1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
5
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8
9 #include <asm/cpucaps.h>
10 #include <asm/cputype.h>
11 #include <asm/hwcap.h>
12 #include <asm/sysreg.h>
13
14 #define MAX_CPU_FEATURES 64
15 #define cpu_feature(x) KERNEL_HWCAP_ ## x
16
17 #ifndef __ASSEMBLY__
18
19 #include <linux/bug.h>
20 #include <linux/jump_label.h>
21 #include <linux/kernel.h>
22
23 /*
24 * CPU feature register tracking
25 *
26 * The safe value of a CPUID feature field is dependent on the implications
27 * of the values assigned to it by the architecture. Based on the relationship
28 * between the values, the features are classified into 3 types - LOWER_SAFE,
29 * HIGHER_SAFE and EXACT.
30 *
31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
33 * a field when EXACT is specified, failing which, the safe value specified
34 * in the table is chosen.
35 */
36
37 enum ftr_type {
38 FTR_EXACT, /* Use a predefined safe value */
39 FTR_LOWER_SAFE, /* Smaller value is safe */
40 FTR_HIGHER_SAFE, /* Bigger value is safe */
41 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */
42 };
43
44 #define FTR_STRICT true /* SANITY check strict matching required */
45 #define FTR_NONSTRICT false /* SANITY check ignored */
46
47 #define FTR_SIGNED true /* Value should be treated as signed */
48 #define FTR_UNSIGNED false /* Value should be treated as unsigned */
49
50 #define FTR_VISIBLE true /* Feature visible to the user space */
51 #define FTR_HIDDEN false /* Feature is hidden from the user */
52
53 #define FTR_VISIBLE_IF_IS_ENABLED(config) \
54 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
55
56 struct arm64_ftr_bits {
57 bool sign; /* Value is signed ? */
58 bool visible;
59 bool strict; /* CPU Sanity check: strict matching required ? */
60 enum ftr_type type;
61 u8 shift;
62 u8 width;
63 s64 safe_val; /* safe value for FTR_EXACT features */
64 };
65
66 /*
67 * @arm64_ftr_reg - Feature register
68 * @strict_mask Bits which should match across all CPUs for sanity.
69 * @sys_val Safe value across the CPUs (system view)
70 */
71 struct arm64_ftr_reg {
72 const char *name;
73 u64 strict_mask;
74 u64 user_mask;
75 u64 sys_val;
76 u64 user_val;
77 const struct arm64_ftr_bits *ftr_bits;
78 };
79
80 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
81
82 /*
83 * CPU capabilities:
84 *
85 * We use arm64_cpu_capabilities to represent system features, errata work
86 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
87 * ELF HWCAPs (which are exposed to user).
88 *
89 * To support systems with heterogeneous CPUs, we need to make sure that we
90 * detect the capabilities correctly on the system and take appropriate
91 * measures to ensure there are no incompatibilities.
92 *
93 * This comment tries to explain how we treat the capabilities.
94 * Each capability has the following list of attributes :
95 *
96 * 1) Scope of Detection : The system detects a given capability by
97 * performing some checks at runtime. This could be, e.g, checking the
98 * value of a field in CPU ID feature register or checking the cpu
99 * model. The capability provides a call back ( @matches() ) to
100 * perform the check. Scope defines how the checks should be performed.
101 * There are three cases:
102 *
103 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
104 * matches. This implies, we have to run the check on all the
105 * booting CPUs, until the system decides that state of the
106 * capability is finalised. (See section 2 below)
107 * Or
108 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
109 * matches. This implies, we run the check only once, when the
110 * system decides to finalise the state of the capability. If the
111 * capability relies on a field in one of the CPU ID feature
112 * registers, we use the sanitised value of the register from the
113 * CPU feature infrastructure to make the decision.
114 * Or
115 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
116 * feature. This category is for features that are "finalised"
117 * (or used) by the kernel very early even before the SMP cpus
118 * are brought up.
119 *
120 * The process of detection is usually denoted by "update" capability
121 * state in the code.
