Lines Matching full:i

15 	int i, j, r, k, pad;  variable
47 for (i = 0; i < nroots; i++) {
51 if (s[i] != nn)
59 /* form the syndromes; i.e., evaluate data(x) at roots of
61 for (i = 0; i < nroots; i++)
62 syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
65 for (i = 0; i < nroots; i++) {
66 if (syn[i] == 0) {
67 syn[i] = (((uint16_t) data[j]) ^
70 syn[i] = ((((uint16_t) data[j]) ^
72 alpha_to[rs_modnn(rs, index_of[syn[i]] +
73 (fcr + i) * prim)];
79 for (i = 0; i < nroots; i++) {
80 if (syn[i] == 0) {
81 syn[i] = ((uint16_t) par[j]) & msk;
83 syn[i] = (((uint16_t) par[j]) & msk) ^
84 alpha_to[rs_modnn(rs, index_of[syn[i]] +
85 (fcr+i)*prim)];
93 for (i = 0; i < nroots; i++) {
94 syn_error |= s[i];
95 s[i] = index_of[s[i]];
113 for (i = 1; i < no_eras; i++) {
114 u = rs_modnn(rs, prim * (nn - 1 - (eras_pos[i] + pad)));
115 for (j = i + 1; j > 0; j--) {
125 for (i = 0; i < nroots + 1; i++)
126 b[i] = index_of[lambda[i]];
137 for (i = 0; i < r; i++) {
138 if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
141 index_of[lambda[i]] +
142 s[r - i - 1])];
153 for (i = 0; i < nroots; i++) {
154 if (b[i] != nn) {
155 t[i + 1] = lambda[i + 1] ^
157 b[i])];
159 t[i + 1] = lambda[i + 1];
167 for (i = 0; i <= nroots; i++) {
168 b[i] = (lambda[i] == 0) ? nn :
169 rs_modnn(rs, index_of[lambda[i]]
183 for (i = 0; i < nroots + 1; i++) {
184 lambda[i] = index_of[lambda[i]];
185 if (lambda[i] != nn)
186 deg_lambda = i;
200 for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
217 root[count] = i;
237 for (i = 0; i <= deg_omega; i++) {
239 for (j = i; j >= 0; j--) {
240 if ((s[i - j] != nn) && (lambda[j] != nn))
242 alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
244 omega[i] = index_of[tmp];
255 for (i = deg_omega; i >= 0; i--) {
256 if (omega[i] != nn)
257 num1 ^= alpha_to[rs_modnn(rs, omega[i] +
258 i * root[j])];
270 /* lambda[i+1] for i even is the formal derivative
271 * lambda_pr of lambda[i] */
272 for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
273 if (lambda[i + 1] != nn) {
274 den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
275 i * root[j])];
289 for (i = 0; i < nroots; i++) {
295 k = (fcr + i) * prim * (nn-loc[j]-1);
299 if (tmp != alpha_to[s[i]])
309 for (i = 0; i < count; i++) {
310 if (b[i]) {
311 corr[j] = b[i];
312 eras_pos[j++] = loc[i] - pad;
317 for (i = 0; i < count; i++) {
318 if (loc[i] < (nn - nroots))
319 data[loc[i] - pad] ^= b[i];
321 par[loc[i] - pad - len] ^= b[i];