// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include #include "habanalabs.h" #include #include #include #include static int cb_map_mem(struct hl_ctx *ctx, struct hl_cb *cb) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_vm_va_block *va_block, *tmp; dma_addr_t bus_addr; u64 virt_addr; u32 page_size = prop->pmmu.page_size; s32 offset; int rc; if (!hdev->supports_cb_mapping) { dev_err_ratelimited(hdev->dev, "Cannot map CB because no VA range is allocated for CB mapping\n"); return -EINVAL; } if (!hdev->mmu_enable) { dev_err_ratelimited(hdev->dev, "Cannot map CB because MMU is disabled\n"); return -EINVAL; } INIT_LIST_HEAD(&cb->va_block_list); for (bus_addr = cb->bus_address; bus_addr < cb->bus_address + cb->size; bus_addr += page_size) { virt_addr = (u64) gen_pool_alloc(ctx->cb_va_pool, page_size); if (!virt_addr) { dev_err(hdev->dev, "Failed to allocate device virtual address for CB\n"); rc = -ENOMEM; goto err_va_pool_free; } va_block = kzalloc(sizeof(*va_block), GFP_KERNEL); if (!va_block) { rc = -ENOMEM; gen_pool_free(ctx->cb_va_pool, virt_addr, page_size); goto err_va_pool_free; } va_block->start = virt_addr; va_block->end = virt_addr + page_size; va_block->size = page_size; list_add_tail(&va_block->node, &cb->va_block_list); } mutex_lock(&ctx->mmu_lock); bus_addr = cb->bus_address; offset = 0; list_for_each_entry(va_block, &cb->va_block_list, node) { rc = hl_mmu_map(ctx, va_block->start, bus_addr, va_block->size, list_is_last(&va_block->node, &cb->va_block_list)); if (rc) { dev_err(hdev->dev, "Failed to map VA %#llx to CB\n", va_block->start); goto err_va_umap; } bus_addr += va_block->size; offset += va_block->size; } hdev->asic_funcs->mmu_invalidate_cache(hdev, false, VM_TYPE_USERPTR); mutex_unlock(&ctx->mmu_lock); cb->is_mmu_mapped = true; return 0; err_va_umap: list_for_each_entry(va_block, &cb->va_block_list, node) { if (offset <= 0) break; hl_mmu_unmap(ctx, va_block->start, va_block->size, offset <= va_block->size); offset -= va_block->size; } hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR); mutex_unlock(&ctx->mmu_lock); err_va_pool_free: list_for_each_entry_safe(va_block, tmp, &cb->va_block_list, node) { gen_pool_free(ctx->cb_va_pool, va_block->start, va_block->size); list_del(&va_block->node); kfree(va_block); } return rc; } static void cb_unmap_mem(struct hl_ctx *ctx, struct hl_cb *cb) { struct hl_device *hdev = ctx->hdev; struct hl_vm_va_block *va_block, *tmp; mutex_lock(&ctx->mmu_lock); list_for_each_entry(va_block, &cb->va_block_list, node) if (hl_mmu_unmap(ctx, va_block->start, va_block->size, list_is_last(&va_block->node, &cb->va_block_list))) dev_warn_ratelimited(hdev->dev, "Failed to unmap CB's va 0x%llx\n", va_block->start); hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR); mutex_unlock(&ctx->mmu_lock); list_for_each_entry_safe(va_block, tmp, &cb->va_block_list, node) { gen_pool_free(ctx->cb_va_pool, va_block->start, va_block->size); list_del(&va_block->node); kfree(va_block); } } static void cb_fini(struct hl_device *hdev, struct hl_cb *cb) { if (cb->is_internal) gen_pool_free(hdev->internal_cb_pool, (uintptr_t)cb->kernel_address, cb->size); else hdev->asic_funcs->asic_dma_free_coherent(hdev, cb->size, cb->kernel_address, cb->bus_address); kfree(cb); } static void cb_do_release(struct hl_device *hdev, struct hl_cb *cb) { if (cb->is_pool) { spin_lock(&hdev->cb_pool_lock); list_add(&cb->pool_list, &hdev->cb_pool); spin_unlock(&hdev->cb_pool_lock); } else { cb_fini(hdev, cb); } } static void cb_release(struct kref *ref) { struct hl_device *hdev; struct hl_cb *cb; cb = container_of(ref, struct hl_cb, refcount); hdev = cb->hdev; hl_debugfs_remove_cb(cb); if (cb->is_mmu_mapped) cb_unmap_mem(cb->ctx, cb); hl_ctx_put(cb->ctx); cb_do_release(hdev, cb); } static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size, int ctx_id, bool internal_cb) { struct hl_cb *cb; u32 cb_offset; void *p; /* * We use of GFP_ATOMIC here because this function can be called from * the latency-sensitive code path for command submission. Due to H/W * limitations in some of the ASICs, the kernel must copy the user CB * that is designated for an external queue and actually enqueue * the kernel's copy. Hence, we must never sleep in this code section * and must use GFP_ATOMIC for all memory allocations. */ if (ctx_id == HL_KERNEL_ASID_ID) cb = kzalloc(sizeof(*cb), GFP_ATOMIC); else cb = kzalloc(sizeof(*cb), GFP_KERNEL); if (!cb) return NULL; if (internal_cb) { p = (void *) gen_pool_alloc(hdev->internal_cb_pool, cb_size); if (!p) { kfree(cb); return NULL; } cb_offset = p - hdev->internal_cb_pool_virt_addr; cb->is_internal = true; cb->bus_address = hdev->internal_cb_va_base + cb_offset; } else if (ctx_id == HL_KERNEL_ASID_ID) { p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, GFP_ATOMIC); } else { p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, GFP_USER | __GFP_ZERO); } if (!p) { dev_err(hdev->dev, "failed to allocate %d of dma memory for CB\n", cb_size); kfree(cb); return NULL; } cb->kernel_address = p; cb->size = cb_size; return cb; } int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, struct hl_ctx *ctx, u32 cb_size, bool internal_cb, bool map_cb, u64 *handle) { struct hl_cb *cb; bool alloc_new_cb = true; int rc, ctx_id = ctx->asid; /* * Can't use generic function to check this because of special case * where we create a CB as part of the reset process */ if ((hdev->disabled) || ((atomic_read(&hdev->in_reset)) && (ctx_id != HL_KERNEL_ASID_ID))) { dev_warn_ratelimited(hdev->dev, "Device is disabled or in reset. Can't create new CBs\n"); rc = -EBUSY; goto out_err; } if (cb_size > SZ_2M) { dev_err(hdev->dev, "CB size %d must be less than %d\n", cb_size, SZ_2M); rc = -EINVAL; goto out_err; } if (!internal_cb) { /* Minimum allocation must be PAGE SIZE */ if (cb_size < PAGE_SIZE) cb_size = PAGE_SIZE; if (ctx_id == HL_KERNEL_ASID_ID && cb_size <= hdev->asic_prop.cb_pool_cb_size) { spin_lock(&hdev->cb_pool_lock); if (!list_empty(&hdev->cb_pool)) { cb = list_first_entry(&hdev->cb_pool, typeof(*cb), pool_list); list_del(&cb->pool_list); spin_unlock(&hdev->cb_pool_lock); alloc_new_cb = false; } else { spin_unlock(&hdev->cb_pool_lock); dev_dbg(hdev->dev, "CB pool is empty\n"); } } } if (alloc_new_cb) { cb = hl_cb_alloc(hdev, cb_size, ctx_id, internal_cb); if (!cb) { rc = -ENOMEM; goto out_err; } } cb->hdev = hdev; cb->ctx = ctx; hl_ctx_get(hdev, cb->ctx); if (map_cb) { if (ctx_id == HL_KERNEL_ASID_ID) { dev_err(hdev->dev, "CB mapping is not supported for kernel context\n"); rc = -EINVAL; goto release_cb; } rc = cb_map_mem(ctx, cb); if (rc) goto release_cb; } spin_lock(&mgr->cb_lock); rc = idr_alloc(&mgr->cb_handles, cb, 1, 0, GFP_ATOMIC); spin_unlock(&mgr->cb_lock); if (rc < 0) { dev_err(hdev->dev, "Failed to allocate IDR