122 *
123 * 2) Finalise the state : The kernel should finalise the state of a
124 * capability at some point during its execution and take necessary
125 * actions if any. Usually, this is done, after all the boot-time
126 * enabled CPUs are brought up by the kernel, so that it can make
127 * better decision based on the available set of CPUs. However, there
128 * are some special cases, where the action is taken during the early
129 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with
130 * Virtualisation Host Extensions). The kernel usually disallows any
131 * changes to the state of a capability once it finalises the capability
132 * and takes any action, as it may be impossible to execute the actions
133 * safely. A CPU brought up after a capability is "finalised" is
134 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary
135 * CPUs are treated "late CPUs" for capabilities determined by the boot
136 * CPU.
137 *
138 * At the moment there are two passes of finalising the capabilities.
139 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via
140 * setup_boot_cpu_capabilities().
141 * b) Everything except (a) - Run via setup_system_capabilities().
142 *
143 * 3) Verification: When a CPU is brought online (e.g, by user or by the
144 * kernel), the kernel should make sure that it is safe to use the CPU,
145 * by verifying that the CPU is compliant with the state of the
146 * capabilities finalised already. This happens via :
147 *
148 * secondary_start_kernel()-> check_local_cpu_capabilities()
149 *
150 * As explained in (2) above, capabilities could be finalised at
151 * different points in the execution. Each newly booted CPU is verified
152 * against the capabilities that have been finalised by the time it
153 * boots.
154 *
155 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
156 * except for the primary boot CPU.
157 *
158 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
159 * user after the kernel boot are verified against the capability.
160 *
161 * If there is a conflict, the kernel takes an action, based on the
162 * severity (e.g, a CPU could be prevented from booting or cause a
163 * kernel panic). The CPU is allowed to "affect" the state of the
164 * capability, if it has not been finalised already. See section 5
165 * for more details on conflicts.
166 *
167 * 4) Action: As mentioned in (2), the kernel can take an action for each
168 * detected capability, on all CPUs on the system. Appropriate actions
169 * include, turning on an architectural feature, modifying the control
170 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via
171 * alternatives. The kernel patching is batched and performed at later
172 * point. The actions are always initiated only after the capability
173 * is finalised. This is usally denoted by "enabling" the capability.
174 * The actions are initiated as follows :
175 * a) Action is triggered on all online CPUs, after the capability is
176 * finalised, invoked within the stop_machine() context from
177 * enable_cpu_capabilitie().
178 *
179 * b) Any late CPU, brought up after (1), the action is triggered via:
180 *
181 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
182 *
183 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
184 * the system state, we could have the following combinations :
185 *
186 * x-----------------------------x
187 * | Type | System | Late CPU |
188 * |-----------------------------|
189 * | a | y | n |
190 * |-----------------------------|
191 * | b | n | y |
192 * x-----------------------------x
193 *
194 * Two separate flag bits are defined to indicate whether each kind of
195 * conflict can be allowed:
196 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
197 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
198 *
199 * Case (a) is not permitted for a capability that the system requires
200 * all CPUs to have in order for the capability to be enabled. This is
201 * typical for capabilities that represent enhanced functionality.
202 *
203 * Case (b) is not permitted for a capability that must be enabled
204 * during boot if any CPU in the system requires it in order to run
205 * safely. This is typical for erratum work arounds that cannot be
206 * enabled after the corresponding capability is finalised.
207 *
208 * In some non-typical cases either both (a) and (b), or neither,
209 * should be permitted. This can be described by including neither
210 * or both flags in the capability's type field.
211 *
212 * In case of a conflict, the CPU is prevented from booting. If the
213 * ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
214 * then a kernel panic is triggered.
215 */
216
217
218 /*
219 * Decide how the capability is detected.
220 * On any local CPU vs System wide vs the primary boot CPU
221 */
222 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0))
223 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1))
224 /*
225 * The capabilitiy is detected on the Boot CPU and is used by kernel
226 * during early boot. i.e, the capability should be "detected" and
227 * "enabled" as early as possibly on all booting CPUs.
228 */
229 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2))
230 #define ARM64_CPUCAP_SCOPE_MASK \
231 (ARM64_CPUCAP_SCOPE_SYSTEM | \
232 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
233 ARM64_CPUCAP_SCOPE_BOOT_CPU)
234
235 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
236 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
237 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU
238 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK
239
240 /*
241 * Is it permitted for a late CPU to have this capability when system
242 * hasn't already enabled it ?
