Lines Matching full:order
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
248 static void __free_pages_ok(struct page *page, unsigned int order);
324 * many cases very high-order allocations like THP are likely to be
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order) in kasan_free_nondeferred_pages() argument
386 kasan_free_pages(page, order); in kasan_free_nondeferred_pages()
657 * Higher-order pages are called "compound pages". They are structured thusly:
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
677 void prep_compound_page(struct page *page, unsigned int order) in prep_compound_page() argument
680 int nr_pages = 1 << order; in prep_compound_page()
683 set_compound_order(page, order); in prep_compound_page()
746 unsigned int order, int migratetype) in set_page_guard() argument
751 if (order >= debug_guardpage_minorder()) in set_page_guard()
756 set_page_private(page, order); in set_page_guard()
758 __mod_zone_freepage_state(zone, -(1 << order), migratetype); in set_page_guard()
764 unsigned int order, int migratetype) in clear_page_guard() argument
773 __mod_zone_freepage_state(zone, (1 << order), migratetype); in clear_page_guard()
777 unsigned int order, int migratetype) { return false; } in set_page_guard() argument
779 unsigned int order, int migratetype) {} in clear_page_guard() argument
782 static inline void set_page_order(struct page *page, unsigned int order) in set_page_order() argument
784 set_page_private(page, order); in set_page_order()
793 * (c) a page and its buddy have the same order &&
799 * For recording page's order, we use page_private(page).
802 unsigned int order) in page_is_buddy() argument
804 if (page_is_guard(buddy) && page_order(buddy) == order) { in page_is_buddy()
813 if (PageBuddy(buddy) && page_order(buddy) == order) { in page_is_buddy()
843 int order, int migratetype) in compaction_capture() argument
845 if (!capc || order != capc->cc->order) in compaction_capture()
854 * Do not let lower order allocations polluate a movable pageblock. in compaction_capture()
857 * have trouble finding a high-order free page. in compaction_capture()
859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) in compaction_capture()
874 int order, int migratetype) in compaction_capture() argument
893 * free pages of length of (1 << order) and marked with PageBuddy.
894 * Page's order is recorded in page_private(page) field.
906 struct zone *zone, unsigned int order, in __free_one_page() argument
922 __mod_zone_freepage_state(zone, 1 << order, migratetype); in __free_one_page()
924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); in __free_one_page()
928 while (order < max_order - 1) { in __free_one_page()
929 if (compaction_capture(capc, page, order, migratetype)) { in __free_one_page()
930 __mod_zone_freepage_state(zone, -(1 << order), in __free_one_page()
934 buddy_pfn = __find_buddy_pfn(pfn, order); in __free_one_page()
939 if (!page_is_buddy(page, buddy, order)) in __free_one_page()
943 * merge with it and move up one order. in __free_one_page()
946 clear_page_guard(zone, buddy, order, migratetype); in __free_one_page()
948 del_page_from_free_area(buddy, &zone->free_area[order]); in __free_one_page()
952 order++; in __free_one_page()
955 /* If we are here, it means order is >= pageblock_order. in __free_one_page()
961 * low-order merging. in __free_one_page()
966 buddy_pfn = __find_buddy_pfn(pfn, order); in __free_one_page()
980 set_page_order(page, order); in __free_one_page()
984 * of the next-highest order is free. If it is, it's possible in __free_one_page()
988 * as a higher order page in __free_one_page()
990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn) in __free_one_page()
991 && !is_shuffle_order(order)) { in __free_one_page()
995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); in __free_one_page()
998 page_is_buddy(higher_page, higher_buddy, order + 1)) { in __free_one_page()
999 add_to_free_area_tail(page, &zone->free_area[order], in __free_one_page()
1005 if (is_shuffle_order(order)) in __free_one_page()
1006 add_to_free_area_random(page, &zone->free_area[order], in __free_one_page()
1009 add_to_free_area(page, &zone->free_area[order], migratetype); in __free_one_page()
1129 unsigned int order, bool check_free) in free_pages_prepare() argument
1135 trace_mm_page_free(page, order); in free_pages_prepare()
1139 * avoid checking PageCompound for order-0 pages. in free_pages_prepare()
1141 if (unlikely(order)) { in free_pages_prepare()
1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); in free_pages_prepare()
1149 for (i = 1; i < (1 << order); i++) { in free_pages_prepare()
1162 __memcg_kmem_uncharge(page, order); in free_pages_prepare()
1170 reset_page_owner(page, order); in free_pages_prepare()
1174 PAGE_SIZE << order); in free_pages_prepare()
1176 PAGE_SIZE << order); in free_pages_prepare()
1179 kernel_init_free_pages(page, 1 << order); in free_pages_prepare()
1181 kernel_poison_pages(page, 1 << order, 0); in free_pages_prepare()
1187 arch_free_page(page, order); in free_pages_prepare()
1190 kernel_map_pages(page, 1 << order, 0); in free_pages_prepare()
1192 kasan_free_nondeferred_pages(page, order); in free_pages_prepare()
1199 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1217 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1218 * moving from pcp lists to free list in order to reduce overhead. With
1247 * Assumes all pages on list are in same zone, and of same order.
