno + usable_segs) {
492  			if (test_and_clear_bit(secno, free_i->free_secmap))
493  				free_i->free_sections++;
494  		}
495  	}
496  skip_free:
497  	spin_unlock(&free_i->segmap_lock);
498  }
499  
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)500  static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
501  		unsigned int segno)
502  {
503  	struct free_segmap_info *free_i = FREE_I(sbi);
504  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
505  
506  	spin_lock(&free_i->segmap_lock);
507  	if (!test_and_set_bit(segno, free_i->free_segmap)) {
508  		free_i->free_segments--;
509  		if (!test_and_set_bit(secno, free_i->free_secmap))
510  			free_i->free_sections--;
511  	}
512  	spin_unlock(&free_i->segmap_lock);
513  }
514  
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)515  static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
516  		void *dst_addr)
517  {
518  	struct sit_info *sit_i = SIT_I(sbi);
519  
520  #ifdef CONFIG_F2FS_CHECK_FS
521  	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
522  						sit_i->bitmap_size))
523  		f2fs_bug_on(sbi, 1);
524  #endif
525  	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
526  }
527  
written_block_count(struct f2fs_sb_info * sbi)528  static inline block_t written_block_count(struct f2fs_sb_info *sbi)
529  {
530  	return SIT_I(sbi)->written_valid_blocks;
531  }
532  
free_segments(struct f2fs_sb_info * sbi)533  static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
534  {
535  	return FREE_I(sbi)->free_segments;
536  }
537  
reserved_segments(struct f2fs_sb_info * sbi)538  static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
539  {
540  	return SM_I(sbi)->reserved_segments;
541  }
542  
free_sections(struct f2fs_sb_info * sbi)543  static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
544  {
545  	return FREE_I(sbi)->free_sections;
546  }
547  
prefree_segments(struct f2fs_sb_info * sbi)548  static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
549  {
550  	return DIRTY_I(sbi)->nr_dirty[PRE];
551  }
552  
dirty_segments(struct f2fs_sb_info * sbi)553  static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
554  {
555  	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
556  		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
557  		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
558  		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
559  		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
560  		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
561  }
562  
overprovision_segments(struct f2fs_sb_info * sbi)563  static inline int overprovision_segments(struct f2fs_sb_info *sbi)
564  {
565  	return SM_I(sbi)->ovp_segments;
566  }
567  
reserved_sections(struct f2fs_sb_info * sbi)568  static inline int reserved_sections(struct f2fs_sb_info *sbi)
569  {
570  	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
571  }
572  
has_curseg_enough_space(struct f2fs_sb_info * sbi)573  static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
574  {
575  	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
576  					get_pages(sbi, F2FS_DIRTY_DENTS);
577  	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
578  	unsigned int segno, left_blocks;
579  	int i;
580  
581  	/* check current node segment */
582  	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
583  		segno = CURSEG_I(sbi, i)->segno;
584  		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
585  				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
586  
587  		if (node_blocks > left_blocks)
588  			return false;
589  	}
590  
591  	/* check current data segment */
592  	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
593  	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
594  			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
595  	if (dent_blocks > left_blocks)
596  		return false;
597  	return true;
598  }
599  
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)600  static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
601  					int freed, int needed)
602  {
603  	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
604  	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
605  	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
606  
607  	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
608  		return false;
609  
610  	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
611  			has_curseg_enough_space(sbi))
612  		return false;
613  	return (free_sections(sbi) + freed) <=
614  		(node_secs + 2 * dent_secs + imeta_secs +
615  		reserved_sections(sbi) + needed);
616  }
617  
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)618  static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
619  {
620  	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
621  		return true;
622  	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
623  		return true;
624  	return false;
625  }
626  
excess_prefree_segs(struct f2fs_sb_info * sbi)627  static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
628  {
629  	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
630  }
631  
utilization(struct f2fs_sb_info * sbi)632  static inline int utilization(struct f2fs_sb_info *sbi)
633  {
634  	return div_u64((u64)valid_user_blocks(sbi) * 100,
635  					sbi->user_block_count);
636  }
637  
638  /*
639   * Sometimes f2fs may be better to drop out-of-place update policy.
640   * And, users can control the policy through sysfs entries.
641   * There are five policies with triggering conditions as follows.