243 */
244 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4))
245 /* Is it safe for a late CPU to miss this capability when system has it */
246 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5))
247 /* Panic when a conflict is detected */
248 #define ARM64_CPUCAP_PANIC_ON_CONFLICT ((u16)BIT(6))
249
250 /*
251 * CPU errata workarounds that need to be enabled at boot time if one or
252 * more CPUs in the system requires it. When one of these capabilities
253 * has been enabled, it is safe to allow any CPU to boot that doesn't
254 * require the workaround. However, it is not safe if a "late" CPU
255 * requires a workaround and the system hasn't enabled it already.
256 */
257 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \
258 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
259 /*
260 * CPU feature detected at boot time based on system-wide value of a
261 * feature. It is safe for a late CPU to have this feature even though
262 * the system hasn't enabled it, although the feature will not be used
263 * by Linux in this case. If the system has enabled this feature already,
264 * then every late CPU must have it.
265 */
266 #define ARM64_CPUCAP_SYSTEM_FEATURE \
267 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
268 /*
269 * CPU feature detected at boot time based on feature of one or more CPUs.
270 * All possible conflicts for a late CPU are ignored.
271 * NOTE: this means that a late CPU with the feature will *not* cause the
272 * capability to be advertised by cpus_have_*cap()!
273 */
274 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \
275 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
276 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \
277 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
278
279 /*
280 * CPU feature detected at boot time, on one or more CPUs. A late CPU
281 * is not allowed to have the capability when the system doesn't have it.
282 * It is Ok for a late CPU to miss the feature.
283 */
284 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \
285 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
286 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
287
288 /*
289 * CPU feature used early in the boot based on the boot CPU. All secondary
290 * CPUs must match the state of the capability as detected by the boot CPU. In
291 * case of a conflict, a kernel panic is triggered.
292 */
293 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE \
294 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
295
296 /*
297 * CPU feature used early in the boot based on the boot CPU. It is safe for a
298 * late CPU to have this feature even though the boot CPU hasn't enabled it,
299 * although the feature will not be used by Linux in this case. If the boot CPU
300 * has enabled this feature already, then every late CPU must have it.
301 */
302 #define ARM64_CPUCAP_BOOT_CPU_FEATURE \
303 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
304
305 struct arm64_cpu_capabilities {
306 const char *desc;
307 u16 capability;
308 u16 type;
309 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
310 /*
311 * Take the appropriate actions to configure this capability
312 * for this CPU. If the capability is detected by the kernel
313 * this will be called on all the CPUs in the system,
314 * including the hotplugged CPUs, regardless of whether the
315 * capability is available on that specific CPU. This is
316 * useful for some capabilities (e.g, working around CPU
317 * errata), where all the CPUs must take some action (e.g,
318 * changing system control/configuration). Thus, if an action
319 * is required only if the CPU has the capability, then the
320 * routine must check it before taking any action.
321 */
322 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
323 union {
324 struct { /* To be used for erratum handling only */
325 struct midr_range midr_range;
326 const struct arm64_midr_revidr {
327 u32 midr_rv; /* revision/variant */
328 u32 revidr_mask;
329 } * const fixed_revs;
330 };
331
332 const struct midr_range *midr_range_list;
333 struct { /* Feature register checking */
334 u32 sys_reg;
335 u8 field_pos;
336 u8 min_field_value;
337 u8 hwcap_type;
338 bool sign;
339 unsigned long hwcap;
340 };
341 };
342
343 /*
344 * An optional list of "matches/cpu_enable" pair for the same
345 * "capability" of the same "type" as described by the parent.
346 * Only matches(), cpu_enable() and fields relevant to these
347 * methods are significant in the list. The cpu_enable is
348 * invoked only if the corresponding entry "matches()".
349 * However, if a cpu_enable() method is associated
350 * with multiple matches(), care should be taken that either
351 * the match criteria are mutually exclusive, or that the
352 * method is robust against being called multiple times.
353 */
354 const struct arm64_cpu_capabilities *match_list;
355 };
356
cpucap_default_scope(const struct arm64_cpu_capabilities * cap)357 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
358 {
359 return cap->type & ARM64_CPUCAP_SCOPE_MASK;
360 }
361
362 /*
363 * Generic helper for handling capabilities with multiple (match,enable) pairs
364 * of call backs, sharing the same capability bit.
365 * Iterate over each entry to see if at least one matches.