1335 unsigned int order, in free_one_page() argument
1343 __free_one_page(page, pfn, zone, order, migratetype); in free_one_page()
1421 static void __free_pages_ok(struct page *page, unsigned int order) in __free_pages_ok() argument
1427 if (!free_pages_prepare(page, order, true)) in __free_pages_ok()
1432 __count_vm_events(PGFREE, 1 << order); in __free_pages_ok()
1433 free_one_page(page_zone(page), page, pfn, order, migratetype); in __free_pages_ok()
1437 void __free_pages_core(struct page *page, unsigned int order) in __free_pages_core() argument
1439 unsigned int nr_pages = 1 << order; in __free_pages_core()
1454 __free_pages(page, order); in __free_pages_core()
1498 unsigned int order) in memblock_free_pages() argument
1502 __free_pages_core(page, order); in memblock_free_pages()
1725 * In order to try and keep some memory in the cache we have the loop
1726 * broken along max page order boundaries. This way we will not cause
1836 * deferred pages to satisfy the allocation specified by order, rounded up to
1850 deferred_grow_zone(struct zone *zone, unsigned int order) in deferred_grow_zone() argument
1852 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); in deferred_grow_zone()
1927 _deferred_grow_zone(struct zone *zone, unsigned int order) in _deferred_grow_zone() argument
1929 return deferred_grow_zone(zone, order); in _deferred_grow_zone()
2014 * The order of subdivision here is critical for the IO subsystem.
2015 * Please do not alter this order without good reasons and regression
2017 * the order in which smaller blocks are delivered depends on the order
2019 * influencing the order in which pages are delivered to the IO
2103 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2121 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2138 static bool check_new_pages(struct page *page, unsigned int order) in check_new_pages() argument
2141 for (i = 0; i < (1 << order); i++) { in check_new_pages()
2151 inline void post_alloc_hook(struct page *page, unsigned int order, in post_alloc_hook() argument
2157 arch_alloc_page(page, order); in post_alloc_hook()
2159 kernel_map_pages(page, 1 << order, 1); in post_alloc_hook()
2160 kasan_alloc_pages(page, order); in post_alloc_hook()
2161 kernel_poison_pages(page, 1 << order, 1); in post_alloc_hook()
2162 set_page_owner(page, order, gfp_flags); in post_alloc_hook()
2165 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, in prep_new_page() argument
2168 post_alloc_hook(page, order, gfp_flags); in prep_new_page()
2171 kernel_init_free_pages(page, 1 << order); in prep_new_page()
2173 if (order && (gfp_flags & __GFP_COMP)) in prep_new_page()
2174 prep_compound_page(page, order); in prep_new_page()
2193 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, in __rmqueue_smallest() argument
2201 for (current_order = order; current_order < MAX_ORDER; ++current_order) { in __rmqueue_smallest()
2207 expand(zone, page, order, current_order, area, migratetype); in __rmqueue_smallest()
2217 * This array describes the order lists are fallen back to when
2234 unsigned int order) in __rmqueue_cma_fallback() argument
2236 return __rmqueue_smallest(zone, order, MIGRATE_CMA); in __rmqueue_cma_fallback()
2240 unsigned int order) { return NULL; } in __rmqueue_cma_fallback() argument
2253 unsigned int order; in move_freepages() local
2280 order = page_order(page); in move_freepages()
2281 move_to_free_area(page, &zone->free_area[order], migratetype); in move_freepages()
2282 page += 1 << order; in move_freepages()
2283 pages_moved += 1 << order; in move_freepages()
2337 static bool can_steal_fallback(unsigned int order, int start_mt) in can_steal_fallback() argument
2340 * Leaving this order check is intended, although there is in can_steal_fallback()
2341 * relaxed order check in next check. The reason is that in can_steal_fallback()
2346 if (order >= pageblock_order) in can_steal_fallback()
2349 if (order >= pageblock_order / 2 || in can_steal_fallback()
2386 * This function implements actual steal behaviour. If order is large enough,
2473 * Check whether there is a suitable fallback freepage with requested order.
