/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include "gem/i915_gem_context.h" #include "i915_drv.h" #include "intel_breadcrumbs.h" #include "intel_context.h" #include "intel_engine.h" #include "intel_engine_pm.h" #include "intel_engine_user.h" #include "intel_gt.h" #include "intel_gt_requests.h" #include "intel_gt_pm.h" #include "intel_lrc.h" #include "intel_reset.h" #include "intel_ring.h" /* Haswell does have the CXT_SIZE register however it does not appear to be * valid. Now, docs explain in dwords what is in the context object. The full * size is 70720 bytes, however, the power context and execlist context will * never be saved (power context is stored elsewhere, and execlists don't work * on HSW) - so the final size, including the extra state required for the * Resource Streamer, is 66944 bytes, which rounds to 17 pages. */ #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE) #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) #define MAX_MMIO_BASES 3 struct engine_info { unsigned int hw_id; u8 class; u8 instance; /* mmio bases table *must* be sorted in reverse gen order */ struct engine_mmio_base { u32 gen : 8; u32 base : 24; } mmio_bases[MAX_MMIO_BASES]; }; static const struct engine_info intel_engines[] = { [RCS0] = { .hw_id = RCS0_HW, .class = RENDER_CLASS, .instance = 0, .mmio_bases = { { .gen = 1, .base = RENDER_RING_BASE } }, }, [BCS0] = { .hw_id = BCS0_HW, .class = COPY_ENGINE_CLASS, .instance = 0, .mmio_bases = { { .gen = 6, .base = BLT_RING_BASE } }, }, [VCS0] = { .hw_id = VCS0_HW, .class = VIDEO_DECODE_CLASS, .instance = 0, .mmio_bases = { { .gen = 11, .base = GEN11_BSD_RING_BASE }, { .gen = 6, .base = GEN6_BSD_RING_BASE }, { .gen = 4, .base = BSD_RING_BASE } }, }, [VCS1] = { .hw_id = VCS1_HW, .class = VIDEO_DECODE_CLASS, .instance = 1, .mmio_bases = { { .gen = 11, .base = GEN11_BSD2_RING_BASE }, { .gen = 8, .base = GEN8_BSD2_RING_BASE } }, }, [VCS2] = { .hw_id = VCS2_HW, .class = VIDEO_DECODE_CLASS, .instance = 2, .mmio_bases = { { .gen = 11, .base = GEN11_BSD3_RING_BASE } }, }, [VCS3] = { .hw_id = VCS3_HW, .class = VIDEO_DECODE_CLASS, .instance = 3, .mmio_bases = { { .gen = 11, .base = GEN11_BSD4_RING_BASE } }, }, [VECS0] = { .hw_id = VECS0_HW, .class = VIDEO_ENHANCEMENT_CLASS, .instance = 0, .mmio_bases = { { .gen = 11, .base = GEN11_VEBOX_RING_BASE }, { .gen = 7, .base = VEBOX_RING_BASE } }, }, [VECS1] = { .hw_id = VECS1_HW, .class = VIDEO_ENHANCEMENT_CLASS, .instance = 1, .mmio_bases = { { .gen = 11, .base = GEN11_VEBOX2_RING_BASE } }, }, }; /** * intel_engine_context_size() - return the size of the context for an engine * @gt: the gt * @class: engine class * * Each engine class may require a different amount of space for a context * image. * * Return: size (in bytes) of an engine class specific context image * * Note: this size includes the HWSP, which is part of the context image * in LRC mode, but does not include the "shared data page" used with * GuC submission. The caller should account for this if using the GuC. */ u32 intel_engine_context_size(struct intel_gt *gt, u8 class) { struct intel_uncore *uncore = gt->uncore; u32 cxt_size; BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); switch (class) { case RENDER_CLASS: switch (INTEL_GEN(gt->i915)) { default: MISSING_CASE(INTEL_GEN(gt->i915)); return DEFAULT_LR_CONTEXT_RENDER_SIZE; case 12: case 11: return GEN11_LR_CONTEXT_RENDER_SIZE; case 10: return GEN10_LR_CONTEXT_RENDER_SIZE; case 9: return GEN9_LR_CONTEXT_RENDER_SIZE; case 8: return GEN8_LR_CONTEXT_RENDER_SIZE; case 7: if (IS_HASWELL(gt->i915)) return HSW_CXT_TOTAL_SIZE; cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, PAGE_SIZE); case 6: cxt_size = intel_uncore_read(uncore, CXT_SIZE); return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, PAGE_SIZE); case 5: case 4: /* * There is a discrepancy here between the size reported * by the register and the size of the context layout * in the docs. Both are described as authorative! * * The discrepancy is on the order of a few cachelines, * but the total is under one page (4k), which is our * minimum allocation anyway so it should all come * out in the wash. */ cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; drm_dbg(>->i915->drm, "gen%d CXT_SIZE = %d bytes [0x%08x]\n", INTEL_GEN(gt->i915), cxt_size * 64, cxt_size - 1); return round_up(cxt_size * 64, PAGE_SIZE); case 3: case 2: /* For the special day when i810 gets merged. */ case 1: return 0; } break; default: MISSING_CASE(class); fallthrough; case VIDEO_DECODE_CLASS: case VIDEO_ENHANCEMENT_CLASS: case COPY_ENGINE_CLASS: if (INTEL_GEN(gt->i915) < 8) return 0; return GEN8_LR_CONTEXT_OTHER_SIZE; } } static u32 __engine_mmio_base(struct drm_i915_private *i915, const struct engine_mmio_base *bases) { int i; for (i = 0; i < MAX_MMIO_BASES; i++) if (INTEL_GEN(i915) >= bases[i].gen) break; GEM_BUG_ON(i == MAX_MMIO_BASES); GEM_BUG_ON(!bases[i].base); return bases[i].base; } static void __sprint_engine_name(struct intel_engine_cs *engine) { /* * Before we know what the uABI name for this engine will be, * we still would like to keep track of this engine in the debug logs. * We throw in a ' here as a reminder that this isn't its final name. */ GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", intel_engine_class_repr(engine->class), engine->instance) >= sizeof(engine->name)); } void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) { /* * Though they added more rings on g4x/ilk, they did not add * per-engine HWSTAM until gen6. */ if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS) return; if (INTEL_GEN(engine->i915) >= 3) ENGINE_WRITE(engine, RING_HWSTAM, mask); else ENGINE_WRITE16(engine, RING_HWSTAM, mask); } static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) { /* Mask off all writes into the unknown HWSP */ intel_engine_set_hwsp_writemask(engine, ~0u); } static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id) { const struct engine_info *info = &intel_engines[id]; struct drm_i915_private *i915 = gt->i915; struct intel_engine_cs *engine; BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) return -EINVAL; if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) return -EINVAL; if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) return -EINVAL; if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) return -EINVAL; engine = kzalloc(sizeof(*engine), GFP_KERNEL); if (!engine) return -ENOMEM; BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); engine->id = id; engine->legacy_idx = INVALID_ENGINE; engine->mask = BIT(id); engine->i915 = i915; engine->gt = gt; engine->uncore = gt->uncore; engine->hw_id = engine->guc_id = info->hw_id; engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); engine->class = info->class; engine->instance = info->instance; __sprint_engine_name(engine); engine->props.heartbeat_interval_ms = CONFIG_DRM_I915_HEARTBEAT_INTERVAL; engine->props.max_busywait_duration_ns = CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT; engine->props.stop_timeout_ms = CONFIG_DRM_I915_STOP_TIMEOUT; engine->props.timeslice_duration_ms = CONFIG_DRM_I915_TIMESLICE_DURATION; /* Override to uninterruptible for OpenCL workloads. */ if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS) engine->props.preempt_timeout_ms = 0; engine->defaults = engine->props; /* never to change again */ engine->context_size = intel_engine_context_size(gt, engine->class); if (WARN_ON(engine->context_size > BIT(20))) engine->context_size = 0; if (engine->context_size) DRIVER_CAPS(i915)->has_logical_contexts = true; /* Nothing to do here, execute in order of dependencies */ engine->schedule = NULL; ewma__engine_latency_init(&engine->latency); seqlock_init(&engine->stats.lock); ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); /* Scrub mmio state on takeover */ intel_engine_sanitize_mmio(engine); gt->engine_class[info->class][info->instance] = engine; gt->engine[id] = engine; return 0; } static void __setup_engine_capabilities(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; if (engine->class == VIDEO_DECODE_CLASS) { /* * HEVC support is present on first engine instance * before Gen11 and on all instances afterwards. */ if (INTEL_GEN(i915) >= 11 || (INTEL_GEN(i915) >= 9 && engine->instance == 0)) engine->uabi_capabilities |= I915_VIDEO_CLASS_CAPABILITY_HEVC; /* * SFC block is present only on even logical engine * instances. */ if ((INTEL_GEN(i915) >= 11 && (engine->gt->info.vdbox_sfc_access & BIT(engine->instance))) || (INTEL_GEN(i915) >= 9 && engine->instance == 0)) engine->uabi_capabilities |= I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { if (INTEL_GEN(i915) >= 9) engine->uabi_capabilities |= I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; } } static void intel_setup_engine_capabilities(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) __setup_engine_capabilities(engine); } /** * intel_engines_release() - free the resources allocated for Command Streamers * @gt: pointer to struct intel_gt */ void intel_engines_release(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; /* * Before we release the resources held by engine, we must be certain * that the HW is no longer accessing them -- having the GPU scribble * to or read from a page being used for something else causes no end * of fun. * * The GPU should be reset by this point, but assume the worst just * in case we aborted before completely initialising the engines. */ GEM_BUG_ON(intel_gt_pm_is_awake(gt)); if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) __intel_gt_reset(gt, ALL_ENGINES); /* Decouple the backend; but keep the layout for late GPU resets */ for_each_engine(engine, gt, id) { if (!engine->release) continue; intel_wakeref_wait_for_idle(&engine->wakeref); GEM_BUG_ON(intel_engine_pm_is_awake(engine)); engine->release(engine); engine->release = NULL; memset(&engine->reset, 0, sizeof(engine->reset)); } } void intel_engine_free_request_pool(struct intel_engine_cs *engine) { if (!engine->request_pool) return; kmem_cache_free(i915_request_slab_cache(), engine->request_pool); } void intel_engines_free(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; /* Free the requests! dma-resv keeps fences around for an eternity */ rcu_barrier(); for_each_engine(engine, gt, id) { intel_engine_free_request_pool(engine); kfree(engine); gt->engine[id] = NULL; } } /* * Determine which engines are fused off in our particular hardware. * Note that we have a catch-22 situation where we need to be able to access * the blitter forcewake domain to read the engine fuses, but at the same time * we need to know which engines are available