Lines Matching full:step

50 |	Step 1.	Set ans := 1.0
52 | Step 2. Return ans := ans + sign(X)*2^(-126). Exit.
59 | Step 1. Filter out extreme cases of input argument.
60 | 1.1 If |X| >= 2^(-65), go to Step 1.3.
61 | 1.2 Go to Step 7.
62 | 1.3 If |X| < 16380 log(2), go to Step 2.
63 | 1.4 Go to Step 8.
72 | Note also that the constant 16380 log(2) used in Step 1.3
74 | to Step 2 guarantees |X| < 16380 log(2). There is no harm
76 | but close to, 16380 log(2) and the branch to Step 9 is
79 | Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
103 | Step 3. Calculate X - N*log2/64.
113 | Step 3.2.
125 | This bound will be used in Step 4.
127 | Step 4. Approximate exp(R)-1 by a polynomial
141 | Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
152 | Step 6. Reconstruction of exp(X)
172 | Step 7. Return 1 + X.
179 | in Step 7.1 to avoid unnecessary trapping. (Although
185 | Step 8. Handle exp(X) where |X| >= 16380log2.
186 | 8.1 If |X| > 16480 log2, go to Step 9.
193 | 8.7 Go to Step 3.
196 | Step 9. Handle exp(X), |X| > 16480 log2.
212 | Step 1. Set ans := 0
214 | Step 2. Return ans := X + ans. Exit.
221 | Step 1. Check |X|
222 | 1.1 If |X| >= 1/4, go to Step 1.3.
223 | 1.2 Go to Step 7.
224 | 1.3 If |X| < 70 log(2), go to Step 2.
225 | 1.4 Go to Step 10.
230 | see the notes on Step 1 of setox.
232 | Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
238 | Notes: See the notes on Step 2 of setox.
240 | Step 3. Calculate X - N*log2/64.
243 | Notes: Applying the analysis of Step 3 of setox in this case
247 | Step 4. Approximate exp(R)-1 by a polynomial
261 | Step 5. Compute 2^(J/64)*p by
270 | in Step 6 below. The total relative error in p is no
273 | Step 6. Reconstruction of exp(X)-1
275 | 6.1 If M <= 63, go to Step 6.3.
285 | Step 7. exp(X)-1 for |X| < 1/4.
286 | 7.1 If |X| >= 2^(-65), go to Step 9.
287 | 7.2 Go to Step 8.
289 | Step 8. Calculate exp(X)-1, |X| < 2^(-65).
301 | Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
319 | Step 10. Calculate exp(X)-1 for |X| >= 70 log 2.
321 | purposes. Therefore, go to Step 1 of setox.
464 |--Step 1.
479 |--Step 2.
501 |--Step 3.
511 |--Step 4.
549 |--Step 5
560 |--Step 6
571 |--Step 7
578 |--Step 8
607 bra EXPCONT1 | ...go back to Step 3
610 |--Step 9
621 |--Step 0.
629 |--Step 1.
630 |--Step 1.1
638 |--Step 1.3
646 |--Step 2.
667 |--Step 3.
678 |--Step 4.
726 |--Step 5
731 |--Step 6
732 |--Step 6.1
736 |--Step 6.2 M >= 64
743 |--Step 6.3 M <= 63
747 |--Step 6.4 M <= -4
753 |--Step 6.5 -3 <= M <= 63
760 |--Step 6.6
767 |--Step 7 |X| < 1/4.
772 |--Step 8 |X| < 2^(-65)
775 |--Step 8.2
786 |--Step 8.3
799 |--Step 9 exp(X)-1 by a simple polynomial
853 |--Step 10 |X| > 70 log2
857 |--Step 10.2