2478 int find_suitable_fallback(struct free_area *area, unsigned int order, in find_suitable_fallback() argument
2496 if (can_steal_fallback(order, migratetype)) in find_suitable_fallback()
2510 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2511 * there are no empty page blocks that contain a page with a suitable order
2548 * potentially hurts the reliability of high-order allocations when under
2563 int order; in unreserve_highatomic_pageblock() local
2577 for (order = 0; order < MAX_ORDER; order++) { in unreserve_highatomic_pageblock()
2578 struct free_area *area = &(zone->free_area[order]); in unreserve_highatomic_pageblock()
2633 * The use of signed ints for order and current_order is a deliberate
2638 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, in __rmqueue_fallback() argument
2643 int min_order = order; in __rmqueue_fallback()
2678 && current_order > order) in __rmqueue_fallback()
2687 for (current_order = order; current_order < MAX_ORDER; in __rmqueue_fallback()
2708 trace_mm_page_alloc_extfrag(page, order, current_order, in __rmqueue_fallback()
2720 __rmqueue(struct zone *zone, unsigned int order, int migratetype, in __rmqueue() argument
2726 page = __rmqueue_smallest(zone, order, migratetype); in __rmqueue()
2729 page = __rmqueue_cma_fallback(zone, order); in __rmqueue()
2731 if (!page && __rmqueue_fallback(zone, order, migratetype, in __rmqueue()
2736 trace_mm_page_alloc_zone_locked(page, order, migratetype); in __rmqueue()
2745 static int rmqueue_bulk(struct zone *zone, unsigned int order, in rmqueue_bulk() argument
2753 struct page *page = __rmqueue(zone, order, migratetype, in rmqueue_bulk()
2763 * physical page order. The page is added to the tail of in rmqueue_bulk()
2767 * head, thus also in the physical page order. This is useful in rmqueue_bulk()
2775 -(1 << order)); in rmqueue_bulk()
2784 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); in rmqueue_bulk()
2974 unsigned int order, t; in mark_free_pages() local
2999 for_each_migratetype_order(order, t) { in mark_free_pages()
3001 &zone->free_area[order].free_list[t], lru) { in mark_free_pages()
3005 for (i = 0; i < (1UL << order); i++) { in mark_free_pages()
3064 * Free a 0-order page
3080 * Free a list of 0-order pages
3118 * split_page takes a non-compound higher-order page, and splits it into
3119 * n (1<<order) sub-pages: page[0..n]
3125 void split_page(struct page *page, unsigned int order) in split_page() argument
3132 for (i = 1; i < (1 << order); i++) in split_page()
3134 split_page_owner(page, order); in split_page()
3138 int __isolate_free_page(struct page *page, unsigned int order) in __isolate_free_page() argument
3140 struct free_area *area = &page_zone(page)->free_area[order]; in __isolate_free_page()
3153 * emulate a high-order watermark check with a raised order-0 in __isolate_free_page()
3154 * watermark, because we already know our high-order page in __isolate_free_page()
3157 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); in __isolate_free_page()
3161 __mod_zone_freepage_state(zone, -(1UL << order), mt); in __isolate_free_page()
3172 if (order >= pageblock_order - 1) { in __isolate_free_page()
3173 struct page *endpage = page + (1 << order) - 1; in __isolate_free_page()
3184 return 1UL << order; in __isolate_free_page()
3262 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3266 struct zone *zone, unsigned int order, in rmqueue() argument
3273 if (likely(order == 0)) { in rmqueue()
3281 * allocate greater than order-1 page units with __GFP_NOFAIL. in rmqueue()
3283 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); in rmqueue()
3289 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); in rmqueue()
3291 trace_mm_page_alloc_zone_locked(page, order, migratetype); in rmqueue()
3294 page = __rmqueue(zone, order, migratetype, alloc_flags); in rmqueue()
3295 } while (page && check_new_pages(page, order)); in rmqueue()
3299 __mod_zone_freepage_state(zone, -(1 << order), in rmqueue()
3302 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); in rmqueue()
3342 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) in __should_fail_alloc_page() argument
3344 if (order < fail_page_alloc.min_order) in __should_fail_alloc_page()
3354 return should_fail(&fail_page_alloc.attr, 1 << order); in __should_fail_alloc_page()
3371 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); in fail_page_alloc_debugfs()
3382 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) in __should_fail_alloc_page() argument
3389 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) in should_fail_alloc_page() argument
3391 return __should_fail_alloc_page(gfp_mask, order); in should_fail_alloc_page()
3396 * Return true if free base pages are above 'mark'. For high-order checks it