642   * F2FS_IPU_FORCE - all the time,
643   * F2FS_IPU_SSR - if SSR mode is activated,
644   * F2FS_IPU_UTIL - if FS utilization is over threashold,
645   * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
646   *                     threashold,
647   * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
648   *                     storages. IPU will be triggered only if the # of dirty
649   *                     pages over min_fsync_blocks. (=default option)
650   * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
651   * F2FS_IPU_NOCACHE - disable IPU bio cache.
652   * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
653   */
654  #define DEF_MIN_IPU_UTIL	70
655  #define DEF_MIN_FSYNC_BLOCKS	8
656  #define DEF_MIN_HOT_BLOCKS	16
657  
658  #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
659  
660  enum {
661  	F2FS_IPU_FORCE,
662  	F2FS_IPU_SSR,
663  	F2FS_IPU_UTIL,
664  	F2FS_IPU_SSR_UTIL,
665  	F2FS_IPU_FSYNC,
666  	F2FS_IPU_ASYNC,
667  	F2FS_IPU_NOCACHE,
668  };
669  
curseg_segno(struct f2fs_sb_info * sbi,int type)670  static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
671  		int type)
672  {
673  	struct curseg_info *curseg = CURSEG_I(sbi, type);
674  	return curseg->segno;
675  }
676  
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)677  static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
678  		int type)
679  {
680  	struct curseg_info *curseg = CURSEG_I(sbi, type);
681  	return curseg->alloc_type;
682  }
683  
curseg_blkoff(struct f2fs_sb_info * sbi,int type)684  static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
685  {
686  	struct curseg_info *curseg = CURSEG_I(sbi, type);
687  	return curseg->next_blkoff;
688  }
689  
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)690  static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
691  {
692  	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
693  }
694  
verify_fio_blkaddr(struct f2fs_io_info * fio)695  static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
696  {
697  	struct f2fs_sb_info *sbi = fio->sbi;
698  
699  	if (__is_valid_data_blkaddr(fio->old_blkaddr))
700  		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
701  					META_GENERIC : DATA_GENERIC);
702  	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
703  					META_GENERIC : DATA_GENERIC_ENHANCE);
704  }
705  
706  /*
707   * Summary block is always treated as an invalid block
708   */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)709  static inline int check_block_count(struct f2fs_sb_info *sbi,
710  		int segno, struct f2fs_sit_entry *raw_sit)
711  {
712  	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
713  	int valid_blocks = 0;
714  	int cur_pos = 0, next_pos;
715  	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
716  
717  	/* check bitmap with valid block count */
718  	do {
719  		if (is_valid) {
720  			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
721  					usable_blks_per_seg,
722  					cur_pos);
723  			valid_blocks += next_pos - cur_pos;
724  		} else
725  			next_pos = find_next_bit_le(&raw_sit->valid_map,
726  					usable_blks_per_seg,
727  					cur_pos);
728  		cur_pos = next_pos;
729  		is_valid = !is_valid;
730  	} while (cur_pos < usable_blks_per_seg);
731  
732  	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
733  		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
734  			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
735  		set_sbi_flag(sbi, SBI_NEED_FSCK);
736  		return -EFSCORRUPTED;
737  	}
738  
739  	if (usable_blks_per_seg < sbi->blocks_per_seg)
740  		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
741  				sbi->blocks_per_seg,
742  				usable_blks_per_seg) != sbi->blocks_per_seg);
743  
744  	/* check segment usage, and check boundary of a given segment number */
745  	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
746  					|| segno > TOTAL_SEGS(sbi) - 1)) {
747  		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
748  			 GET_SIT_VBLOCKS(raw_sit), segno);
749  		set_sbi_flag(sbi, SBI_NEED_FSCK);
750  		return -EFSCORRUPTED;
751  	}
752  	return 0;
753  }
754  
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)755  static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
756  						unsigned int start)
757  {
758  	struct sit_info *sit_i = SIT_I(sbi);
759  	unsigned int offset = SIT_BLOCK_OFFSET(start);
760  	block_t blk_addr = sit_i->sit_base_addr + offset;
761  
762  	check_seg_range(sbi, start);
763  
764  #ifdef CONFIG_F2FS_CHECK_FS
765  	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
766  			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
767  		f2fs_bug_on(sbi, 1);
768  #endif
769  