366 */
367 static inline bool
cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities * entry,int scope)368 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
369 int scope)
370 {
371 const struct arm64_cpu_capabilities *caps;
372
373 for (caps = entry->match_list; caps->matches; caps++)
374 if (caps->matches(caps, scope))
375 return true;
376
377 return false;
378 }
379
is_vhe_hyp_code(void)380 static __always_inline bool is_vhe_hyp_code(void)
381 {
382 /* Only defined for code run in VHE hyp context */
383 return __is_defined(__KVM_VHE_HYPERVISOR__);
384 }
385
is_nvhe_hyp_code(void)386 static __always_inline bool is_nvhe_hyp_code(void)
387 {
388 /* Only defined for code run in NVHE hyp context */
389 return __is_defined(__KVM_NVHE_HYPERVISOR__);
390 }
391
is_hyp_code(void)392 static __always_inline bool is_hyp_code(void)
393 {
394 return is_vhe_hyp_code() || is_nvhe_hyp_code();
395 }
396
397 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
398 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
399 extern struct static_key_false arm64_const_caps_ready;
400
401 /* ARM64 CAPS + alternative_cb */
402 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
403 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
404
405 #define for_each_available_cap(cap) \
406 for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
407
408 bool this_cpu_has_cap(unsigned int cap);
409 void cpu_set_feature(unsigned int num);
410 bool cpu_have_feature(unsigned int num);
411 unsigned long cpu_get_elf_hwcap(void);
412 unsigned long cpu_get_elf_hwcap2(void);
413
414 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
415 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
416
system_capabilities_finalized(void)417 static __always_inline bool system_capabilities_finalized(void)
418 {
419 return static_branch_likely(&arm64_const_caps_ready);
420 }
421
422 /*
423 * Test for a capability with a runtime check.
424 *
425 * Before the capability is detected, this returns false.
426 */
cpus_have_cap(unsigned int num)427 static inline bool cpus_have_cap(unsigned int num)
428 {
429 if (num >= ARM64_NCAPS)
430 return false;
431 return test_bit(num, cpu_hwcaps);
432 }
433
434 /*
435 * Test for a capability without a runtime check.
436 *
437 * Before capabilities are finalized, this returns false.
438 * After capabilities are finalized, this is patched to avoid a runtime check.
439 *
440 * @num must be a compile-time constant.
441 */
__cpus_have_const_cap(int num)442 static __always_inline bool __cpus_have_const_cap(int num)
443 {
444 if (num >= ARM64_NCAPS)
445 return false;
446 return static_branch_unlikely(&cpu_hwcap_keys[num]);
447 }
448
449 /*
450 * Test for a capability without a runtime check.
451 *
452 * Before capabilities are finalized, this will BUG().
453 * After capabilities are finalized, this is patched to avoid a runtime check.
454 *
455 * @num must be a compile-time constant.
456 */
cpus_have_final_cap(int num)457 static __always_inline bool cpus_have_final_cap(int num)
458 {
459 if (system_capabilities_finalized())
460 return __cpus_have_const_cap(num);
461 else
462 BUG();
463 }
464
465 /*
466 * Test for a capability, possibly with a runtime check for non-hyp code.
467 *
468 * For hyp code, this behaves the same as cpus_have_final_cap().
469 *
470 * For non-hyp code:
471 * Before capabilities are finalized, this behaves as cpus_have_cap().
472 * After capabilities are finalized, this is patched to avoid a runtime check.
473 *
474 * @num must be a compile-time constant.
475 */
cpus_have_const_cap(int num)476 static __always_inline bool cpus_have_const_cap(int num)
477 {
478 if (is_hyp_code())
479 return cpus_have_final_cap(num);
480 else if (system_capabilities_finalized())
481 return __cpus_have_const_cap(num);
482 else
483 return cpus_have_cap(num);
484 }
485
cpus_set_cap(unsigned int num)486 static inline void cpus_set_cap(unsigned int num)
487 {
488 if (num >= ARM64_NCAPS) {
489 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
490 num, ARM64_NCAPS);
491 } else {
492 __set_bit(num, cpu_hwcaps);
493 }
494 }
495
496 static inline int __attribute_const__
cpuid_feature_extract_signed_field_width(u64 features,int field,int width)497 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
498 {
499 return (s64)(features << (64 - width - field)) >> (64 - width);
500 }
501
502 static inline int __attribute_const__
cpuid_feature_extract_signed_field(u64 features,int field)503 cpuid_feature_extract_signed_field(u64 features, int field)
504 {
505 return cpuid_feature_extract_signed_field_width(features, field, 4);
506 }
507
508 static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features,int field,int width)509 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
510 {
511 return (u64)(features << (64 - width - field)) >> (64 - width);
512 }
513
514 static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features,int field)515 cpuid_feature_extract_unsigned_field(u64 features, int field)
516 {
517 return cpuid_feature_extract_unsigned_field_width(features, field, 4);
518 }
519
520 /*
521 * Fields that identify the version of the Performance Monitors Extension do
522 * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
523 * "Alternative ID scheme used for the Performance Monitors Extension version".