for a new CB\n"); goto unmap_mem; } cb->id = (u64) rc; kref_init(&cb->refcount); spin_lock_init(&cb->lock); /* * idr is 32-bit so we can safely OR it with a mask that is above * 32 bit */ *handle = cb->id | HL_MMAP_TYPE_CB; *handle <<= PAGE_SHIFT; hl_debugfs_add_cb(cb); return 0; unmap_mem: if (cb->is_mmu_mapped) cb_unmap_mem(cb->ctx, cb); release_cb: hl_ctx_put(cb->ctx); cb_do_release(hdev, cb); out_err: *handle = 0; return rc; } int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle) { struct hl_cb *cb; u32 handle; int rc = 0; /* * handle was given to user to do mmap, I need to shift it back to * how the idr module gave it to me */ cb_handle >>= PAGE_SHIFT; handle = (u32) cb_handle; spin_lock(&mgr->cb_lock); cb = idr_find(&mgr->cb_handles, handle); if (cb) { idr_remove(&mgr->cb_handles, handle); spin_unlock(&mgr->cb_lock); kref_put(&cb->refcount, cb_release); } else { spin_unlock(&mgr->cb_lock); dev_err(hdev->dev, "CB destroy failed, no match to handle 0x%x\n", handle); rc = -EINVAL; } return rc; } int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data) { union hl_cb_args *args = data; struct hl_device *hdev = hpriv->hdev; u64 handle = 0; int rc; if (hl_device_disabled_or_in_reset(hdev)) { dev_warn_ratelimited(hdev->dev, "Device is %s. Can't execute CB IOCTL\n", atomic_read(&hdev->in_reset) ? "in_reset" : "disabled"); return -EBUSY; } switch (args->in.op) { case HL_CB_OP_CREATE: if (args->in.cb_size > HL_MAX_CB_SIZE) { dev_err(hdev->dev, "User requested CB size %d must be less than %d\n", args->in.cb_size, HL_MAX_CB_SIZE); rc = -EINVAL; } else { rc = hl_cb_create(hdev, &hpriv->cb_mgr, hpriv->ctx, args->in.cb_size, false, !!(args->in.flags & HL_CB_FLAGS_MAP), &handle); } memset(args, 0, sizeof(*args)); args->out.cb_handle = handle; break; case HL_CB_OP_DESTROY: rc = hl_cb_destroy(hdev, &hpriv->cb_mgr, args->in.cb_handle); break; default: rc = -ENOTTY; break; } return rc; } static void cb_vm_close(struct vm_area_struct *vma) { struct hl_cb *cb = (struct hl_cb *) vma->vm_private_data; long new_mmap_size; new_mmap_size = cb->mmap_size - (vma->vm_end - vma->vm_start); if (new_mmap_size > 0) { cb->mmap_size = new_mmap_size; return; } spin_lock(&cb->lock); cb->mmap = false; spin_unlock(&cb->lock); hl_cb_put(cb); vma->vm_private_data = NULL; } static const struct vm_operations_struct cb_vm_ops = { .close = cb_vm_close }; int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) { struct hl_device *hdev = hpriv->hdev; struct hl_cb *cb; u32 handle, user_cb_size; int rc; /* We use the page offset to hold the idr and thus we need to clear * it before doing the mmap itself */ handle = vma->vm_pgoff; vma->vm_pgoff = 0; /* reference was taken here */ cb = hl_cb_get(hdev, &hpriv->cb_mgr, handle); if (!cb) { dev_err(hdev->dev, "CB mmap failed, no match to handle 0x%x\n", handle); return -EINVAL; } /* Validation check */ user_cb_size = vma->vm_end - vma->vm_start; if (user_cb_size != ALIGN(cb->size, PAGE_SIZE)) { dev_err(hdev->dev, "CB mmap failed, mmap size 0x%lx != 0x%x cb size\n", vma->vm_end - vma->vm_start, cb->size); rc = -EINVAL; goto put_cb; } if (!access_ok((void __user *) (uintptr_t) vma->vm_start, user_cb_size)) { dev_err(hdev->dev, "user pointer is invalid - 0x%lx\n", vma->vm_start); rc = -EINVAL; goto put_cb; } spin_lock(&cb->lock); if (cb->mmap) { dev_err(hdev->dev, "CB mmap failed, CB already mmaped to user\n"); rc = -EINVAL; goto release_lock; } cb->mmap = true; spin_unlock(&cb->lock); vma->vm_ops = &cb_vm_ops; /* * Note: We're transferring the cb reference to * vma->vm_private_data here. */ vma->vm_private_data = cb; rc = hdev->asic_funcs->cb_mmap(hdev, vma, cb->kernel_address, cb->bus_address, cb->size); if (rc) { spin_lock(&cb->lock); cb->mmap = false; goto release_lock; } cb->mmap_size = cb->size; return 0; release_lock: spin_unlock(&cb->lock); put_cb: hl_cb_put(cb); return rc; } struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 handle) { struct hl_cb *cb; spin_lock(&mgr->cb_lock); cb = idr_find(&mgr->cb_handles, handle); if (!cb) { spin_unlock(&mgr->cb_lock); dev_warn(hdev->dev, "CB get failed, no match to handle 0x%x\n", handle); return NULL; } kref_get(&cb->refcount); spin_unlock(&mgr->cb_lock); return cb; } void hl_cb_put(struct hl_cb *cb) { kref_put(&cb->refcount, cb_release); } void hl_cb_mgr_init(struct hl_cb_mgr *mgr) { spin_lock_init(&mgr->cb_lock); idr_init(&mgr->cb_handles); } void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr) { struct hl_cb *cb; struct idr *idp; u32 id; idp = &mgr->cb_handles; idr_for_each_entry(idp, cb, id) { if (kref_put(&cb->refcount, cb_release) != 1) dev_err(hdev->dev, "CB %d for CTX ID %d is still alive\n", id, cb->ctx->asid); } idr_destroy(&mgr->cb_handles); } struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, bool internal_cb) { u64 cb_handle; struct hl_cb *cb; int rc; rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, hdev->kernel_ctx, cb_size, internal_cb, false, &cb_handle); if (rc) { dev_err(hdev->dev, "Failed to allocate CB for the kernel driver %d\n", rc); return NULL; } cb_handle >>= PAGE_SHIFT; cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr, (u32) cb_handle); /* hl_cb_get should never fail here so use kernel WARN */ WARN(!cb, "Kernel CB handle invalid 0x%x\n", (u32) cb_handle); if (!cb) goto destroy_cb; return cb; destroy_cb: hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb_handle << PAGE_SHIFT); return NULL; } int hl_cb_pool_init(struct hl_device *hdev) { struct hl_cb *cb; int i; INIT_LIST_HEAD(&hdev->cb_pool); spin_lock_init(&hdev->cb_pool_lock); for (i = 0 ; i < hdev->asic_prop.cb_pool_cb_cnt ; i++) { cb = hl_cb_alloc(hdev, hdev->asic_prop.cb_pool_cb_size, HL_KERNEL_ASID_ID, false); if (cb) { cb->is_pool = true; list_add(&cb->pool_list, &hdev->cb_pool); } else { hl_cb_pool_fini(hdev); return -ENOMEM; } } return 0; } int hl_cb_pool_fini(struct hl_device *hdev) { struct hl_cb *cb, *tmp; list_for_each_entry_safe(cb, tmp, &hdev->cb_pool, pool_list) { list_del(&cb->pool_list); cb_fini(hdev, cb); } return 0; } int hl_cb_va_pool_init(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; int rc; if (!hdev->supports_cb_mapping) return 0; ctx->cb_va_pool = gen_pool_create(__ffs(prop->pmmu.page_size), -1); if (!ctx->cb_va_pool) { dev_err(hdev->dev, "Failed to create VA gen pool for CB mapping\n"); return -ENOMEM; } rc = gen_pool_add(ctx->cb_va_pool, prop->cb_va_start_addr, prop->cb_va_end_addr - prop->cb_va_start_addr, -1); if (rc) { dev_err(hdev->dev, "Failed to add memory to VA gen pool for CB mapping\n"); goto err_pool_destroy; } return 0; err_pool_destroy: gen_pool_destroy(ctx->cb_va_pool); return rc; } void hl_cb_va_pool_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; if (!hdev->supports_cb_mapping) return; gen_pool_destroy(ctx->cb_va_pool); }