on the system to know which * forcewake domains are present. We solve this by intializing the forcewake * domains based on the full engine mask in the platform capabilities before * calling this function and pruning the domains for fused-off engines * afterwards. */ static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_gt_info *info = >->info; struct intel_uncore *uncore = gt->uncore; unsigned int logical_vdbox = 0; unsigned int i; u32 media_fuse; u16 vdbox_mask; u16 vebox_mask; info->engine_mask = INTEL_INFO(i915)->platform_engine_mask; if (INTEL_GEN(i915) < 11) return info->engine_mask; media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> GEN11_GT_VEBOX_DISABLE_SHIFT; for (i = 0; i < I915_MAX_VCS; i++) { if (!HAS_ENGINE(gt, _VCS(i))) { vdbox_mask &= ~BIT(i); continue; } if (!(BIT(i) & vdbox_mask)) { info->engine_mask &= ~BIT(_VCS(i)); drm_dbg(&i915->drm, "vcs%u fused off\n", i); continue; } /* * In Gen11, only even numbered logical VDBOXes are * hooked up to an SFC (Scaler & Format Converter) unit. * In TGL each VDBOX has access to an SFC. */ if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0) gt->info.vdbox_sfc_access |= BIT(i); } drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt)); GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); for (i = 0; i < I915_MAX_VECS; i++) { if (!HAS_ENGINE(gt, _VECS(i))) { vebox_mask &= ~BIT(i); continue; } if (!(BIT(i) & vebox_mask)) { info->engine_mask &= ~BIT(_VECS(i)); drm_dbg(&i915->drm, "vecs%u fused off\n", i); } } drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt)); GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); return info->engine_mask; } /** * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers * @gt: pointer to struct intel_gt * * Return: non-zero if the initialization failed. */ int intel_engines_init_mmio(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; const unsigned int engine_mask = init_engine_mask(gt); unsigned int mask = 0; unsigned int i; int err; drm_WARN_ON(&i915->drm, engine_mask == 0); drm_WARN_ON(&i915->drm, engine_mask & GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); if (i915_inject_probe_failure(i915)) return -ENODEV; for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { if (!HAS_ENGINE(gt, i)) continue; err = intel_engine_setup(gt, i); if (err) goto cleanup; mask |= BIT(i); } /* * Catch failures to update intel_engines table when the new engines * are added to the driver by a warning and disabling the forgotten * engines. */ if (drm_WARN_ON(&i915->drm, mask != engine_mask)) gt->info.engine_mask = mask; gt->info.num_engines = hweight32(mask); intel_gt_check_and_clear_faults(gt); intel_setup_engine_capabilities(gt); intel_uncore_prune_engine_fw_domains(gt->uncore, gt); return 0; cleanup: intel_engines_free(gt); return err; } void intel_engine_init_execlists(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; execlists->port_mask = 1; GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); memset(execlists->pending, 0, sizeof(execlists->pending)); execlists->active = memset(execlists->inflight, 0, sizeof(execlists->inflight)); execlists->queue_priority_hint = INT_MIN; execlists->queue = RB_ROOT_CACHED; } static void cleanup_status_page(struct intel_engine_cs *engine) { struct i915_vma *vma; /* Prevent writes into HWSP after returning the page to the system */ intel_engine_set_hwsp_writemask(engine, ~0u); vma = fetch_and_zero(&engine->status_page.vma); if (!vma) return; if (!HWS_NEEDS_PHYSICAL(engine->i915)) i915_vma_unpin(vma); i915_gem_object_unpin_map(vma->obj); i915_gem_object_put(vma->obj); } static int pin_ggtt_status_page(struct intel_engine_cs *engine, struct i915_vma *vma) { unsigned int flags; if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) /* * On g33, we cannot place HWS above 256MiB, so * restrict its pinning to the low mappable arena. * Though this restriction is not documented for * gen4, gen5, or byt, they also behave similarly * and hang if the HWS is placed at the top of the * GTT. To generalise, it appears that all !llc * platforms have issues with us placing the HWS * above the mappable region (even though we never * actually map it). */ flags = PIN_MAPPABLE; else flags = PIN_HIGH; return i915_ggtt_pin(vma, NULL, 0, flags); } static int init_status_page(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj; struct i915_vma *vma; void *vaddr; int ret; /* * Though the HWS register does support 36bit addresses, historically * we have had hangs and corruption reported due to wild writes if * the HWS is placed above 4G. We only allow objects to be allocated * in GFP_DMA32 for i965, and no earlier physical address users had * access to more than 4G. */ obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); if (IS_ERR(obj)) { drm_err(&engine->i915->drm, "Failed to allocate status page\n"); return PTR_ERR(obj); } i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err; } vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto err; } engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); engine->status_page.vma = vma; if (!HWS_NEEDS_PHYSICAL(engine->i915)) { ret = pin_ggtt_status_page(engine, vma); if (ret) goto err_unpin; } return 0; err_unpin: i915_gem_object_unpin_map(obj); err: i915_gem_object_put(obj); return ret; } static int