524 */
525 static inline u64 __attribute_const__
cpuid_feature_cap_perfmon_field(u64 features,int field,u64 cap)526 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
527 {
528 u64 val = cpuid_feature_extract_unsigned_field(features, field);
529 u64 mask = GENMASK_ULL(field + 3, field);
530
531 /* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
532 if (val == 0xf)
533 val = 0;
534
535 if (val > cap) {
536 features &= ~mask;
537 features |= (cap << field) & mask;
538 }
539
540 return features;
541 }
542
arm64_ftr_mask(const struct arm64_ftr_bits * ftrp)543 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
544 {
545 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
546 }
547
arm64_ftr_reg_user_value(const struct arm64_ftr_reg * reg)548 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
549 {
550 return (reg->user_val | (reg->sys_val & reg->user_mask));
551 }
552
553 static inline int __attribute_const__
cpuid_feature_extract_field_width(u64 features,int field,int width,bool sign)554 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
555 {
556 return (sign) ?
557 cpuid_feature_extract_signed_field_width(features, field, width) :
558 cpuid_feature_extract_unsigned_field_width(features, field, width);
559 }
560
561 static inline int __attribute_const__
cpuid_feature_extract_field(u64 features,int field,bool sign)562 cpuid_feature_extract_field(u64 features, int field, bool sign)
563 {
564 return cpuid_feature_extract_field_width(features, field, 4, sign);
565 }
566
arm64_ftr_value(const struct arm64_ftr_bits * ftrp,u64 val)567 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
568 {
569 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
570 }
571
id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)572 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
573 {
574 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
575 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
576 }
577
id_aa64pfr0_32bit_el1(u64 pfr0)578 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
579 {
580 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SHIFT);
581
582 return val == ID_AA64PFR0_EL1_32BIT_64BIT;
583 }
584
id_aa64pfr0_32bit_el0(u64 pfr0)585 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
586 {
587 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
588
589 return val == ID_AA64PFR0_EL0_32BIT_64BIT;
590 }
591
id_aa64pfr0_sve(u64 pfr0)592 static inline bool id_aa64pfr0_sve(u64 pfr0)
593 {
594 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
595
596 return val > 0;
597 }
598
599 void __init setup_cpu_features(void);
600 void check_local_cpu_capabilities(void);
601
602 u64 read_sanitised_ftr_reg(u32 id);
603
cpu_supports_mixed_endian_el0(void)604 static inline bool cpu_supports_mixed_endian_el0(void)
605 {
606 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
607 }
608
system_supports_32bit_el0(void)609 static inline bool system_supports_32bit_el0(void)
610 {
611 return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
612 }
613
system_supports_4kb_granule(void)614 static inline bool system_supports_4kb_granule(void)
615 {
616 u64 mmfr0;
617 u32 val;
618
619 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
620 val = cpuid_feature_extract_unsigned_field(mmfr0,
621 ID_AA64MMFR0_TGRAN4_SHIFT);
622
623 return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
624 }
625
system_supports_64kb_granule(void)626 static inline bool system_supports_64kb_granule(void)
627 {
628 u64 mmfr0;
629 u32 val;
630
631 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
632 val = cpuid_feature_extract_unsigned_field(mmfr0,
633 ID_AA64MMFR0_TGRAN64_SHIFT);
634
635 return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
636 }
637
system_supports_16kb_granule(void)638 static inline bool system_supports_16kb_granule(void)
639 {
640 u64 mmfr0;
641 u32 val;
642
643 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
644 val = cpuid_feature_extract_unsigned_field(mmfr0,
645 ID_AA64MMFR0_TGRAN16_SHIFT);
646
647 return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
648 }
649
system_supports_mixed_endian_el0(void)650 static inline bool system_supports_mixed_endian_el0(void)
651 {
652 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
653 }
654