770  	/* calculate sit block address */
771  	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
772  		blk_addr += sit_i->sit_blocks;
773  
774  	return blk_addr;
775  }
776  
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)777  static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
778  						pgoff_t block_addr)
779  {
780  	struct sit_info *sit_i = SIT_I(sbi);
781  	block_addr -= sit_i->sit_base_addr;
782  	if (block_addr < sit_i->sit_blocks)
783  		block_addr += sit_i->sit_blocks;
784  	else
785  		block_addr -= sit_i->sit_blocks;
786  
787  	return block_addr + sit_i->sit_base_addr;
788  }
789  
set_to_next_sit(struct sit_info * sit_i,unsigned int start)790  static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
791  {
792  	unsigned int block_off = SIT_BLOCK_OFFSET(start);
793  
794  	f2fs_change_bit(block_off, sit_i->sit_bitmap);
795  #ifdef CONFIG_F2FS_CHECK_FS
796  	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
797  #endif
798  }
799  
get_mtime(struct f2fs_sb_info * sbi,bool base_time)800  static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
801  						bool base_time)
802  {
803  	struct sit_info *sit_i = SIT_I(sbi);
804  	time64_t diff, now = ktime_get_boottime_seconds();
805  
806  	if (now >= sit_i->mounted_time)
807  		return sit_i->elapsed_time + now - sit_i->mounted_time;
808  
809  	/* system time is set to the past */
810  	if (!base_time) {
811  		diff = sit_i->mounted_time - now;
812  		if (sit_i->elapsed_time >= diff)
813  			return sit_i->elapsed_time - diff;
814  		return 0;
815  	}
816  	return sit_i->elapsed_time;
817  }
818  
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)819  static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
820  			unsigned int ofs_in_node, unsigned char version)
821  {
822  	sum->nid = cpu_to_le32(nid);
823  	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
824  	sum->version = version;
825  }
826  
start_sum_block(struct f2fs_sb_info * sbi)827  static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
828  {
829  	return __start_cp_addr(sbi) +
830  		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
831  }
832  
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)833  static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
834  {
835  	return __start_cp_addr(sbi) +
836  		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
837  				- (base + 1) + type;
838  }
839  
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)840  static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
841  {
842  	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
843  		return true;
844  	return false;
845  }
846  
847  /*
848   * It is very important to gather dirty pages and write at once, so that we can
849   * submit a big bio without interfering other data writes.
850   * By default, 512 pages for directory data,
851   * 512 pages (2MB) * 8 for nodes, and
852   * 256 pages * 8 for meta are set.
853   */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)854  static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
855  {
856  	if (sbi->sb->s_bdi->wb.dirty_exceeded)
857  		return 0;
858  
859  	if (type == DATA)
860  		return sbi->blocks_per_seg;
861  	else if (type == NODE)
862  		return 8 * sbi->blocks_per_seg;
863  	else if (type == META)
864  		return 8 * BIO_MAX_VECS;
865  	else
866  		return 0;
867  }
868  
869  /*
870   * When writing pages, it'd better align nr_to_write for segment size.
871   */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)872  static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
873  					struct writeback_control *wbc)
874  {
875  	long nr_to_write, desired;
876  
877  	if (wbc->sync_mode != WB_SYNC_NONE)
878  		return 0;
879  
880  	nr_to_write = wbc->nr_to_write;
881  	desired = BIO_MAX_VECS;
882  	if (type == NODE)
883  		desired <<= 1;
884  
885  	wbc->nr_to_write = desired;
886  	return desired - nr_to_write;
887  }
888  
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)889  static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
890  {
891  	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
892  	bool wakeup = false;
893  	int i;
894  
895  	if (force)
896  		goto wake_up;
897  
898  	mutex_lock(&dcc->cmd_lock);
899  	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
900  		if (i + 1 < dcc->discard_granularity)
901  			break;
902  		if (!list_empty(&dcc->pend_list[i])) {
903  			wakeup = true;
904  			break;
905  		}
906  	}
907  	mutex_unlock(&dcc->cmd_lock);
908  	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
909  		return;
910  wake_up:
911  	dcc->discard_wake = 1;
912  	wake_up_interruptible_all(&dcc->discard_wait_queue);
913  }
914