3397 * will return true of the order-0 watermark is reached and there is at least
3401 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, in __zone_watermark_ok() argument
3410 free_pages -= (1 << order) - 1; in __zone_watermark_ok()
3443 * Check watermarks for an order-0 allocation request. If these in __zone_watermark_ok()
3444 * are not met, then a high-order request also cannot go ahead in __zone_watermark_ok()
3450 /* If this is an order-0 request then the watermark is fine */ in __zone_watermark_ok()
3451 if (!order) in __zone_watermark_ok()
3454 /* For a high-order request, check at least one suitable page is free */ in __zone_watermark_ok()
3455 for (o = order; o < MAX_ORDER; o++) { in __zone_watermark_ok()
3480 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, in zone_watermark_ok() argument
3483 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, in zone_watermark_ok()
3487 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, in zone_watermark_fast() argument
3500 * Fast check for order-0 only. If this fails then the reserves in zone_watermark_fast()
3502 * passes but only the high-order atomic reserve are free. If in zone_watermark_fast()
3506 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) in zone_watermark_fast()
3509 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, in zone_watermark_fast()
3513 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, in zone_watermark_ok_safe() argument
3521 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, in zone_watermark_ok_safe()
3580 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, in get_page_from_freelist() argument
3650 if (!zone_watermark_fast(zone, order, mark, in get_page_from_freelist()
3660 if (_deferred_grow_zone(zone, order)) in get_page_from_freelist()
3673 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); in get_page_from_freelist()
3683 if (zone_watermark_ok(zone, order, mark, in get_page_from_freelist()
3692 page = rmqueue(ac->preferred_zoneref->zone, zone, order, in get_page_from_freelist()
3695 prep_new_page(page, order, gfp_mask, alloc_flags); in get_page_from_freelist()
3698 * If this is a high-order atomic allocation then check in get_page_from_freelist()
3701 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) in get_page_from_freelist()
3702 reserve_highatomic_pageblock(page, zone, order); in get_page_from_freelist()
3709 if (_deferred_grow_zone(zone, order)) in get_page_from_freelist()
3771 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, in __alloc_pages_cpuset_fallback() argument
3777 page = get_page_from_freelist(gfp_mask, order, in __alloc_pages_cpuset_fallback()
3784 page = get_page_from_freelist(gfp_mask, order, in __alloc_pages_cpuset_fallback()
3791 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, in __alloc_pages_may_oom() argument
3799 .order = order, in __alloc_pages_may_oom()
3823 ~__GFP_DIRECT_RECLAIM, order, in __alloc_pages_may_oom()
3831 /* The OOM killer will not help higher order allocs */ in __alloc_pages_may_oom()
3832 if (order > PAGE_ALLOC_COSTLY_ORDER) in __alloc_pages_may_oom()
3870 page = __alloc_pages_cpuset_fallback(gfp_mask, order, in __alloc_pages_may_oom()
3885 /* Try memory compaction for high-order allocations before reclaim */
3887 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, in __alloc_pages_direct_compact() argument
3895 if (!order) in __alloc_pages_direct_compact()
3901 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, in __alloc_pages_direct_compact()
3915 prep_new_page(page, order, gfp_mask, alloc_flags); in __alloc_pages_direct_compact()
3919 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); in __alloc_pages_direct_compact()
3925 compaction_defer_reset(zone, order, true); in __alloc_pages_direct_compact()
3942 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, in should_compact_retry() argument
3953 if (!order) in should_compact_retry()
3968 * compaction was skipped because there are not enough order-0 pages in should_compact_retry()
3972 ret = compaction_zonelist_suitable(ac, order, alloc_flags); in should_compact_retry()
3994 if (order > PAGE_ALLOC_COSTLY_ORDER) in should_compact_retry()
4006 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? in should_compact_retry()
4015 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); in should_compact_retry()
4020 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, in __alloc_pages_direct_compact() argument
4029 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, in should_compact_retry() argument
4037 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) in should_compact_retry()
4043 * Let's give them a good hope and keep retrying while the order-0 in should_compact_retry()
4109 __perform_reclaim(gfp_t gfp_mask, unsigned int order, in __perform_reclaim() argument