system_supports_mixed_endian(void)655 static inline bool system_supports_mixed_endian(void)
656 {
657 u64 mmfr0;
658 u32 val;
659
660 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
661 val = cpuid_feature_extract_unsigned_field(mmfr0,
662 ID_AA64MMFR0_BIGENDEL_SHIFT);
663
664 return val == 0x1;
665 }
666
system_supports_fpsimd(void)667 static __always_inline bool system_supports_fpsimd(void)
668 {
669 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
670 }
671
system_uses_ttbr0_pan(void)672 static inline bool system_uses_ttbr0_pan(void)
673 {
674 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
675 !cpus_have_const_cap(ARM64_HAS_PAN);
676 }
677
system_supports_sve(void)678 static __always_inline bool system_supports_sve(void)
679 {
680 return IS_ENABLED(CONFIG_ARM64_SVE) &&
681 cpus_have_const_cap(ARM64_SVE);
682 }
683
system_supports_cnp(void)684 static __always_inline bool system_supports_cnp(void)
685 {
686 return IS_ENABLED(CONFIG_ARM64_CNP) &&
687 cpus_have_const_cap(ARM64_HAS_CNP);
688 }
689
system_supports_address_auth(void)690 static inline bool system_supports_address_auth(void)
691 {
692 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
693 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH);
694 }
695
system_supports_generic_auth(void)696 static inline bool system_supports_generic_auth(void)
697 {
698 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
699 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH);
700 }
701
system_uses_irq_prio_masking(void)702 static __always_inline bool system_uses_irq_prio_masking(void)
703 {
704 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
705 cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
706 }
707
system_supports_mte(void)708 static inline bool system_supports_mte(void)
709 {
710 return IS_ENABLED(CONFIG_ARM64_MTE) &&
711 cpus_have_const_cap(ARM64_MTE);
712 }
713
system_has_prio_mask_debugging(void)714 static inline bool system_has_prio_mask_debugging(void)
715 {
716 return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
717 system_uses_irq_prio_masking();
718 }
719
system_supports_bti(void)720 static inline bool system_supports_bti(void)
721 {
722 return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI);
723 }
724
system_supports_tlb_range(void)725 static inline bool system_supports_tlb_range(void)
726 {
727 return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) &&
728 cpus_have_const_cap(ARM64_HAS_TLB_RANGE);
729 }
730
731 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
732
id_aa64mmfr0_parange_to_phys_shift(int parange)733 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
734 {
735 switch (parange) {
736 case 0: return 32;
737 case 1: return 36;
738 case 2: return 40;
739 case 3: return 42;
740 case 4: return 44;
741 case 5: return 48;
742 case 6: return 52;
743 /*
744 * A future PE could use a value unknown to the kernel.
745 * However, by the "D10.1.4 Principles of the ID scheme
746 * for fields in ID registers", ARM DDI 0487C.a, any new
747 * value is guaranteed to be higher than what we know already.
748 * As a safe limit, we return the limit supported by the kernel.
749 */
750 default: return CONFIG_ARM64_PA_BITS;
751 }
752 }
753
754 /* Check whether hardware update of the Access flag is supported */
cpu_has_hw_af(void)755 static inline bool cpu_has_hw_af(void)
756 {
757 u64 mmfr1;
758
759 if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
760 return false;
761
762 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
763 return cpuid_feature_extract_unsigned_field(mmfr1,
764 ID_AA64MMFR1_HADBS_SHIFT);
765 }
766
767 #ifdef CONFIG_ARM64_AMU_EXTN
768 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
769 extern bool cpu_has_amu_feat(int cpu);
770 #endif
771
get_vmid_bits(u64 mmfr1)772 static inline unsigned int get_vmid_bits(u64 mmfr1)
773 {
774 int vmid_bits;
775
776 vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
777 ID_AA64MMFR1_VMIDBITS_SHIFT);
778 if (vmid_bits == ID_AA64MMFR1_VMIDBITS_16)
779 return 16;
780
781 /*
782 * Return the default here even if any reserved
783 * value is fetched from the system register.
784 */
785 return 8;
786 }
787
788 u32 get_kvm_ipa_limit(void);
789 void dump_cpu_features(void);
790
791 #endif /* __ASSEMBLY__ */
792
793 #endif
794