engine_setup_common(struct intel_engine_cs *engine) { int err; init_llist_head(&engine->barrier_tasks); err = init_status_page(engine); if (err) return err; engine->breadcrumbs = intel_breadcrumbs_create(engine); if (!engine->breadcrumbs) { err = -ENOMEM; goto err_status; } intel_engine_init_active(engine, ENGINE_PHYSICAL); intel_engine_init_execlists(engine); intel_engine_init_cmd_parser(engine); intel_engine_init__pm(engine); intel_engine_init_retire(engine); /* Use the whole device by default */ engine->sseu = intel_sseu_from_device_info(&engine->gt->info.sseu); intel_engine_init_workarounds(engine); intel_engine_init_whitelist(engine); intel_engine_init_ctx_wa(engine); return 0; err_status: cleanup_status_page(engine); return err; } struct measure_breadcrumb { struct i915_request rq; struct intel_ring ring; u32 cs[2048]; }; static int measure_breadcrumb_dw(struct intel_context *ce) { struct intel_engine_cs *engine = ce->engine; struct measure_breadcrumb *frame; int dw; GEM_BUG_ON(!engine->gt->scratch); frame = kzalloc(sizeof(*frame), GFP_KERNEL); if (!frame) return -ENOMEM; frame->rq.engine = engine; frame->rq.context = ce; rcu_assign_pointer(frame->rq.timeline, ce->timeline); frame->ring.vaddr = frame->cs; frame->ring.size = sizeof(frame->cs); frame->ring.wrap = BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); frame->ring.effective_size = frame->ring.size; intel_ring_update_space(&frame->ring); frame->rq.ring = &frame->ring; mutex_lock(&ce->timeline->mutex); spin_lock_irq(&engine->active.lock); dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; spin_unlock_irq(&engine->active.lock); mutex_unlock(&ce->timeline->mutex); GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ kfree(frame); return dw; } void intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass) { INIT_LIST_HEAD(&engine->active.requests); INIT_LIST_HEAD(&engine->active.hold); spin_lock_init(&engine->active.lock); lockdep_set_subclass(&engine->active.lock, subclass); /* * Due to an interesting quirk in lockdep's internal debug tracking, * after setting a subclass we must ensure the lock is used. Otherwise, * nr_unused_locks is incremented once too often. */ #ifdef CONFIG_DEBUG_LOCK_ALLOC local_irq_disable(); lock_map_acquire(&engine->active.lock.dep_map); lock_map_release(&engine->active.lock.dep_map); local_irq_enable(); #endif } static struct intel_context * create_pinned_context(struct intel_engine_cs *engine, unsigned int hwsp, struct lock_class_key *key, const char *name) { struct intel_context *ce; int err; ce = intel_context_create(engine); if (IS_ERR(ce)) return ce; __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); ce->timeline = page_pack_bits(NULL, hwsp); err = intel_context_pin(ce); /* perma-pin so it is always available */ if (err) { intel_context_put(ce); return ERR_PTR(err); } /* * Give our perma-pinned kernel timelines a separate lockdep class, * so that we can use them from within the normal user timelines * should we need to inject GPU operations during their request * construction. */ lockdep_set_class_and_name(&ce->timeline->mutex, key, name); return ce; } static struct intel_context * create_kernel_context(struct intel_engine_cs *engine) { static struct lock_class_key kernel; return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR, &kernel, "kernel_context"); } /** * intel_engines_init_common - initialize cengine state which might require hw access * @engine: Engine to initialize. * * Initializes @engine@ structure members shared between legacy and execlists * submission modes which do require hardware access. * * Typcally done at later stages of submission mode specific engine setup. * * Returns zero on success or an error code on failure. */ static int engine_init_common(struct intel_engine_cs *engine) { struct intel_context *ce; int ret; engine->set_default_submission(engine); /* * We may need to do things with the shrinker which * require us to immediately switch back to the default * context. This can cause a problem as pinning the * default context also requires GTT space which may not * be available. To avoid this we always pin the default * context. */ ce = create_kernel_context(engine); if (IS_ERR(ce)) return PTR_ERR(ce); ret = measure_breadcrumb_dw(ce); if (ret < 0) goto err_context; engine->emit_fini_breadcrumb_dw = ret; engine->kernel_context = ce; return 0; err_context: intel_context_put(ce); return ret; } int intel_engines_init(struct intel_gt *gt) { int (*setup)(struct intel_engine_cs *engine); struct intel_engine_cs *engine; enum intel_engine_id id; int err; if (HAS_EXECLISTS(gt->i915)) setup = intel_execlists_submission_setup; else setup = intel_ring_submission_setup; for_each_engine(engine, gt, id) { err = engine_setup_common(engine); if (err) return err; err = setup(engine); if (err) return err; err = engine_init_common(engine); if (err) return err; intel_engine_add_user(engine); } return 0; } /** * intel_engines_cleanup_common - cleans up the engine state created by * the common initiailizers. * @engine: Engine to cleanup. * * This cleans up everything created by the common helpers. */ void intel_engine_cleanup_common(struct intel_engine_cs *engine) { GEM_BUG_ON(!list_empty(&engine->active.requests)); tasklet_kill(&engine->execlists.tasklet); /* flush the callback */ cleanup_status_page(engine); intel_breadcrumbs_free(engine->breadcrumbs); intel_engine_fini_retire(engine); intel_engine_cleanup_cmd_parser(engine); if (engine->default_state) fput(engine->default_state); if (engine->kernel_context) { intel_context_unpin(engine->kernel_context); intel_context_put(engine->kernel_context); } GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); intel_wa_list_free(&engine->ctx_wa_list); intel_wa_list_free(&engine->wa_list); intel_wa_list_free(&engine->whitelist); } /** * intel_engine_resume - re-initializes the HW state of the engine * @engine: Engine to resume. * * Returns zero on success or an error code on failure. */ int intel_engine_resume(struct intel_engine_cs *engine) { intel_engine_apply_workarounds(engine); intel_engine_apply_whitelist(engine); return engine->resume(engine); } u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; u64 acthd; if (INTEL_GEN(i915) >= 8) acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); else if (INTEL_GEN(i915) >= 4) acthd = ENGINE_READ(engine, RING_ACTHD); else acthd = ENGINE_READ(engine, ACTHD); return acthd; } u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) { u64 bbaddr; if (INTEL_GEN(engine->i915) >= 8) bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); else bbaddr = ENGINE_READ(engine, RING_BBADDR); return bbaddr; } static unsigned long stop_timeout(const struct intel_engine_cs *engine) { if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ return 0; /* * If we are doing a normal GPU reset, we can take our time and allow * the engine to quiesce. We've stopped submission to the engine, and * if we wait long enough an innocent context should complete and * leave the engine idle. So they should not be caught unaware by * the forthcoming GPU reset (which usually follows the stop_cs)! */ return READ_ONCE(engine->props.stop_timeout_ms); } int intel_engine_stop_cs(struct intel_engine_cs *engine) { struct intel_uncore *uncore = engine->uncore; const u32 base = engine->mmio_base; const i915_reg_t mode = RING_MI_MODE(base); int err; if (INTEL_GEN(engine->i915) < 3) return -ENODEV; ENGINE_TRACE(engine, "\n"); intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); err = 0; if (__intel_wait_for_register_fw(uncore, mode, MODE_IDLE, MODE_IDLE, 1000, stop_timeout(engine), NULL)) { ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n"); err = -ETIMEDOUT; } /* A final mmio read to let GPU writes be hopefully flushed to memory */ intel_uncore_posting_read_fw(uncore, mode); return err; } void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) { ENGINE_TRACE(engine, "\n"); ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); } const char *i915_cache_level_str(struct drm_i915_private *i915, int type) { switch (type) { case I915_CACHE_NONE: return " uncached"; case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; case I915_CACHE_L3_LLC: return " L3+LLC"; case I915_CACHE_WT: return " WT"; default: return ""; } } static u32 read_subslice_reg(const struct intel_engine_cs *engine, int slice, int subslice, i915_reg_t reg) { struct drm_i915_private *i915 = engine->i915; struct intel_uncore *uncore = engine->uncore; u32 mcr_mask, mcr_ss, mcr, old_mcr, val; enum forcewake_domains fw_domains; if (INTEL_GEN(i915) >= 11) { mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); } else { mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); } fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ); fw_domains |= intel_uncore_forcewake_for_reg(uncore, GEN8_MCR_SELECTOR, FW_REG_READ | FW_REG_WRITE); spin_lock_irq(&uncore->lock); intel_uncore_forcewake_get__locked(uncore, fw_domains); old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); mcr &= ~mcr_mask; mcr |= mcr_ss; intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); val = intel_uncore_read_fw(uncore, reg); mcr &= ~mcr_mask; mcr |= old_mcr & mcr_mask; intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); intel_uncore_forcewake_put__locked(uncore, fw_domains); spin_unlock_irq(&uncore->lock); return val; } /* NB: please notice the memset */ void intel_engine_get_instdone(const struct intel_engine_cs *engine, struct intel_instdone *instdone) { struct drm_i915_private *i915 = engine->i915; const struct sseu_dev_info *sseu = &engine->gt->info.sseu; struct intel_uncore *uncore = engine->uncore; u32 mmio_base = engine->mmio_base; int slice; int subslice; memset(instdone, 0, sizeof(*instdone)); switch (INTEL_GEN(i915)) { default: instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); if (engine->id != RCS0) break; instdone->slice_common = intel_uncore_read(uncore, GEN7_SC_INSTDONE); if (INTEL_GEN(i915) >= 12) { instdone->slice_common_extra[0] = intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); instdone->slice_common_extra[1] = intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); } for_each_instdone_slice_subslice(i915, sseu, slice, subslice) { instdone->sampler[slice][subslice] = read_subslice_reg(engine, slice, subslice, GEN7_SAMPLER_INSTDONE); instdone->row[slice][subslice] = read_subslice_reg(engine, slice, subslice, GEN7_ROW_INSTDONE); } break; case 7: instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); if (engine->id != RCS0) break; instdone->slice_common = intel_uncore_read(uncore, GEN7_SC_INSTDONE); instdone->sampler[0][0] = intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); instdone->row[0][0] = intel_uncore_read(uncore, GEN7_ROW_INSTDONE); break; case 6: case 5: case 4: instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); if (engine->id == RCS0) /* HACK: Using the wrong struct member */ instdone->slice_common = intel_uncore_read(uncore, GEN4_INSTDONE1); break; case 3: case 2: instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); break; } } static bool ring_is_idle(struct intel_engine_cs *engine) { bool idle = true; if (I915_SELFTEST_ONLY(!engine->mmio_base)) return true; if (!intel_engine_pm_get_if_awake(engine)) return true; /* First check that no commands are left in the ring */ if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) idle = false; /* No bit for gen2, so assume the CS parser is idle */ if (INTEL_GEN(engine->i915) > 2 && !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) idle = false; intel_engine_pm_put(engine); return idle; } void intel_engine_flush_submission(struct intel_engine_cs *engine) { struct tasklet_struct *t = &engine->execlists.tasklet; if (!t->func) return; /* Synchronise and wait for the tasklet on another CPU */ tasklet_kill(t); /* Having cancelled the tasklet, ensure that is run */ local_bh_disable(); if (tasklet_trylock(t)) { /* Must wait for any GPU reset in progress. */ if (__tasklet_is_enabled(t)) t->func(t->data); tasklet_unlock(t); } local_bh_enable(); } /** * intel_engine_is_idle() - Report if the engine has finished process all work * @engine: the intel_engine_cs * * Return true if there are no requests pending, nothing left to be submitted * to hardware, and that the engine is idle. */ bool intel_engine_is_idle(struct intel_engine_cs *engine) { /* More white lies, if wedged, hw state is inconsistent */ if (intel_gt_is_wedged(engine->gt)) return true; if (!intel_engine_pm_is_awake(engine)) return true; /* Waiting to drain ELSP? */ if (execlists_active(&engine->execlists)) { synchronize_hardirq(engine->i915->drm.pdev->irq); intel_engine_flush_submission(engine); if (execlists_active(&engine->execlists)) return false; } /* ELSP is empty, but there are ready requests? E.g. after reset */ if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) return false; /* Ring stopped? */ return ring_is_idle(engine); } bool intel_engines_are_idle(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; /* * If the driver is wedged, HW state may be very inconsistent and * report that it is still busy, even though we have stopped using it. */ if (intel_gt_is_wedged(gt)) return true; /* Already parked (and passed an idleness test); must still be idle */ if (!READ_ONCE(gt->awake)) return true; for_each_engine(engine, gt, id) { if (!intel_engine_is_idle(engine)) return false; } return true; } void intel_engines_reset_default_submission(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) engine->set_default_submission(engine); } bool intel_engine_can_store_dword(struct intel_engine_cs *engine) { switch (INTEL_GEN(engine->i915)) { case 2: return false; /* uses physical not virtual addresses */ case 3: /* maybe only uses physical not virtual addresses */ return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); case 4: return !IS_I965G(engine->i915); /* who knows! */ case 6: return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ default: return true; } } static int print_sched_attr(const struct i915_sched_attr *attr, char *buf, int x, int len) { if (attr->priority == I915_PRIORITY_INVALID) return x; x += snprintf(buf + x, len - x, " prio=%d", attr->priority); return x; } static void print_request(struct drm_printer *m, struct i915_request *rq, const char *prefix) { const char *name = rq->fence.ops->get_timeline_name(&rq->fence); char buf[80] = ""; int x = 0; x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n", prefix, rq->fence.context, rq->fence.seqno, i915_request_completed(rq) ? "!" : i915_request_started(rq) ? "*" : "", test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags) ? "+" : test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags) ? "-" : "", buf, jiffies_to_msecs(jiffies - rq->emitted_jiffies), name); } static struct intel_timeline *get_timeline(struct i915_request *rq) { struct intel_timeline *tl; /* * Even though we are holding the engine->active.lock here, there * is no control over the submission queue per-se and we are * inspecting the active state at a random point in time, with an * unknown queue. Play safe and make sure the timeline remains valid. * (Only being used for pretty printing, one extra kref shouldn't * cause a camel stampede!) */ rcu_read_lock(); tl = rcu_dereference(rq->timeline); if (!kref_get_unless_zero(&tl->kref)) tl = NULL; rcu_read_unlock(); return tl; } static int print_ring(char *buf, int sz, struct i915_request *rq) { int len = 0; if (!i915_request_signaled(rq)) { struct intel_timeline *tl = get_timeline(rq); len = scnprintf(buf, sz, "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", i915_ggtt_offset(rq->ring->vma), tl ? tl->hwsp_offset : 0, hwsp_seqno(rq), DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 1000 * 1000)); if (tl) intel_timeline_put(tl); } return len; } static void hexdump(struct drm_printer *m, const void *buf, size_t len) { const size_t rowsize = 8 * sizeof(u32); const void *prev = NULL; bool skip = false; size_t pos; for (pos = 0; pos < len; pos += rowsize) { char line[128]; if (prev && !memcmp(prev, buf + pos, rowsize)) { if (!skip) { drm_printf(m, "*\n"); skip = true; } continue; } WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, rowsize, sizeof(u32), line, sizeof(line), false) >= sizeof(line)); drm_printf(m, "[%04zx] %s\n", pos, line); prev = buf + pos; skip = false; } } static const char *repr_timer(const struct timer_list *t) { if (!READ_ONCE(t->expires)) return "inactive"; if (timer_pending(t)) return "active"; return "expired"; } static void intel_engine_print_registers(struct intel_engine_cs *engine, struct drm_printer *m) { struct drm_i915_private *dev_priv = engine->i915; struct intel_engine_execlists * const execlists = &engine->execlists; u64 addr; if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7)) drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); if (HAS_EXECLISTS(dev_priv)) { drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); } drm_printf(m, "\tRING_START: 0x%08x\n", ENGINE_READ(engine, RING_START)); drm_printf(m, "\tRING_HEAD: 0x%08x\n", ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); drm_printf(m, "\tRING_TAIL: 0x%08x\n", ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); drm_printf(m, "\tRING_CTL: 0x%08x%s\n", ENGINE_READ(engine, RING_CTL), ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); if (INTEL_GEN(engine->i915) > 2) { drm_printf(m, "\tRING_MODE: 0x%08x%s\n", ENGINE_READ(engine, RING_MI_MODE), ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); } if (INTEL_GEN(dev_priv) >= 6) { drm_printf(m, "\tRING_IMR: 0x%08x\n", ENGINE_READ(engine, RING_IMR)); drm_printf(m, "\tRING_ESR: 0x%08x\n", ENGINE_READ(engine, RING_ESR)); drm_printf(m, "\tRING_EMR: 0x%08x\n", ENGINE_READ(engine, RING_EMR)); drm_printf(m, "\tRING_EIR: 0x%08x\n", ENGINE_READ(engine, RING_EIR)); } addr = intel_engine_get_active_head(engine); drm_printf(m, "\tACTHD: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); addr = intel_engine_get_last_batch_head(engine); drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); if (INTEL_GEN(dev_priv) >= 8) addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); else if (INTEL_GEN(dev_priv) >= 4) addr = ENGINE_READ(engine, RING_DMA_FADD); else addr = ENGINE_READ(engine, DMA_FADD_I8XX); drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr)); if (INTEL_GEN(dev_priv) >= 4) { drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, RING_IPEIR)); drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, RING_IPEHR)); } else { drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); } if (HAS_EXECLISTS(dev_priv)) { struct i915_request * const *port, *rq; const u32 *hws = &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; const u8 num_entries = execlists->csb_size; unsigned int idx; u8 read, write; drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", yesno(test_bit(TASKLET_STATE_SCHED, &engine->execlists.tasklet.state)), enableddisabled(!atomic_read(&engine->execlists.tasklet.count)), repr_timer(&engine->execlists.preempt), repr_timer(&engine->execlists.timer)); read = execlists->csb_head; write = READ_ONCE(*execlists->csb_write); drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), read, write, num_entries); if (read >= num_entries) read = 0; if (write >= num_entries) write = 0; if (read > write) write += num_entries; while (read < write) { idx = ++read % num_entries; drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", idx, hws[idx * 2], hws[idx * 2 + 1]); } execlists_active_lock_bh(execlists); rcu_read_lock(); for (port = execlists->active; (rq = *port); port++) { char hdr[160]; int len; len = scnprintf(hdr, sizeof(hdr), "\t\tActive[%d]: ccid:%08x%s%s, ", (int)(port - execlists->active), rq->context->lrc.ccid, intel_context_is_closed(rq->context) ? "!" : "", intel_context_is_banned(rq->context) ? "*" : ""); len += print_ring(hdr + len, sizeof(hdr) - len, rq); scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); print_request(m, rq, hdr); } for (port = execlists->pending; (rq = *port); port++) { char hdr[160]; int len; len = scnprintf(hdr, sizeof(hdr), "\t\tPending[%d]: ccid:%08x%s%s, ", (int)(port - execlists->pending), rq->context->lrc.ccid, intel_context_is_closed(rq->context) ? "!" : "", intel_context_is_banned(rq->context) ? "*" : ""); len += print_ring(hdr + len, sizeof(hdr) - len, rq); scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); print_request(m, rq, hdr); } rcu_read_unlock(); execlists_active_unlock_bh(execlists); } else if (INTEL_GEN(dev_priv) > 6) { drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_BASE)); drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_DCLV)); } } static void print_request_ring(struct drm_printer *m, struct i915_request *rq) { void *ring; int size; drm_printf(m, "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", rq->head, rq->postfix, rq->tail, rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u, rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u); size = rq->tail - rq->head; if (rq->tail < rq->head) size += rq->ring->size; ring = kmalloc(size, GFP_ATOMIC); if (ring) { const void *vaddr = rq->ring->vaddr; unsigned int head = rq->head; unsigned int len = 0; if (rq->tail < head) { len = rq->ring->size - head; memcpy(ring, vaddr + head, len); head = 0; } memcpy(ring + len, vaddr + head, size - len); hexdump(m, ring, size); kfree(ring); } } static unsigned long list_count(struct list_head *list) { struct list_head *pos; unsigned long count = 0; list_for_each(pos, list) count++; return count; } void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *m, const char *header, ...) { struct i915_gpu_error * const error = &engine->i915->gpu_error; struct i915_request *rq; intel_wakeref_t wakeref; unsigned long flags; ktime_t dummy; if (header) { va_list ap; va_start(ap, header); drm_vprintf(m, header, &ap); va_end(ap); } if (intel_gt_is_wedged(engine->gt)) drm_printf(m, "*** WEDGED ***\n"); drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); drm_printf(m, "\tBarriers?: %s\n", yesno(!llist_empty(&engine->barrier_tasks))); drm_printf(m, "\tLatency: %luus\n", ewma__engine_latency_read(&engine->latency)); if (intel_engine_supports_stats(engine)) drm_printf(m, "\tRuntime: %llums\n", ktime_to_ms(intel_engine_get_busy_time(engine, &dummy))); drm_printf(m, "\tForcewake: %x domains, %d active\n", engine->fw_domain, atomic_read(&engine->fw_active)); rcu_read_lock(); rq = READ_ONCE(engine->heartbeat.systole); if (rq) drm_printf(m, "\tHeartbeat: %d ms ago\n", jiffies_to_msecs(jiffies - rq->emitted_jiffies)); rcu_read_unlock(); drm_printf(m, "\tReset count: %d (global %d)\n", i915_reset_engine_count(error, engine), i915_reset_count(error)); drm_printf(m, "\tRequests:\n"); spin_lock_irqsave(&engine->active.lock, flags); rq = intel_engine_find_active_request(engine); if (rq) { struct intel_timeline *tl = get_timeline(rq); print_request(m, rq, "\t\tactive "); drm_printf(m, "\t\tring->start: 0x%08x\n", i915_ggtt_offset(rq->ring->vma)); drm_printf(m, "\t\tring->head: 0x%08x\n", rq->ring->head); drm_printf(m, "\t\tring->tail: 0x%08x\n", rq->ring->tail); drm_printf(m, "\t\tring->emit: 0x%08x\n", rq->ring->emit); drm_printf(m, "\t\tring->space: 0x%08x\n", rq->ring->space); if (tl) { drm_printf(m, "\t\tring->hwsp: 0x%08x\n", tl->hwsp_offset); intel_timeline_put(tl); } print_request_ring(m, rq); if (rq->context->lrc_reg_state) { drm_printf(m, "Logical Ring Context:\n"); hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); } } drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold)); spin_unlock_irqrestore(&engine->active.lock, flags); drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); if (wakeref) { intel_engine_print_registers(engine, m); intel_runtime_pm_put(engine->uncore->rpm, wakeref); } else { drm_printf(m, "\tDevice is asleep; skipping register dump\n"); } intel_execlists_show_requests(engine, m, print_request, 8); drm_printf(m, "HWSP:\n"); hexdump(m, engine->status_page.addr, PAGE_SIZE); drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine))); intel_engine_print_breadcrumbs(engine, m); } static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) { ktime_t total = engine->stats.total; /* * If the engine is executing something at the moment * add it to the total. */ *now = ktime_get(); if (atomic_read(&engine->stats.active)) total = ktime_add(total, ktime_sub(*now, engine->stats.start)); return total; } /** * intel_engine_get_busy_time() - Return current accumulated engine busyness * @engine: engine to report on * @now: monotonic timestamp of sampling * * Returns accumulated time @engine was busy since engine stats were enabled. */ ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) { unsigned int seq; ktime_t total; do { seq = read_seqbegin(&engine->stats.lock); total = __intel_engine_get_busy_time(engine, now); } while (read_seqretry(&engine->stats.lock, seq)); return total; } static bool match_ring(struct i915_request *rq) { u32 ring = ENGINE_READ(rq->engine, RING_START); return ring == i915_ggtt_offset(rq->ring->vma); } struct i915_request * intel_engine_find_active_request(struct intel_engine_cs *engine) { struct i915_request *request, *active = NULL; /* * We are called by the error capture, reset and to dump engine * state at random points in time. In particular, note that neither is * crucially ordered with an interrupt. After a hang, the GPU is dead * and we assume that no more writes can happen (we waited long enough * for all writes that were in transaction to be flushed) - adding an * extra delay for a recent interrupt is pointless. Hence, we do * not need an engine->irq_seqno_barrier() before the seqno reads. * At all other times, we must assume the GPU is still running, but * we only care about the snapshot of this moment. */ lockdep_assert_held(&engine->active.lock); rcu_read_lock(); request = execlists_active(&engine->execlists); if (request) { struct intel_timeline *tl = request->context->timeline; list_for_each_entry_from_reverse(request, &tl->requests, link) { if (i915_request_completed(request)) break; active = request; } } rcu_read_unlock(); if (active) return active; list_for_each_entry(request, &engine->active.requests, sched.link) { if (i915_request_completed(request)) continue; if (!i915_request_started(request)) continue; /* More than one preemptible request may match! */ if (!match_ring(request)) continue; active = request; break; } return active; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "mock_engine.c" #include "selftest_engine.c" #include "selftest_engine_cs.c" #endif