4124 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, in __perform_reclaim()
4138 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, in __alloc_pages_direct_reclaim() argument
4145 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); in __alloc_pages_direct_reclaim()
4150 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); in __alloc_pages_direct_reclaim()
4167 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, in wake_all_kswapds() argument
4178 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); in wake_all_kswapds()
4277 should_reclaim_retry(gfp_t gfp_mask, unsigned order, in should_reclaim_retry() argument
4287 * their order will become available due to high fragmentation so in should_reclaim_retry()
4290 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) in should_reclaim_retry()
4324 wmark = __zone_watermark_ok(zone, order, min_wmark, in should_reclaim_retry()
4326 trace_reclaim_retry_zone(z, order, reclaimable, in should_reclaim_retry()
4401 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, in __alloc_pages_slowpath() argument
4405 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; in __alloc_pages_slowpath()
4449 wake_all_kswapds(order, gfp_mask, ac); in __alloc_pages_slowpath()
4455 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); in __alloc_pages_slowpath()
4462 * movable high-order allocations, do that as well, as compaction will in __alloc_pages_slowpath()
4470 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) in __alloc_pages_slowpath()
4472 page = __alloc_pages_direct_compact(gfp_mask, order, in __alloc_pages_slowpath()
4479 if (order >= pageblock_order && (gfp_mask & __GFP_IO) && in __alloc_pages_slowpath()
4485 * order, fail immediately unless the allocator has in __alloc_pages_slowpath()
4491 * bursty high order allocations, in __alloc_pages_slowpath()
4509 * If compaction is deferred for high-order allocations, in __alloc_pages_slowpath()
4531 wake_all_kswapds(order, gfp_mask, ac); in __alloc_pages_slowpath()
4549 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); in __alloc_pages_slowpath()
4562 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, in __alloc_pages_slowpath()
4568 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, in __alloc_pages_slowpath()
4578 * Do not retry costly high order allocations unless they are in __alloc_pages_slowpath()
4584 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, in __alloc_pages_slowpath()
4589 * It doesn't make any sense to retry for the compaction if the order-0 in __alloc_pages_slowpath()
4595 should_compact_retry(ac, order, alloc_flags, in __alloc_pages_slowpath()
4606 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); in __alloc_pages_slowpath()
4652 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); in __alloc_pages_slowpath()
4660 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); in __alloc_pages_slowpath()
4669 "page allocation failure: order:%u", order); in __alloc_pages_slowpath()
4674 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, in prepare_alloc_pages() argument
4697 if (should_fail_alloc_page(gfp_mask, order)) in prepare_alloc_pages()
4725 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, in __alloc_pages_nodemask() argument
4734 * There are several places where we assume that the order value is sane in __alloc_pages_nodemask()
4737 if (unlikely(order >= MAX_ORDER)) { in __alloc_pages_nodemask()
4744 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) in __alloc_pages_nodemask()
4756 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); in __alloc_pages_nodemask()
4776 page = __alloc_pages_slowpath(alloc_mask, order, &ac); in __alloc_pages_nodemask()
4780 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { in __alloc_pages_nodemask()
4781 __free_pages(page, order); in __alloc_pages_nodemask()
4785 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); in __alloc_pages_nodemask()
4796 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) in __get_free_pages() argument
4800 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); in __get_free_pages()
4813 static inline void free_the_page(struct page *page, unsigned int order) in free_the_page() argument
4815 if (order == 0) /* Via pcp? */ in free_the_page()
4818 __free_pages_ok(page, order); in free_the_page()
4821 void __free_pages(struct page *page, unsigned int order) in __free_pages() argument
4824 free_the_page(page, order); in __free_pages()
4828 void free_pages(unsigned long addr, unsigned int order) in free_pages() argument
4832 __free_pages(virt_to_page((void *)addr), order); in free_pages()
4841 * within a 0 or higher order page. Multiple fragments within that page
4934 * Frees a page fragment allocated out of either a compound or order 0 page.
4945 static void *make_alloc_exact(unsigned long addr, unsigned int order, in make_alloc_exact() argument
4949 unsigned long alloc_end = addr + (PAGE_SIZE << order); in make_alloc_exact()
4952 split_page(virt_to_page((void *)addr), order); in make_alloc_exact()
4978 unsigned int order = get_order(size); in alloc_pages_exact() local
4984 addr = __get_free_pages(gfp_mask, order); in alloc_pages_exact()
4985 return make_alloc_exact(addr, order, size); in alloc_pages_exact()
5003 unsigned int order = get_order(size); in alloc_pages_exact_nid() local
5009 p = alloc_pages_node(nid, gfp_mask, order); in alloc_pages_exact_nid()
5012 return make_alloc_exact((unsigned long)page_address(p), order, size); in alloc_pages_exact_nid()
5400 unsigned int order; in show_free_areas() local
5410 for (order = 0; order < MAX_ORDER; order++) { in show_free_areas()
5411 struct free_area *area = &zone->free_area[order]; in show_free_areas()
5414 nr[order] = area->nr_free; in show_free_areas()
5415 total += nr[order] << order; in show_free_areas()
5417 types[order] = 0; in show_free_areas()
5420 types[order] |= 1 << type; in show_free_areas()
5424 for (order = 0; order < MAX_ORDER; order++) { in show_free_areas()
5426 nr[order], K(1UL) << order); in show_free_areas()
5427 if (nr[order]) in show_free_areas()
5428 show_migration_types(types[order]); in show_free_areas()
5804 * needs the percpu allocator in order to allocate its pagesets in build_all_zonelists_init()
6023 unsigned int order, t; in zone_init_free_lists() local
6024 for_each_migratetype_order(order, t) { in zone_init_free_lists()
6025 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); in zone_init_free_lists()
6026 zone->free_area[order].nr_free = 0; in zone_init_free_lists()
6079 * fragmented and becoming unavailable for high-order allocations. in zone_batchsize()
6105 /* Update high, then batch, in order */ in pageset_update()
6356 * zones within a node are in order of monotonic increases memory addresses
6628 unsigned int order; in set_pageblock_order() local
6635 order = HUGETLB_PAGE_ORDER; in set_pageblock_order()
6637 order = MAX_ORDER - 1; in set_pageblock_order()
6640 * Assume the largest contiguous order of interest is a huge page. in set_pageblock_order()
6644 pageblock_order = order; in set_pageblock_order()
6841 * aligned but the node_mem_map endpoints must be in order in alloc_node_mem_map()
8108 /* Make sure we've got at least a 0-order allocation.. */ in alloc_large_system_hash()
8162 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", in alloc_large_system_hash()
8379 unsigned int order; in alloc_contig_range() local
8384 .order = -1, in alloc_contig_range()
8395 * MIGRATE_ISOLATE. Because pageblock and max order pages may in alloc_contig_range()
8446 * page allocator holds, ie. they can be part of higher order in alloc_contig_range()
8456 order = 0; in alloc_contig_range()
8459 if (++order >= MAX_ORDER) { in alloc_contig_range()
8463 outer_start &= ~0UL << order; in alloc_contig_range()
8467 order = page_order(pfn_to_page(outer_start)); in alloc_contig_range()
8470 * outer_start page could be small order buddy page and in alloc_contig_range()
8475 if (outer_start + (1UL << order) <= start) in alloc_contig_range()
8563 unsigned int order, i; in __offline_isolated_pages() local
8598 order = page_order(page); in __offline_isolated_pages()
8599 offlined_pages += 1 << order; in __offline_isolated_pages()
8602 pfn, 1 << order, end_pfn); in __offline_isolated_pages()
8604 del_page_from_free_area(page, &zone->free_area[order]); in __offline_isolated_pages()
8605 for (i = 0; i < (1 << order); i++) in __offline_isolated_pages()
8607 pfn += (1 << order); in __offline_isolated_pages()
8620 unsigned int order; in is_free_buddy_page() local
8623 for (order = 0; order < MAX_ORDER; order++) { in is_free_buddy_page()
8624 struct page *page_head = page - (pfn & ((1 << order) - 1)); in is_free_buddy_page()
8626 if (PageBuddy(page_head) && page_order(page_head) >= order) in is_free_buddy_page()
8631 return order < MAX_ORDER; in is_free_buddy_page()
8645 unsigned int order; in set_hwpoison_free_buddy_page() local
8649 for (order = 0; order < MAX_ORDER; order++) { in set_hwpoison_free_buddy_page()
8650 struct page *page_head = page - (pfn & ((1 << order) - 1)); in set_hwpoison_free_buddy_page()
8652 if (PageBuddy(page_head) && page_order(page_head) >= order) { in set_hwpoison_free_buddy_page()